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~ : - CHAPTER I
INTRODUCTION

At the present time no comprehensive model of high
energy hadronic scattering'eXists. Most of the existing
. models have a very restricted range of application. The
geome_ticical'modell of hadronic scattering propdséd by Chou
and Yang has had great sucééss in predicting high energy
scattering phenomena. Fof exémple; the dip in pp elastic
scatteringz, and pion and kaon radii3 were quite accurately
predicted by the model. ﬁse of pp differential cross sec-
tion data also‘yields an excellent-fit of the measured
- proton form factor in this model>.

Thé possible existence of hadronic matter currentA‘
inside a polarized hadron and an experimental test of this
idea were aiscussed4 by Chou and Yang in 1973. Subse-
quently the geometrical.modcl was gcncralized5 to include
Athe ﬁatter current éffect by the same authors in 1976; The
proposed experimental test of the matter current'idea con-
sists of determining the spin-rotation parémeter, R, in
polarized elastic meson-proton scatterings. The measurement
~of R usually requires a second scattering of the recoil

proton off a known analyzer such as Clz.
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.The purpoae of this work ie to offer another method by
"which the hadronic matter current effect can be detected.
Instéad of elastic scattering we shall consider the two-

'body inelastic scattering process
T p > K°A

in thch the final state hyperoﬁ is,unetable against weak
decay. By obsefving the angular distribution of the decay_
préducts the rotation parameter, R,_may be inferred. This
.method eliminates the need for a second scattering of the
recoil target, however it must be noted that the cross
section for this reaction is‘very muchVSmaller‘than that of
the elastic scattering.

This proposed experiment constitutes a test of the
geometrical model on tWo eounts. First, 'is the hadronic
matter current effect present in two—body ihelastic pro-
‘cesses, i.e., is the iotation parameter non-zero?  Second,
if it is non—zero,'doee_theemodel outlined in this work
‘corféctly predict the magnitude ot the matter current
effedt? |

' ChaptetS'IIand III review .the formulation of the elas-
- tic and inelastic geometrical models in the absence of
matter current effects. Chapter IV is the generalization
of the elastic geometrical model to include these effects.
The extension of the geometrical medel to include matter
current effeets in inelastic scattering, and.its applica-

tion to the two~body inelastic scattering T p + K°A are



the sﬁbject of Chapter V. A numerical estimate of the
rotation parameter, R, for the proéess T p > K°A is

carried out in Chapter VI.



“ . CHAPTER 1II

TWO-BODY PROCESSES IN THE GEOMETRICAL PICTURE -

ELASTIC CASE

Experiments6 performed in ﬁhe last few years indicate
that aAgeométriéal model, which involves the interaction.of
two extended structures, is capable of describing high
energy hadronic éollisions quite accurately. It is known
experimentally, from eiectron—protoh scattering’for example,
that the proton has an extended electromagnetic.structure.
It seems inevitable that it will also have an extended had-
ronic structure. .The relatiVely small elastic cross section
at large scattering angles7 tends to support this assumption
as well, sincé large momentum transfers (large scattering
angles) would tend to break up an extended structure.

.'The geometrical model considered here involveé-three
bééic assumptionec which arc well founded in the generyy
fegion of interesti(PinC > 100 GeV/c). They are: (a) the
eikonal approximation8 of the séattering, (b) the exponen;
tial form of the transmission coefficient, and (c) the

" opagueness in the form of a convolution of hadronic den-

sities.
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The large forward peak'in the elastic scattering data
suggest that the scettering may be of the diffraction type.
If thhis is so, the latge forward peak implies that a large
" number of'partial weves must be contributing, ana so the
quantity kR (k = Qave vector of the incident'particle,.
R = approx; range of the interaction) must be large com-
pared to 1. In this case the scattering may be described
"by the eikonal approximation familiar from wave optics?.

For P, _ = 200 GeV/c and R = 1 fm
. inc :

kR‘—~PincR/ﬁ =~ 10° >> 1 . ' (2.1)

Assuming that the'scattering is accurately described in
this eikonal approximation, we view the scattering as the
passage of twc absorptive spheres through one another.
CarryingloVer from optics the result that the fraction of
incident intensity absorbed is linearly dependent upon the
thickness of material (x) traversed and upon the absorption

' coefficient (a) we find

. dI/I = -adx
2nI = —-ax

I

exp(-ax) . . I (2.2)

~ We now make the identifications

I >35S ' the transmission coefficient
ax > Q2(b) the opaqueness of the collision at

two-dimensional impact parameter b



S is thus seen to be a function of impact parameter, b,

ohlyw

.

S = exp(-2(b)) | (2.3)

Finally, we must approximate the previously mentioned

- opaqueness. It will be assumed to be in the form of a con-

volution of the two hadronic densities. In the case of

™ p scattering for example

Q(b) = K, D, ® Dy, - | (2.4)

Dn— and Dp are the hadronic matter density of pion and pro-

ton respectively. The constant Kn—p is a measure of the

' strength of the intgraction. K"_p may be dependept upon
the incident projectile energy. ® 4denotes.the £wo—
dimensional Fourier conVolution. Note thatAQ(b) is
‘unchanged by interchange of colliding particles, and is
iinear in each hadronic density. This-is the product den-
sity assumptidn, abdut which more will be said later.
" The above_assuﬁﬁtions are now developed in a more

quantifative fashion. As usual we write the differential

cross section as

do/dt — 7lal? - (2.5)

where the scattering'amplitude, a, is given by

bl L

a=iz] %(22#1)P2(cose)[148(b)]. (2.6)
2=0 R
2+

b~ =




We may also obtain aﬁothér form for the scatteriﬁg

' amplitude which is valid at high energie§ by drawing.an
analogy with wave optics. As a result of the scattering, -
the incidént wave amplitude is reduced to S(b). Since we
do not wish to consider the contribution of tﬁe incident
wave:to the scattering amplifude, we subtract out the ihci—
dent wave amplitude. The total scattering amplitude at
momentuﬁ transfer (kx,kz) is obtained by éumming the con-

- tributions from‘eaéh point of impéct parameter spaée.

This is precisely analogous to Fraunhofer diffraétion

of a wave by an opaque screeng. The quantity [S(b)-1]

corresponds to the aperture function.in optics. Thus we
write
| 1 ' -ik-B
_ _ — . 2 <
alky k) = 5= | [s(b)-1]e d’b . (2.7)

Note_that B and k are two-dimensional vectors in the plane
perpendicular to the incident direction. As the scatteriﬁg
amplitude itself is not an observable quantity, but rather
its équare; we may write the scattering amplitude in the

more conventional form

>

loF

. 1 -ik- '
alk, k) = ﬁj [l—ls(b)].e qzb . (2.8)

The scattering amplitude is now expressed as a two-
dimensional Fourier transform in momentum transfer space,

denoted by
C a=<1l-58()> . (2.9)

'Since the transmission coefficient has the exponential form



given earlier in equatidn 2.3, it will be convenient to
express the scattering amplitude in terms of Q(b) = -&nS(b).

e

<Q (b) > ;<2nS(b)> - (2.10)

<a> = 1-S(b) = l-exp(4nS(b))

= -4nS(b) - ——[ansuo)]2 ,[zns(b)»]ﬁ...
(2.11)
<a> = Q(b)-372(b) 2 (b) +3 Q(b)Q(b)Q(b)— (2.12)

Using the propérty of Fourier tranéform convolutions
<a><b> = <a ® b> (2.13)

we obtain

a = <a(b) >-2¢ <Q(b)> ® <2 (b) >+ <(b)> @ <2 (b)>® < (b) >+. ..

