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CHAPTER I 

INTRODUCTION 

At the present time no comprehensive model of high 

energy hadronic scattering exists. Most of the existing 

models have a very restricted range of application. The 

geometrical model 1 of hadronic scattering proposed by Chou 

and Yang has had great success in predicting high energy 

scattering phenomena~ For example, the dip in pp elastic 

scattering2 , and pion and kaon radii 3 were quite accurately 

predicted by the model. Use of pp differential cross sec-

tion data also yields an excellent fit of the measured 

proton form factor in this model 3 . 

The possible existence of hadronic matter current 

inside a. pola.rized hadron and an experimental test of this 

idea were discussed4 by Chou and Yang in 1973. Subse­

quently the geometrical .model was gcncralized5 to include 

the matter current effect by the same authors in 1976. The 

propos.ed experimental test of the matter current idea con-

sists of determining the spin-rotation parameter, R, in 

polariz~d elastic meson-proton scatterings. The measurement 

of R usually requires a second. scattering of the recoil 

12 proton off a known analyzer such as C . 

1 
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.The purpose of this work is to offer another method by 

which the hadronic matter current effect can be detected. 

Instead of elastic scattering vle shall consider the b1o-· 

body inelastic scattering process 

in which the final state hyperon is unstable against weak 

decay. By observing the angular distribution of the decay 

products the rotation parameter, R, may be inferred. This 

method eliminates the need for a second scattering of. the 

recoil target, however it must be noted that the cross 

section for this reaction is very much smaller than that of 

the elastic scattering. 

This proposed experiment constitutes a test of the 

geometrical model on two counts. First, is the hadronic 

matter current effect present in two-body inelastic pro­

cesses, i.e., is ·the :r:Otdtion parameter non-zero·?· Second, 

if it. is non-zero, does . the. model outlined in this work 

cor:rec Lly pn:!<lict the magnitude ot the matter current 

effect? 

Chapters· II and III review. the formulation of the elas­

tic and inelastic geometrical models in the absence of 

matter current effects. Chapter IV is the generalization 

of the elastic geometrical model to include these effects. 

The extension of the_ geometrical model to include matter 

current effects in inelastic scattering, and.its applica­

tion to the·· hvo-body inelastic sea ttering n p -+ K 0 A are 



the subject of Chapter V. A numerical estimate of the 

rotation parameter, R, for the process rr 

carried out in Chapter VI. 

3 



CHAPTER II 

TWO-BODY PROCESSES IN THE GEO~illTRICAL PICTURE -

ELASTIC CASE 

Experiments 6 performed in the last fevv years indicate 

that a geometrical model, which involves the interaction of 

two extended structures, is capable of describing high 

energy hadronic collisions quite accurately. It is known 

experimentally, from electron-proton scattering for example, 
) 

that the proton has an extended electromagnetic structure. 

It seems inevitable that it will also have an extended had-

ronic structure. The relatively small elastic cross section 

at large scattering angles 7 tends to support this assumption 

as well, since large momentum transfers (large scattering 

angles) would tend to break up an extended structure. 

The geometrical model considered here involves three 

basic assurnptionc \vhich u.rc \ovell founded in ·the e:w=L'lJY 

region of interest (P. > 100 GeV/c). They are: 1nc (a) the 

eikonal approximation8 of th~ scattering, (b) the exponen-

tial form of the transmission coefficient, and (c) the 

opaqueness in the form of a convolution of hadronic den-

sities. 

4 
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The large fonvard peak in the elastic scattering data 

suggest that the scattering may be of the diffraction type. 

If thas is so, the large fonvard peak implies that a large 

number of partial waves must be contributing, and so the 

quantity kR (k = wave vector of the incident particle, 

R = approx. range of the interaction) must be large com-

pared to 1. · In this case the scattering may be described 

. 9 by the eikonal approximation familiar from Wave optlCS 

For P. = 200 GeV/c and R = 1 fm 1nc 

kR.= P. R/~ ~ 10 3 >> 1 . · 1nc . ( 2 .1) 

Assuming that the scattering is accurately described in 

this eikonal approximation, we view the scattering as the 

passage of two absorptive sphe·res through one another. 

Carrying 6ver from optics th~ result that the fraction of 

incident intensity absorbed is linearly dependent upon the 

thickness of material (x) traversed and upon the absorption 

coefficient (a) we find 

di/I = -adx 

.Q.ni = -ax 

I = exp (~ax) ( 2. 2) 

We now make the identifications 

I -+ S the transmission coefficient 

ax-+ Q(b) the opaqueness of the collision at 

two-dimensional impact parameter b 
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S is thus seen to be a· function of impact parameter, b, 

only •. 

S = e xp (- Q (b) ) ( 2. 3) 

_Finally, we must approximate the previously mentioned 

opaqueness. It will be assumed to be in the form of a con-

volution of the two hadronic densities. In the case of 

~ p scattering for example 

Q(b) = K D ® D TI-p TI- p (2.4) 

DTI_ and Dp are the hadronic matter density of pion and 9ro-

ton respectively._ The constant K is a meascire of the TI-p 

strength of the interaction. K may be depende_nt upon n-p 

the incident projectile energy. ® denotes the two-

dimensional Fourier convolution. Note that Q(b) is 

·unchanged by interchange of colliding particles, and is 

linear in each hadronic density. This is the product den-

sity assumption, about which more will be said later. 

The above assumptions are now developed in a more 

quantitative fashion. As usual we write the differential 

cross section as 

dcr/dt- TIIal 2 (2.5) 

where the sea tter.ing amplitude, a, is given by 

co 

a = ~ 2 L ~ (25i,+l) P .Q, (cos6) [1-S (b)]. 
.Q,=O 

(2.6) 
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We may also obtain another form for the scattering 

amplitude which is valid at high energies by drawing an 

analogy with wave optics. As a result of the scattering, 

the incident wave amplitude is reduced to S(b). Since we 

do not wish to consider the contribution of the incident 

wave to the scattering amplitude, we subtract out the inci-

dent wave amplitude. The total scattering amplitude at 

momentum transfer (k ,k ) is obtained by summing the con­x . z 

tributions from each point of impact parameter space. 

This is precisely analogous to Fraunhofer diffraction 

9 of a wave by an opaque screen . The quantity [S(b)-1) 

corresponds to the aperture function in optics. Thus we 

write 

1 a (k , k ) = 
· . X Z 2TT 

. • -+ -+ 
J [S(b)-l]e-lk·bd 2 b ( 2. 7) 

->- -+ 
Note that b and k are two-dimensional vectors in the plane 

perpendicular to the incident direction. As the scattering 

amplitude itself is not an observable quantity, but rather 

its square, we may write the scattering amplitude in the 

more conventional form 

,-+ -+ 

J [l-S(b)]e-1 k·bd 2 b ( 2. 8) 

The scattering amplitude is now expressed as a two-

dimensional Fourier transform in momentum transfer space, 

denoted by 

a= <1- S(b)> ( 2. 9) 

Since the transmission coefficient has the exponential form 
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given earlier in equation 2.3, it will be convenient to 

express the scattering amplitude in terms of Q(b) = -~nS(b). 

