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SUMMARY 

This project  w a s  a screening study t o  f a b r i c a t e  and evaluate  a 

range of  cemented carbides  based on niobium carbide,  NbCx, and tantalum 

carbide,  TaC,, (where x is 0.83 t o  1) with coba l t  and nickel  binders  f o r  

use as rock-bit i n s e r t s  i n  geothermal d r i l l i n g .  A major goal  was t o  

explore the inf luence of carbon content  on se lec ted  mechanical p r o p e r  

ties of t he  cemented carbides.  Most test ma te r i a l s  were made by hot  

pressing, but  exploratory work indicated that these  cemented carb ides  

could a l s o  be  produced by cold pressing and s in t e r ing .  Processing vari-  

ab l e s  that were studied included mi l l i ng  condi t ions , hot pressing time, 

pressure,  and temperature. The f a b r i c a t i o n  s tud ie s  showed that the 

lowest po ros i t i e s  and most uniform microstructures  were obtained i n  the 

NbCx-Co System, and much of the  study focused on these materials. 

Hardness , f r ac tu re  toughness , and abrasive wear resistance were 

measured and compared with da t a  f o r  cemented WC b i t  materials. For a 

given weight f r a c t i o n  of binder ,  s toichiometr ic  NbC-Co was harder than 

the o the r  experimental s to ich iometr ic  cemented carbides  , and the  

substoichiometr ic  material NbC0,83-10Co was s u b s t a n t i a l l y  harder than 

the  equiva len t  s to ich iometr ic  a l loy .  The most s i g n i f i c a n t  toughness 

result was that, f o r  a given hardness, the  f r a c t u r e  toughness of  

Nbc0.83<0 was g r e a t e r  than that of  s to ich iometr ic  NbC-Co. From these 

da t a ,  it was concluded that carbon content  exerts a s t rong inf luence  on 

the  proper t ies  NbC&-Co materials and that, by ad jus t ing  the carbon 

content  of  t h e  carb ide ,  i t  i s  possible  t o  obta in  simultaneous 

improvements i n  hardness and toughness i n  t h i s  system. 

Abrasive wear tests showed that the  wear-resistance of NbCx-Co l i e s  

wi th in  the  range of  wear r e s i s t a n c e  of grades of  WC-Co commonly used f o r  

rock cu t t i ng .  Examination of wear su r faces  indicated that both phases 

i n  NbC0.83-10C0 wear a t  a r e l a t i v e l y  even rate and that material is 

removed by a process pr imari ly  r e l a t e d  to p l a s t i c  flow, r a the r  than 

micro f rac t u r e  . 
iiip 
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I INTRODUCTION 

Rock-bit materials are subjected t o  very severe operat ing condi- 

t i o n s  i n  d r i l l i n g  geothermal wells. Typical rock formations such as 

g r a n i t e  and metamorphic sandstone are extremely hard and abrasive,  and 

down-hole temperatures as high as 300°C can be reached with air- 

d r i l l i n g .  Corrosion i s  severe i n  hydrothermal systems a t  these  tem- 

pera tures  because of the  presence of hydrogen s u l f i d e  and sodium 

chlor ide.  Although corrosion i s  less s i g n i f i c a n t  i n  dry steam wells, 

e ros ion  can be severe because of the  high ve loc i ty  of the  hard particles 

as w e l l  as t h e  oxygen entrained i n  the  superheated steam. The r e l a t i v e  

importance and cont r ibu t ion  of chemical and mechanical e f f e c t s  on the  

wear proper t ies  of  b i t  materials i n  geothermal w e l l s  are not w e l l  

understood. The performance of conventional cemented tungsten carbide 

(WC-Co) i n s e r t s  i n  roller-cone c u t t e r s  i s  unacceptable. 

c 
% 

A major cos t  i n  geothermal d r i l l i n g  is  associated with the t i m e  

spent  i n  sinking the  w e l l .  This c o s t  depends mainly on t h e  c u t t i n g  rate 

of  the  rock-bit, i t s  l i f e t i m e ,  the  cos t  of b i t s ,  and the t i m e  taken t o  

remove the  d r i l l  s t r i n g  and rep lace  a worn b i t .  B i t  l i f e t i m e s  of 25 

hours a t  d r i l l i n g  rates of 10-15 f e e d h o u r  are typica l  f o r  w e l l s  d r i l l e d  

between 5000 and 8000 f e e t  i n  geyser formations, with loss of gauge as a 
primary cause of b i t  replacement.' Improved performance of rock b i t s  

could have a major impact on the  economics of geothermal d r i l l i n g .  

Higher cu t t i ng  rates and increased b i t  l i f e  would shorten t h e  d r i l l i n g  

t i m e ,  reduce the number of b i t s  used, and reduce the  t o t a l  downtime f o r  

b i t  replacement. These improvements would a l so  f r e e  t h e  r i g s  earlier 

and allow them t o  be used f o r  new wells. 

To meet t h e  need f o r  improved b i t  materials, Sandia Laborator ies  

funded a o n e y e a r  program a t  SRI In t e rna t iona l  t o  develop a l t e r n a t i v e s  

t o  WC-Co f o r  use as i n s e r t s  i n  ro l le r -cone  b i t s .  The program was a 

screening study t o  f ab r i ca t e  and evaluate  a range of cemented carbides  
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based on niobium carbide,  NbCx, and tantalum carbide,  Ta% (where x is  

0.83 t o  1) with coba l t  a d  nicke l  binders.  The cho'ice of  these  carb ides  

was based on previous extensive s tud ie s  of the  deformation behavior of 

many t r a n s i t i o n  metal carbides.  The work described here represents  an 

e f f o r t  t o  apply the r e s u l t s  of that fundamental research t o  the develop- 

ment of new cemented carbides  f o r  rock-bit i n s e r t s .  

t 
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I1 BACKGROUND 
c 

- Cemented WC-Co i n s e r t  materials fo r  t h ree  cone b i t s  have been de- 

veloped t o  withstand the severe mechanical condi t ions encountered i n  

rock d r i l l i n g .  The cu t t i ng  a c t i o n  of a t h r e e  cone b i t  depends on i ts  
design,  p a r t i c u l a r l y  the  cone o f f s e t  and the  s i z e  and shape of the  

b 

i n s e r t s .  These f ea tu res  and t h e  grade of  carbide are determined by t h e  

type of formation being d r i l l e d .  The c u t t i n g  ac t ion  v a r i e s  from 

crushing and chipping i n  very hard formations t o  scraping and gouging i n  

s o f t  formations. In  addi t ion ,  the  loading condi t ions are d i f f e r e n t  f o r  

i n s e r t s  i n  d i f f e r e n t  parts of t h e  b i t .  