C(2.14)

The scattering émplitude hag now been expressed as an
.infinite series in the Fouriér transform of the collisiqn
t’opaqueness, <Q(b)>. | |
:The'problem has now been reduced to a determination of
the épaqueness at two—dimensional'impact parametex b. since
we éonsider the collision as the'passage of two extended
structures throughAone'anotherl the situation ﬁay be illus-
trated as in f;guré 2.1. Point Q within the incoming pion
(for example) éeeé a compresséd proton density given by

e}

D(by /b)) = [ ey by by br)dby . (2.15)

That is, the proton appears to the pion to be a disc with



ﬁp(bx,by,bz)

"

P (b.by.b5,)

Figure 2.1. Schematic drawing for m p collision.
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two-dimensional density D(b%,b§). The total resultant
opaquenéss is obtained by integrating the product of the
two compressed densities over all pdssible values-of b' and
 including a factof which is in some way a measure of the
‘interactioﬁ stfength between.the two particles involved.

This is the constant Ko p mentioned previously.

> >

— ~ ! ' 21y
Qﬂ_p(b) = Kpp /[ D,__(b-b )Dp(b')d b
= anﬂ—pp'fT“ ® Dp . _ (2.16)

Taking the Fourier transform of this we obtain <Q(b)$, the

quantity required in our expansion for the scattering ampli-

tude.
‘<Q(b)> = Z“Kn—p<Dw~><Dp> | - (2.17)
To connect <Dn~> and <Dp>'with known quantities, note
that
1 *
'n'—
=" JSIT hadr. x'"z
and ‘ o | | _ (2.18)
<D > =~ ‘.._l'___/_

p
p >1K "K ,0
j& /—Z—TI' hadr. X' z

g.
are assumed proportional, then the Fourier transform of the

Pradr. 1S the density of hadrpnchmatter. phadr. and Pch

-two-dimensional density may be related to the charge form

A
w)
\Y

Il

(const.)Cg(t) .

-t = k; + k; ~ o - (2.19)

, *Note‘thdt these are‘3—dim‘ Fourier transforms eval-
uated at ky = 0.
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Note £hat_Gg is probably the correct form factor with which

to associate <Dp>, since in the Breit frame it is precisely

E M

experimentally to be proportionalll (scaling law),

the charge densitylo. However, since,Gp and GP are found

P _ P o :
-Gg GM/up (pp proton magnetchmoment) | (2.20)

we may alternatively write

A D,
<D,> (const.) Gy (~-t) .

-(2.21)
-t

k2 + k2
p e z
For the pion there is but one form factor since the pion is

a pseudoscalar particle, and we associate this form factor

with the Fourier transform of the pion denéity as

<D, _> = (const.F _(-t) . (2.22)

Finally then, the scattering amplitude at high ener-

gies is given by the infinite series

' o 1 | '
a o = <Qﬂ_p(b)>. §T<szﬂ7p(b)> ® <9n—,p(b)> ...

where = | | L (2.23)

: <Qﬂ_p(b)> =.(const.)Fﬂ_(—t)Gﬁ(_t) .

Thus in the geometrical model the measured cross section
» may bé‘used to extréct'form factors, or acéeptéd values for
the form factors may be uséd to calculaﬁe expected cross
sections. | |

. Note that in the casé of electfon—proton scattering
the form factor Gﬁ apbears as [Gﬁ]z_in the scattering cross

"section. - If hadronic elastic scattering is viewed as the
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paséage of two extenaed objects £hrough each other, and if
wé identify the charge distributién with the hadronic
matter distribution, then it is to be~ex§ected that in
proton-proton scattering the leading term will appear asA
[Gﬁ]“‘in the croés seétionlz. This 1is in factAborné but in
the scattering aata;'and the cross section is seen to have

the dependence
do/dt = (const.) [G](-t) 1" (2.24)

for smali,t. This corresponds to taking only the first
.term in'our series expansion, the higher order terms being
vieWéd as small corrections due to the-shielding of the
.back of the target by thé frént. This suggests that the
identification of the charge formAfactor with the hadronic

matter form factor is a valid and useful one.



~ - CHAPTER III

TWO—BODY PROCESSES IN THE GEOMETRICAL PICTURE -

INELASTIC CASE

We now consider the more general collision A B'+ C D.
In order to generalize the results of the previous éhapter
to .include inelastic two-body collisions, the form of the
scattefing amplitude must be altered. Recall that the

scattering amplitude for the elastic case was given by

_1 5, ~ _ o
agy = iz 2Z_Og(zzﬂ)Pl(coso)[l S (b) ] (3.1)
or eqﬁavalently'
- a_, = %; [[ 11-S(b) lexp(-ik-B)d%b . (3.2)

el

Recall further that the scattering matrix element has the
form

sab = <Sab + fab o : (3.3)

where a and b fefer to the initiél and final states. The
origin of the 1 in the elastic scattéring amplitude is now
clear--it corresponds to the unscattered portion of the
incident wave."In the present'case of inelastic collisions,
tﬁe final and initial states are not the same, and the ine-

lastic spin non-flip amplitude is thus

a _ 1
. 2

in 220%(22+1)P£(cose)8'(b) o (3.49)

L e

13
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or analogously, in the wave equation derivation

. a;, - %;rffS'(b)exp(-iﬁ-B)dzb . " (3.5)

The rest of the simplification of the scattering amplitude
in the eikonal approximation follows exactly as‘in'Chapter
II, and the differential ineiastic cfoss section is given
by ' |
do/dt = wla, |2
where _ ' 4’ | 'e(3.6)
as . =‘,<S' (b)y> .

-Recall that < > denotes the two—dimensiohai Fourier trans-—
form.

‘The factor S' (b) must now be specified. Whereas for
- the elastic case we had only to consider.the attenuation of
the ‘incident partiele amplitude as it passed through the
target, we must now considerAa three—etep process, which
may be'pictured as follows;3.
| " In the first step the ineideht partiele, A, is atten-
uated as. it begins to pass through the target, B. In step
two the rearrangement from initial state configuration to.
final state configﬁration‘occurs: A B > C D; In the third
step the final sfate particle C is attenuated‘as it leaves
" the rearrangement.site{ A correct description of the scat-
tering proeess A B » C D must account for the three pheQ_
noma.

Clearly the steps one and three may be treated in a



~ Step 3

‘Figure 3.1. Schematic drawing for inelastic exchange

reaction.

15
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way analogous to the passage of projectile through target
in the elastic case. The attenuation of particle A as it

begins to pass through target B is given by
exp[-020  (B)] . (3.7)
' y . v .

