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ABSTRACT

In inverse equilibrium models, space variables (for example
JR,Z,^) are determined as functions of magnetic variables
£p,8,<3 using the usual MHD equations V x g = JJ^J, V • g = 0, and
E = 2 p - J * B = 0- Analytical inverse models have long clarified the
physics of both MHD equilibrium and stability [cf. Zakharov and
Shafranov (1978)]. Inverse numerical models in two dimensions (2D)
have led to a progression of increasingly sophisticated numerical codes
[e.g., Potter (1976); Vabishchevich, et al., (1978,82); Takeda and
Tsunematsu (1979); Delucia, Jardin and Todd (1980); Lao, Hirshman and
Wieland (1981); Shumaker (1983); Ling (1983)]. In three dimensions, a
similar progression of models has occurred [e.g., Bauer, Betancourt,
and Garabedian (1978,1981); Schluter and Schwenn (1981); Bhattacharjee,
Wiley and Dewar (1982); Hirshman and Whitson (1983)]. These will be
reviewed in this paper.

We illustrate in some detail a 2D inverse equilibrium solver that
was constructed to analyze tokamak configurations and stellarators (the
latter in the context of the average method). To ensure that the
method is suitable not only to determine equilibria, but also to
provide appropriately represented data for existing stability codes, it
is important to be able to control the Jacobian, J = 8(R,Z)/8(p,8).
The form chosen is J = J Q ( P ) R ^ P where p is a flux surface label, and £
is an integer. The initial implementation is for a fixed conducting
wall boundary, but the technique can be extended to a free boundary
model.
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1. Introduction

The calculation of equilibria has proved central to the study of

laboratory plasmas. The existence and features of the equilibria are

important for the design and understanding of confinement devices and

experiments. Moreover, other calculations, such as particle orbits,

transport, Iinear MHD stabiIity, and nonlinear MHD evolution often

require an equilibrium as a starting point. For most devices and

calculations of interest, it is not a good approximation to assume that

the equilibrium magnetic field (for a finite j3 plasma) is similar to

the vacuum (zero j3) field. Thus the equilibrium calculation provides a

crucial link between the device design and these other calculations.

Many approaches have been taken in this fertile field; we will focus on

recent numerical work while providing some historical background.

Analytical plasma equilibrium calculations have been reviewed by

Solev'ev and Shafranov [1]. For several cases, analytic solutions to

the axisymmetric (tokamak) problem are known [2,3]. Numerical studies

for (open-ended) magnetic mirror systems [4] were reported in the

1960's. For toroidal devices, numerical studies became common in the

1970's when complicated configurations with no evident expansion

parameters were analyzed; typical examples are provided by

Refs. [5-10]. In these approaches the solution is expressed in a

predefined fixed coordinate system, so we will refer to them as

Eulerian methods. Eulerian methods may use geometric (e. g. Cartesian

or cylindrical) coordinates or coordinates suggested by the boundary or

by a vacuum field. In the axisymmetric case, one obtains the poloidal

magnetic flux, t|>, as a function of space coordinates; fcr example
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i|)(R,Z), where R is the major radius and £R,Z,<£} defines a cylindrical

coordinate system. One can also use global basis functions in one or

more dimensions. The required form of the solution dictates whether a

finite difference grid, a set of finite elements, or a set of global

basis functions provides the most economical and concise

representation. To cite two examples, Eulerian methods in three

dimensions have been implemented on a 3D grid [11] and with a mixed

representation in vacuum flux coordinates using 2D global angle

functions (Fourier expansions) and a 1-D flux surface grid [12].

For stability studies, ij)(p) and the "inverse functions" R(p,8),

and Z(p,8) are frequently required to define the equilibrium. Here, 8

is a generalized poloidal angle and p is a flux surface label.

Obtaining these functions from ij)(R,Z) by integrating along flux

contours (as one would do in an Eulerian method) can involve

significant truncation error-especially near a magnetic axis which does

not coincide with an axis of the predefined coordinate system.

Inverse methods are designed to determine (usually iterativeiy)

the inverse functions directly in terms of the £p,8£ coordinate system.

As in Eulerian methods, functions of (p,0) can be represented in

several ways: on a finite difference grid, as a set of finite elements,

with a set of global basis functions, or as some combination of these.

A key advantage of inverse methods is that they can provide more

accurate input for stability calculations. They also (generally)

constrain the flux topology. For 2D calculations, existence of

solutions with toroidal topology can be guaranteed [13]. However, for

3D solutions, no general existence procf is known and therefore
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numerical solutions obtained with the inverse method and forced to obey

the topology constraints are not guaranteed to converge uniformly to a

true solution of the equations. For example, equilibria containing

separatrices or ergodic regions will not be found with inverse method

codes unless provision is made to treat multiple regions and to match

solutions where these regions meet.

