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Abstract

Three two-parameter models, one describing an A-body

system (the atomic nucleus) and two describing many-body

systems (the van der Waals gas and the ferroelectric

(perovskite) system) are compared within the framework of

catastrophe theory. It is shown that each has a critical

point (second order phase transition) when the two

counteracting forces controlling it are in balance;

further, each undergoes a first order phase transition

when one of the forces vanishes (the deforming force for

the nucleus, the attractive force for the van der Waals

gas, and the dielectric constant for the perovskita).

Finally, when both parameters are kept constant, a kind

of phase transition may occur at a "critical" angular

momentum, "critical" pressure, and "critical" electric

field.
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1) Background

It is obvious that nuclei are extremely complex systems consisting

as they do of a finite but "large" number of protons and neutrons, inter-

acting via strong forces which are only incompletely known. Even if it

were known that all the relevant forces were two body forces, described

by relatively simple interactions, the resulting many body problem would

be so intractable that it would be difficult to draw a reliable conclusion

from the necessarily approximate calculations. In addition, it is likely

(as is the situation in solid state physics and statistical physics) that in

different physical cir' --instances different aspects of the many body problem

dominate the physical description. Consequently, even if the possible

importance of meson degrees of freedom, relativistic effects, and internal

nucleon structure is ignored, the statement that a sufficiently detailed

knowledge of the nucleon-nucleon interactions is sufficient to deduce the

nuclear properties would be more in the nature of a scientific exhortation

than of an implementable principle.

It is important to recall that in spite of the intrinsic complexity

of nuclei, they exhibit a wealth of remarkable empirical regularities. It

is in the best tradition of physics to first exploit these regularities

by making a physical model whose physical and mathematical behavior
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simulates ttie nuclear properties in that particular domain. Later, the

regularities codified by the model can be fit into a more general scheme,

which starts from a more fundamental viewpoint. The original shell model,

or individual particle model, exploits the many nuclear properties which

can be described in terms of a few valence nucleons, while the collective

model is in first instance based on the collective features of rotational

spectra. The shell model works well for nuclei near closed shells, whereas

the collective description is most efficient away from magic number nuclei.

In almost all of these models a certain amount of experimental Information

is used, as for example in obtaining the matrix elements of an effective

interaction.

In view of the complexity of atomic nuclei, it is clear that quite

distinct approaches might be useful in obtaining new insights. One ap-

proach would be to deepen the understanding by investigating what con-

cepts and rules of the models could be obtained from a more detailed

examination of the many body problem. For example, in the interacting Boson

model (IBA), a specific microscopic dynamical proposal is made to account

for the complex band structure exhibited in nuclear level schemes. In

this model certain states of the "fermion" system consisting of an even

number of both valence neutrons (N ) and protons (N ) is approximately de-
n P N + N

scribed in terms of an equivalent set of N interacting Bosons (N • • - — ^ )

The other approach, which is dealt with in this paper, is to derive

from the experimental regularities and the empirical rules "directly" a

phenomenological model, and to investigate the consequences and conclu-

sions following from It. Once an effective model of some generality
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has been obtained, one can attempt a fundamental justlfication of the

concepts used. It often happens that the model suggested by the experi-

ments yields new information via mathematical analysis. In this con-

nection it is interesting to explore the mathematical organization which

catastrophe theory imposes on a general class of models. In investi-

gating the nature of the mathematical constraints which follow via cata-

strophe theory from the paraneterized experimental data, one follows

the opposite direction of studying the return to a more microscopic theory.

In this approach the detailed nature of the interaction is not important,

one just investigates the possible frameworks in which the theory is re-

quired to fit by the present organization of the data. The particular

class of phenomena to be explored here in a somewhat tentative fashion

are the regularities observed in the excited states of even-even nuclei.

2) The excited states of even-even nuclei. The variable moment of

inertia model.

Very striking empirical regularities were observed in the ground

state bands of even-even nuclei i.e. bands with level spins (J) and

parities (TT): 0+, 2+, 4+, .... in the introduction of a recent review

article entitled "The Variable Moment of Inertia Model and Theories

of Nuclear Collective Motion," the sequence of discoveries underlying

the model has been described, ranging from rotational bands, near-harmonic

bands (interpreted by a surface vibration model, the first of the inter-

acting boson models), bands founds in "transitional" (between vibraCional

and rotational) nuclei (in osmium and platinum), to bands found in near-
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maglc and finally in magic nuclei. While it was thought that all these

bands in particular the first two, correspond to quite different modes

4

of collective motions, the scaling law first observed by Mallmann sug-

gested that all these bands result from one and the same mechanism:

Mallmann found that the ratio of energies E (where J - 6 or B) to the
J

2+ state excitation energy are universal functions of one ratio, E,/E_.