The main parameters used t o  assess the  s u i t a b i l i t y  of a grade of 

carbide f o r  a s p e c i f i c  d r i l l i n g  app l i ca t ion  are toughness , hardness, and 

wear res i s tance .  Although toughness can be measured using var ious frac- 

t u r e  mechanics methods , there  i s  a l s o  considerable  advantage i n  using 

indenta t ion  techniques t o  obta in  hardness and toughness da t a  simultan- 

eously. No wear test e x i s t s  that i s  genera l ly  accepted by the  ca rb ide  

industry.  Most b i t  manufacturers have t h e i r  own propr ie ta ry  test that 

involves abrading a cemented carb ide  on a cont ro l led  rock sur face  under 

known loading condi t ions and determining the  volume worn o f f  t he  

carbide.  In  t h e  development of new cemented carb ides ,  measurements of  

hardness , toughness, and wear r e s i s t a n c e  together  with micros t ruc tura l  

cha rac t e r i za t ion  provide the  information necessary t o  make comparisons 

with es tab l i shed  grades of WC-Co . 
I n  cemented carbide i n s e r t  materials, i t  i s  genera l ly  accepted that 

the  WC phase provides hardness and wear resistance while t h e  coba l t  con- 
t r i b u t e s  macroscopic toughness. However, the  r o l e  of each phase i s  

considerably more complex, and the  p rope r t i e s  a l s o  depend on t h e  d e t a i l s  

of t he  microstructure .  Further ,  i t  has been shown t h a t  the WC g r a i n s  i n  

cemented carb ides  can undergo considerable  p l a s t i c  deformation when s u b  

j ec t ed  t o  high stresses. * The a b i l i t y  of WC g r a i n s  t o  deform 
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p l a s t i c a l l y  probably makes a s i g n i f i c a n t  cont r ibu t ion  t o  the  f r a c t u r e  

toughness of WC-Co 

The proper t ies  of WC-Co depend pr imari ly  on the cobal t  content  (8 

t o  16 wt%) and the  WC g ra in  s i z e  (0.5 t o  5 pm). Commercial grades of 

WC-Co s u i t a b l e  f o r  rock b i t  i n s e r t s  have Vickers hardness i n  t h e  range 

10-17 GPa (- 1000-1700 kg/mm2) with a corresponding f r a c t u r e  toughness 

of  18-8 MPa ml/* and compressive s t r eng ths  of 4000-7000 MPa.3J Hard- 

ness  and s t r eng th  increase with both decreasing WC g r a i n  s i z e  and 

decreasing cobal t  ~ o n t e n t . ~  For a given WC g ra in  s i z e ,  t he  f r a c t u r e  

toughness of WC-Co increases with increasing cobal t  and f o r  a given Co 
3 4  content ,  coarse-grained WC-Co i s  tougher than fine-grained materials. , 

The deformation behavior of t r a n s i t i o n  metal carb ides  around room 

tempera ture  has been studied mainly by indenta t ion  techniques. Inden- 

t a t i o n  tests g ive  infarmation about elastic and plastic deformation of  

the  material i n  a l o c a l  region subjected t o  very high stresses. Under 

d r i l l i n g  condi t ions,  loads are t ransmit ted t o  the  i n s e r t  by point  COR- 

tact  a t  asperities o r  with rock fragments; therefore ,  the  microscopic 

y ie ld  and f r ac tu re  proper t ies  of t h e  cemented carbide should be impor- 

t a n t  i n  determining the wear characteristics of the  i n s e r t .  

Indentat ion tests show c e r t a i n  similarities between WC, NbC, and 

TaC i n  the way t h a t  they deform. These s to ich iometr ic  carb ides  tend t o  

deform p l a s t i c a l l y ,  wheregs o the r s  such as TIC tend t o  crack. Tungsten 

carbide,  d i f f e r s  s i g n i f i c a n t l y ,  from NbCx and Tat& i n  c r y s t a l  s t r u c t u r e  

and composition range with respec t  t o  carbon. Tungsten carbide has a 
hexagonal s t r u c t u r e  and is a s to ich iometr ic  compound; small decreases  i n  

carbon content  cause the  formation of W2C o r  of o the r  carbide phases 

containing cobal t .  In  c o n t r a s t ,  the  cubic carb ides  NbCx and Ta$ main- 

t a i n  the  same c r y s t a l  s t r u c t u r e  over a wide range of carbon substoichi-  

ometry. The proper t ies  of these  two carb ides  show a s t rong dependence 

on carbon content.  For example, t he  hardness of s i n g l e  c r y s t a l  Tat& 

changes from 16 GPa f o r  the s to ich iometr ic  compound t o  38 GPa f o r  the 

composition TaCo,83.8 The hardness of Nbt& shows a Similar Strong 
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dependence on carbon content  ,’ although the  m a x i m u m  achievable hardness 

i s  probably not as high as i n  TaC,. The increase i n  hardness of both 

TaG and NbC& i s  inevi tab ly  accompanied by a decrease i n  resistance t o  

cracking although the  ex ten t  of these e f f e c t s  has not  been s tudied 

systematical ly .  In  both carbides  , carbon substoichiometry i s  acconr 

modated by ordering of the  excess carbon vacancies. In  TaCx t h i s  i s  

accomplished by t h e  development of sho r t  range order  (SRO). In  NbCx 

both SRO and long range order  (LRO) are possible .  Moreover, f o r  a given 

composition of Nb%, the  LRO s t r u c t u r e  can be developed from the  SRO 
s t r u c t u r e  by a heat  treatment. This l eads  t o  a s u b s t a n t i a l  increase i n  

hardness, f o r  example, from 18 GPa t o  25 GPa.’ 

Limited s tud ie s  have been made of  cemented carb ides  based on TaG 
and Nbs,lo*ll The way i n  which t h e i r  p roper t ies  change with binder 

conten t  i s  q u a l i t a t i v e l y  similar t o  that i n  WC-Co, and i t  can be ex- 

pected that g ra in  s i z e  and microstructure  w i l l  exert the  same s o r t  of  

in f luence  on proper t ies  i n  a l l  these cemented carbides .  However, the  

hardness of T a s  and NbCx can be var ied  over a wide range by con t ro l  of  

the  carbon content ,  and the hardness of a s i n g l e  composition of NbCx can 

a l s o  be var ied by heat  treatment. This con t ro l  of hardness ava i l ab le  i n  

Ta% and Nbs i s  not possible  i n  WC because WC i s  a compound of f ixed 

composition that does not undergo ordering. Control of  t h e  carbon c o w  

t e n t  of  t he  carb ide  i n  cemented NbG and TaCx g ives  the  p o s s i b i l i t y  of a 

much g r e a t e r  range of proper t ies  than i s  ava i l ab le  i n  WC-Co. 

The binder phase i n  cemented carb ides  i s  extremely important i n  the 

f ab r i ca t ion  process and i n  determining t h e  macroscopic proper t ies  of t he  

composite. Dens i f ica t ion  of the  powder compacts occurs  through l i q u i d  

phase s i n t e r i n g ,  and this process is successfu l  because WC i s  r e a d i l y  

so lub le  i n  Co and because Co wets WC. Cobalt a l s o  f u l f i l l s  t h r e e  of  the  

o the r  requirements of a good binder phase. F i r s t ,  i t  has a high s o l i d  

-. s o l u b i l i t y  f o r  W and C, which provides increased s t r eng th  and toughness 

- t h i r d  , Co is r e l a t i v e l y  r e f r a c t o r y  and r e s i s t a n t  t o  corrosion.  
t o  t h e  composite. Second, Co i s  a weaker carbide former than WC, and 
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The characteristics of the  i n t e r a c t i o n  between WC and Co can be 

used to s e l e c t  l i k e l y  s u i t a b l e  binder phases f o r  cemented carb ides  based 

on pure NbCx and TaC,. Sintered cemented NbC has been produced using 

Fe, N i ,  and Co binders  l 1  and ava i l ab le  information on phase 

equi l ibr ia1* ind ica t e s  t h a t  these metals w i l l  a l so  promote l i q u i d  phase 

s i n t e r i n g  of TaCx. Pure Fe is probably the  least s u i t a b l e  binder 

because of its low corrosion resistance and because the  pseudo-binary 

e u t e c t i c s  with TaCx and NbCx conta in  less l i q u i d  phase than those with 

Co and N i .  For these  reasons, Co and N i  were se lec ted  as binders  i n  the  

cu r ren t  program. 
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I11 EXPERIMENTAL PROCEDURES 

Compo s i t  ions and Fabricat ion 

Table 1 shows the  range of compositions of cemented carb ides  

s tudied i n  this program. Many of  the  .poss ib le  36 compositions were 
prepared i n  the i n i t i a l  screening study, and s p e c i f i c  compositions w e r e  

chosen so that proper t ies  could be compared between systems ( f o r  

example, TaC-NI and TaC-Co) and t rends could be establ ished within 

ind iv idua l  systems ( f o r  example, t he  e f f e c t  of binder content  on t h e  

p rope r t i e s  of NbCo. 8 3 4 0 ) .  

