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Abstract

Very large, composite superconductors have been proposed
for use in energy storage magnets. A typical conductor, rated
at 230 kA, has been discussed by J. Waynert, Y. Eyssa, and
X. Huang, namely, a 6-cxn aluminum cylinder with supercon-
ducting filaments on its outer surface. Owing to its large size
and nonunifonn distribution of filaments, such a conductor can
sustain normal zones of finite size that travel at a uniform
velocity along the conductor. This paper presents a simple,
analytical model that permits determination of the conditions
under which such zones can exist and the size and velocity
of such zones. It has been shown that the transport current
has a threshold value below which finite normal zones cannot
exist and that the propagation velocity corresponding to this
threshold current, though not zero, is the smallest possible.

Introduction

Very large, composite superconductors have been proposed
for use in superconducting energy storage magnets. A typical
conductor is that discussed by Waynert, Eyssa, and Huang
[1], namely, a 6.0-cm-diam aluminum (RRR of ~500) cylin-
der with superconducting filaments on the outer surface. The
conductor is rated at a current / of 230 kA. Even if such a
conductor is cryostable when the current uniformly fills the
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aluminum, it may nevertheless suffer the propagation of normal
zones of finite size. The reason is as follows.

When the superconductor is first normalized, the current
spilling into the aluminum is tightly confined to the vicin-
ity of the outer surface. The Joule power is then very high.
Thereafter, the current diffuses radially, tending toward a state
of uniform current density in the conductor. In this state,
the Joule power may be quite low and the conductor may be
cryostable. The relaxation time of the current redistribution is
td = PoR2 /a\p, where fio is the magnetic permittivity of free
space (4ff x 10~7 H/m), 12 is the radius of the conductor, p is
the residual resistivity of the aluminum, and ax (= 3.832...) is
the first zero of the Bessel function of the first kind of order one.
During redistribution of the current from the outer surface to
uniformity, an excess heat density, Q = 6.333 x 10~s fioJP/R3,
is produced. If it is large enough, this excess heat density can
sustain a normal zone of finite size.

Because the current redistribution energy is released over a
short interval of approximate duration t& following normaliza-
tion of the filaments, current diffusion is complete far behind
the propagating front. If the steady Joule power is low enough,
the normal zone may recover far behind the front. At the front,
on the other hand, the normal zone advances and normalizes
additional lengths ol superconductor. Thus, we are led to ex-
pect normal zones of finite size that propagate at velocities that
cannot be arbitrarily small. These zones should make their first
appearance at a threshold determined by the magnitude and
time constant of the excess heat density, among other things.

In this paper, I analyze a simple model problem that ex-
hibits the features just described and that can be solved ex-
plicitly.

The Model Problem

Figure 1 shows the temperature rise in a finite-size normal
zone as a function of distance z along the conductor. The zone



is presumed to travel to the right without change of shape with
a steady velocity v. (This presumption is without justification;
it is made to determine under what conditions a stationary
normal zone of finite size could exist, and it begs entirely the
question of whether such zones in fact exist.) The origin of the
2-coordinate has been chosen so that the locus of the point on
the leading edge at which T = Tc, the critical temperature, is
z = vt, where t is the time. Current sharing is ignored, and the
conductor is assumed to be unconditionally cryostable when
the current is uniformly distributed throughout the aluminum.
The heat balance over a length dz of conductor can now be
written

A d s Ad

+ Adz [QF {t - z/v) + Qj] U{t- z/v) = 0 (1)

where A is the cross-sectional area of the aluminum, 5 is the
heat capacity per unit volume of aluminum, P is the cooled
perimeter, h is the heat transfer coefficient, Q (as before) is
the excess heat density produced during current redistribution,
Qj is the Joule power density when the current is uniformly
distributed throughout the aluminum, and U is Heaviside's
step function. The function F(t) prescribes how the excess heat
Q at a point is released over the course of time. The origin of
time in T(t) is, of course, the instant the superconductor goes
normal. Thus F must appear in Eq. (1) as a function of the
argument t — z/v since the superconductor at point z goes
normal at time t = z/v. [Another argument leading to the
same conclusion is this: if a traveling-wave solution for T —1&
exists, so that T — Tb is a function of x = z — vt only, then
Eq. (1) implies that for this solution F must also be a function
of x = z — vt.} For points ahead of the normalizing front, the
last term on the left-hand side of Eq. (1) is absent.