<Q(b}> = -<~nS(b)> (2.10) 

<a> ( 2. 12) 

Using the property of Fourier transform convolutions 

<a><b> = <a ® b> (2.13) 

we obtain 

a= <Q(b)>~~ 1 <n(b)> ® <Q{b)>+~ 1 <n(b)> ® <Q(b)>® <u(b)>+ ... 

( 2 .14) 

The scattering amplitude has now been expr·essed as an 

. infinite series in the Fourier transform of the collision 

opaqueriess, <Q(b)>. 

Th~ ~roble~ has now been reduced to a determination of 

-+ 
th~ opaqueness at two-dimensional impact parameter b. Since 

we consider the collision as the passage of two extended 

structures through . one ·another, the situation may be ill us-

trated as in figure 2.1. Point Q within the incoming pion 

(for example) sees a compressed proton density given by 

00 

D (b I b I) = J p (b I b I b I) db I • 
·. x' z · -oo p x' y' z y .(2.15) 

That is, the proton appears to the pion to be. a disc .\vi th 
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Figure 2.1. Schematic drawing for n-p collision. 
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two-dimensional density D(b' ,b'). The total resultant 
X y 

opaqueness is obtained by integrating the product of the 
-+ . 

two eompressed densities over all possible values of b' and 

including a factor which is in some way a measure of the 

interaction strength between the t"l.vo particles involved. 

This is the constant K mentioned previously. TI-p 

Q.TI-p(b) = K If D (b-b')D (b')d 2 b' TI-p n- p · 

= 2TIK D ® D TI-p TI- p (2.16) 

Taking the Fourier transform of this we obtain <Q(b)>, the 

quantity required in our expansion for the scattering ampli-

tude. 

that 

and 

<Q(b)> = 2TIK <D ><D > TI-p TI- p (2.17) 

Tti connect <D > and <D > with known quantities, note TI- p 

<D > 
TI-

* 1 TI-= ---<phd >IK ,K ,o ·I!TI a_r. x z 

* 
<D > :- _ __!__.-: pph d > I K I K I 0 

p ·/2TI a.r. x z 

(2.18) 

Phadr. is the density of hadronic matter. p · and p h hadr. c g. 

are assumed proportional, then the Fourier transform of the 

two-dimensional density may be related to the charge form 

<Dp> = (const.)C~(t) 

-t = k 2 + k 2 
X Z 

{2.19) 

*Note thtit these are 3-dim. Fourier transforms eval­
uated at k = 0. y 
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Note that G~ is probably the correct form factor with which 

to associate <D >, since in the Breit frame it is precisely 
p 

the cllarge densi ty10 However, since G~ and 

. 111 ( 1' 

G~ are found 

experimentally to be proport1ona sea 1ng law) , 

(~ = proton magnetic moment) p 

we may alternatively write 

<Dp> = (const.)G~(-t) 

-t = k 2 + k 2 
X Z 

(2.20) 

(2.21) 

For the pion there is but one form factor since the pion is 

a pseudoscalar particle, and we associate this form factor 

with the Fourier transform of the pion density as 

<D > = (const.)F (-t) TI- . 7f- . (2.22) 

Finally then~ the scattering amplitude at high ener-

gies is given by the infinite series 

a1r-p = <n·TI-p (b)>-~! <n~P(b) > ® <rl1f--P(b) > + ... 

where ( 2. 23) 

<n1f_P(b}> = _(const.)F7f_(-t)G~(-t) 

Thus in the geometrical model the measured cross section 

may be used to extract form factors, or accepted values for 

the form factors may be used to calculate expected cross 

sections. 

Note that in the case of electron-proton scattering 

the form factor G~ appears as [G~] 2 _in the scattering cross 

·se~tion. If hadronic elastic scattering is viewed as.the 
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passage of two extended objects through each other, and if 

we identif~ the charge distribution with the hadronic 

matt~ distribution, then it is to be·expected that in 

proton-proton scattering the leading term will appear as 

[G~] 4 in the cross section12 . This is in fact borne out in 

the scattering data, and the cross section is seen to have 

the dependence 

dcr/dt = (const.) [G~(-t)} 4 (2.24) 

for small t. This corresponds to taking only the fir$t 

term in our series expansion, the higher order terms being 

viewed as small corrections due to the shielding of the 

back of the target by the front. This suggests that the 

ideritification of th~ charge form factor with the hadr6nic 

matter form factor is a valid and useful one. 



CHAPTER III 

TWO-BODY PROCESSES IN THE GEO~lliTRICAL PICTURE -

INELASTIC CASE 

\ve now consider the more general collision A B -+ C D. 

In order to generalize the results of the previous chapter 

to include inelastic two-body collisions, the form of the 

scattering amplitude must be altered. Recall that the 

scattering amplitude for the elastic case \vas given· by 

00 

1 L ~(2~+l)P~(cos0) [1-S (b)] a = k2 el 
~=0 

(3.1) 

or equavalently 

1 JJ-
-+ -+ 2 a = 21T [1-S(b) ]exp(-ik•b)d b el (3.2) 

Recall further that the scattering matrix e.lement has the. 

form 

s ab = 0ab + f ab ( 3 • 3 ) 

wh~re a and b refer to th~ initial and final states. The 

origin of the 1 in the elastic scattering amplitude is now 

clear--it corresponds to the unscatter~d pQrti6h of the 

incident wave. In the present case of inelastic collisions, 

the final and initial states are not the same, and the ine-

lastic spin non-flip amplitude is thus 

a. 1n 

00 

= ~ 2 I ~(2~+l)P~(cos8)S' (b) 
~=0 

13 

(3.4) 
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or analogously, in the wave equation derivation 

(3.5} 

The rest of the simplification of the scattering amplitude 

in the.eikonal approximation follows exactly as in Chapter 

II, and the differential inelastic cross section is given 

by 

where 

dcr/dt 

a. 
1n 

(3.6} 

= <S'(b}> 

Recall that < > denotes the two-dimensional Fourier trans-

form. 

The factor s• (b) must now be specified. Whereas for 

the elastic case we had only to consider the attenuation of 

the 'incident particle amplitude as it passed through the 

target, we must now consider a three-step process, which 

13 may be pictured as follows . 

In the first step the incident particle, A, is atten-

uated as.it begins to pass through the target, B. In step 

two the rearrangement from initial state configuration to 

final state configuration occurs: A B ~ C D. In the third 

step the final state particle C is attenuated as it leaves 

· the rearrangement site. A correct description of the scat­

tering process A B + C D must account for the three phe-

noma. 

Clearly the steps one and three may be treated in a 



Step 1 

/ ..=---..-... 

. / . "" . I l . \ \ 

I I J ' 
\ 

\ . I 
' / --\ 

Step 2 

Step 3 

I 
I 

Figure 3.1. ~chematic drawirig for inelastic exchange 

rea·ction. 
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way analogous to the passage of projectile through target 

in the elastic case. The attenuation of particle A as it 

begins to pass through target B is given by 

. AB -+ 
exp[-n_oo-+b (b)] . (3.7) 

y 

Similarly, ·the attenuation of final state particle C as it 

leaves final state particle D is given by 

· CD -+ 
exp [ -nb -+oo (b) ] (3.8) 

y 

-+ 
Note th~t in these expressions b,b is the point at which y 

the rearrangement occurs. ~ is again a two-dimensional 

vector in the plane perpendicula~ to the incide~t direction. 