Similarly, the attenuation of final state particle C as it

leaves final state particle D is given by

B)] . (3.8)

+00

exp[—QCD
y
Note that in these_expréssions_g,by is the point at which
the rearrangeﬁent occurs. b is again a two-dimensional
vector in. the pléne perpendicﬁlar to the incideht_direction.
Also note that the exponential argument in each case is not
the total OpaQueness in.the sense of Chapter II, but rather
oniy'the‘opaquéness up to (or away from) the rearrangement
site. - |
Step two, the rearrangement prqéeSs itself, is ac;

counted forkby including a factor
(0" (B,b) 0" (B,b, )17

'where‘pAB(g,by) and pCD(g,by) are the densities of the
initial and final states respectively. Théy are defined in
'the'following way. | |

B CD

AB and o =-bC ® pD (3.9)

A
p =p Q@09
This factof is a measure of the probability that the rear-

réngement occurs at the point (g,by), and is the
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geometrical mean of the two denéities. We choose this form
(geometrical‘mean) as opposed to the arithmetic mean since
the factor reéresenting step two above should be linear in
each density, and further, it should reflect the fact that
A. if either the initial dr‘final stateAdenéity becomes . very
small (osﬁensibly zero) the probability of the exchange
proceés occuring should also become small. Notice that the
arithmetic mean does not satisfy this latter requiremént.

The modified 0paqﬁenesses are obtained in the.fol-
lowing way.. The opaqueness at a point is proportiohal to
the‘hadronié density at that point, and so the uncompressed
opéqueﬁesses are given by | |
| oAB > AB

Ko™ (B,b. )
y! T 5P Py

and | - (3.10)

o
o
1

: " CD >
Q b,b = K' b,b ) .
(Vy) pﬁ(y
K and K' are constants which depend on incident momentum.

The compressed opaquenesses which appear in the attenuation

factors of éteps one and three are thus

AB >y "y AB > . ,
2 o, (B) =K f_mp_ (b,br)dby . (3.11)
: CD > ® CD .~ - '
o ' '
@byﬁw(b) = K' jb“p (b,by)dby . (3.12)

The factor S'(b) (amplitude for occurrence of the process
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A B > CD) is fhen

- | © _AB (7, _.CD (2
S'(b) =C' f e Q—w+éb) e Qb' +£b)
> 7 e Y Y

. _ S (3.13) .

AB > . CD,> . k..
X b,b )o b,b db .
[p" (b, y). ( y)] Iy

In principle the inelastic spin non-flip scattering
amplitude has been found, and the inelastic cross section
is given by

l 2

(ac/dt)in = 7|a, (3.14)

in

where -

ain = <S‘(b)> . ‘ (3.15)

See also reference 14. 1If, howeVer, the iﬁitial and final
states have approximately the same density distributions

the following simplification occurs

AB > L oo
s (b) = cle PowsdP) 1 BB By yap
T =t y y
o (3.16)
= ceWwsdPIgPB (3

C and C' are constants depending on incident momentum.
Assuming this condition applies to the cése‘of the exchange
reaction 1 p+K°A, Ehe‘exchange'scattering amplitude is
given in the geoﬁetrical modei by

‘ AB 7, ‘ ' ‘
By _pegon = C<Ola, ) exp (-2 (B))> (3.17)
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and the exchange differential cross section is given by

(do/dt) | gop = Tl

2
an_p_>K°A| . (3.18)



~ ‘ CHAPTER IV

CONCEPT OF MATTER CURRENT AND ITS EFFECT

ON ELASTIC SCATTERING

Up fo-now we have.considered collisions between par-
ticles thch héve an exﬁended, but internally static;‘
structure. We now extend the geometrical model to allow
. the "stuff" of which the particle is made to havé a rota-
‘tional velocity distribution. It should be nofed that this
rotation is not necessarily rigid rotation, but merely some
type of orbital motioh. It seems reasonable to conjecture
that this rotdtion of the hadronic matter is directly
reléted‘to the intrinsic spin of tﬁe particle.

The basis for the aetection‘of this mattefAcurrent
within the hadron is the experimentally Qbserved increase
of the total scattering cross section® with increasing
incident eﬁergy in the regiqn 200-1500 GeV, See figure 4.1.

The basic principle is‘the follpwing. Recalling ﬁhe
'concept of é hadronic matter density p(bx,by,bz) from
Chapter II, wc now4consider, in addition, a hadronic matter

current density g(bx,b ,bz). ‘Consider the effect of such a

Y
matter current density on the scattering of two hadrons,
bearing in mind the above-mentioned increase of cross

section with energy. Due to the non-zero matter current

20
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Figure 4.1. The increase of total pp'cross section with incident energy (from ref. 15). Pt
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deﬁsity (rotation of hadronic "stuff") one half of the
target will appear more opaque to thé incident projectile
than .the other half.- This is precisely due to the increaée
' - of opaqueness with increasing relative colliding particle’
velocity; Thﬁs, for a proton polarized along the 2-axis,
the left half appears more opaque to a pion incident in the
¥ direction than.does the right half. See figure 4.2.

It has been assumed in the above conjecture that the
onl§ spin effect in elastic scattefing-at the high energies
Qe are considering is this opaqueﬁess difference. 'It wili
be shown below thét the result of the opaqueneés difference
 §£ the two halﬁes of the‘target is a rotatibn of the polar-
“ization wvector of the targe£ about aﬁ axis perpendicular to
the'scattering plane, i.e., a non-zero rotation parameter,
R(t).ls Itzwill also bé shown in this chapter that a mea-
surement of the differential croSs.seétion,aloﬁg.with.a
measurement of the rotation parameter are sufficient fo
determine the value of the'matter current density distri-
bution ggbx,by,bz). 
Note that the only requirement for observing the above
- rotation effect is a gradient of cross section with energy.
In principle, a decrease of cross section With‘incident
energy would do as well. This particular means of obser—ﬂv
viﬁg the'efféct‘is probably less advantageous since at the
" lower energises wheré cross section decreases with in-

creasing energy the spin dependence may have a much more

complicated form that that assumed above. This will render
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- . Figure 4.2. Illustration of the opaqueness of a spinning

proton.
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interpretation of results very difficult.

We now examine the modifications which must be made to
the geometrical model of Chapter II to accommodate matter
current effect. From the introductory discussion it should

fbe clear that only the 6paqueness of the interaction will
be affected by the introduction of the matter curfent den-

sity. We recapitulate the main results of Chapter II.

de 2
= = ﬂla . | (4.1).
(dt elastic elasﬁlc S
1 >0 Bk > |
. _ ' _ — * 2 = - : .
Qelastic 7;11[1 S(b)le d%b = <1-S(b)> 'F4'2)
where
s(B) = expl-QB)] o (4.3)
and
Q(g) = the opaqueness at two-dimensional impact

parameter b.
It is this opaqueness which must be modified.

To expliCitly exhibit the concepts involved in the.
model, consider the following elastic scatterihg of parti-
cle A (s = 0) by particle B (S = %).

a) target B is infinitely heavy

b). incident momentum of A; (0,k,0,ik)

c) outgoing momentum of A; (qx,k,O,ik)

a) target B polarized with J,=m= k.

Note that the limits qX<<k,and MA<<k have been taken.