Table 1 

COMPOSITIONS OF CEMENTED CARBIDES 

Ca rb  id  e s TaC, NbC 
Carbodmetal r a t i o  1, 0.9, 0.83 
Binders Co, N i  
Binder content  5, 10, 20 weight percent 

Table  2 shows the  powder sources and particle s izes .  Substoichio- 

metric carbides  were prepared by reac t ing  appropr ia te  mixtures of  t h e  

carb ide  er and the parent metal a t  170OOC under deoxidized argon. 

The r eac t ion  products were crushed and milled t o  -325 mesh, then 

examined by p r a y  d i f f r a c t i o n .  Reaction times of 1 hour were required 

t o  remove a l l  p r a y  peaks due t o  the  parent  metal. The measured la t t ice  

eters of t he  substoichiometric carb ide  were compared with published 
l 3  on t he  dependence of l a t t i ce  cons tan ts  on carbon content ,  t o  

confirm the composition. The agreement between the ca lcu la ted  compo- 
-. 

estimated from t h e  la t t ice  parameter was within 2%. 
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Table 2 

POWDER SOURCES AND SIZES 

NbC: Heman Starck 2 CLm 
TaC: Wah Chang 3 Crm 
N i :  I n t e rna t iona l  Nickel, Type INCO 123 3-7 pm 
Co: Herman Starck 2 pm 
Nb: A. D. Mackey -325 mesh 

A l l  test materials were hot pressed because of t he  l a r g e  number o f  

compositions and r e l a t i v e l y  small numbers of samples of each t h a t  were 
required,  but the  f e a s i b i l i t y  of cold pressing and s in t e r ing  w a s  a l s o  

invest igated.  For both processing routes ,  weighed powders were bal l -  

mil led i n  lOOg l o t s  i n  polyethylene b o t t l e s  using cemented WC b a l l s  and 

cyclohexane, f o r  t i m e s  up t o  96 hours. After  m i l l i n g ,  the cyclohexane 

w a s  evaporated i n  air .  

Discs (9.5mm diameter by 6.4mm th ick) ,  o r  short-rods (l2.7mm 

diameter by 19mm long) were hot pressed under vacuum i n  g raph i t e  d i e s  

coated with a boron n i t r i d e  wash. Pressing t i m e ,  t empera ture  and 

pressure were var ied t o  obta in  uniform pore-free micros t ruc tures .  

The use of cold pressing and s i n t e r i n g  was explored f o r  NbC-20% N i  

and TaC-10% Co t o  e s t a b l i s h  whether t h i s  was a f e a s i b l e  route  f o r  p r e  

paring cemented NbG o r  TaC,. The powders were prepared f o r  s i n t e r i n g  

by adding pa ra f f in  wax dissolved i n  cyclohexane to  the  mil led d r i ed  

powder previously prepared f o r  hot pressing. The cyclohexane was 

evaporated on a hot plate with rapid s t i r r i n g  to  ensure a uniform 

d i s t r i b u t i o n  of the  wax. Cylinders (l3mm by 13mm) were cold pressed i n  

a steel d i e ,  and the  w a x  was removed by heating i n  hydrogen a t  300°C 

u n t i l  the  samples achieved a cons tan t  weight. The cy l inde r s  were 

s in te red  i n  a graphi te  tube furnace i n  deoxidized argon a t  1370°C, which 

i s  50°C above the reported pseudo-binary e u t e c t i c  temperature.12 Densi- 

ties were up t o  95% of the  t h e o r e t i c a l  value,  ca lcu la ted  according t o  a 

r u l e  of mixtures. Metallographic observat ion of polished cross-sections 
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showed a r e l a t i v e l y  uniform d i s t r i b u t i o n  of roughly circular pores. 

Observation of etched sur faces  indicated that l i q u i d  phase s i n t e r i n g  had 

taken place,  but  was incomplete l o c a l l y ,  probably because of a non-ideal 

d i s t r i b u t i o n  of t h e  binder phase. No e f f o r t  was made t o  optimize t h e  

process because a l l  the test materials f o r  the pro jec t  were made by hot  

pressing. However, these  r e s u l t s  show that dens i f i ca t ion  can occur by 

l i q u i d  phase s in t e r ing  without ex te rna l  pressure and suggests that a 

process equivalent  t o  that used commercially fo r  WC-Co could be 

developed . 
Evaluation Techniques 

Dens i t ies  of hot  pressed samples were determined by weighing i n  air 

and i n  carbon t e t r ach lo r ide  . Metallographic samples were prepared by 

conventional diamond pol ishing,  f i n i s h i n g  with l-pm paste.  Some samples 

were polished f u r t h e r  using an alumina s l u r r y  t o  which was added a few 

drops of  a l k a l i n e  potassium fer r icyanide .  

Hardness and indentat ion toughness were measured on polished 

s u r f a c e s  using a standard Vickers machine with loads  up t o  100 kg. Some 

f r a c t u r e  toughnesses were measured a t  TerraTek using the  short-rod 

technique. 

I n i t i a l  wear tests were performed using the Riley-Stoker test 

according t o  ASME-AINSI. However, t h e  l e v e l  of r ep roduc ib i l i t y  of  t he  
r e s u l t s  was unacceptable, so wear tests were then performed a t  the 

Securi ty  Division of Dresser Indus t r i e s ,  using a propr ie ta ry  method. 

This method determines the  volume of  material lost  from a cemented 

carb ide  after it  has been drawn across  a rock s l ab  under cont ro l led  

condi t ions.  

Wear sur faces ,  f r a c t u r e  sur faces ,  and metallographic specimens were 

examined by scanning e l ec t ron  microscopy (SEM) using energy d i spe r s ive  

and wavelength x-ray techniques t o  i d e n t i f y  the  d i s t r i b u t i o n  of 

elements 
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p. 1' 
IV RESULTS AND DISCUSSION 

Fabricat ion 

The goal  of the  f a b r i c a t i o n  s t u d i e s  was t o  e s t a b l i s h  the  condi t ions  

f o r  producing pore-free materials with uniform microstructures .  The 

main pressing va r i ab le s  were the mi l l ing  t i m e  f o r  the powders and the  

hot pressing temperature, time, and pressure. Most s tud ie s  were made on 

a s i n g l e  composition, NbC-loco, and the parameters f o r  o ther  compo- 

s i t i o n s  were developed from these  data .  For a f ixed hot pressing cyc le ,  

mi l l i ng  times of 16 and 24 hours were found t o  be i n s u f f i c i e n t  t o  ob ta in  

a uniform d i s t r i b u t i o n  of t h e  binder phase. In  t h i s  case  "lakes" o f  

c o b a l t ,  approximately th ree  t i m e s  the  carb ide  g ra in  s i z e ,  were formed. 

Mill ing f o r  36, 48, o r  96 hours removed t h i s  problem, and 48 hours was 

adopted as the  standard mi l l ing  t i m e .  The formation of l akes  w a s  more 

common f o r  binder  conten ts  of 20% of  e i t h e r  Co o r  Ni. 