Also note that the exponential argument in each case is not 

the total opaqueness in the sense.of Chapter II, but rather 

only the opaqueness up to (or away f.rom) the rearrangement 

site. 

s·tep ·two, .the rearrangement process itself, is ac...:. 

counted for by including a factor 

[ AD(~ b.) CD(~ b )·]~ P I y P . I y 

h . . AB (-+ b .)· CD(-+ ) d · · f w ere p b, and p b,b are the ens1t1es o the 
y . y . 

iriitial and final states resp~ctively~ They are defined in 

the following way.· 

and (3.9) 

This factor is a measure of the probubility that the rear-

-+ 
rangement occurs at the puint (b,by), anJ is 81e 
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geometrical mean of the two densities. We choose this form 

(geometrical mean) as opposed to the arithmetic mean since 

the ~actor representing step two above should be linear in 

each density, and further, it should reflect the fact that 

if either the initial or final state density becomes very 

small (ostensibly zero) the probability of the exchange 

process occuring should also become small. Notice that the 

arithmetic mean does not satisfy this latter requirement. 

The modified opaquenesses are obtained in the fol-

lowing way. The opaqueness at a point is proportional to 

the hadronic density at that point, and so the uncompressed 

opaqueriesses are given by 

AB-+ 
::::: Kp (bIb ) . y 

and (3.10) 

K and K' are constants which depend on incident momentum. 

The ·compressed opaquenesses which appear in the attenuation 

factors of steps one and three are thus 

.(3.11) 

00 

= k' f pCD(~ b')db' . ' , y y 
-b 

(3.12) 

y 

The factor S' (b) (amplitude for occurrence of the ·process 



A B + C D) is then 

00 

S I (b) = C' I 
CD + 

-Db (b) e +co 
y 

18 

(3.13) 

In principle the inelastic spin non-flip scattering 

amplitude has been found, and the inelastic cross section 

is given by 

where 

(dcr/dt). = TIIa. 1
2 

. 1n 1n 

a. = <S' (b) > 
1n 

(3.14) 

(3.15) 

See also reference 14. If, however, the initial and final 

states have approximately the same density distributions 

the following simplification occurs 

S I (b) 
AB + oo 

C. -Q. fb)f = e -oo+d> 

-oo 

PAB(b,b )db 
y y 

(3.16) 

c·and C' are constants depending on incident momentum. 

Assuming this condition applies to the case of the exchange 

reac·tiqn TI-p->-K 0 fl., ·the exchange sca·t·tering amplit.ude is 

given in the geometrical model by 

(3.17) 
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and the exchange differential cross section is given by 

(3.18} 



CHAPTER IV 

CONCEPT OF MATTER CURRENT AND ITS EFFECT 

ON ELASTIC SCATTERING 

Up to. now we have considered collisions between par­

ticles which have an extended, but internally static, 

structure. ~ve now extend the geometrical model to allow 

the "stuff" of which the particle is made to have a rota-

tional velocity distribution. It should be noted that this 

rotation is not necessarily rigid rotation, but merely some 

type of orbital motion. It seems reasonable to conjecture 

that this rotation of the hadronic matter is directly 

related to the intrinsic spin of the particle. 

The basis for the detection of this matter current 

within the hadron is the experimentally observed increase 

of the total scattering cross section15 with increasing 

incident energy in the region 200-1500 GeV. See figure 4.1. 

The basic principle is the following. Recalling the 

concept of a hadronic matter density p(b ,b ,b ) from 
X y Z 

Chapter II, we now consider, in addition, a hadronic matter 

current d~nsity ~J(b ,b ,b). Consider the effect of such a 
· X y Z 

matter current density on the scattering of two hadrons, 

bearing in mind the above-mentioned increase of cross 

section with energy. Due to the non-zero matter current 

20 
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Fi9ure ·4 .1. The 'increase ·of total pp cross section with 'incident energy (from ref. 15). 
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density (rotation of hadronic "stuff") one half of the 

target will appear more opaque to the incident projectile 

than~the other half. This is precisely due to the increase 

of opaqueness with increasing relative colliding particle 

velocity. Thus, for a proton polarized along the z-axis, 

the left half appears more opaque to a pion incident in the 

y direction than does the right.half. See figure 4.2. 

It has been assumed in the above conjecture that the 

ortly spin effect in elastic scattering at the high energies 

we are considering is this opaqueness difference. It will 

be shown below that the result of the opaqueness difference 

of the two halves of the target is a rotation of the polar-

ization vector of the target about an axis perpendicular to 

the ·scatterin~ plane, i.e., a non-zero rotation parameter, 

R(t) . 16 It .will also be shown in this chapter that a mea-

surement of the differential cro~s section along with a 

measurement of the rot.ati on parameter are sufficient to 

determine the value of the matter current density distri­

bution 3<bx,by,bz}. 

Note that the only requirement for observing the above 

rotation effect is a gradient of cross section with energy. 

In principle, a decrease of cross section with incident 

energy would do as well. This particular means of obser-· 

ving the ~ffect is probably less advantageous since at the 

lower energies where cross section decreases with in-

creasing energy the spin dependence may have a much more 

complicated form that that assumed above. This will render 



z 
I 

Figure ·4.2. Illustration of th~ opaqueness of a spinning 

proton. 
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interpretation of results very difficult. 

\.Ve now examine the modifications which must be made to 

the geometrical model of Chapter II to accommodate matter 

current effect. From the introductory discussion it should 

·be clear that only the opaqueness of the i~teraction will 

be affected by the introduction of the matter current den-

sity. We recapitulate the main results of Chapter II. 

(dcr ) = n I a I 2 

dt 1 t' elastic e as 1c 
( 4. l} 

a l. . e ast1c 
-+ <1-S(b)> . (4.2) 

where 

-+ -+ 
S (b) = e xp [- ~ ( b ) ] ( 4. 3) 

and 

Q(b) = the opaqueness at two-dimensional ·impact 

-+ 
parameter b. 

It is this opaqueness which must be modified. 

To expli~itly exhibit the concepts involved in the 

model, consider the followi~g elastic scattering of parti-

cle A (S = 0) by particle B (S = ~) . 
a) target B is infinitely heavy 

b) incident momentwu uf A; (O,k,O,ik) 

c) outgoing momentum of A; (q ,k,O,ik) 
X 

d) target B polarized with J = m = ±~. z 

Note that the limits qx<<k and MA<<k have been taken. 

Since there is no momentum transfer along the y direc-

tion, we will. be interested in the compressed hadronic 
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matter density and the compressed hadronic matter current 

-+ 
density at·two-dimensional impact parameter b = (b ,b). 