Since there is no momentum transfer along the ¥ direc-

tion, we will be interested in the compressed hadronic
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matter density and the compressed hadronic matter current
density at two-dimensional impact parameter B = (bx’bz)'

Recald that these densities are given by

/ p(bx,by,bz)dby

-—00

!

Q(bx,bz)
(4.4)

o N . '
/ j(bx,by,bz)dby .

. —00

il

> .
J(bx’,bz)

Assume now that the opaqueness which the target pre- -

sents to a point projectile is given by

> _ : a B
onint(b’by) = C(Peff) P (bxlby:bz) . (4.5)

Peff is the momentum of the projectile in the rest frame of

the point (bx’b ,bz), o is a parameter characteristic of

Y
the particular collision under consideration. It is deter-

mined by fitting the total cross section for the collision

witﬁ o (P. )a

tot™ (Pinc To express Peff in terms of the inci-

dent particle momentum, P. , note that

inc

m(Vinc—vy) - -
P | (4.6)
Y1-v. 2 J/1-v 2
inc Yy

so that neglecting terms of oxder Vy2 and higher

_ o HNinc o ,
= (P, ) 1 aVyi

Y
the rotating target. Using this result in the expression

where Vy is the velocity of rotation of point (bx,b ,bz) in
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- for §

point yields

B > . o B > : . '
'onint(b’by) P. e [1 aVy]p (b,by). (4.8)
4 . . - . .
Compreésing the densities along by’ we obtain
: > B > .7 : '
onint(b) = ZNK[Q (b)-djy(b)] (4-9)}

where K ié a functibn of the incident momentum.

The structuie of projectile A may now be taken into'

account. Since the projectile is spinless it has only a

compressed matter density (j = 0) denoted by

A, _ A, '
o7 (b) = [__p (b sb,,b,)db .  (4.10)

The total resultant opagueness is obtained by taking the

folding integral of Q and pA

point

QB = 2B o0 () (4.11)

point
This yields the differential elastic cross section.

_ ; . .
- _ () 2
‘(dc/dt)elastic = m|<l-e ‘>j‘

(4.12)

> A, > >
2(b) = " (B) ® 5 (B)

We now specialize the collision under consideration
even further to exhibit the properties ofithe nodel when‘
target B has spih %, an example of such a collision being
T p>T p.

Since ﬁhe Earget, B, has a definite parity, the den-

sity must be even under the parity opefation.'



_ 27

o(¥) = p(-%) | (4.13)
where ; is a three-dimensional vector, and g is £he two-—
dimensional projection of Y on the k—z plane. The y-
coﬁponent'of ;.ié called by’ ‘Using the facf Ehat b is the
prod@ct of ¢ and,w£ (each Qith anguiar momentum %), p is
.seen to consist of a scalar part plus a vector part. If p
is to be even under the pafity opgration,'p must be spher-
ically symmetric, and so the compressed density p(B)‘is
cylindrically symmetric. The above argument may be modi-
fied to yield the same result for the projectile, A.

As intimated earlier'in this éhapter, the matter cur- .
rent'density is.responsible for rotating the target polari-
zation, and sO we now allow'g to become a 2x2 matrix. This
allows the scattering to introduce components of final
stéte polarization whichvare not -along the initial polari-
zation direction.. Since 3 is a 2x2 matrix, each component’
of glmay be written in térms of the complete set (OX,Uy(oz,

I).- Impo$ing the further condition that g-behéve as a |
’. VeCtor.underthe parity. operation, we find ﬁhe general fdrm
of 3 toAbe |

provided that £ and g are functions of r. The hadronic
current is certainly conserved. This places a restriction
on 3 that

da = 0 (4.15)
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10

_ | g
Note that for £ S 0, the term f(0 l)f dg is always > 0.
. > > >
Since Ve (grxc) = 0, £ =0
J = -grxo (4.16)

or in component form

—g(bycz—bzcy)

iy =
jy = —g(bzox—bxoz) - : (4.17)
Aj = -g(b_o. ~-b.o_) .

z X'y Ty X

For the kinematics specified above, namely initial
polafization perpendicular to the scattering plane, the
polarization direction‘cannot change as a result of the
scaﬁtéring; 'This can be seen by invoking reflection and
rotation invariance for éxample. We need only consider the

diagonal elements of J: m = ti»m =.*%. Then it is found

= +

Iy gb,,

jy = *gb (¢ for m.=x%) (4.18)
1, =0

The compressed current densities are -thus

J, = *9.b,

(4.19)

" where

g, (0) = [” gb,b)ab, . (4.20)

e



The Fourier transforms of the pertinent quantities are

ov

. L .
<p> = 3-fpe *9"Pap ' - (4.21)

<j%> = <j > = d . (4.22)

L >

.o 1 "y .—ig-*b
<j.> = 57 f(iglbx)e q da%b

g

[%—T; f‘,gle_lq' 1a’b (4.23)

oV

9
8qx

= *i
= qux-(cyl. symmetric fcn.)

> > . . .
where q and b are two-dimensional vectors. Expressing

. these Fourier transforms in terms of form factors, we

define ‘
<p> = 2629 (¢) |
<jy> = +t5— G, (t) .

G?ad(t) énd Ggad(t) are the hadronic density and current

" form factors respectively for the prbton. They are anal-
.»ngus to the electromagnetic formlfactors. _Note that as
with electromagnetié'form factors, spinless.pafticles
posseés only one form factor.

Fof the kinematics COnsideredlhere, the scattering

-amplitude is given byl

alq,,q,) qu=0 = <l-e | >|q 0 o " (4.25)
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,with
> _ A, > - ) ' B, o >
| Q(b) = p(b) @ 2nK(pinc,a)[p (b) qjy(b)] o
~ o A - o S (4.26)
= Q,(b)+0, (b)
~where o
| R, (B) = 21ko®(B) ® 0B (B) |
| (4.27)
>y _ A, . >
Ql(b) = -271Kop (b)) ® jy(b) .

K is a constant which depends on the incident momentum.

Expanding a in a Taylor's series

9 ~
algq,,q,) = <l-e >+<Qie >t L. (4.28)
= a0+a1
where '
-0
aO = <l-e Q>
(4.29)
- 0
| aj —,<Qle >
and v
_ . _had_had
<,> = KG," Gp o
5 (£ for m,=t%)  (4.30)
. had_had ‘ '
<Ql> = *ioKg G,  "G,p
The phase of the scallering amplitudc'is‘givcn by
L _ o a _ %™
'|a| rL2__2+%
: lag al]. |
| (4.31)
. a.ta : :
l¢ ~ 0 1 2 .
e — + e(al) .



o 31
_QO :

Asince:al = <Qle > =‘i qx.(qyl{ symmetric fcg. of qx,qz);
the measurement of~al at-qz;o for all values of qXZO»allows
the determination of a for all q, and q,- It should.aIso

be noted that al-is purely imaginary.

The left-right asymmetry produced by the séattering is

do/dt)R—do/dt)L

€ T do7a) rdo/dv, . (4.32) -

where

dO/dt)R = Ia

do/dt)L =

|
o
o)}

Since al is purely imaginary we find that

e =0 . , o ©(4.33)
This means that the‘polarization'parameter for the scat-
tering is zéro; P=0.
‘ The phase angle of the scattering amplitude is relatedv

to the rotation parameters A and R in the following way.