The i n i t i a l  s e l e c t i o n  of hot  pressing temperatures  was based on 

ava i l ab le  phase diagram information i n  t he  l i t e r a tu re . ' *  Table 3 shows 

t h e  compositions and melting poin ts  of  t h e  re levant  pseudo-binary eutec- 

t ics.  Fixed pressures  were se lec ted  between 1000 and 4000 ps i  and 

appl ied through the  heat ing cyc le  t o  t h e  maximum temperature. 

Comparison of the  hot pressing cycles  f o r  many samples showed t h a t  

s i g n i f i c a n t  compaction of  t he  powder began a t  approximately 115OoC, with 

a change to more rapid consol idat ion around I28O0C, as estimated from 

t h e  motion o f  t he  pressing rams. Around the  pseudo-binary e u t e c t i c  

temperature ( 1380°C) , the  consol ida t ion  rate became very low. High 

pressures  and temperatures a t  o r  above 1380°C caused ex t rus ion  of t h e  

binder  phase and l o c a l  porosi ty  within 1/2 mm of t he  specimen surfaces .  

This e f f e c t  was most pronounced a t  t he  highest  binder  content  (20%). 
Extending the  pressing time a f t e r  the  consol ida t ion  rate had slowed a l s o  

caused segregat ion of binder t o  the  su r face  of the  specimen. To avoid 

t h i s  e f f e c t  the  exac t  amount of powder required f o r  a specimen of a 
c e r t a i n  s i z e  was pressed u n t i l  t h e  ram had reached a predetermined 

+. 
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d i s t ance  that corresponded t o  the length  of a f u l l y  dense specimen. 

When t h i s  condition had been achieved, the  rate of ram t r a v e l  became 

very  low, as expected. Representat ive da t a  i l l u s t r a t i n g  the e f f e c t  of 

varying the  processing condi t ions are given i n  Table 4. 

Table 3 

COMPOSITIONS AND MELTING POINTS OF PSEUDO-BINARY EUTECTICS 

Composition Melting Point  
System (Mole % C) ("C) 

NbC-Co 
NbC-Ni 
TaC-Co 
TaC-Ni 

l3 80 
1320 
I3 70 
13 70 

Table 4 

EFFECT OF PROCESSING CONDITIONS ON THE CONSOLIDATION OF NbC-1OCo 

Pressing Pressing Pressing 
Temperature Pressure Time % Theore t ica l  

("0 (ps i )  (min) Density 

114 5 
l2 85 
l2 85 
1285 
12 85 
l3 75 
l3 75 
1375 

4000 
1000 
4000 
4000 
4000 
1000 
lo00 
4000 

29 
30 
17 
2 1  
30 

2 
0.5 
1 

97 
98 
99 
98 
97 -- t 

* 
Pressing stopped before  reaching required s i z e  because of low 
consol idat ion rate. 

+Density not  measured because of ex t rus ion  of cobal t .  
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Similar  sets of ho t  pressing runs were made f o r  o ther  compositions 

and Table 5 shows the  hot pressing condi t ions  that were adopted f o r  each 

material . Hardness measurements were made on most samples produced 

during the  process opt imizat ion study, so that an idea of t h e  r e l a t i v e  

p rope r t i e s  o f  the d i f f e r e n t  cemented carbides  could be obtained as early 

as possible.  As i t  became evident that the  NbC-Co materials showed the  

most promise, more e f f o r t  was placed on optimizing the condi t ions  t o  

process these  materials, and t h i s  i s  r e f l ec t ed  i n  the  more s p e c i f i c  con- 

d i t i o n s  shown i n  Table 5 f o r  those NbC-Co compositions. Using the con- 

d i t i o n s  of Table 5, t h e  d e n s i t i e s  of both s toichiometr ic  and substoi-  

chiometric cemented carbides  were cons i s t en t ly  between 98.5 and 100% of 

the  t h e o r e t i c a l  densi ty .  Metallographic examination of polished SUP 

faces  showed that pores were present  i n  a narrow sur face  region i n  the 

samples whose d e n s i t i e s  l a y  below the  t h e o r e t i c a l  value. This sur face  

poros i ty  occurred i f  any of the  pressing condi t ions was exceeded. 

Table 5 

PRESSING CONDITIONS TO PRODUCE DENSE CEMENTED CARBIDES 

Temperature Pre 6 6 ur  e 
Composition ("0 (ps i )  

NbC-5C0 1320 4000 
Nbc- loco 1285 4000 
NbC-2OCo 12 35 2000 

1225 2000 
l3 70 2000 

TaC 5-20Ni 1370 2000 

through 3 i l l u s t r a t e  t h e .  range of  micros t ruc tures  made 

during the  processing s tudies .  Figure 1 shows the  r e l a t i v e l y  uniform 

d i s t r i b u t i o n  of Nb% and CO that was gene ra l ly  achieved i n  these  

cemented carbides.  The carb ide  g r a i n s  are equiaxed and the size is 

about 3 pm. The micros t ruc tures  of cemented Nbs with a fixed Co 

content  but d i f f e r e n t  carbon contents  were indis t inguishable .  

13 



H.P. 56 NbC-10 CO DENSITY 7.92 (100.2% T.D.) 

H.P. 26 NbC-20 CO DENSITY 7.87 (98.3% T.D.) 

Figure 1. Microstructures of Hot Pressed NbC-Co 
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4, 

H.P. 45 NbC-10 Ni DENSITY 7.94 (100.5% T.D.) 

H.P. 47 NbC-10 Ni DENSITY 7.6 (96% T.D.) 

Figure 2. Microstructures of Hot Pressed NbC-Ni 

15 



H . P .  28 TaC-5 Ni DENSITY 13.91 (98% T.D.) 

H . P .  50 TaC-10 Ni DENSITY 13.59 (97.5% T.D.) 

H . P .  30 TaC-20 Ni DENSITY 12.66 (95% T.D.) 

Figure 3. Microstructures of Hot Pressed TaC-Ni 

P 
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The e f f e c t s ' o f  i n s u f f i c i e n t  mi l l ing  can be seen i n  Figure 2 f o r  

NbC-Ni milled f o r  24 hours. This f igu re  a l so  i l l u s t r a t e s  t h e  consis- 

tency of  microstructure  i n  samples made i n  d i f f e r e n t  hot-pressing runs 

f o r  the same nominal processing conditions.  Although the  carb ide  g r a i n  

s i z e  is uniformly small, occasional  l a r g e  lakes of N i  can be seen. It 

was found more d i f f i c u l t  t o  ob ta in  dense uniform microstructures  v i t h  N i  

b inders  than with C O ,  and the Tas-based systems were more d i f f i c u l t  to  

consol idate  than the  NbC, cemented carb ides ,  as can be seen by comparing 

Figures 1 and 3. Cemented carbides  based on Nbs might be easier t o  

f a b r i c a t e  than those containing TaG, because the  phase diagrams indi- 

cate that a l a r g e r  amount of l i q u i d  phase is present  during hot pressing 

of Nbc, materials . 
A nlrmber of samples were examined t o  determine whether d i f f e rences  

i n  microstructure  o r  proper t ies  exis ted between t h e  center  and the  sur -  

faces of ho t  pressed rods. Figure 4 shows a hardness trace made- across  

a longi tudina l  s ec t ion  of a short-rod specimen. The small change i n  

hardness with d i s t ance  that occurs  over most of the  length  i s  probably a 

real e f f e c t  and could be caused by a small dens i ty  grad ien t  in the  hot  

pressing d i rec t ion .  Within 1/2-mm of the  top and bottom sur faces ,  the  

hardness is very high. Transverse sec t ions  a l so  showed s imi la r  high 

hardness within a 1/2-mm peripheral  zone, but the  hardness across  the  

rest of the sec t ion  was constant.  Scanning e l ec t ron  microscopy (SEM) 

and energy d i spe r s ive  x-ray a n a l y s i s  (EDX) showed t h a t  these narrow 
regions of high hardness gene ra l ly  contained much less Co than the  

bulk.  S o m e  loss of coba l t  by ex t rus ion  during hot processing is 

d i f f i c u l t  t o  avoid. 