X Z 

RecaW- that these densities are given by 

co 

p (b I b ) = I p ( b I b I b ) db 
X Z -co X y Z y 

(4. 4) 
co 

j(b ,b > =I I<b ,b ,b )db 
X . Z -co X y Z y 

Assume now that the opaqueness which the target pre-

sents to a point projectile is given by 

· a B 
= c ( p ff) P (b 1 b· 1 b ) e x y z 

( 4. 5) 

Peff is the momentum of the projectile in the rest frame of 

the point (b ,b ,b ) . a is a parameter characteristic of 
X y Z 

the particular collision under consideration. It is deter-

mined by fitting th~ total cross section for the collision 

with atot~(Pinc)a. To express Peff in terms of the inci­

dent particle momentum, Pine' note that 

p = eff 

m(v. -v ) 
lnC y 

/1-V. 2 /1-V z 
lnC y 

so that neglecting terms of order V 2 and higher 
y 

a 
(P eff) 

[ 

mV. 1 a _ lnC 

/1-V. 2 
1nc · 

[1-aV /V. ] y lnC 

a . 
~ (P. ) [1-aV ] 

lnC y 

( 4. 6) 

( 4. 7) 

where V is the velocity of rotation of point (b ,b ,b ) in y X y Z 

the rotating target. Using this result in the expression 



for n . t yields po1n 
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-+ a B -+ 
n t(b,b )~P. [1-aV ]p (b,b ) . po1n y 1nc y y 

( 4. 8) 

Compressing the densities alorig b , we obtain y 

n · b point ( ) 
B -+ -+ = 2rrK[p (b)-aj (b)] 

. y 

where K is a function of the incident momentum. 

(4.9) 

The structure of projectile A may now be taken into 

account. Since the projectile is spinless it has only a 

compressed matter density (j = 0) denoted by 

00 
A-+ A . 

p (b) = f p (b ,b ,b )db 
-co X Y Z Y (4.10) 

The total resultant opaqueness is obtained by taking the 

A folding integral of n . and p . po1nt 

-+ A -+ -+ 
Q(b) = p (b) ® npoint(b) (4.11) 

This yields the differential elastic cross section. 

. -+ 

(dcr/dt) = rrl<l-e-Q(b)>l 2 
elastic 

(4.12) 

A-+ -+ 
= p (b) ® npoint(b) 

We now specialize the collision under consideration 

even further to exhibit the properties of the model when 

targ~t B has spin ~' an example of such a collision being 

-rr p+rr p. 

Since the target, B, has a definite parity, the den-

sity must be even under the parity operation. 
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-+ -+ 

p ( r) = p ( -r) (4.13) 

-+ -+ 
where r is a three-dimensional vector, and b is the two-

~· -+ 
dimensional projection of r on the x-z plane. The y-

component· of ~ is called b . Using the fact that p is the 
y 

product of t/J and .t/J* (each with angular momentum ~), p is 

seen to consist of a scalar part plus a vector part. If p 

is to be even under the parity operation, p must be spher-

-+ 
ically synunetric, and so the compressed density p (b) ·is 

cylindrically symmetric. The above argument may be modi-

fied to yield the same result for the projectile, A. 

As intimated earlier in this chapter, the matter cur-

rent density is responsible for rotating the target polari­

zation, and so we now allow j to become a 2x2 matrix. This 

allows the scattering to introduce components of final 

state polarization which are ·not along the initial polari­

zation direction. Since j is a 2x2 matrix, each component 

of j may be written in terms of the complete set (cr ,cr ,cr , 
X y Z 

+ I).· Imposing the further condition that J behave as a 

vector under the parity operation, we find t:he general form 

-+ of J to be 

-T = f; ( 1 0) -g~ X ~ J .. 0 1 (4.14) 

provided that f and g are functions of r. The hadronic 

current is certainly conserved. This places a restriction 

-c 
on J that 

J v·jd 3 x = 0 or 
v 

J j-d~ = 0 
s 

(4.15) 
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< f ( 
0
1 

1
° ) -+r d-+ · 1 < 0 Note that for f > 0, the term a 1s a ways > . 

-+ -+ -+ 
Since 'il•(grxcr):: 0, f = 0. 

-+ -+ -+ 
J = -gr·xcr (4. 16) 

or in component form 

= -g (b cr -b cr ) y z z y 

-g(b cr -b cr) 
Z X X Z 

jz = -g(b cr -b cr )· 
X y y X 

(4.17) 

For the kinematics specified above, namely initial 

pol~rization perpendicular to the scattering plane, the 

polarization direction cannot change as a result of the 

scattering. This can be seen by invoking reflection and 

rotation invariance for example. We need only consider the 

diagonal elements of j: m = ±~-+m -.±~. Then it is found 

-= +gb 
y 

±gb 
X 

(± for m.=±~) 
l 

The compressed current densities are thus 

j = ±g b y 1 X 

where 

;;: r:> g(b,b )db 
. -oo Y Y 

( 4. 18) 

( 4 .19) 

(4.20) 
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The Fourier transforms of the ~ertinent quantities are 

.-+ -+ 
l J -lq•b 2 

<p> = 2TI pe . d b (4.21) 

<J'. > = <j > = 0 
X Z 

(4.22)· 

.-+ -+ 

<j > l j(±glbx)e-lq•bd2b = 27T y 

.-+ -+ 
+' a 1 f gle-lq•b)d2b = -1 aq-[27T 

X 

(4.23) 

= +iq · (cyl. symmetric fen.) 
X 

-+ -+ 
where q and b are two-dimensional vectors. Expressing 

these Fourier transforms in terms of form factors, we· 

define 

<p> 

<j > 
y 

= ~had(t) 
27T l 

(-t=q 2+q 2) 
X Z _iqx 

= +--27T 
G~ad (t) 

(4.24) 

G~ad(t) and G~ad(t) are the hadronic density and current 

form factors respectively for the proton. They are anal-

ogous to .the electromagnetic form factors .. Note that as 

with electromagnetic· form factors, spinless _particles 

possess onJ.,y one form factor. 

For th~ kinematics considered here, the scattering 

amplitude is given by 

-+ 
= <l- -n (b) >.I 

. e q =0 . z 
(4.25) 
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with 

. -+ 
Q(b) 

(4.26) 

where 
-+ · A -+ . B -+ 

QO (b) = 2TIKp (b) ® p (b) 

(4.27) 

K is a con~tant which depends on the incident momentum. 

Expanding a in a Taylor's series 

-no -no 
= <1-e >+<rl1 e >+ 

where 

and 

(± for 

~ _ +" GhadGhad 
<~Gl> - -laKqX A · 2B 

m. =±~) 
l 

The ·phase of tlH:!. scattering amplitude is given by 

i..k 
e 'f' = a = w 

(4.28) 

(4.29) 

( 4. 30) 

(4.31) 
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. -no 
Since. a 1 = <n 1e > = i qx· (cyl. symmetric fen. of qx,qz), 

the measurement of a
1 

at qz=O for all values of qx~O allows 

the determination of a
1 

for all qx and qz. It should also 

be noted that a
1 

is purely imaginary. 

The left-right asymmetry produced by the scattering is 

where 

dcr/dt}R-dcr/dt}L 
e: = dcr/dt)R+dcr/dt}L 

dcr/dt}R = la0+a1 1
2 

dcr/dt}L = la0-a1 1
2 

= a2_:a2 
0 l 

Since a
1 

is purely imaginary we find that 

e: = 0 

( 4. 32) 

(4.33) 

This means that the polarization parameter for the scat-

tering is ze~o; P=O; 

The phase angle of the scattering amplitude is related 

to the rotation parameters A and R in the following way. 