R = -sin2¢
' ' (4.34)
A

I

Hdos2¢

15

This can be seen by using the fact ‘that the parameters A,

P, and R are related to the scattering amplitudes a, and

ai by .
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. 2Im[ia0*al]
Jagl+]ia, |?
> ' -.
x - —2Re[1a0*al] .
EENPWENTE

- Let us examine the meaning of this rotation parameter,

. R. Writing the scattering amplitude a as

o A i¢ 0 "1
a = ajta : e " = (m=+3)
0 "1 N a0+al
(4.35)
. a,-a o '
S -i¢ 0 "1 E 1
a = a,—a e = (m=-%
0 l | a0+al ,

‘and using the fact that the target initially polarized in
‘the 2 direction cannot have its polarization direction al-
tered by a scattering in the %-% plane, we find the initial

states transformed as follows

GRS
'.[3]"";' ooles]

Consider now a target polarized initially in the & direc-

(4.365

tion. : ‘
_1 (1)
Xy = /5.(1] : (4737)

It will be transformed into

1 H 1 [20tar]  lagraglfeie ) laglf e |
sz V2307 T V2 10 N O
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as a result of the scattering. This final state has polar-
izatibn given by (cos2¢,—sin2¢,0). Thus fhe polarization |
vector is rotated through an angle 2¢ about the normal to
the scatteringvplane. This result is general, and can be
showﬁlto hold for any initial_polariéation. It is now
cleaf that a measurement of fhe rotation parameter is equi-
Vélent to the knbwledge;of'the angle through which the
polarization vecﬁor df the‘target is rotated.

We aré'now in a position to determine the compressed
current density from experimentally measurable quahtities.

We write the cross<séCtion
~do/at = wlal|® (4.39)

la]® = Jag+a; |? = |ao'2+¢allz+2Re(aoa1*) - (4.40)

_Since ag is purely real While'al is purely imaginary the
last term in the above equation is identically zero. It is
thus seen tﬂat to first order in Ql (i.e., to first order
in rotational velécity effects)

-

= nl<l-e 0|2 . (4.41)

This‘fesultAdoes not depénd upon rofation effects; it is
_ the same result found in Chapter II where no rotation
effécté were considerea. a, cén be determined from the
.differential cross section data in the usual way. ¢ is

determined from a measurement of the rotation parameter,

R(t). This may be obtained hy a second scattering of the



34
final étaté.of the target. In the next chapter we will
examine én aiternafi&é'way of determining the rotation |
paramefer.

Knowing-thé gquantities ¢ and a the following steps

OI

lead to the compressed current density.

a; = |a§|ei¢—aO
e 0
a1 =leQO<a1>
OA_®>jy = —<al>e90/2naK | (4.42)

This integral equation for j may be‘formally solved since .

pA(g) is presumed to be known.
QO'
<-<a,>e /2maK> _
i, = (4.43)
y <pA>
We also have the relation
3 = +
jy _bxgl . (4.44)
" so that
9y = iqy/bx , (4.45)
whe‘re‘jy is given by equation (4.43). Recall that 9, is

further related to g by

0

9y (o) = | glb,b)aby (a9
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This - integral equation for g may be solved as follows. Let

I | |
b = (b2+b2) ™ and r = (102+102+102)’“i
X "z _ . : : X'y Tz

(4.47)

- Then the integral equation has the form

gl(b) =2/ rg(r)(rz—bz)—%dr A (4.48)
. b ) E

This equation is referred to in the literature as Abel's
equation. It has the solution

© bgl(b)

g(r) % F; a;-fr ?;;:;;;g db (4-49)

Finally then the matter current density is given by

=7
Ix T byg(r) |

iy = ibxg(r) | (4.50)
J, =0

It has been shown that a measurement of ‘the differen-—
tial cross section and the rotation parameter are suffi-
cient to determine the matter current density of a polar-

ized target.



N . CHAPTER V

APPLICATION OF MATTER CURRENT CONCEPT

TO INELASTIC SCATTERING

As a final spécializétion of the geometricél model of
hadronic collisions we consider the effect of the matter
current bn én'inelastic scattéring - in particular the
exchange reaction. m p>K°A

weak —> T p

As will be shown below, detection of the final state kaon
and the decay proton will‘be sufficient to determine the
matter current of the initial state proton. This method -
does nét require the use of a secoﬁd'scattering to deter—‘
mine the rotation pérameter és would an elastic scattering.
The fact‘that the strong production process conserves
vparity while'the weak decay process does not is responsible
- for this simplificatibn. Bear in mind that at high ener-.
igies the only manifestation'of the £arget spin is through
the non-zero matter current; In this treatment we consider
only the spin non-flip and spin flip amplitudeé due to the
matter current to be non-zero. All spin effects other than
the matter cufrent effect are assumed to be unimportant at

the energies we consider here. 1In general there may be
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oﬁher contributions to these amplitudes, but inclusion
tends to obscure the esséntials of this method.
~ The results of theAprevious chapter can clearly be
spécialized tb the case under consideration by using the
'.inelastic-scatﬁering amplitude results found in Chapter III.
'Asvﬁhis is the.scaftering #eaétion which Wiil be'used to
illustrate the numérical eStiﬁates to be made in the next
.chaéter;'we.give'details of fhe method éxplicitly.
| Consider the kinematics of the.scattering to be those
of the,previoué chapter.
a) 'targetAB infinitely heavy
b) incident momentum of A: (0,k,0,1ik)
c) outgqing momentum.of C: (qx,k,O,ik)
d) target polarized with JZ‘= m = Y
Note that the limits qx<<k and MA<<k have been taken as
before. As there is no momentum transfer.in the 9—direction,

the compressed density and current will again be of inter-

est.
. The differential cross section is given as usual by
| do/dt = 7wlal|? = - (5.1)
’Where
a = <s8'(b)> - (5.2)

The amplitude for occurrence of the process A B - C D is

AB > CDh [»
~C o, (B) —ap (B)

S'(b) = C'fwe, Y e y e

-—00

1
AB(g,by)pCD(g,by)]zdb.

(5.3)
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" C' is a.constant which depends on incident momentum. We
assume that the density distributions of the initial and
~ final> states are approximately equal.

AB > CD ,» -

po (b,b ) = p " (b,b_) , (5.4)

, y y

Therefore

AB > '
: —SZ—oo g) >
S'"(b) = Ce 4 "PB (B . (5.5)

—0>00
C is a constant which depends on incideﬁt'momentum. Note
‘that it is the assumption of identical density distributions
which allows S(b) to be expreséed in this simple form. .

The extension to the case of non-zero matter current
is in #he*specification of the opaquenese including matter
current effects. We again-assume the effect of_rotation
upon the opaqueness wﬂich'the terget presents tq a point
projectile is appfoximated well by

AB

> B, > ‘
Voing (Brby) = A'P_ 2oV (b,b ) (5.6)

where Peff is the momentum of the projectile.in'the rest
frame of the point (bx'by’bz) of the target.