One can therefore infer that the ground state band spectra are functions

depending on just two parameters. Mallmann also showed that the ob-

served behavior deviates already very close to the rotational limit

from that proposed by Bohr and Mottelson, who expected a correction
2

term for the energy a(J(J + 1)) due to rotation-vibration mixing.
Since an earlier, more fundamental approach, namely to find a

general expression for the energy spectrum of the form E (N ,N ) did
J p zi

not lead to success, the new challenge was to guess at the dynamics

underlying the Mallmann curves, whose number could soon be extended

from two to six (J m 16) or even higher thanks to new data. The two

main avenues available were to postulate either a rotational or a vi-

brational mechanism. If rotation is assumed, one has to conclude that

since in general the energy spacings empirically found for increasing

J are smaller than those given by the expression for a rigid rotor,

" 2 T — t ic follows that the moment of inertia I increases with in-
creasing J. This increase can be accounted for by adding to the rota-

C 2

tional term a term •=- (I - IQ) (accounting for the increase of cen-

trifugal and Coriolis forces with increasing rotational velocity).
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together with a variational principle required to determine I: The

basic equations for the Variable Moment of Inertia Model are then

21 (1)

IQ and C are parameters characteristic for a given nucleus. The moment

of inertia I itself is a dynamical variable; its dependence on the model

parameters is given by

- V 2

The second approach possible is the assumption that the dynamics

underlying the Hallmann curves is that of the anharmonic vibrator. How-

ever, a comparison of the two approaches showed that the rotational in-

terpretation is in considerably better agreement with the data. Recent

experimental results for higher spin states in near-magic nuclei strengthen

this conclusion. (It may be worth mentioning here that there is almost

no correlation between the basic variable E»/E2 of tne m^ model and the

boson number N up to N £ 11•)

Finite positive values of IQ and C yield one real root for I (which

is determined from equation (2)). For IQ > 0, I can be interpreted as

the ground state moment of inertia. One finds empirically that I. rises

as more proton and neutron pairs are added to closed shells. C, the

stiffness parameter, decreases by about 5 orders of magnitude between

12the nucleus C and the heaviest actinides. Within a nuclear species,

C rises as one approaches a stable isotope.
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It is most important that the model defined by equations (1) and

(2) can be extended to negative values of I ; * this extension was

suggested by the observation that I decreases sharply as magic numbers

are approached and appears to become negative before N - 82 (magic num-

ber) is reached. One finds good experimental agreement with (1) and (2)

also for negative values of IQ. This means that while for I_ > 0,

I(J - 0) » I , for I <̂  0, I(J - 0) = 0, i.e. the ground sta-e moment of

inertia vanishes and the nucleus actively resists being rotated. This

C 2

resistance is measured by the threshold energy r I. . However, in con-

trast to Mallmann's findings (based on very scarce data), bands in magic

nuclei lie below the limit of validity of the model (E//E2 = 1«82), for

which I. » -«. Below this limit, an abrupt change in band structure oc-

curs; in particular, values for 4+,"6+, 8+ etc. become almost degenerate.

Aswe shall see, this limit corresponds to a first order phase transition.

Moreover, it is easy to show that as ln changes sign, -—I has a dis-
0 3J|J-0

continuity reminiscent of a second order phase transition. We will show
later that 1 * 0 precisely corresponds to the critical point.

A phenomenon resembling a phase transition is further observed for

the ground state band of each ever-even nucleus at a state J , where J
, c c

denotes the "critical spin": above J a more or less abrupt deviation

from the VMI prediction occuis, usually corresponding to a sudden in-

crease in moment of inertia. For nuclei with many valence nucleon pairs

J is high (between 10 and 16 in the rare earth region, > 20 in the ac-

tinides.) For near-magic nuclei J is usually £ 8 . For "pseudoraagic

nuclei," i.e. nuclei possessing 2(4) "troton holes and 2(4) neutrons, or
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vlce versa, J i.4. However, in contrast to the large variation for

J , the rotational velocity w at which the deviation occurs, is ap-

proximately the same for all bands. (ui is related to I and J by the

semiclassical equation Iu * If J(J + 1) ) . Phenomenologically, this ef-

fect can be described by band crossing, caused by one of several pos-

sible physical mechanisms. In many cases this mechanism consists in

the decoupling of a single neutron or proton pair In a high j orbital

under the influence of the Coriolis force. Subsequent alignment of this

pair along the axis of symmetry brings about a large contribution to the

moment of inertia.