R = -sin2cp 
( 4. 34) 

A = cos2¢ 

15. 
This can be seen by using the fact that the parameters A, 

P, ~nd .Rare related to the scattering amplitudes a 0 and 

A -
I a 0 I 

2 -I ia1 1 2 

I a 0 I 
2 + I ia1 1

2 
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p = 
2Im [ia

0 
*a1 J 

· I a 0 1
2 + I ia1 1

2 

,. 

R 
-2Re[ia0 *a1 J 

= 
I a 0 I 

2 
+I ia1 1 

2 

Let us examine the meaning of this rotation parameter, 

R. Writing the scattering amplitude a as 

a = ao+al 
i¢ ao+al 

{m=+~) e = 
lao+all 

{ 4. 35) 

-i<P aO-al 
{m=-~) e = 

lao+all 
a = a -a 0 1 

and using the fact that the target initially polarized in 

the z direction cqnnot have its polarization direction al-

tered by a scattering in the x-y plane, we find the initial 

states transformed as follows 

{4.36) 

Consider now a target polarized initially in the x direc-

tion. 

X -i -

It will be transformed into 

1 

/2 
(4.37} 

(4.38) 
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as a result of the scattering. This final state has polar­

ization given by (cos2~,-sin2¢,0). Thus the polarizati6n 

vector is rotated through an angle 2¢ about the normal to 

the scattering plane. This result is general, and can be 

shown to hold for any initial polarization. It is nqw 

clear that a measurement of the rotation parameter is equi-

valent to the knowledge of the angle through which the 

polarization vector of the target is rotated. 

We are ·now in a position to determine the compressed 

current density from experimentally measurable quantities. 

We write th~ cross section 

dcr/dt = Tijal 2 ( 4 • 39) 

(4.40) 

. Since a 0 is purely real while a
1 

is purel~ imaginary the 

last term in the above equation is identically zero. It is 

thus seen that to first order in n
1 

(i.e., to first order 

in rotational velocity effects) 

dcr 
dt 

-n 
= TIIaol2 = Tij<l-e 0>12 (4.41) 

This result does not depend upon rotation effects; it is 

the same re~ult found in Chapter II where no rotation 

effects were considered. a 0 can be determined from the 

differential cross section data in t~e u~ual way. ¢ is 

determined from a measurement of the rotation parameter, 

R(t). This may be obtained hy R second scattering of the 



34 

final ~tate o~ the target. In the next chapter we will 

examine an alternative way of determining the rotation 

parameter. 

Knowing the quantities ¢ and a 0 , the following steps 

lead to the compressed current density. 

i¢ 
al - la0 1e -a0 

-Q . 
0 

<al> = e Ql 

Ql 
no . 

= e <a
1

> 

A 
Q . 

.® jy 
0 (4.42) p = -<a

1
>e /2naK 

This integral equation for j may be formally solved since y 
A(+) . p b 1s presumed to be known. 

Q . 

. = \-<a1 >e 
0
/2naK>). 

Jy. A 
<p > 

(4.43) 

We also have 'the· relation 

(4.44) 

so that 

. ~1 = ±j /b (4.45) y X . 

wh~re jy is given by equation (4.43). Recall that g
1 

is 

further related to rr by 

00 

= r g (b ,b >db 
. -co Y Y 

{4.46) 
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This integral equation for g may be solved as follows. Let 

and r - (b 2 +b 2 +b 2 ) ~ 
X y Z 

Then the integral equation has the form 

00 

(4.47) 

gl (b) = 2 J rg(r) (r 2 -b 2 )-~dr 
b 

.(4.48) 

This equation is referred to in the literature as Abel's 

equation. It ha~ the solution 

g (r) = -1 d 
rrr dr 

Finally then th~ matter current density is given by 

jx = +b g (r) 
y 

jy = ±b g(r) 
X 

jz = 0 

(4.49) 

(4.50) 

It has been shown that a measurement of the differen-

tial cross section and the rotation parameter are suffi-

cient to determine the matter current .density of a polar-

ized target. 



CHAPTER V 

APPLICATION OF MATTER CURRENT CONCEPT 

TO INELASTIC SCATTERING 

As a final specialization of the geometrical model of 

hadronic collisions we consider the effect of the matter 

current on an inelastic scattering - in particular the 

weak 7f p 

As will be shown below, detection of the final state kaon 

and the decay proton will be sufficient to determine the 

matter currerit of the initial state proton. This method 

does not require the use of a second scattering to deter-

mine the rotation parameter as would an elastic scattering. 

The fact that th~ strong,production process conserves 

parity while the weak decay process does not is responsible 

for this simplification. Bear in mind that at high ener-

gies the only manifestation of the target spin is through 

the ·non-zero matter current. In this treatment we consider 

only the spin non-flip and spin flip amplitudes due to the 

matte~ currerit to b~ non-zero. All spin effects other than 

the matter current effect are assumed to be unimportant at 

the energies we consider here. In general there may be 

36 
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other contributions to these amplitudes, but inclusion 

tends to obscure the essentials of this method. 

;he re~ults of the previous chapter can clearly be 

specialized to the case under consideration by using the 

inelastic scattering amplitude results found in Chapter III. 

As this is the sc~ttering reaction which will be used to 

illustrate the numerical estimates to be made in the next. 

chapter, we. give details of the method explicitly. 

Consider the kinematics of the scattering to be those 

of the previous chapter. 

a) target B infinitely heavy 

b) incident momentum of A: (O,k,O,ik) 

c) outgoing momentum of C: (q ,k,O,ik) 
X 

d) target polarized with J = m = ±~ z 

Note that·the limits q <<k and MA<<k have been taken as X . 

before. As there is no momentum transfer in the y-direction, 

the ·compressed density and current will again be of inter-

est. 

The· differential cross section is given as usual by 

dcr/dt = .TIIal 2 ( 5 .1) 

·where 

a = <S 1 (b) > (5.2) 

The amplitude for occurrence of the process A B + C D is 

S I (b) 

( 5. 3) 
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C' is a constant which depends on. incident momentum. We 

assume that the density distributions of the. initial and 

final"'" states are approximately equal. 

AB(b b ) 
p ' y ( 5. 4) 

Therefore 

S I (b) (5.5) 

C is a constant which depends on incident momentum. Note 

-that it is the assumption of identical density distributions 

which allows S(b) to be expressed in this simple form .. 

The extension to the ·case of non-zero matter current 

is in the· specification of the opaqueness including matter 

current effects. We again assume the effect of rotation 

upon the opaqueness which the target presents to a point 

projectile is approximated well by 

AB -+ 
S1 . t (b, b ) = po1n __ y 

, a B -+ 
A P e:ffp (b, by) ( 5. 6) 

where P eff is the momentum of the projectile. in the rest 

frame of the point (b ,b ,b ) of the target. 
X y Z 

M -+ a B-+ 
Q . t(b,b ) = A'P. [1-av ]p (b,b ) po1n y · 1nc y y . 