AB

> _ . o _ B .> ' ‘
point (Bry) = APy l1-av 107 (B,by) (5.7)

Compressing this opaquaness yields

AB

onint

(B) = zwA[pB(B)—an(%>] (5.8)

A and A' are constants which depend upon the incident
momentum. To include the effect of the extended structure

‘'of the spinless-(g = 0) projectile we take the felding'
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. AB . . A
1ntegr§l of onint w1tb p (b}.
AB > _ ~AB > A >
~ —w—>m(b) - onint(b) ® P (b)
where : - : ‘ (5.9)
b) = b,b )db
p(:)u.f P (b,b ) db,

—00

Equations 5.1 - 5.9 specify the two-body inelastic ekchange'
differéntiél croés section in this geometrical ﬁodel.

We now wish to show that in the case of a spin % tar-
get,:measurements of the.differential cross section and - the
rotation parameter afe again sufficient to séecify the
matter current distribution. This.is merely the extension
of the;resuitsAof the previous chapter to_inelaétic scat-
tering.

Usiné the fact that the target'and projectile both
have'definite'parities, it is seen that the particle densi-
tieé are'évén under the parity operation. Now, the density,
in the‘case'of thé‘spin % target, is the product of two
»ééin 5 wavelfunctions thus yielding the density a scalar
.parf plus a vedﬁor'part. If the deﬁsity is to be even
- . under parity the'dénsity must be scalar and therefore spher-
icallylsymmetrié. The compressed densities are thus cylin—}
drically(symmetrié. The most general form for the matter
.curreht matrix, remembering that it must transform as a

‘vector under thé‘parity opération, is

.3 = f;(é g) —gzxg o (5.10)
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A > > * . .
where r, 0, and j are three-dimensional vectors and f and g

are functions of r. As shown in the previous chapter f must

.be ze¥o if the hadronic current is to be conserved.
3 = -grxo o (5.11)
Since the exchange process is a hadronic process, ro-
tation and reflection invariance prevent the introduction of

any polarization components in the scattering plane as a

result of the scattering. We may therefore concentrate on

the diagonal elements (m = *% > m = #%) of 3.'
Ix T TPy |
3y tgby | o (5.12)
1, =0

jx,jy,jZ are the components of the three-dimensional vector

_).
3. The compressed currents are

Jy = iglbx . (5.13)
jp, =0
where
A o . . ,
Ab) = b,b.}db 5.14
g, (b) -1 " . (! )

— 00

and theAtwo—dimensional vector b is the projection of the
three-dimensional vector r onto the x-z-plane. The y-

component of Y is called by
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As the. Fourier transforms of the density and current

will bé required below, we record them now.

~ s 1 _had
: v<p> = 57 Gl (t)
iqg A ,
. = x had e 24002
<3y T G, (t) (-t=q "+q,*) (5.15)
'<jx> = <j,>=0

The hadronic form factors are defined as

had iq-b
6,78y = [a’bp(b)e
(5.16)
had _ .
G, (t) = 2w(cyl. symm. function).

This is the same'cylindfically symmetric function defined
in equation (4.23). Note that both of these form factors
are cylindrically symmetric, i.e., functions of t only.

The scattering amplitude may now be written as

" _AB
4 = k<o~ BB
QP = 2ma[p®(B) ® o° (B)-ap” (B) ® jy(g)]' (5.17)
_ _AB AB
= Q- + 9
where we define
Cab® = 2map® (B) @ 0° (B)
| | (5.18)
)P = —2m® ) ® jy(B) a.

A and K are constants which depend on the incident momentum.
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If we write the scattering amplitude in terms of QO

and Q

1 and expand the exponential
S ' "
o —(25+0,) -
a(qx'qz) = K<e (QO+Ql)> (5.19).
R -0 -Q -Q
a(qxlqz) = K<Qoe 0+Qle O—QOQle 0,
A —QO -QO .
= K[<Q0e >+<(l—QO)Qle >] (5.20)
= a0+al .
The'définitions _
‘ . —QO
ag = K<Qoe >
, '_QO _(5.21)
a, = _K<Ql(lf-§20)e >

- have been made. Note that a, is purely real while ay is

purely:imaginary, as in the elastic case of the previous

- chapter.
The'Fburierytransforms of'QO and Ql may now be written
AB_. _ 1 had had
| ' (5.22)
: tigq_ahd
AB_ _ X had had
<Ql > = —5-—— Gy (t)G2B (t)

'and S0, as in the elastic case, a measurement of al for
q, = 0 and all values of qXEO will determine ay for all
values of dy and q,-

The left-right asymmetry of the production process is

zero; € = 0. Therefore the polarization parameter for the
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preduction process is zero; P = 0. - The phase of the

- scattering amplitude is

+ e(az). (5.24)

As shown in Chapter IV this ahgle ¢ is precisely the angle

involved in the rotation parameters A and R.

A cos2¢

{5.25)

o)
i

—sin2¢

2¢Ais,the angle about the normal to the scattering plane
throhgh which the polarization vector is rotated.

We now use the weak decay properties of the A produced
in the exchange scattering T p~K°A to determine'the rota-
tion parameter,'or more precisely the angle 2¢. The A

decays via the following channels.

T p (64.2%)
o veak g | , (5.26)

%1 (35.8%)

We concentrate on the first‘of these deeay modes.17 Merely
fOr the purposes of examining the decay of the A, let us
choose a coordinate system in which the A is initialiy’po—
larized along the z-direction. In the rest system of the
A,j% = sZ =‘i%. If parity were conserved in the'decay{-and

the A . had even (odd) parity with respect to the proton,

then the final T p state would have to be in an =1 (2=0)
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stéﬁe of relative orbital angular momentum. However, if

parity is not cohserved iﬁ the decay of the A, then both

Athe.Iél and the 2=0 state occur with aﬁplituaes ap and a;.
For 2=O,j‘=i% the wave function is |

z

0 .
Y (cose)x+;‘ .
0 -2

For £=l,jz=i% the wave function is

+1
<1#1%¥%|%+5>Y  (cos8) X,
l -2
(5.27)
o _
+<10%2%| %+%>Y (cosH) .
1 - Xay

The final state wave function assuming a weak (parity

non-conserving) decay is thus

{a_x,,-a sinpe*?
-2

l -
'—Z; < o X;%+apCOSGXi%} (5.28)

where * refers to the initial A pélariZation.' The ampli-
tude in- the 2-direction is
-1 - ’
= (a_+a
vam ( s p)xi%
. Then if the_A is initially polarized along some direction
making ahgleS'of'9i¢i with the %-direction
: i¢i/2.
cosB./2 e :
i ‘
= | } (5.29)
' _i¢i/2

51n6i/2 e

Xinitial
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the final state amplitude in the 2-direction is given by

'l 8, i¢,/2 -i¢i/2
—f[(a_-a )cosj—e | x+%+(as+ap)sin6i/2e ‘ X_y1 -

Jam s P *

The differential cross section at an angle ei to the A

polarization direction is

dc/ds’zlei = 4—ﬂ[|asl2+|ap|2—2Re(aS*ap)cosei] (5.30)
do/dQIe « 1+Acos8. . (5.31)
i

where the asymmetry parameter A is defined to be
= - * ' 2 12 o
A 2Re (a ap)/l_las| +|ap| I (5.32)