In inverse analyses, the spatial coordinates \R,Zl are determined

as functions of magnetic variables £p,8,<;$, where p labels 'magnetic'

surfaces of constant i|? on which plasma pressure is uniform and in which

magnetic field lings are constrained to lie. The independent

coordinates 8 and £ are frequently taken to be angular in nature since

the i|) surfaces are toroids. Generally, the £p,8,<^ system is

nonorthogonaI.

Our attention here will be restricted to inverse equilibrium

calculations for toroidal systems with isotropic pressure, zero flow,

and magnetic surfaces having rotational transform. Such systems

include tokamaks, stellarators and reversed field pinch devices. While

magnetic mirror and bumpy torus equilibrium analyses share many of the

same features, the necessary generalizations would make this review

cumbersome.

The work of Shafranov [14], and of Johnson, Greene and Weimer [14]

provides early analytical application of the inverse method in the

calculation of the relative shift of magnetic surfaces in stellarators

and tokamaks as plasma pressure rises from zero. In these studies,

only a small number (1-5) of parameters is used to represent the

equilibrium fields, and increasing this number in order to provide
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arbitrarily high accuracy appears prohibitive. A more recent example

has been given by V. D. Khait [15] in which the parameters are the

relative shift and the ellipse ratio (logarithm of ratio of major to

minor axis). Solution is accomplished by the use of a variational

method. Related discussions appear in references [16] and [17].

Proceedings of the U.S.-Japan workshops on 3D MHD [18,19] also include

papers on recent work in those two countries.

1.1 Inverse Numerical Methods in Two Dimensions

An early attempt to generalize the inverse method to arbitrarily

high accuracy was that of D. Potter [20] in the article called

"Waterbag Methods in MHD." The term 'waterbag' derived from earlier

calculations [21,22] of one dimensional Vlasov models where the area

enclosed by contours of fixed phase space density (i. e., waterbags) is

preserved by the dynamics. Potter, using special orthogonal

coordinates, applied a variational method akin to 'steepest descent' to

relax in two dimensions the position of the magnetic surfaces for a

tokamak equilibrium, the preserved quantities here being magnetic

fluxes.

Zakharov and Shafranov [23] discuss 2D equilibria (static and

evolutional) from both analytic and numerical points of view. They

pose the problem on an orthogonal 2D inverse grid. Solutions are

obtained for fixed boundary cylindrical cases. They comment that the

inverse method may be the method of choice over the traditional

Eulerian approach, even for multiply connected regions. However, they

anticipate technical difficulties with the inverse method in toroidal
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cases because of the difficulty of determining the position of the

magnetic sxis.

Vabishchevich, et al. [24] formulate a fully numerical inverse

equilibrium procedure in two dimensions. Orthogonal independent

coordinates i{), 9 are used as a representation for the unknown

cylindrical coordinate functions R, Z of the magnetic surface. The

coupled elliptic partial differential equations are then solved on a

grid in Jt|),QJ space by numerical methods not detailed in the paper.

Fixed and free boundary solutions are obtained both for cylinders and

finite aspect ratio toroids.

Takeda and Tsunematsu [19,25] apply finite element methods using a

set of equally spaced nodes on the magnetic surfaces to determine

axisymmetric, fixed boundary, tokamak equilibria. An inner iteration

solves the nonlinear eigenvalue problem; and [n an outer iteration,

surfaces are determined by tracing lines of constant ty in the

coordinates of the previous step. The authors provide [25] sample data

and output as well as a partial listing and a detailed description of

the iteration procedure used in their code SELENE.

Delucia, Jardin and Todd [26] also employ a 2D flux coordinate

grid, but they explicitly constrain the Jacobian and they pose the

problem in finite difference form. They include discussion of the free

boundary problem and also the option of constraining the rotational

transform. Their description [26] is detailed and includes flowcharts

of the iteration process.
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Shumaker [27] obtains 2D equilibria of compact torus

configurations for transport studies. He has developed a fast finite

element inverse code which Is able to handle configurations having a

separatrix. Rather than a Jacobian or orthogonality constrr nt, e

locates nodes where needed for accuracy. He constrains two adiabati,:

quantities rather than F(i|i) and P(i|)). His solution is obtained with an

ICCG (Incomplete Cholesky Conjugate Gradient) technique. This is the

only inverse code we are aware of which treats a nonsimple topology.