Compressing this opaquaness yields 

AB -+ n . t (b) po1n 

A and A' are constants which depend upon the incident 

( 5. 7) 

( !:>. 8) 

momentum. To include the effect of the extended structure 

of the spinless <! = 0) projectile we take the folding 
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. 1 f gAB.· with pA(b). 1ntegra o polnt 

AB ->- 101 PA (b+) = n . t (b) VY po1n 

where {5.9) 
CXl 

f A + 
P {b 1 b ) db • 

-oo Y Y 

Equations 5.1 - 5.9 specify the two-body inelastic exchange 

differential cross section in this geometrical model. 

We now wish to show that in the case of a spin ~ tar-

get, measurements of the differential cross section and the 

rotation parameter are again sufficient to specify the 

matte~ currerit distribution. This is merely the extension 

of the·results.of the previous chapter to inelastic scat-

te~ing. 

Using the fact that the target and projectile both 

have definite parities, it is seen that the particle densi-

ties are even under the parity operation. Now, the density, 

in the case ~f the spin ~ t~rget, is the product of two 

spin ~ wave functions thus yielding the density a scalar 

part plus a vector part. If the density is to be even 

.unde~ parity the derisity must be scalar and therefore spher­

ically symmetric. The compressed densities are thus cylin-

drically symmetric. The most gerieral form for the matter 

current matrix, remembering that it must transform as a 

vector under the ~arity operation, is 

(5.10) 



40 

where 
-+ -+ -t 
r, a, and J are three-dimensional vectors and f and g 

are functions of r. As shown in the previou~ chapter f must 

be zero if the hadronic current is to be conserved. 

-t -+ -+ 
J = -grxo (5.11) 

Since the exchange process is a hadronic process, ro~ 

tation and reflection invariance prevent the introduction of 

any polarization components in the scattering plane as a 

result of the scattering. 

the diagonal elements (m = 

We may therefore concentrate on 

±~-+ m = ±~) of J.-

= +gb y 

·'jy·-==. ±gbx 

jz = 0 

( 5 .12) 

jx,jy,jz are the components of the three-dimensional vector 

+ J. The compressed currents are 

j:x: = 0 

jy = ±glbx (5 .13) 

jz = 0 

where 

00 

gl(b) = J g(b,b )db 
-oo Y Y 

(5.14) 

and the two-dimensional vector b is the projection of the 

-+ 
three-dimensional vector r onto the x-z-plane. The y-

-+ . b component of r 1s called y· 



As the Fourier transforms of the density and current 

. will be required below, we reqord them now. 

<p> = L Ghad (t) 
2TI 1 
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<j > 
y 

iq 
= + X Ghad(t) 

27f 2 
( -t=q 2 +q 2) ( 5. 15) 

X Z 

<j > = <j > = 0 
X Z 

The hadronic form factors are defined as 

-+ -+ 
= fd2bp(b)e-iq·b 

(5.16) 

G~ad(t) = 2n(cyl. symm. function). 

This is the same cylindrically symmetric function defined 

in equation (4.23). Note that both of these form factors 

are cylindrically.symmetric, i.e., functions oft only. 

The scattering amplitude may now be written as 

AB A-+ B->- A->- -+ 
Q = 2TIA[p (b) ® p (b)-ap (b) ® jy(b)) (5.17) 

where we define 

(5.18) 

AB A -+ -+ 
Q = -2nAp (b) ® j (b) a. 

1 y 

A and K are ·co~stants which depend on the incident momentum. 



If \ve· write. the scattering amplitude in terms of n0 

and n1 and expand the exponential 
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(5.19) 

The definitions 

-n -n 
= K[<n

0
e 0 >+<(1-n

0
)n

1
e 0

>] 

-n 
a 1 = K<n 1 (l~n 0 )e 0

> 

(5.20) 

(5.21) 

have been made; Note that a 0 is purely real while a
1 

is 

purely imaginary, as in the elastic ca~e of the previous 

chapter. 

The Fourier transforms of n0 and n1 may now be written 

(5.22) 
±iq aA 
--~x-- Ghad(t)Ghad(t) 

27T lA 2B 

nnd .so, as in the elastic case, a measurement of a
1 

for 

q = 0 and all values of q ~0 will determine a
1 

for all 
Z · X . 

values of q and q . 
X Z 

The left-right asymmetry of th~ production process is 

zeio; E = 0. Therefore the polarization parameter for the 



production process is zero; P = 0. The phase of the 

scattering amplitude is 

i"' e '~" = a 
laT 
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(5.24) 

As shown in Chapter IV this angle ¢ is precisely the angle 

involved in the rotation parameters A and R. 

A = cos2cj> 

{5.25) 

R = -sin2¢ 

2¢ is the angle about the normal to the scattering plane 

through which the polarization vector is rotated. 

We now use the weak decay properties of the A produced 

in the exchange scattering rr-p-+K 0 A to determine· the rota-

tion param~ter, or more precisely the angle 2¢. The A 

decays via th~ following channels. 

7T p (64.2%) 

A weak ... . ( 5 . 2 6) 

17 
W~ concentrate on the first of these decay modes. Merely 

for the purposes of examining .the decay of the A, let us 

choose a coordinate system in which the A is init1ally po-

larized along the z-direction. In the rest system of the 

A,j
2 

= s
2 

= ±~. If parity were conserved in the decay, and 

the A had even (odd) pari t.y with respect to the prot.on, 

then the final 7T p state would have to be in an 1=1 (1=0) 
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state of relative orbital angular momentum. However, if 

parity is not conserved in the decay of the A, then both 

the .Q.1:1 and the .Q.=O state occur with amplitudes ap and as. 

For .Q.=O,j =±~ the wave function is z 

0 
· Y ( cos e > x + h . 

0 - 2 

For .Q.=l,j =±~ the wave function is z 

±1 
<l±l~+~I~±~>Y (cos8)X+h 

1 - 2 

0 
+<lO~±~I~±~>Y (cos8) 

1 . X±~ 

The final state wave function assuming a weak (parity 

non-conserving) decay is thus 

(5. 27) 

(5.28) 

where ± refers to the initial A polarization. The ampli-

tude in the z-direction is 

. 1 (a +a ) x_._h 
I4TI s p -'-2 

Then if th~ A is initially polarized along some direction 

making angles of e.cp. with the z-direction 
.1 1 

xit1i tial = 

sin6./2 
1 

i¢./2 
1 e 

e 
-i¢./2 

1 

(5.29) 



the final state amplitude in the z-direction is given by 

e. i¢./2 -i¢./2 
- 1-[ (a -a ) cos----e2

1 1 x+k +(a +a ) sine. /2e . 
1 

X k] . 14 7T s p 2 s p 1 - 2 

The differential cross section at an angle e. to the A 
1 

polarization direction is 
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1 . . . 
-4 ria l 2 +la I 2 -2Re(a *a )cose.] 

7T s p s p 1 
(5.30) 

do/ds-21 a: l+Acose. e. 1 
(5.31) 

1 

\vhere. the asymmetry parameter A is defined to be 

A = - 2 Re (a *a )/ [I a I 2 + I a I 2 
] s p . s p ( 5 • 32) 

Experimentally17 it is found that this parameter .A= 

0.642, and so decay protons are emitted preferentially in 

the direction of the initial A polarization. The method 

for determining the angle 2¢ is now clear. Given the ini­

tial polarization direction of the target proton, a measure-

ment of the differential cross sectiQn of the decay protons 

specifies the polarization direction of the A before decay. 