Experimentally17 it is found that this parameter A=
0.642, and so decéy protons are emitted preferentially ini
ﬁhe direction of the initial_A polarizatioﬁ. The method
for determining the angle 2¢ is now clear. Givén the ini-
tial polarization direction of the target proton, a measure-
ment of the differential cross section of the decayAprotons
épecifies the polarization direction 6f the A before decay..
2¢ is then the angle between these two polarization direc—
tions. | |

The matter curreht may now be found as follows. The
differential cross sectionlof the final state_kaons is

‘éiven by | |
do/dt = wlal? =.ﬁ[|a0|2+|al|2]

‘ (5.33)
do/dt

R

ﬂ|a0|2+8(a12)
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Thus a measurement'of this cross section yields éO' This
result is independent of'rofation'effects. The-phése angle
is dé%e?mined aé described in the preceding'pafagraph byAa

measurement of the differential cross section of decay pro-

tons.
a; = IaOIei¢—aO
- —QO
<a)> = KQl(l—Qo)e .
2 (5.34)
KQl = +<al>e /(l—QO)
2 o 9 '- -
Kp (b) ® ]y(b) = —<a;e [2ﬂAa(l—QO)]'

Since the density pA(b) is known, we solve the integral
equation for jy(g). K and A are constants which depend on

incident momentum.

-/ ~<al>e90
o . ZHQA(lan)K
j. (b) = x - (5.35)
Y <p” (b) >
. : N
' Now jy(b) - igle
that g, = +j_(b) /b
so a . 9, = _jy( )/ %
where jy(g) is given in equation (5.35). 99 and g are
related by _
b) = b,b )db 5.36
g, (b) f_mg( » v ( )

As in the previous chapter we let

_ 2., 2.5 e _ 2 .. 2 2, %
b _~(bx tb_*) and r = (bX sz +by )
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Then

| o "= b, (b) -
~ g(xr) = ,”—ll; g—f ] 22— —w» (5.37) -
~ . T r (b?%-r?)? . : o
and the matter current is given by
I frg(r)by
Jy = *g(r)b - ", (5-38)
j, =0

The hadronic matter current may be determined by con-
sidering the exchange scattering 7 p>K°A and measuring the
differential cross sections of the final state kaon and the

decay proton.



~ . CHAPTER VI
NUMERICAL ESTIMATES

In this chapter}wé éttempt.a‘quantitative estimate of
thé rotation pérameter, R, using the.geometrical,model'
lappliedlto the‘inélastic exchange prbcess considered in the
previous chapter. The.general calculational scheme is

shown below.

|do
dt

)elastic ‘ _ : \\\\\\\\%5
‘ R

had \ /
had /,/////’/;?

As input we take m p elastic differential cross sec-
tion data at 200 GeV, and the form facﬁorS'of the pion and
»protonQ‘ The results of this calculation are the real and
imaginary parts of the exchange scatterlng amolltude, as
'well as the rotation parameter, R, for the process T p>K°A.

Startlng with the 7 p elastic differential cross sec-
ﬁién data at 200 GeV, we proceed to calculate 2,. A fit to

- this data has been given by C. W. Akerlof et al., in

48
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reference 18, for |t]|<1.15 (GeV/c)z.

(30.12x10%)exp(9.26t+2.0t ) [ub(GeV/c) 21

2
——
Q1Q
- rfla
|
0
-]
il

(6.1)

o))
!

(4.962) exp(4.63t+1.0t2) [ (GeV/c) 2]

For'large values of -t there is no available data and so it
is assumed that the cross section falls off exponentially,
i.e.,

bt

a,q = Ae ; (6.2)

Joining these two forms for the scattering amplitude

smoothly at -t=1.15 (GeV/c)? yields

a

o1 = (1.322)exp(2.33t) [(GeV/c) 2] . (6.3)

for |t|>1.15 (GeV/c)?. The complete form of a,, for use in

our calculations is thus

agy = (4.962)exp(4.63t+1.0t%) (Gev/c) ?

for 0<-t£1.15 (GeV/c)?

(6.4)

i

(1.322)exp(2.33t) (Gev/c) 2

for -t21.15 (CeV/c)? .

el

Recall from equation 4.29 that the opagueness, 2, and
elastic scattering amplitude, a,yr are related by
_QO ) :
a = <]-e > A ‘ (6.5)‘
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‘where < > denotes the two-dimensional Fourier transform.

QO is thus obtainable by inverting-equation (6.5). "

~ . . -0 . 0

1-e 0 = fo Jo(b/:E)aél/:E av/-t (6.6)

The two-dimensional Fourier transform has been reduced to a
Fourier-Bessel transform by invoking the cylindrical sym-

metry of aei. A plot of QO vs. b 'is given in Figure 6.1.

The real part of the inelastic scattering amplitude
may now be calculated using equation 5.21).

_QO
a0 = K<Qoe > (6.7)

Since QO is a function of b only,. we may again use the

‘Fourier-Bessel form of the two-dimensional Fourier trans-

form.' Thus
o -0
a, = K fOJO(bV—t)QOe |

Opab . (6.8)

As can be scen in Fig. 6.1, QO is appreciable only for
b<15 (Gev/c) !, and so the infinite upper limit is replaced
for computational purposes by 15 (GeV/c) '. This corre-

sponds to approximately 3 fm.

The constant K can be determined by the relation

S =8
%%] . =.ﬂK2[<QOe O>|t=0]2 (6.9)
exchange 't=0
The value of dg for t=0 at 200 GeV is not available,
dtlexch

but may be estimated by extrapolating the existing data.19

In fact,_,gg . -for t=0 has been observed to fall off with
" dtjexch ‘



. ‘ : o b(Ge\//c-)ﬂ] o
Or———T—7 717 717 T T T T T 1 *
| o 2 4 6 8 10 12 14 16 18 20

Figure 6.1. The opagueness versus impact parameter (Qovs.b). '
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incident momentum according to a power_law,' See Figure 6.2.

do

logﬂ y+B (6.10)

]ekch 't=0

where the constants A and B are determined by a fit to the

data yiélding

A= -1.184
B = 3.21 .
dc L : . - =2 - .
AEE]exch for t=0 has units of ub(GeV/c) | and Pbeam hag units
of (GeV/c). An evaluation of eguation (6.10) at Pbeam=200
(Gev/c) yields
Aggl | l = 3.06 ub(Gev/c) 2
exch 't=0 .
or - ' - : o (6.11)
' _ -2 LN T2
aexch ,t=0 = 5x10 (GeV/cf
K ié thus determined from equation 6.9 to be

K = .0121 . | (6.12)

The evaluation of ab aCcording‘to equation 6.8 1is now

carried out'usiﬁg Simpson's rule approximation of the inte-.
gral. The results are shown in Figure 6.3, and tabulated
. in Table I.