An inverse method for tokamak equilibria in two dimensions has

been developed, using a moments representation, by Lao and co-workers

[28-30]. This has been fully documented in a technical report [30]

including a microfiche of the actual coding. This code (VMOMS) uses a

shooting method to solve for the Fourier amplitudes (moments) in polar

angle 9 as function of a radial or flux coordinate p. The code uses a

'fixed boundary' treatment in which the outermost magnetic surface is

prescribed in space. The properties of this code include a high degree

of efficiency, and a good representation using a modest number of

parameters, typically ;£ 5 Fourier coefficients on each of ^ 20-30

magnetic surfaces. This code was developed to treat the moderate

resolution cases that are needed in transport simulation studies. For

potential applications requiring high precision, such as some stability

analyses, the code may not react well to substantial increases in the

number of harmonics or the number of surfaces used.

Pustovitov, et al. [31] reports numerical results for 2D

equilibria using the stellarator expansion [32]. The inverse method
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used here is an iteration on a finite difference grid, which is

described in earlier papers by Vabishchevich [33].

Ling [34] has developed a code which uses the method of Lao

[28-30] for the fixed boundary problem. Free boundary calculations can

also be done with this code, including ones in which the plasma moves

through a series of quasi-static free boundary equilibria consistent

with currents in external coils.

We are developing an alternate approach, which allows control of

the Jacobian. In later sections of this paper, we describe such a code

(AXE) having several important distinctions brought about by its

intended application: to provide high resolution equilibrium data for

stability analysis of tokamaks, and for applying the average method

approach to the study of stellarator systems [14,32]. Important to

reducing numerical 'pollution' of the mode spectra for such stability

analysis is that the Jacobian J = 9(R,Z)/3(p,B) take the form Jfl(p)lcp

where the particular choice £ = 2 leads to natural magnetic coordinates

where field lines are straight, having the form 8 - t£ = constant.

This code uses Fourier decomposition in angle 8, and a prescribed

(fixed) outermost magnetic surface boundary condition.

1.2 Inverse Methods in Three Dimensions

The problem of equilibrium in a stellarator or in a real tokamak

with symmetry-spoiling elements such as finite toroidal field coils or

bundle divertors may require a fully three dimensional treatment.

Eulerian codes [11,12] have been important in the analysis of systems
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with complex magnetic topology, but the limited resolution available

with present computers makes 3D inverse method codes desirable as well.

An early Cementation which is still in widespread use was

devised by Bauer, Betancourt, and Garabedian [18,19,35] who also

provide references to earlier work. This code uses magnetic

coordinates, a 3D finite difference grid, an energy principle, and an

accelerated steepest descent method to generate equilibria. A vacuum

region surrounding the plasma is permitted and at the free boundary

between plasma and vacuum, the continuity of B /2|JLQ + P is maintained.

A version of the code is listed in Reference 35 and the method is

extensively described. More recently, Schluter and Schwenn [36] have

developed a similar code (TUBE) which differs primarily in the details

of the iteration scheme.

Extension of the moments method [28-30] to three dimensions was

considered by Bhattacharjee [18] who wrote out moment equations based

on a Lagrangian formulation, and later, with Wiley and Dewar [37],

presented equilibria in three dimensions using the geometrical toroidal

angle as the choice for <£ in the magnetic representation.

Two important advances have been proposed by Hirshman and Whitson

[38] who observed that the enlightened choice of angle variables £9,£$

(as in [28,29]) would enhance convergence of the Fourier series, and

that using an adiabatic energy principle with index °j > 1 ensures a

nonnegative quadratic form, leading to monotonic convergence of the

steepest descent iterative solution. An energy principle is used in

this method to generate the transformation ('rencrmalization') between

the straight field line coordinates and those variables which economize
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the Fourier representation. Parenthetically, representation in the

economizing variables should yield the most reliable identification

between coefficients in "simple physical models" (surface shift,

elongation, triangularity, etc.) and the results of the complete

caIculat ion.
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2. A 2-D Inverse Equilibrium Code, AXE

We were rrotivated to develop an inverse equilibrium cede, AXE

(AXisymmetric EquiIibrium), by our need for accurate 2D equilibria

represented in terms of a (non-orthogonal) straight field line flux

coordinate system £p,E§. The inverse functions are required in the

form of discrete representations in p and series expansions ;n 8:

R(p,0) = Efypj)cos(m8) , (2.1a)
m

and

Z(p,6) =EZ m(p j)sin(n 18) , (2.1b)
m

where p: are a set of grid points. These requirements are dictated by

our intended use for AXE to provide input for stability calculations

[39] which assume this representation. Previously, we have obtained

equilibria in other representations and then transformed to the one

described above, but this compromises the accuracy somewhat. The new

code can also serve as an accurate genera I-purpose equilibrium code.