Before we proceed to the analysis of the VMI model, let us briefly

address the question of what can be learned from the VMI model about

the organization of the rotating assembly of nucleons? Unfortunately

the answer is that in addition to a number of previous efforts, a re-

cent attempt to derive the model from a fundamental approach to col-

lective motions of a nuclear many-body system has so far not succeeded,

mainly because of the difficulties of taking the effects of the Fauli

principle properly into account. However, it was possible to infer the

configurations of the rotating assembly of nucleons by correlating the

measured electric quadrupole transition moments with the moments of

g
inertia derived via VMI from the spectrum: for nuclei with not more

than four valence nucleons of one kind (neutrons or protons), a rotating

"alpha - dumbbell" model suggests itself, whereas for nuclei with >_ 6

valence neutrons and protons, a two-fluid model consisting of a superfluld

and an inertial fluid gives excellent agreement with the data.
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3) Ideas of catastrophe theory

Thorn and Mather proved a beautiful abstract mathematical classification theorem,

which for the present purposes may be paraphrased in this way. Suppose one

has a system described by n variables,x ... x , and s parameters £. ... C •
i n x s

Suppose the physical states are given by

1... n. (3)

This is a set of points, of s dimensions, call it V . To each point in V

corresponds a physical state. Now consider a projection of V on the
s

space £ . . . . £ • If the projection is one to one, a knowledge of the £'s will

define the physical state uniquely. If the projection is not one to one, a

single set of C's will define a number of physical states. If one moves in

the £ space from a region where one state in Vg corresponds to one set of £'s,

to a region where more than one state in V corresponds to one 5» one has gone
s

from a one phase region to a region of two or more phases. As the £ variables are

changed in this manner, the system has undergone a discontinuous transition.

Stated differently as one varies S's, the number and type of critical points

(i.e., points where f-r— 1= 0), changes. The mathematical results referred
IN

to give an exhaustive classification of the changes in the number and type of

critical points for certain values of s. The result of Thorn and Mather now

asserts that near such a region in V , where these changes occur, one can
—~——~ s

obtain a canonical form for V., the effective potential. (Note this is only

true near the boundaries). What the form is depends only on the number of £
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variables in question. For a 4 dimensional £ space there are 7 such basic forms.

Consequently the potential can be written

vs

Here the o. are constants, the V. are specific functions. In (4) V. is regular

near the boundaries. The power of the theorem lies in the fact that the

3Vi
functions V. all of which satisfy — = 0 , have a universal form and can be

1 dX.

determined once and for all. The Thom theorem determines these functions V.

uniquely, up to a diffeomorphism which is a differentiable homeoraorphism.

(&. homeomorphisra is a one-to one mapping, which is continuous and has a

continuous inverse.) For differen numbers of parameters E, the functions V

have characteristically different forms. For s = 1,2, the form of the cor-

responding potential is unique

s = 1 V = x3

2
a = 2 V = x" + | £x x

2 +

If one has three £ parameters, the effective potential can havrs a number

of forma; one is

(5b)

There are two other possibilities for s = 3

xt _ v 2 V + V 3 j . r V 2 _ i _ r „ j . p „ / c - \
1 1 9 ~ 9 '1 9 ' 9 1 ^"* •>" I J C ;
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The states are now given by

^ - 0 ani - 3 = 0 (5d)

These cases are called the swallow's tail, the elliptic and hyperbolic umbilic

(10)
respectively. For s > 3 there are more complicated forms

for V. One of the forms for s = 4 for the effective potential is

V = } x5 + \ 41 ̂  + I €2 x 3 + 7 C3 x 2 + V (5e)

The states now must satisfy the equation -r— = 0, which is a 5th degree
ox

equation. It will be noted later that the best experimental fit for

a VMI model with additional parameters allowed leads just to such 5th degree equations.