2¢ is then the angle bet\veen these two polarization direc-

tions. 

The matter current may nmv be found as follows. The 

differential cross section of the final state kaons is 

given by 

do/dt rrlal 2 = rr[la 0 12 +1a1 12 l 

do/dt ~ rrla 0 12 +8(a
1

2
) 

( 5. 33} 
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Thus a measurement of this cross section yields a
0

. This 

result is independent of rotation effects. The phase angle 

is determined as described in the preceding paragraph by a 

measurement of the differential cross section of decay pro-

tons. 

al = i¢ 
la 0 1e -a0 

-n 
<a > Kn

1
(1-n

0
)e 0 = 1 

no 
( 5. 34) 

Kn 1 = +<a
1

>e /(l-n
0

) 

KpA (b) ® . (b) Jy = 
n . 0 . -1 

- <a l > e . [ 2 'IT A a ( 1-nO ) ] 

Since the density pA(b) is known, we solve the integral 

• -+ 
equation for Jy(b). K and A are constants which depend on 

incident momentum. 

Now 

so that 

-+ . 
. (b) = Jy 

. no - <a
1 

>e 

( 5 . 35) 

-+ 
g = ±j (b)/b 1 y X 

• -+ 
where Jy(b) is given in equation (5.35). g 1 and g are 

related by 
()() 

(5.36) 

As in the previous chapter we let 

and 



Then 

.g(r) = 

and the matter current 

-1 d 
Tir dr 

is given by 

jx = +g(r)b 

jy = ±g(r)b 

jz = 0 

db (5.37)• 

y 

X 
(5.38) 

The hadronic matter current may be determined by con-

sidering the exchange scattering TI p~K 0 A and measuring the 

differential cross sections of the final state kaon and the 

decay proton. 



CHAPTER VI 

NUMERICAL ESTIBATES 

In this chapter we attempt a quant.itative estimate o.f 

the rotation parameter, R, using the geometrical model 

applied to the inelastic exchange process considered in the 

previous chapter. The general calculational scheme is 

shown below. 

[dcr) 
dt elastic 

As input we take n p elastic differential cross sec-

tion data at 200 GeV, and the form factors of the pion and 

proton. The results of this calculation are the real and 

imaginary parts of the exchange scattering amplitude, as 

wel1 as ~he rotation parameter, R, for the process n-p+K 0 A. 

Starting with the n~p elastic differential cross sec-

tion data at 200 GeV, we proceed to calculdte n0 . A fit to 

this data has. been given by C. W. Akerlof et al., in 

48 
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reference 18, for ltl<l.l5 (GeVIc) 2
• 

a = ( 4 . 9 6 2) exp ( 4 . 6 3 t + l. 0 t 2 
) [ ( Ge VIc) - 2 

] 
el 

( 6 .1) 

For large values of -t there is no avaiiable data and so it 

is assumed that the cross sectiOn falls off exponentially, 

i.e., 

. bt 
a = Ae el · (6.2) 

Joining these two forms for the scattering amplitude 

smoothly at -t=l.l5 (GeVIc) 2 yields 

ael = (l.322)exp(2.33t) [(GeVIc)- 2
] ( 6. 3) 

for ltl~l.l5 (GeVIc) 2
• The complete form of ael for use in 

our calculations is thus 

a e 
1 

= ( 4 • 9 6 2 ) e xp ( 4 • 6 3 t + l. 0 t 2 
) ( Ge VIc ) - 2 

for 0~-t.~ l. 15 ( GeV lc:::) 2 

( 6. 4) 

= (l.322)exp(2.33t) (GeVIc)- 2 

for ~t~l.l5 (CcVIc) 2 
• 

Recall from equation 4.29 that the opaqueness, n0 , and 

elastic scattering amplitude, ael' are related by 

-no 
= <1-e > (6.5) 
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where < > denotes the two-dimensional Fourier transform. 

n0 is thus obtainable by inverting equation (6.5). 

-Q (X) 

1-e 
0 

= f 0 J 0 (b/-t)ae1 1-t dr-t (6.6) 

The two-dimensional Fourier transform has been reduced to a 

Fourier-Bessel transform by invoking the cylindrical sym-

metry of ael" A plot of n0 vs. b is given in Figure 6.1. 

The real part of the inelastic scattering amplitude 

may now be calculated using equation 5.21). 

-no 
a = K<n

0
e > 

0 
( 6. 7) 

Since n0 is a function of b only; we may again use the 

·Fourier-Bessel form of the two-dimensional Fourier trans-

form. Thus 

(X) -Q 

= K f J 0 (bM) rt 0e 0bdb 
0 . 

As can be seen in Fig. 6.1, n0 is appreciable only for 

( 6. 8) 

b~lS (GeV/c)- 1
, an~ so the ·infinite upper .limit is replaced 

for computational purposes by 15 (GcV/c)- 1
• This r.nrr.e­

sponds to approximately 3 fm. 

The constant K can be determined by the relation 

. Q 
do) I = K 2 [ r~ - 0, I ] 2 dt . · n <~Goe "' t=O 

exchange t=O 
(6.9) 

The value of do) for t=O at 200 GeV is not available, dt exch 
19 but may be estimated by extrapolating the existing data. 

In fact, ~~]exch .for t=O has been observed to fall off with 



-2 

10 l 

. -4 
10 

I 
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-1 
b(GeV/c) 

1 0- 6~---r-_:.1------"i--r---,----r---,-L--r--ri ----r,-~ 

0 2 4 6 8 1 0 12 14 1 6 18 2 0 
Figure 6.1. The opaqueness versus impact parameter (n

0
vs.b). 



.• 

s2 

incident momentum according tb a power law. See Figure 6.2. 

logddto] · I = Alog (Pb ) +B · 
exch t=O earn 

(6.10) 

where the constants A and B are determined by a fit to the 

data yielding 

A = -1.184 

B = 3.21 . 

do] for t=O has units of ~b(GeV/c)- 2 and Pb has units .dt exch · earn 

of (GeV/c). An evaluation of equation (6.10) at Pb =200 . earn 

(GeV/c) yields 

do] . dt . . 
exch I = 3.06 ~b(GeV/c)- 2 

t=O 

or · (6.11) 

-z -z . I . 
Cl.exch t=O = SxlO (GeV/c) 

K is thus determined from equation 6.9 to be 

K = .0121 ( 6. 12) 

The evaluation of a 0 according to equation 6.8 is now 

carried out using Simpson's rule approximation of the inte-. 

gral. ~he results ~re shown in Figure 6;3, and tabulated 

in Table I. 

We.now wish to calculate a
1

, the imaginary part of the 

exchange scattering amplitude, and so must first estimate 

n1 , the rotati6n-dep~ndent part of the opaqueness by ~qua­

tion 5.18. 

7T = -27TAap (6.13) 



· doJ~xch. · · 
dt)t=o fJ.b(GeV/c)-

2 

(l) data from ref. 19 

Abramovich et a1. 

(2) data from ref. 19. 

Crennell et al. 