Since the stability calculations are, themseives, time consuming to

carry out, the speed of AXE has been regarded as less important than

its accuracy.

In addition to solving the usual equilibrium equation for Tokamak

cases, we have designed AXE to allow it to be generalized to treat the

Stellarator expansion model [14,32]. The code is intended to calculate

noncircular, fixed boundary, arbitrary aspect ratio, 2D equilibria.

AXE allows equilibria which are not symmetric across the toroidal
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equator (i.e. not up/down symmetric). However, to simplify the

discussion here, we will only outline the symmetric case. The

asymmetric case is a simple, though tedious, generalization.

Using the stellarator expansion, the equilibrium equation becomes

= _ R2 P> _ (F + F * ) p + A*|>vac. . (2.2)

where

<2-3>

p, = M 4 L F . =8Fm F W 5 R B 4 , (2.4)

and where F*(rt,Z) and A*ij>vac(R,Z) are obtained from the stellarator

vacuum field [32]. This reverts to the normal tokamak case simpiy by

taking F*. i(>vac+0

The Jacobian is given by requiring RdRdZ = JdpdB. This gives

J = (Vp x

We impose the constraint J = J Q ( P ) R^p. The value £ = 2 corresponds to

the straight field line coordinate system which is needed for our

stability codes, but we shall not restrict the value of £ at this

point.



-13-

The toroidal angle <£ is ignorable and orthogonal to both p and 8.

The general form for A*ij) is

where

and

h p 8 _ _ f3R.8R. + 9Z9Z)

Final ly the nonlinear equations to be solved are

and

p2"

M [19R I9?R + 1 9 Z I J ! 1 82R 3R
a Lp 88 p aeap p as p aeap p2 a02
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1 3Z rJ-
? § ̂  + Rp *(F + F*)F> + * * » « = °- (2'8)

The quantities F, P, and p are taken as flux functions.

Therefore, on the finite difference grid one can define in addition to

Eq. (2.1)] F(pj), *(pj)» and P(p;) . The boundary conditions at the

magnetic axis (p = 0) are

< * • * >

and

Rm = Z m = 0 for in j£ 0. (2.9b)

At the wall (p = 1) one has

ij) = P = 0 , (2.9c)

and R m,Z m must approximate the desired boundary shape.

We choose to specify the safety factor q{p). Using

dp

where <a>m_o is the m = 0 projection of a, one can relate F(p), JQ(p),

and 6ijj/3p. The pressure is taken as a power of I|J:
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where TJ)0 is the axis value of t|> and Pg is related to the central j3 by

P Q F Q = 2 P Q R Q . Hereafter, we will consider the case i = 2.

The procedure used in AXE for solving Eqs. 2.7-2.11 is outlined

in Fig. 1. The desired boundary is described by a sequence of points.

Then the initial wall values of the coordinates Rm, 7^, are determined

by fitting these points with the assumption of some 0 along the surface

curve. Next, a guess for the magnetic axis position, R o v, Is used to

fix the initial coordinate axis. In the case of the Stellarator

expansion technique, this could be the vacuum field axis position. A

set of grid points in the coordinate p is chosen: 0 < p: < 1. Finally,

the initial set of coordinate;: Rm : and Z m •. are fixed by interpolating

between the wall values and Rov using the points p:. This completes

the specification of the (somewhat arbitrary) initial coordinate

system.

Next, we use the Jacobian equation (2.7) to modify the 0

coordinate, keeping the p-surfaces fixed. This is accomplished by

moving, in small steps, tangential to constant-p surfaces. Such motion

is described by

fj (V fU

R = R 0 8 and Z = Z g 8 (2.12)

where the tiHa indicates the increment die to the current iteration,

e.g., Rk+i = Rk + R. Using these relations to linearize Eq. (2.7), we

sol ve
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for 08. The 08 term is of higher order than the other and can be

omitted. For the up-down symetric case, one should require that 8 = 0

at 8 = 0,ir. Thus, a suitable expansion for 8 is

E "0 = E 8"1 sin m0 . (2.14)
m>0

If the series in 2.1 and 2.14 are terminated at m - M, then there is

one more equation (2.13) than unknown (2.15). This is because the m =

0 projection of Eq. (2.7) determines the p-dependence of the Jacobian:

m=0

So, given the initial (or previous) coordinates, Rm and Z m, we solve

(2.15) for J0(p). The coupled set of Eqs. (2.13) is then solved for 8̂ ,

at each j. In practice, the right hand side of Eq. (2.13) is

multiplied by a factor A^[shown in Eq. (3.1)] so that 8 is limited m

size. If it were too large, the tangent condition (2.12) would allow

the p-surfaces to move visably outward.
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Now, using the new coordinates