Hardness and Toughness 

The f i r s t  part of t h i s  eva lua t ion  concentrated on es tab l i sh ing  the 

inf luence of  binder type and content  on the  hardness and crack  resis- 
tance of cemented s toichiometr ic  carbides .  Figure 5 shows the  hardness 

of var ious  cemented carb ides  as a func t ion  of binder  content.  Each 

point represents the mean of f ive  readings on each specimen; two  or 
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t h r e e  specimens of each composition were tes ted .  Points  f o r  the  TaCx- 

based materials have been omitted f o r  the  sake of  c l a r i t y  but t h e  

scatter w a s  t he  same as f o r  NbCx materials. For a given binder content ,  

the  hardness of NbC-Co i s  g r e a t e r  than that of any of t h e  o ther  systems 

and f o r  both carb ides  Co produces a harder  material than does N i .  Since 

N i  and Co have the  same dens i ty ,  the  q u a n t i t a t i v e  d i f f e rences  i n  hard- 

ness  between these systems i s  the  same i n  terms of weight o r  volume 

f r a c t i o n  of binder. The dens i ty  of TaC i s  approximately 1.7 times that 

of NbC, therefore ,  on a volume f r a c t i o n  b a s i s  the  hardness of the  TaC 

materials i s  c loser  t o  that of t h e i r  NbC counterpar t s ,  but the  hard- 

nesses of the  lat ter are s t i l l  s i g n i f i c a n t l y  higher.  

The da ta  f o r  NbCo.83-10Ni r e f l e c t  the  strong e f f e c t  of t h e  carbon 

content  of t he  carbide on hardness. The d i f f e rence  between the hardness 

of the  two samples of NbCo.83-10Ni is  probably assoc ia ted  with 
d i f f e rences  i n  densi ty;  t h e  harder material was c lose  to  theo re t i ca l  

dens i ty ,  whereas the  s o f t e r  one had approximately 4% porosi ty .  

The r e l a t i v e  crack resistance14 of  these  materials was determined 

from measurements of the  lengths  of  cracks generated a t  the hardness 

impressions. In  t h i s  test the  t o t a l  l eng th  of r a d i a l l y  or ien ted  c racks  

generated a t  the four corners  of a Vickers hardness impression is  

measured fo r  a s p e c i f i c  load. A crack  resistance parameter W i s  then 

defined as the  load t o  produce a crack of u n i t  length.  This parameter 

provides a useful  q u a l i t a t i v e  method of ranking t h e  r e l a t i v e  toughnesses 

of similar cemented carbides ,  without a de t a i l ed  knowledge of o the r  

mechanical propert ies .  

The da ta  are shown i n  Figure 6 as a funct ion of hardness. The 

loca t ion  of t h e  curve f o r  commercial grades of WC-Co i s  shown f o r  

comparison. The NbC and TaC cemented carbides  show q u a l i t a t i v e l y  the  

same behavior as WC-Co i n  that the  s o f t e r  grades have t h e  b e s t  c rack  

res i s tance .  Clear ly ,  the  crack r e s i s t a n c e  of t he  well-established 

grades of WC-Co i s  considerably higher than that of t h e  experimental 

materials, but the  same range of hardness can be achieved with 

s toichiometr ic  NbC-Co and with NbCo.83-Ni. For a given hardness, t h e  
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crack r e s i s t ance  of NbC-Co and possibly NbCg.83-Ni i s  g r e a t e r  than that 

of any of t he  o ther  experimental materials. 

Based on these results and those of the  micros t ruc tura l  s tud ie s ,  

the  proper t ies  of the  NbC,-Co a l loys  were invest igated i n  more d e t a i l .  

Figure 7 shows the  hardness of cemented carbides  i n  t h i s  system. The 

curves tend t o  converge a t  high binder  conten ts  because of t h e  g r e a t e r  

inf luence of the  l a r g e r  quant i ty  of cobal t .  The curves diverge a t  low 

coba l t  contents  , r e f l ec t ing  the  higher hardness of substoichiometr ic  

NbC. With 10 wt% C O B  cemented Nbco.83 i s  approximately 15% harder than 

cemented s toichiometr ic  WC, and f o r  a given binder  content ,  t he  hard- 

ness of cemented NbCOsg l i e s  between that of the  o ther  two carb ide  

compositions . 
Figure 8 shows the  hardness and toughness of a l l  compositions of 

NbC,-Co. The toughness values  were measured by the  indenta t ion  t e c k  
nique as described i n  the appendix. Comparative da t a ,  measured by the  

short-rod technique, are shown f o r  WC-Coo For a given hardness, t he  

substoichiometr ic  cemented NbC is  tougher than the s to ich iometr ic  

material, which f u r t h e r  i l l u s t r a t e s  t h e  e x t r a  degree of con t ro l  o f  

proper t ies  that can be obtained i n  cemented Nbs compared with cemented 

WC. The range of hardness of most of t h e  compositions of NbC,-Co ( i n  

Figure 8 )  includes that of t y p i c a l  rock-bit cemented WC as w e l l  as 

harder materials based mainly on substoichiometr ic  NbC. Comparison of 

the  da t a  i n  Figure 8 shows t h a t ,  f o r  a given hardness, t he  toughness of 

NbC,-Co i s  less than that of WC-Co and that the  v a r i a t i o n  of hardness 

wi th  toughness i s  much s t ronger  i n  NbC,-Co. The da ta  f o r  s toichiometr ic  

NbC show more scatter than those f o r  NbCOmB3. 

There is a l a r g e  v a r i a t i o n  i n  hardness f o r  s toichiometr ic  materials 

with a toughness between about 5 and 6 MPa m1I2. A l l  these  materials 

are NbC-loco, made under d i f f e r e n t  condi t ions  i n  the  process 

opt imizat ion s tudies .  Figure 9 p l o t s  the  hardness of  these  samples with 

respec t  t o  percentage of t h e o r e t i c a l  densi ty .  These da t a  show that 

removal of t he  last  3% of poros i ty  can increase the  hardness by 

approximately 30%. The da ta  i n  Figures 8 and 9 a l so  ind ica t e ,  however, 

that toughness i s  in sens i t i ve  t o  t h i s  l e v e l  of r e s idua l  porosi ty .  
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The f ac to r s  that inf luence toughness include composition, d e t a i l s  

of microstructure ,  and the  presence of r e s idua l  stress. In  t h i s  work it  

has been most convenient t o  express compositions i n  terms of weight 

f r a c t i o n s  of carbide and binder. However, quan t i t a t ive  aspec ts  of t he  

microstructure  such as the  proportion of carb ide  g ra ins  with common 

boundaries (cont igui ty  factor15) depend on the  r e l a t i v e  volumes of t h e  

phases. For a given weight f r a c t i o n  of coba l t ,  the  volume f r a c t i o n  i s  

much smaller i n  NbC,-Co than i n  WC-Co because of the  higher dens i ty  of  

WC. Thus the  cont igui ty  f a c t o r  w i l l  be considerably l a r g e r  i n  NbCx-Co; 

consequently, the  toughness should be lower. Larger volume f r a c t i o n s  of 

coba l t ,  comparable t o  those i n  cu r ren t  grades of WC-Co, can be expected 

to  raise the  toughness of NbCx-Co, with some lowering of the  hardness. 