A glance at (5) shows that if a system is parametrized by two variables

C,, ?o, and the states of the system can be obtained as the minimum of some

effective potential, this potential must be (locally)

V = x4 + | 5X x
2 + ?2 x, (6>

while the states must satisfy

x3 + Cx x + ?2 =• 0. (7)

Similarly if one wants to contemplate a description in which more than two

parameters occur, one is compelled in this framework to go to (5c),(5d),or

(5e).

It is clear that depending on £} and ?2> (?) either has one or three
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real solutions for x. Thus corresponding to %. £„, there is either one

state (one minimum of V) or two states ( + 1 unstable state) (two minima +

one maximum.) The region in the 5, 5? plane, where (7) has three real

solutions for x,is separated from the region with one real solution by a cusp,

whose equation is

(See figure 1)

4 C,3 + 27 = o, (8)

Figure 1

Eq. (8) can be obtained directly from the formula for the discriminant of a

cubic equation. In principle, crossing the cusp in the ?j £2 plane corres-

ponds to a discontinuous transition from a one-phase to a two-phase region.

The Thorn theorem is an abstract mathematical theorem. For its use in physics,

the relation between the abstract parameters and physical quantities must be

established. This must be done by casting the equations which characterize

the physical states in one of the standard forms (5). In this process the

relationship between the physical parameters and the mathematical £ para-

meters is not always so direct. It is presumed that such an identification

is unique. In the cases treated here that is certainly true.

It ̂ s_ simple for the case of the van der Waals gas, where experiments

give as equation of state
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(n =p = pressure, v = volume, T absolute temperature);

(P +fa) (v'~ b) = RT (9)

(R is the gas constant, a and b,.depend on the gas)

It is well known that there is a "ritical point, with temperature, volume,

pressure given by

P C = I 7 P
 H c ' 2 7 f v c = 3b C1O)

For T > T there is only a gas phase, for T < T there are two possible
c c

phases. In that case, (T < T ) moving along a constant p line the system

will undergo a gas liquid phase transition.

For T > T there is n£ phase transition. The van der Waals case fits

exactly in the category (6) of Thorn . This can be seen explicitly by

introducing new variables

* = p w = v" t = f i" O ) . (ID
C C c

which leads to

3 1
(ff + ~2) (w - j> = 8t (12)

To recover a cv*«\c of the form (6) write

1 = — , and introduce x = x1 -1 (13)
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(13a)

(13b)
c

Substituting in (12) gives

x3 + | (8f + p') x + yr (8t' - 2p') « 0 £14)

p1 = IT

= t

-1 = -

- 1 =

p c

T - Tc
Tc

or

x3 + ?. x + ?„ = 0 with (15)

C2 = | (8t' - 2p«) (17)

Thus the equation of state of the van der Waals gas liquid system fits

perfectly in the simplest cusp catastrope scheme of Thorn. Observe that the

critical point, eq. (10) in terras of ?1, ?2> x, is given by

Note finally that since the van der Waals equation is cubic in the

density, the identification of x with the density was forced by the equation

defining the stable states (7). Also in the van der Waals model, the potential

V itself has no especially transparent physical meaning. In the van der Waals

case, the parameters "£" of Thorn are therefore by (16) and (17) linear combi-

nations of pressure and temperature. Note finally that crossing the cusp
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produces a first order phase transition. More precisely: crossing the cusp,

together with the Maxwell rule, yields a first order phase transition.

(The Maxwell rule asserts that the stable isotherm,p = constant, bisects

the area of the van der Waals loop.) At the critical point f̂ B and

both vanish. This fixes p , v and T . •
rc* c c

4) Catastrophe interpretation of the variable moment of inertia model

It is clear that the Thorn classification can be directly applied to the

VMI equations (1) and (2). The states are defined via a minimum condition on

the energy by (2). The two parameters ln and C determine the effective moment

of inertia by the equation of state. This equation is again a cubic equation,

so it can be put in the standard form (7). If one introduces in the equation

(2) as a new state variable

x = (I - j IQ) (19)

one finds that the equation which determines this

"difference moment of inertia" is again of the form

x3 + Cj x + ?2 = 0 with (20)
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This formal identity implies that in principle all the phenomena occurring

in the van der Waals gas have their counterpart in the variable moment of

inertia model. There is a critical point given by x = 0, £ = £ = 0,

In = 0, J = 0.