(3) data from ref. 19 

Foley et al .. 

Figure 6.2. Differential cross section for the exchange 

reaction rr-p7K 0 /I.. 
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I aol (GeV I c)- 2 

0 1.6 1.8 2.0 

Figure 6.3. Real part of scattering amplitude versus mo­

mentum transfer (a0 vs. -t). 
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If this equation is Fourier transformed the result is 

(6.14) 

All factors on the right side of this equation are known. 

a is a constant which at 200 GeV has the value 

Ghad the hadrbnic for~ factor for the pion, is 
l'IT ' 

( 6. 15) 

Ghad(t) _ 1 
1 ~l+~lt-l~/~.~6~0~2 (-t in (GeV/c) 2). 

(6.16) 

Ghad the hadronic form factor for the proton, is assumed 2p ' 

to have the dipole form 

G~~d(t) = (1+1~1/.71)2 (-tin (GeV/c)2). 

(6.17) 

~he constant A is evaluated using equation 5.22. 

(6.18) 

At t=U both form factors ct~e equal to one, thus 

00 

= [2Trf J0 (b~)n0bctb]t=O 0 . 
(6.19) 

= 3 "I • 4 ( GeV/ c) - 2 •. 
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Taking the inverse Fourier transform of equation 6.14 

we have 

~ . i(q b +q b ) 
n = ±aA a foo I ~had(t)Ghad(t)e X X z z d d 

l 21T aJJ · 2rr 1 2p · qx qz 
X -oo 

= ±aA a G(b) 
21T a1J 

X 

(6.20) 

where the two-dimensional integral is defined as G(b). 

G(b) can be evaluated numerically, and to facilitate later 

calculations G(b) is fit with a sum of Gaussians. 

-c b 2 -c b 2 

· G (b) = 3 4 -A4e (GeV/c). 

Al = 0.014 cl = 0.0257 

A2 = 0.098 c2 = 0.0761 

A3 = 0.0657 c3 = 0.295 

A4 = 0.01 

b2 has units of ( GeV/c)- 2 . 

Now define the function H(h) by 

This function is also fit by a sum of Gaussians 

H(b) 

A 5 = o.99 

A6 = 0.014 

-c b~ -c b 2 
5 6 = l-A

5
e +A

6
e 

cs = 0.056 

c6 = o.S66 

(6.21) 

{6.22) 

(6. 23) 
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The imaginary part of the scattering amplitude can nm;1 

be calculated. 

(6. 24) 

This integration can be done analytically with the results 

shown in Figure 6.4 and tabulated in Table I .. 

Finally the spin-rotation angle 2¢ (i.e., the angle 

through which the polarization of the target is rotated) , 

and the rotation parameter, R, may be calculated. 

(6 .25) 

R = -sin2¢ (6.26) 

The rotation parameter is shown in Figure 6.5 as well as in 

Table I. 

It has been shown in this chapter that by use of TI p 

elastic cross section data, an estimate of the rotation 

parameter 1n the exchange scattering n-p+K 0 A can be made. 

It should be noted that the order of magnitude 6f the rota-

tion parametei calculated in this way is in agreement with 

that of reference 5. 

An alternative test of the matter current idea can be 

made by performing an experiment in which pions are scat-

tered off a polarized proton target whose initial 
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polarization direction is·known. Detection of the angular 

distribution of hyperon decay products as a function of 

momen~um transfer gives an experimental value of the rota-

tion parameter to be compared with the result of this chap­

ter. The range of momentum transfer over which such an 

experiment might be feasible is bounded by two criteria: 

(1) ~t must be large enough so that the rotation angle 2~ 

is measurable and (2) -t must be small enough so that the 

cross section for the exchange process is not too small. 

Recall that at 200 GeV the cross section at t = 0 is only 

3 ~b(GeV/c)- 2 • The cross section at higher t values is 

· appro~imately given by 

~~) = ~~ lt=O ebt 
exch · · exch 

-2 2 where b~8.5 (GeV/c) . Therefore at -t = .5 (GeV/c) the 

cross section has already dropped by a factor of approxi­

. rnaLely 100 from its t = 0 value. Fo:r. -t2.1 (GeV/c) 2 the 

rotation angles predicted in this chapter are readily mea-

surableJ The optimum experimental range should thus be 

roughly 05-t5.5 (GeV/c) 2 • 

In summary, it has been shown that the existence of an 

hadronic matter current in this model is detectable in the 

form of the rotation parameter. ~vo possible methods for 

its measurement are the second scattering and the weak 

decay of the A. The advantage of the second scattering 

method is the relatively large cross section. It suffers 



59 

. o-3 1 . 

10-6 

-t(GeV/cf 
10-e~·---.----.---~--~--~----~~ --~--~~--~--~~---~ 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.S 2.0 

Figure 6.4. Imaginary part of scattering amplitude versus 

momeritum transfer (a1. vs. -t). · 
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Figure 6.5. Rotation parameter versus momentum transfer in 
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TABLE I. 

Scattering amplitude 1 rotation ·angle 1 and rotation 

parameter forTI p~K 0 A collision 

-ia 
l. 

0.0 

l. 44 X 

2.41 X 

2.73 X 

2.51 X 

2.01 X 

l. 42 X 

8.83 X 

4.58 X 

1.64 X 

-8.70 X 

-8.68 X 

-1.07 X 

-9.76 X 

-7.94 X 

-6.27 X 

10- 4 

10- 4 

10- 4 

lo- 4 

10- 4 

10- 4 

10- 5 

10- 5 

10- 5 

10- 7 

10- 6 

10- 5 

10- 6 

10-G 

10- 6 

-5.10 X .JQ- 6 

-4.39 ·x 10- 6 

-3.97 X 10- 6 

-3.66 X 10- 6 

2 <P (degrees) 

5 X 10- 2 0.0 

2.99 X 10- 2 0.55 

l. 79 X 10- 2 l. 54 

l. 07 X 10- 2 2.93 

6.32 X 10- 3 4.55 

3.65 X 10- 3 6~30 

2.01 X 10- 3 8.09 

1.01 X 10- 3 9.96 

4.15 X 10- 4 12.59 

6.26 X 10- 5 29.23 

-1.39 X 10- 4 0.72 

-2.49 X 10- 4 3.99 

-:3.06 X 10- 4 3.98 

-3.32 X io- 4 3.37 

-3.40 X 10-'' 2.67 

-3.39 X 10- 4 2.12 

-3.31 X 10- 4 l. 77 

-3.19 X 10- 4 l. 58 

-3.05 X 10- 4 l. 49 

-2.88 X 10- 4 l. 45 

R=-sin2<P 

0.0 

;_0.01. 

-0.03 

-0.05 

-0.08 

-0.11 

-0.14 

-0.17 

-0.22 

-0;49 

-0. 0.1 

-0.07 

-0.07 

-0.06 

-0.05 

-0.04 

-0.03 

-0.03 

-0.03 

-0.03 
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from the difficulty of performing the second scattering. 

The weak decay method is experimentally more easily perfor-

~ . -
med, however the cross section for n p~K 0 A is very small. 

However, the weak decay method is probably preferably since 

the small cross section can, to some extent, be compensated 

by increased beam intensity. 
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