For example i n  NbC-20 Co and WC-10 Co the  volume f r a c t i o n s  of coba l t  a r e  

17.6% and 16.3X, respect ively.  The hardness and toughness of NbC-20 Co 

i s  approximately 12 GPa and 8.5 MPa ml/* compared t o  1 2  GPa and 14 
MPa m1l2 f o r  an optimized commercial grade of WC-10 Co. 

The presence of r e s idua l  stress i s  expected t o  exert a s t rong 

inf luence on resistance t o  crack propagation. Residual t e n s i l e  stresses 

normal t o  the plane of a c rack  assist i ts  propagation and lower the 

apparent f r ac tu re  toughness , whereas r e s idua l  compressive stresses have 

the opposi te  e f f e c t .  Residual stresses can arise during hot pressing,  

p a r t i c u l a r l y  as i n  the  present  case when the  specimens are cooled 

r ap id ly  a t  the end of the  hot pressing cycle. On passing through the  

l iqu idus ,  t h e  ou t s ide  of the  specimen becomes r i g i d  while t h e  c e n t e r  can 

s t i l l  deform. When the whole specimen has cooled the ou t s ide  w i l l  be i n  

compression and the  in s ide  i n  tension. Depending on t h e  rate o f  

cool ing,  t he  e x t e r i o r  zone of compressive stress i s  l i k e l y  t o  be 

r e l a t i v e l y  narrow and the stress gradien t  w i l l  be high. This type of 

macroscopic stress d i s t r i b u t i o n  i s  superimposed on the l o c a l  stress 

pa t t e rn  where t h e  carb ide  g r a i n s  are i n  compression with respec t  t o  the  

coba l t  phase, because of the  d i f f e r e n t i a l  thermal expansion. 

In  the  short-rod f r ac tu re  toughness tests performed a t  TerraTek, 

negat ive displacement i n t e r c e p t s  during c y c l i c a l  loading indicated the 
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presence of s u b s t a n t i a l  macroscopic r e s idua l  compressive stresses. 

These s t r e s s e s  were s u f f i c i e n t  t o  raise the  apparent f r a c t u r e  toughness, 
%, by as  much as 40% above the corrected value.  On the  o the r  hand the 

f r a c t u r e  toughness va lues  determined by indenta t ion  co r re l a t ed  

reasonably well  with the  corrected values  of KIc. This i s  expected 

because the  indentat ion test only samples l o c a l  stress f i e l d s ,  and t h e  

tests were made i n  the c e n t r a l  regions of  cross-sections.  The presence 

of d i f f e r e n t  l e v e l s  of r e s idua l  s t r e s s e s  i s  c l e a r l y  a complicating 

f a c t o r  i n  in t e rp re t ing  proper t ies  where f r a c t u r e  is  involved. If 

macroscopic r e s idua l  stresses or ig ina ted  as suggested here,  then i t  

should be possible  t o  modify the  stress f i e l d s  and, t o  some ex ten t ,  the  

f r a c t u r e  proper t ies  by heat-treatment 

Wear Resistance 

Table 6 shows the  r e s u l t s  of wear tests made a t  Securi ty  Dresser. 

The wear resistance number W r e f l e c t s  t h e  volume of material l o s t  from a 

standard 12.7 mm-diameter cy l inder  abraded on a rock sur face  under 

cont ro l led  condi t ions;  t he  l a r g e r  t h e  va lue  of W, the  higher the  wear 

res i s tance .  The W values  can be ranked approximately i n  order  of 

increasing hardness and decreasing toughness. For a given coba l t  

conten t  , the  NbCo. 83 materials are gene ra l ly  harder , tougher , and 

cons i d  era b l  y more wea r-re si s tan t than the  ir  s t o  i c  hiome t r ic  co un t e r 
par t s .  Examples of w e a r r e s i s t a n c e  values  f o r  commonly-used rock 

c u t t i n g  grades of WC-Co, determined by the  same test ,  are given i n  Table 

7. These examples show that the wear r e s i s t ance  of the  %ex-based 

cemented carb ides  l ies  within t h e  range of t h e  grades of WC-Co commonly 

used i n  rock d r i l l i n g .  The high wear r e s i s t a n c e  values  found i n  

NbC0.83-10 Co can be achieved i n  grades of WC-Co with a lower Co 

content .  Such grades are not c u r r e n t l y  used f o r  rock cu t t i ng  because of 

t h e i r  low f r a c t u r e  toughness. However, no wear resistance d a t a  on low 

Co grades of  cemented WC were ava i l ab le  f o r  comparison. 
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Table 6 

HARDNESS AND W E A R  RESISTANCE OF CEMENTED CARBIDES 

Fracture 
Wear Resistance, 

W 
Hardness, Rv Toughnes 

Corn po si t i o  n ( G W  (MPa m 

NbC-1OCo 12 70 
Nbc- loco - 
Nb c- 10 co 12. 16 
Nbc- loco 13.25 
Nbc-2oco 11 -05 
NbC0.83-10C0 14.40 
NbCo. 83-10C0 14 . 28 
NbC o. 83 -2 OCo 12.52 

- 
- 

5.98 
5.39 
8.28 
5.30 
6.47 
8.54 

7 84 
66 9 

10 98 
87 8 
3 76 

2065 
1866 
53 6 

Table 7 

EXAMPLES OF WEAR RESISTANCE VALUES FOR COMMONLY USED WC-CO 

Wear Resistance, 
W % co 

10 76 
872 
803 
611 
581 
565 
448 
267 
2 58 
236 

10 35 
12.35 
12.35 
10.35 
10 35 
10.35 
10 35 
16.51 
15.13 
16.51 
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I n  comparing the proper t ies  of cemented carbides ,  i t  must be 

appreciated that hardness , toughness , and wear resistance are a l l  

considered when se lec t ing  a grade of carb ide  f o r  a p a r t i c u l a r  d r i l l i n g  

appl ica t ion .  It i s  clear that these  experimental cemented carb ides  are 

extremely wear r e s i s t a n t ,  but the  corresponding l e v e l s  of toughness are 

below those that are usua l ly  required i n  WC-Co. The r e l a t i v e  importance 

of hardness,  toughness, and wear r e s i s t a n c e  i n  determining the d r i l l i n g  

behavior of an i n s e r t  might be d i f f e r e n t  i n  WC-based and NbC-based 

materials, and d r i l l i n g  tests w i l l  be necessary before  a v a l i d  

comparison can be made . 
Examination of Wear Surfaces 

Several  processes can occur sepa ra t e ly  o r  i n  combination that ~€11 

cause l o s s  of material i n  an abrasive wear test. I f  t he  coba l t  i s  
a t t r i t e d  away, t he  carb ide  g r a i n s  can be pulled out;  they can a l so  

f r a c t u r e  and f a l l  ou t  i f  they are unsupported by cobal t .  This type of 

uneven wear can be expected i f  the  coba l t  regions are r e l a t i v e l y  l a r g e  

compared with t h e  carb ide  g r a i n  s ize .  This would arise e i t h e r  f o r  l a r g e  

coba l t  conten ts  o r  i n  inhomogeneous microstructures  Al te rna t ive ly ,  

poorly bonded carb ide  g r a i n s  might e x i s t  i f  t h e  ove ra l l  binder  content  

i s  low o r  i f  l o c a l  concentrat ions of coba l t  e x i s t  due t o  inhomogene- 

ities. I n  e i t h e r  case, l o s s  of ind iv idua l  g r a i n s  i s  expected t o  result 

i n  high wear rates. On the  o the r  hand, i f  the  coba l t  is l o s t  g radual ly  
and the  g r a i n s  are w e l l  supported,  the  sur face  should wear more 
evenly. If the  carb ide  has the  r i g h t  proper t ies ,  i t  may wear by a 
process of plastic rounding r a t h e r  than f r ac tu re .  In  t h i s  case, wear 

rates w i l l  be low. The wear mechanisms of ind iv idua l  cemented carb ides  

are probably more complex than t h i s  desc r ip t ion ,  and i t  i s  l i k e l y  that 

seve ra l  mechanisms of l o s s  of material w i l l  cont r ibu te  t o  the abras ive  

wear of s p e c i f i c  grades of  carbide.  