We‘nowAwish to calculate a the imagihary part of the

ll

ekchange scattering amplitude, and so must first estimate

QlL

tion 5.18. °

the rotation-dependent part of the opaquehess by éequa-

@) = —2mRap” (1) @ 3, (B) (6.13)
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'1O3‘“
~
- (1) data from ref. 19
Abramovich et al.
~(2) data from ref. 19
‘Crennell et al.
(3) data from ref. 19
Foley et al.
107
10 — : I >
. : 1 . 2
Tox . 10 10
Figure 6.2. Differential cross section for the exchange

reaction T p=>K°A.
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TO—G e e N B e e e e A

o 02 04 06 08 1O 12 14 16 1.8 2.0

Figure 6.3. Real part of scattering amplitude versus mo-

mentun transfer (éo vé. -t).



If this equation is Fourier transformed the result is

ig_ -
X aAG?id(t)Gggd

(t) . (6.14)

All factors on the right side of this equation are known.

o is a constant which at 200 GeV has the value

o = 0.03(Gev/c) !, (6.15)
‘ had S 4 . . oo
Gln , the hadréonic form factor for the pion, is
had _ 1 L 2
Gl (t) —l+lt]/.602 ( t in (GeV/C) ).
, (6.16)
Gg;d,'the<hadronic form factor for thelproton, is assumed

to have the dipole form

had 2 : . ' 2

G2p (t) [l+ = -7l} (-t in (GeV/c) ‘),

(6.17)
The constant A is evaluated using equation 5.22.
1 . _had _had '

Q> = 5-AG) G2p - . (6.18)
At t=0 both form facturs 4are egual to onc,vﬁhus

A = 2ﬂ§QO>t=O
= [2n] Jo(b/—t)QObdb]tzo (6.19)

O .

2

37.4 (GeV/c) 2
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Taking the inverse Fourier transform of equation 6.14

we have
~ A
_ oA 9 % 1 _had had
Q = —>- % f_wfﬂiEGl (£) Gy, (t)e
_ *oA 3
= 27 3o, ©P)

i(gb +q b )

dqxdqz

(6.20)

where the two-dimensional integral is defined as G(b).

G(b) can be evaluated numerically, and to facilitate later

calculations G(b) is fit with a sum of Gaussians.

—c.b? -c.b? -c_ b?
_ 1 2 3
«Q(b) = Aje. tA e +A e .
Al = Of014 Cl =
A2 = 0.098 C2 =
By = 0.0657 Cy =
A4 = 0.0;

b? has units of (GeV/c). 2.
Now define the function H(h) hy

H(b) = (l—QO)e

This function is also fit by a sum of Gaussians

‘ : ~c5b2
H(b) = l—A5e +A6e
AS = 0.99 C c5 =
B, = 0.0;4 . : c6 =

b? again has units of (GeV/c) 2.

- -c,b?
-A e

4
4

0.0257
0.0761

0.295

.

—c6b2

0.056

0.566

(GevV/c) .

(6.21)

(6.22)

(6.23)
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The imaginary part of the scattering amplitude can now

be calculated.

~ < : V—QO>.
‘al K Ql(l—QO)e

(6.24)

—qubx
db_db_ .

tKah gy [ﬁ'j’— G(b)]H(b)e
(2m) 2 —eo VP y

This integration can be done analytically with the results
shown in Figure 6.4 and tabulated in Table I..

Finally the spin-rotation angle 2¢ (i.e., the angle
through which the polarization of the target is rotated),
and the rotation parameter, R, may be calculated.
—ial
20

2tan ! (6.25)

2¢

R = -sin2¢ (6.26)

The'rotatioh-parameter'is shown in Figure 6.5 as well as in
Table I;

It has.been shown in this chapter that by use of 7 p
elastic cross section data, an estimate of thé rotation
parameter invthe exchénge scattering n;p+K°A can be made.
It should be noted that the order of magnitﬁde of the rota-
'tion pafameter calculated in this way is in agreement'with
that of reference 5. |

An alternative test of the matter current idea can be
made by performing an experiment in which pions are scat-

tered off a polarized proton targect whose initial
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"polarization direction is known. Detection of the angular
distribution of hyperon decay products as a functionAof
moﬁeﬂtum tfansfer gives an experiméntal value of the rota-
tion parameter to be compared withlthe resﬁlt of this chép—
ter. The range of‘momentum trégsfer over which such an
experiment might be feasible is bounded by two criteria:
(1) =t must be 1arge enough so that the rotation angle 2¢
is measurable énd (2) ;t must be small enough so that the-
'cfoss'section for the exchange process is not too small.
Recall that at 200 GeV the Créss}sectién at t =0 iélonly
3 ﬂb(GeV/c)fé. The cross section at higher t values is

-approximately given by

'_d_O] - R
at exch A at, exch
where bx8.5 (GeV/c) 2. Therefore at -t = .5 (GeV/c) ? the

Cross seétion has already dropped by a factor of'approxi—
‘mately 100 from its t = 0 value. For -t2.1 (GeV/c)? the
Arotation éhgles predicted in this chapter are readily mea-
surabie, Thé optimum experiméntal-range should thus bc
roughly 052-t2.5 (GeV/c)?.

In summary, it has béen shown that thé existence of an
hadronic matter current in this model is detectable in the
form of the rotation parémeter. Two possible methods for
its measurement are the second scétteiihg and the‘wéak

decayAbf the A. The advantage of the second'scattering.

method is the relatively large cross section. It suffers
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Figure 6.4. Imaginary part of scattering amplitude versus

momentum transfer (a; vs. -t).
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. TABLE T.

Scattering amplitude, rotation angle, and rotation

~ parameter for ﬂfp+K°A collision

_—ial' ' . ag . 2¢ (degrees) R=-sin2¢
0.0 5 x 1072 0.0 | 0.0

1.44 x 10~* 2.99 x 1072 0.55 ~0.01.
2.41 x 10~* - 1.79 x 10°? 1.54 . -0.03
2.73 x 107" 1.07 x 1072 2.93 -0.05
2.51 x 10-* 6.32 x 10~° 4.55 -0.08
2.01 x 107*  3.65 x 107° - 6:30 ~0.11
1.42 x 10~" 2.01 x 10~ - 8.09 ~0.14
8.83.x 10~° 1.01 x 1077 9.96 : -0.17

4.58 x 107° 4.15 x 107" 12.59 ~0.22

1.64 x 1075 6.26 x 107° 29.23 . -0.49
-8.70 x 107 ~1.39 x 10"" 0.72 -0.01
-8.68 x 107% = -2.49 x 107" 3.99 -0.07
-1.07 x 1075  =3.06 x 107“ 3.98 . -0.07
-9.76 x 1078 -3.32 x 107" . 3.37 - -0.06
~7.94 x 107° ~3.40 x 107" 2.67 - -0.05
-6.27 x 107%  -3.39 x 107" 2.12 -0.04
~5.10 x.107%  -3.31 x 107" 1.77 ~0.03
. -4.39 °x 107  -3.19 x 107" 1.58 ~0.03
~-3.97 x 107°¢ -3.05 x 107" 1.49 -0.03

-3.66 x 107°® -2.88 x 107" - 1.45 : -0.03
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from the difficuity of performing the secoﬁd scattering.
AThe'weak decay method is experimentally more easily perfor-
med, however fhé crdss section for w—p+K°A is very small;
However, the weak décay-method is‘probabiy preferably since
Athe small cross section can,.to some extent, be compensated

by increased beam intensity.
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