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Momentum dynamics affect the boiling water reactor (BWR)
neutronic stability by coupling steam void perturbations and core~inlet
coolant flow. Computer simulations 1> 2 have shown that proper modeling
of the recirculation loop, which shares the upper and lower plena
pressures with the reactor core, is essential for accurate stability
calculations. The purpose of the present work is to show experimental
evidence, obtained from a recent series of stability tests performed at
the Browns Ferry-l BWR, 3> ¥ demonstrating the important role of momentum
dynamics in BWR neutronic stability.

T . results of the Browns Verry stability tests 3>* confirmed the
stability of this reactor and showed that the sensitivity of the decay
ratio (DR) to variations in power and flow followed the same ‘trends
during two-loop and single-loop operation (SLO). SLO measuremerts,
however, exhibited a significant noise increase (309Z) in most ;:rocesas
signals. The source of this higher noise level was determined to be
related to increased turbulence in the downcomer due tc crossflow bet-
ween active ;;d inactive pump loops. This determination was made by
comparing the reactor transfer functions (obtained from noise weasure-
ments without external perturbations) to the results of computer simula-
tions. Figure 1 presente the transfer function (TF) between active-loop
flow and average reactor—-power for test BFTP3. The remarkable agreement
observed between the calculated and measured TFs implied that the noise
source was external to the core and was included in the flow signal.ds“

Given the relative simplicity and low cost with which noise

measurements can be performed, this well-known technique might be used



in the future tc obtain reactor TFs which can, io0 turn, be used to
quantify the reactor stability in terms of indices such as the IR.
Contrary to TFs from perturbative tests, the correctaess of noise TFs
relies on assumptions of the location and characteristics of the driving
noise source, which, in general, cannot be measured directly. The TFs
calculated from the Browns Ferry noise tests data (for instance, the TF
presented in Fig. la) were computed from the measured power and flow
signals; therefore, they are open-loop TFs. Computation of the closed-
loop TFs would have required a direct measurement of the noilse source,
which was not possible. The open-loop TF does not account for the
recirculation loop momentum dynamics; as a result, its DR is expected to
be smaller {(i.e., more stable) than the closed-loop DR.! Thus, it does
not yleld a conservative estimate of the reactor's stability.

The ~losed-loop DR can be estimated from noise measurements by
analyzing only the power noise. This technique, which has been
described and validated in refs. 5 and 6, allowed us to calculate noise-
based, closed~loop DRs that can be compared to the open-loop DRs calcu-
lated by functionally fitting the measured TFs. This comparison (see
Table 1) shows that the open—-loop DRs are about 50Z smaller than the
closed~loop DR3 for these test conditions. Table I also contains open-
loop and closed-loop DRs calculated by a numerical stability code? to
permit comparisons and confirm noised-based DR trends. Note that,
altbough the calculated DR values agree satisfactorily with the measared
ones, the Intention of this comparison is to show that the observed

experimental trends agree with analytical predictions. The lack of



test-specific cross-section and flow data3»" for the numerical
calculations precluded other possible conclusions from this comparison.
In essence, the present work has shown experimental evidence
that momentum dynamics play an important role in BWR dynamic behavior.
Proper modeling of the recirculation loop 1is, thus, essential for
accurate stability calculations; otherwise, nonconservative errors of as
high as 50% could result. In addition, we have shown that noise analy-
sis can be uged to estimate DRs in BWRs, but obtaining a conservative DR
from this technique requires extreme care in the identification of tiie
noise source location to determine whether the DR represents the open—

loop or the closed-loop reactor stability.
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Table I. Comparison of open—loop versus closed-loop decay ratios

Test Power Flow Experimental decay ratio Calculated decay ratio
(¢9) %) open-loop closed-loop open~loop closed-loop
BFTP1Z 66 56 0.21 0.34 0.15 0.26
BFTP28 54 38 0.30 0.45 0.26 0.47
BFTP3P 47 32 0.33 0.53 0.30 0.56
BFTP4D 54 45 0.26 0.39 0.20 0.34
BFTP6® 59 52 0.28 0.34 0.16 0.25

4 Two-loop operation
b Single—~loop operation



Fig. 1. Open-loop flow-to-power transfer function for test case BFTP3.
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