The remark made earlier that J—I at J = 0 has a discontinuity for I_ = 0 and

corresponds to a phase transition of the second kind, is in precise harmony.

with the observation that I_ = 0, J = 0, corresponds to the critical point.

It is further interesting to observe that the cusp given by equation (8) can

by the identifications (21) and (22) be transcribed to the form

This vsry simple relation shows the formal analogy between the van der Waals

description of a gas and the Variable Moment of Inertia description of a

nucleus. Both fit in the cusp catastrophe scheme of Thorn, both can be ex-

pected to exhibit phase transition type behavior. Although there is formal

identity between the two descriptions, there are,as will be shown below,

characteristic physical di.ferences which preclude a direct identification of

the phenomena.

5) Discussion and Interpretation

a) It is easy to see by inspection that in the van der Waals case

£ and g. c a n both be positive and negative. Any straight line in the

£ 5 plane in the van der Waals case can represent a sequence of physically

possible temperatures and pressures. For example the line £. - £_ • constant

represents a constant pressure line. In general, lines could intersect the cusp

twice, each intersection (except at £. = £ = 0) corresponding to a first
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order phase transition. The situation is different for the VMI model; be-

cause of (21) £ can only assume negative values, so only the lower part of

Figure 2 has a physical significance. One can deduce from the basic formulae

that for given I_ > 0, a sequence of different spin states (varying J) are given

by a straight line parallel to the £ axis which ends at the cusp. That
2

state is the J = 0 state.

Figure 2 Figure 2a

In that case (for IQ > 0) there is for each lQ, C, J, only one stable

moment of inertia 1 of the nucleus (Figure 2). For higher spins £2 de-

creases monotonically. As can be seen from (2) the basic relation between

I, In, J and C may be written as

3 _ T2T
2C

In figure (2a) we have graphed I3 - I2IQ for IQ > 0. Since 2C is

always positive, equation (2) (as is evident from Figure 2a) for given



-17-

I- has always one positive solution for I.

On the other hand, if I. < 0 (Figure 3), the sequence of nuclear states

for different J values starts at the (£ ) positive branch of the cusp for J = 0,

and proceeds for larger J to negative values

Figure 3 Figure 3a

7

Then for negative I-, there exists a sequence of nuclear states where I can

have three real values. If one again graphs I3 - I2IQ» but now for negative

In, one obtains Figure 3a. It is now indeed clear (from the figure) that

for a range of spin values there are three real solutions for I, for given

Io and C. However only one of these has a positive moment of inertia I, so

only one corresponds to a physical state. Furthermore, as J increases from

the "3 root region" to the one root region, the positive root changes

continuously. Consequently,when in Figure (3) one passes the cusp, there
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will not be a discontinuous change in I; hence no phase transitioa type

phenomenon occurs, in contrast to the van der Waals case.

b) There are other physical situations exhibiting a similar phase

transition type behavior. A very instructive example is that of ferro-

electricity. For certain substances called perovskites there can, at

temperatures T < T c, exist a spontaneous polarization, while for T > T ,

no such polarization exists; such a substance is BaTiOo* In all three

cases the physical phenomena result from the competition between two

opposing tendencies. In the van der Waals case these tendencies are jusc

the repulsive and attractive regions of the intertnolecular forces (charac-

terized schematically by the a and b terms respectively). The pressure

plays the role of an external influence on the system. It is therefore

not surprising that the pressure is related to the Thorn § parameters.

In the Variable Moment of Inertia model, the competition refers to the

tendency to preserve the spherical shape of the closed shell which con-

flicts with the tendency to deform the nuclear shape. The Pauli principle

tends to make the nucleus spherical, while the residual forces between

valence nucleons, usually taken to be pairing forces and quadrupole -

quadrupole interactions, cause deformation. The rotation of the nucleus,

via tha Coriolis force, brings about a decrease of the pairing interactions.

The parameter C reflects the stability of the nucleus in question (i.e.

the balance of the Coulomb repulsion and the symmetry term) as well as

the degree of surface rigidity which is related to shell filling. I Q

decreases from a maximum value at the center of a given proton and neutron

shell to zero at about two nucleon pairs away from magic. It reaches

(- °°) at the magic numbers. In the ferroelectric case these tendencies



-19-

refer to the polarisation P, which tends to pull the crystal apart and the

elastic forces tending to restore the original shape. An external electric

field E plays a role similar to the rotation. The basic formulae describing

12
a ferroelectric crystal are

P + Y(T - To) P - a E (24)

E = external field, P = polarization, or - constant

Y is a constant, T the temperature, T« a constant.