Figure 10 shows examples of t he  abraded sur faces  of materials 

showing t h e  lowest wear resistance i n  the  NbC, series. In NbC-2OC0, t h e  

c o b a l t  i s  heavi ly  a t t r i t e d  away, and some of i t  can be seen as 
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approximately sphe r i ca l  debr i s .  The r e l a t i v e l y  s o f t  carb ide  g r a i n s  show 

evidence of considerable rounding. There are no microfractures ,  bu t  

many g r a i n s  have been pulled out. Consequently, the  wear number is  

r e l a t i v e l y  low. In the  example shown i n  Figure 10(b),  the  a t t r i t i o n  of  

coba l t  is probably very similar t o  that shown i n  Figure lO(a), but t he re  

i s  less l o s s  of carbide by plastic rounding. Many g ra ins  have been 

pulled out and the re  is  evidence f o r  microfracture .  

Figure 11( a) shows considerable  microfracture  and pull-out but 

l i t t l e  p l a s t i c  rounding of the  s to ich iometr ic  NbC gra ins .  The 

materials shown i n  Figure 11 con ta in  10% Co so there  i s  less binder t o  

be l o s t  by a t t r i t i o n .  On the o the r  hand, i f  i n s u f f i c i e n t  coba l t  is 

present ,  t h i s  can a f f e c t  t h e  degree of support  given t o  t h e  carbide 

gra ins .  Figure l l ( b )  i l l u s t r a t e s  t he  wear sur face  of NbCo.83-10 Co, t he  

material with the  highest  W value. It shows many rounded carb ide  g r a i n s  
and some pull-out , but v i r t u a l l y  no microfracture .  This micrograph 

suggests  that r e l a t i v e l y  uniform wear of both phases i s  occurring and 

that the  main wear mechanisms i s  r e l a t e d  t o  p l a s t i c  flow. This could be 

an important observat ion because the re  i s  no evidence that the  wear 
r e s i s t a n c e  is  l imi ted  by the  r e l a t i v e l y  low f r a c t u r e  toughness of 

NbCo. 83'Co compared with WC-Co 
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NbC-20Co W = 376 

NbC0.83 -20 CO W t 536 

F i g u r e  1 0 .  Wear S u r f a c e s  o f  Cemented NbC0.83 
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NbC-1OCo W = 669 

-10 CO" W = 2065 N b c 0 . 8 3  . 

F i g u r e  11. Wear S u r f a ' c e s  o f  Cemented  Niob ium C a r b i d e  

3 2  



The f ab r i ca t ion  s tud ie s  of  cemented carb ides  based on NbC and TaC 

wi th  coba l t  and nickel  binders showed that the  lowest p o r o s i t i e s  and 

most uniform microstructures  were obtained i n  the  NbC-Co system, and 

much of t he  study focused on these materials. 

The range of hardness that can be obtained i n  NbCx-CO a l l o y s  i s  

comparable t o  that found i n  rock c u t t i n g  grades of WC-Co, and harder 

materials can be made using substoichiometr ic  NbC. The f r a c t u r e  

toughness of the  experimental carbides  was lower than that of WC-Co of 

the  same hardness. The most s i g n i f i c a n t  toughness r e s u l t  was that , f o r  

a given hardness, the  f r a c t u r e  toughness of NbCOe83-Co w a s  g r e a t e r  than 

that of s toichiometr ic  NbC-Co. From these  da t a  i t  can be  concluded that 

carbon content  e x e r t s  a s t rong inf luence on the proper t ies  NbC,-Co 

materials and t h a t ,  by ad jus t ing  t h e  carbon content  of  t he  carbide,  i t  

I s  poss ib le  t o  obta in  simultaneous improvements i n  hardness and 

toughness i n  t h i s  system. 

Observations made during toughness and wear tests suggest that 

r e s idua l  stresses are present  that might a f f e c t  r e s i s t ance  t o  

cracking. The presence of r e s idua l  compressive stresses raises the  

apparent f r a c t u r e  toughness by as much as 40%. The r e s idua l  stresses 

probably arise i n  hot pressing, and i t  i s  l i k e l y  that such stresses 
could be cont ro l led  e i t h e r  by heat  treatment o r  i n  a f a b r i c a t i o n  route  

based on cold pressing and s in t e r ing .  The la t ter  route  would a l s o  
eliminate micros t ruc tura l  and compositional inhomogeneities that arise 
i f  t he  coba l t  phase is  extruded a t  the sur face  during hot pressing. 

Abrasive wear tests provided a valuable  i n s i g h t  i n t o  the  p o t e n t i a l  

usefu lness  of cemented NbC,. The abrasion r e s i s t a n c e  of the  Nb(&-Co 

compositions i s  i n  t h e  range of  the  WC-Co compositions that are 
c u r r e n t l y  i n  use f o r  rock c u t t i n g  and cemented carbides  with higher wear 

resistance values  can be made using NbCo.83 cemented with Co. 
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Examination of wear surfaces  ind ica ted  that both phases i n  NbCo.83-10 Co 

wear a t  a r e l a t i v e l y  even rate and that material is  removed by a process 

r e l a t e d  t o  p l a s t i c  flow, r a t h e r  than microfracture .  These observat ions 

suggest that the  r e l a t i v e  r o l e  of plastic flow and f r a c t u r e  i n  

determining r e s i s t ance  to  abras ive  wear might be d i f f e r e n t  i n  Nb$-Co 

and WC-Co. Whereas the  wear r e s i s t a n c e  results are encouraging, t h e  

f r a c t u r e  toughness l e v e l s  are s i g n i f i c a n t l y  below those used i n  cu r ren t  

WC-Co i n s e r t  grades. Thus the  high l e v e l s  of wear resistance that can 

be developed in  NbC,-Co might be  d i f f i c u l t  t o  u t i l i z e  i f  t he  

corresponding f r ac tu re  toughnesses are i n s u f f i c i e n t  t o  prevent 

macroscopic f r a c t u r e  during d r i l l i n g .  

Niobim carbide i s  a l s o  a t t r a c t i v e  because of i t s  c o s t  and r e l a t i v e  

abundance. The cur ren t  price f o r  NbC i s  $25/ lb  f o r  100-lb l o t s .  Since 

t h e  dens i ty  of NbC is  only about half  that of WC, t he  c o s t  of  carb ide  

per i n s e r t  could be very low, depending on the composition. Further 

work that would focus on improved f r a c t u r e  toughness and on d r i l l i n g  

tests i s  c l e a r l y  required to e s t a b l i s h  the  technica l  merits of Nbs-Co 

f o r  geothermal d r i l l i n g  appl ica t ions .  
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V I  RECOMMENDATIONS FOR FUTURE WORK 

This program has es tab l i shed  that cemented niobiun carb ides  have 

some unique proper t ies  that make them an a t t r a c t i v e  a l t e r n a t i v e  to  

conventional WC-Co rock b i t  materials. Further work i s  required t o  

improve the f r a c t u r e  toughness and t o  evaluate  performance i n  c o w  

t r o l l e d  rock d r i l l i n g  tests. A program containing the following t a sks  

would accomplish these goals:  

( 5 )  

Es tab l i sh  the  condi t ions  t o  produce NbCo. 83-10c0 by 

cold pressing and s in t e r ing .  