Rk+1 _ Rk + R Q£J f (2.16a)

and

Z k + 1 = Z k + ZgB , (2.16b)

one repeats this procedure until 6 is sufficiently small. Figure 2

shows the maximum (in space) values of 8 as a function of iteration

number for three different values of M. The value of M necessary for

convergence will depend on the configuration, and will not always lie

between 8 and 13 as it does here. The convergence is very rapid, with

8 m a x dropping an order of magnitude every few steps. Duriny this

iteration we recalculate J Q ( P ) using Eq. (2.15) on each iteration.

However, the tangent condition (2.12) insures that it will be

essentially unchanged. The 8 derivatives are performed analytically

and the p derivatives are performed with 3-point finite difference

formulae. These equations involve convolutions either explicitly [as

in (2.13), (2.15), and (2.16)] or implicitly as [as in Eq. (2.13)]. To

do this, we construct matrices, C m mJ m>>, whose elements contain the

contribution to a component m for component m' multiplied by component

m''. There are three such matrices to account for the possibilities of

convoluting a cosine series with a sine series, a cosine series with a

cosine series, or a sine series with a sine series. We use routine

F04ARF from the Numerical Algorithms Group (NAG) Library [41] to solve
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the system of simultaneous Eqs. (3.1) for B m, but this choice is not

essential.

Having solved the Jacobian equation, the equilibrium

equation (2.8) is solved by keeping the constant-8 contours fixed and

moving the p contours. This time we use the tangont conditions

pR = Rpp and Z = Z p p , (2.17)

with p expanded as

p = E Pm cos mB. (2.18)
m

If we were to allow P Q ̂  0, then the boundary conditions would not be

satisfied, so instead we solve for t|)(p) and pm(m > 0 ) . Eliminating P

in Eq. (2.8) with Eq. (2.11) and eliminating F with (2.10), one obtains

by projecting out the m = 0 component, an equation for TJ) of the form

The coeff ic ients are specified in Eq. (3.2). Using the or ig in boundary

condition dty/dp = 0, and the wall condition, i|> = 0, i t is necessary to

i terate (2.19) to arr ive at the or ig in value I|J0. This i terat ion also

proceeds rapidly and normally converges in fewer than 10 steps.
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Finally, we observe that the force in the p direction, given by (J

X B)p-3 p can be obtained by multiplying Eq. (2.8) by -R""23ij>/ap.

Taking only the m ^ 0 projections of the force we set

(2.20)

As with 8^, it is necessary to restrict the magnitude of p m (using X2)

so that the tangent condition does not move the constant-8 lines.

Once the coordinates are updated using Eq. (2.17), it is necessary

to return to the Jacobian equation. This overall iteration is

i11ustrated in Fig. 1.

With the equations in this form, one can include the Steilarator

expansion terms F and A ^yac wn'cn are defined in £R,Z$ coordinates,

by projecting them into the current coordiantes whenever they are

needed, e.g.,

2ir
F*(p) = •£- f F*(R,Z) |p cos mB d8. (2.21)

2ir
= •£- f F

If they are stored on a vacuum flux grid or a polar grid, the integral

can be performed accurately.

3. Equations Solved in AXE

In this section, we summarize the equations solved in AXE. Using

the techniques described in Section 2, AXE iteratively solves
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|8 __ x [ • (p)R#-l (3.

using Eqs. (2.14) and (2.15), and the previous values for R and Z. The
(V

resulting 8 is used in Eq. (2.12). Next, ^(p) is obtained by solving

Eq. (2.19) where

(3.2a)

- iJ()pZQR ~

D 0 =

Finally, one obtains p with

(3.2b)

(3.2c)

p = A2 9^

aP

+ R2P' + F

'OP

(3.3)

for use in Eq. (2.17). With this updated coordinate system, one goes

back to solve Eq. (3.1), as indicated in Fig. 1.
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FIGURE CAPTIONS

Fig. 1. Overall flowchart for AXE.

Fig. 2. Convergence of the Jacobian equation is extremely rapid
when enough components are included.
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This report was prepared as an account of work sponsored by an agency of the
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thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
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cific commercial product, process, or service by trade name, trademark, manufac-
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mendation, or favoring by the United States Government or any agency thereof.
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