The term Y(T - TQ) is directly related to the dielectric constant eo of the

material. A very good fit is obtained with

Y(T - Tn)
(25)

When eQ passes through infinity5 the linear term in (24) changes sign.

This signals a phase transition (of the second order if E = 0, of the

first order if E ^ 0). The three physically sin-liar cases correspond to

the same Thorn category. It is obvious that (24) is already in the standard

form x + §, x + 5» = 0. It is equally obvious that x has to be identified

with the polarization. In Table I, the parameters §.., §-, and the variables

x are collected for the three cases.

X

h

h

van der

V i •• V

V

i (8f +

i (a, -

Waals

P - 1

Pc

P1)

2p')

ferroelectric

P

Y(T " TQ) = f-

- a E

j _

1
" 3

VMI

I x

X2

2 3 J(J +
!7 -ND 2C

TABLE I
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What do the correspondences shown in Table I mean in physical terms?
Vc " V P

A glance at Table I shows that = 1 (p is the density)

c

piays the same role as does I - -r I . That is in harmony with an earlier

13 13

suggestion which relates I to the densi."v. The suggestion that J corre-

sponds to the pressure and In to the temperature, is essentially confirmed,

but needs some modification. From Table I one sees that I and J are

determined by both pressure and temperature (t' and p 1).

0 +p')S J(J
2g

 1? <=> " | (8t- - 2p') - ± / / - (8f + p

(26)

Similarly, from Table I it is seen that the parameter I is related to the

dielectric constant and the spin J to ths electric field E.

These three cases, all belonging to the same Thorn category exhibit

similar phase transition behavior. As I -» - °° , the VMI model undergoes

a first order phase transition. Physically, as I. •• - « , the nucleus cannot

be cranked, an external torque will not produce rotation. In order to

produce, rotation one or more nucleon pairs must be promoted to a higher

state, thereby deforming the nucleus. This deformed nucleus can then be

rotated. A very similar behavior occurs in the ferroelectric case. As

e -• 0, no externally imposed field can produce an internal electric field

in the solid. In the van der Waals case, if a = 0, i.e. there is

no attractive force, the critical temperature Tc = 0. This implies that

it would take infinite pressure to liquefy the gas.

Let us now consider the phenomenon referred to earlier, namely the

deviation of nuclear ground state bands from the VMI predictions at critical

spin values Jc ("critical" is used here in a sense which is related, but
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not identical to the use in "critical" phenomena), so that for spins larger

than Jc the moment of inertia increases dramatically. The comparisons

given earlier allow an understanding of this phenomenon in terms of the

ferroelectric model.

In the nuclear case the physical interpretation is that once the

nucleus rotates so fast that the centrifugal and Coriolis forces overbalance

the pairing forces, the moment of inertia will approach that of a rigid

rotor. Similarly, in the ferroelectric case, once E becomes larger than

the elastic forces, further increase in E does not yield a substantial

increase in polarization. In the comparison with the van der Waals case

J corresponds to p', implying a phase transition from gaseous to liquid.

It is of interest to note here that for the heaviest nuclei no

238
backbending was observed up to high spin states. Indeed, for U the

ground state band energies can be fitted up to J = 28 (highest level

known so far) within < 1% by the two-parameter VMI model, i.e., Jc > 28.

6 14
An even much better fit is achieved by an expression of the form '

? if T+1 1 ? U.

j \ lQr + ̂ p - + a (I - IQ)
J + 3 (I - Ior; (27)

fifth and sixth order expressions for E T (I) do not improve the quality of

the fit. Together with T T = 0, Eq. (27) yields a fifth degree equation

for I, corresponding to the Thom category 5(e) which has as special cases

all the qualitative features mentioned for the equations containing fewer

parameters, but there are added refinements. Thus from a systematic and

empirical viewpoint, this expression appears to be preferred.

The various correspondences one can derive from Table I essentially

13
confirm those arrived at earlier on more intuitive grounds. However
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the analysis presented here provides a substantially deeper insight in

r'-.e subtle relationship between variables and parameters of these three

jysterns.
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