Determine the f r a c t u r e  toughness, hardness, trans- 

verse  rupture  s t r eng th  and abrasive wear resistance 

of s in t e red  NbCo, 83-10C0 

Selec t  a d r i l l i n g  system, condi t ions and i n s e r t  

design appropriate  t o  the proper t ies  of NbC0.83-10C0 

and f ab r i ca t e  the  i n s e r t s .  

Perform d r i l l i n g  tests using a cu t t i ng  s t r u c t u r e  
containing i n s e r t s  of N b C o , ~ 3 - l O C o  

Determine the wear mechanisms by examination of 

i n s e r t s  a f t e r  t h e  d r i l l i n g  tests. 
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APPENDIX 

Indentat ion techniques have been developed f o r  measuring the  

f r a c t u r e  toughness of ceramics.16 ,17. These methods are p o t e n t i a l l y  

very valuable  i n  ma te r i a l s  development and i n  q u a l i t y  cont ro l  because 

measurements can be  made on a polished su r face  of any small sample. 

The use of indenta t ion  t o  measure the f r a c t u r e  toughness of cemented 

carbides  was explored as a separa te  t a sk  on t h i s  project .  The objec- 

t i v e  was t o  determine whether the indenta t ion  technique could g ive  

f r a c t u r e  toughness values  f o r  cemented carb ides  that are comparable 

with those obtained by o the r  f r a c t u r e  mechanics methods. 

When ceramics such as s i l i c o n  n i t r i d e  are indented with a 

diamond pyramid, r a d i a l  cracks are generated from the corners  of the  

p l a s t i c  impression. These cracks are approximately semicircular  and 

pass under the plastic impression. The dr iv ing  force  f o r  the c rack  

system i s  the  r e s idua l  stress that arises from the  p l a s t i c  deforma- 

t i o n  i n  the immediate v i c i n i t y  of the  impression. This conf igura t ion  

i s  described by t h e  expression: 

where KIc is  the  f r ac tu re  toughness, L is a material independent 
cons tan t ,  E i s  the  Young’s modulus, H is  the  hardness, P i s  the  

appl ied load and Co is the  t o t a l  c rack  length.  In t he  o r i g i n a l  anal- 

ysis ,17 L was determined by measuring the appropriate  parameters a t  

indenta t ions  made i n  a wide range of ceramics for which KIc w a s  known 

I from standard f r a c t u r e  mechanics measurements. Good agreement was 
obtained f o r  ceramics with values  of 

fo r  L = 1.6 x low2. 
between 1 and 5 Mpa m 1 /2 , 

A series of  well-characterized WC-Co materials with coba l t  con- 
t e n t s  between 8 and 16% was obtained fram Terratek. Indentat ion 

toughness measurements made using L = 1.6 x yielded values  of 
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KIc t h a t  were approximately one and a ha l f  t i m e s  the  short-rod frac- 

t u r e  toughness values  obtained a t  Terratek. Using the  Terratek da ta ,  

a new value of L of 1.06 x w a s  derived that gave reasonable 

agreement between the  two techniques, as shown i n  Table 8. However, 

indenta t ion  tests made on WC-6 Co underestimated KIc subs t an t i a l ly .  

Using t h e  o r i g i n a l  value of L of 1.6 x t h e  value of KIc f o r  WC-6 

Co is  7.68 MPa ml/*, which i s  reasonably c lose  t o  the sho r t  rod 

value 

The o ther  demands of the  program did not a l low us t o  inves t iga t e  

these  discrepancies  i n  d e t a i l .  However, two f a c t o r s  that could 

a f f e c t  the r e s u l t s  are crack shape and r e l a t i v e  s i z e  of the  p l a s t i c  

zone compared t o  that of t he  crack. It i s  l i k e l y  that the  shape of  

t he  crack i s  cont ro l led  by the  shape of t he  p l a s t i c  zone i n  t h a t  the 

crack f ron t  forms a t  the  plastic-elastic boundary and follows i t s  
contour. The f r e e  sur face  a l s o  inf luences the crack shape, because 

t h e  crack w i l l  eventual ly  run out  a t  the  surface.  

Indenta t ion  i n  the cemented WC-Co materials with 8-16% Co forms 

Palmqvist cracks, which are s h o r t  compared t o  the  s i z e  of the  plast ic  

impression and extremely shallow. Palmqvist cracks could arise i f  

the  p l a s t i c  zone i s  more o r  less sphe r i ca l  and extends r e l a t i v e l y  f a r  

i n t o  the material. On the  o the r  hand, cracks i n  ceramics and i n  WC- 

6C0, are approximately semicircular and connect under the  indenta- 

t ion .  In  these materials the  p l a s t i c  zone is  approximately hemis- 

pher ica l  a d  i t  i s  very small compared t o  the  crack. A t r a n s i t i o n  

from Palmqvist t o  the f u l l  semicircular r a d i a l  cracks has  been 

observed i n  ZnS1* Such a t r a n s i t i o n  can be expected i n  WC-Co a t  

high loads.  

Indentat ions i n  the  experimental cemented carbides  based on NbS 
and T a s  formed semicircular  r a d i a l  cracks similar t o  those seen i n  

WC-6Co and i n  ceramics, and the re  was a l i n e a r  r e l a t i o n  between load 

P, and crack length Co 3/2. Short-rods of NbC-1OCo were t e s t ed  a t  
Ter ra tek  and indenta t ion  f r a c t u r e  toughness values  were measured on 

the  broken specimens using L 4 1.6 sc The r e s u l t s  are shown i n  
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Table 8 

SHORT-ROD AND INDENTATION FRACTURE TOUGHNESS OF WC-CO 

Composition Short Rj392 Inden ta t i 
x co KIc MPa m KIc MPa m 

16 
11 
10 
10 
9 
8 
8 
6 

15.5 
13.2 
14.6 
15.6 
11.8 
12.1 
15.0 

8.0 

16.9 
11.3 
16.2 
16.9 
11.0 
12.6 
17.5 
4.8 

Mean of 3 readings with 50 lcg load. * 

Table 9 

SHORT-ROD AND INDENTATION 
FRACTURE TOUGHNESS OF NbC-loCo 

* Hard ness * Indentation Short-Rod Sample 
Number G Pa KIc MPa m 1 /2 KIc MPa m1I2 

HP 75 13. 31 
HP 78 13.03 
HP 79 11.93 
HP 80 13.14 

5.79 
6.24 
6.24 
6.20 

- 
5.32 

5.04 
5.89 

~ 

* Mean of 3 readings with 50 kg load. 
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Table 9. The agreement was s u f f i c i e n t l y  good t o  permit t h i s  a n a l y s i s  t o  

be used t o  determine the  f r a c t u r e  toughness of t h e  o the r  experimental 

materials made i n  this program. 

These results ind ica t e  that the  cu r ren t ly  a v a i l a b l e  f r a c t u r e  

mechanics ana lys i s  derived f o r  indentat ion f r a c t u r e  i n  ceramics can  only 

be used f o r  cemented carbides  with toughnesses below Inden- 
t a t i o n  i n  tougher cemented carbides  produces Palmqvist cracks.  In  t h i s  

case, the  crack and the plastic zone are of similar dimensions and the  

ana lys i s  becomes inval id .  Further work i s  required t o  extend the  ana lys i s  
so that a r e l i a b l e  indenta t ion  method can be developed f o r  materials with 

10 MPa xn1l2. 

f r a c t u r e  toughnesses i n  t h e  range 10 t o  20 MPa m 1/2* 
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