For a traveling-wave solution, which is what we are seeking,
Eq. (1) then becomes



Qj-F ( -^") + Qj = ° » * < 0 (2a)

d / dT\ ^dT Ph , _ m. n n ,M.

{ k ) + S { T T ) Q ' x>0 {2b)

Here we hare added an arbitrary scale factor, <«, with the di-
mensions of time to F in order that both F and its argument be
dimensionless. Next, we introduce the dimensionless variables

6 = (T-Tb)/(Te~Tb) (3a)

q = X\rn/KA) A""/

0 = vS(A/Phk)1/2 (3c)

r = PhU/AS (3d)

7 = QA/Phim(Te-Tb) (3e)

a = QjA/Ph(Te-Tb) (3/)

in terms of which Eqs. (2a) and (26) become

+ a = 0 , £ < 0 (4a)

g + ^ - » = 0, f>0 («)
Equations (4a) and (46) must be solved together with the
boundary conditions

9(±oo) = 0 (5a)

0(O±) = 1 (56)

and
dd/d$ continuous at £ = 0 (5c)

Equations (5) overdetermine the solution of Eqs. (4a) and (46)
and thus convert the problem to a nonlinear eigenvalue problem
for 0 in terms of 7 and r.



Solution of the Model Problem

The solution of Eq. (46) that we seek is

* = «p(A_O , £ > 0 (6a)

where A_ is the negative root of the quadratic equation

A3+/?A - 1 = 0 (66)

The solution of Eq. (4a) that we seek is of the form

9 = .4 exp (A+ |) + particular solution of Eq. (4a) , £ < 0
(6c)

where A is a constant yet to be determined. A particular solu-
tion may be determined by the method of variation of parame-
ters by using exp( A-t£) as the two solutions of the homogeneous
equation. A straightforward calculation gives

- e x p ( A + O / « p ( - A + O 7** - £ + < * « £ > (7)

as the particular solution when £ < 0. The solutions (6a), (6c),
and (7) already satisfy the boundary conditions (5a).

At £ = 0, the boundary conditions (56) and (5c) imply

x [«p(A+fl-«p(A-fl]* (8a)

x [A + «p(A + ! ) -A_exp(A_£)j^ (86)

We eliminate A between these equations by multiplying

Eq. (8a) by A+ and subtracting. Then

A+ - A_ = J exp (A_0 \jF (J^j +<*}<% (9a)



or

7

where F is the Laplace transform of the dimensionless function
F. Equation (96) determines the dimensionless propagation
velocity 3 in terms of the dimensionless current redistribution
time r and the dimensionless excess energy density 7.

Analysis of Eq. (96)

The function F is normalized so that /0°° F(t) dt = 1, which
means that F(0) = 1. Thus, as 3 -* 0, 7 ~ (2 - a)/3r -* 00.
Since F(t) must be integrabie at the origin (even if it is singular
there), it can be shown* that linij,_oo T(p) = 0. Therefore, as
3 —» 00, 7 ~ 1/TF(32T) —» co. Thus, 7 must have a minimum
when considered as a function of 0 for fixed r. For 7 below
this minimum, there can be no propagating normal zones of
finite size.

For the sake of definiteness, suppose we take U = td/^j
half the current redistribution time, and take F(t) = e~*. This
assumption means that we consider only the longest-lasting
mode in the redistribution of th« current and implies a distor-
tion of the early stages of that process. Then from Eq. (9a) we
find easily that

(10)

* F(P) = f" «~" PW dt = *-» [' F{t) it

+ » r *-" [/: ™ *] * = > ,r •
Now, as p - 0 0 , the region of t that makes * significant contribution to
the last integral is of the order of \jp. Therefore, F{p) is proportional to
f F(t) dt and so -• 0 as p -+ 00.

Jo



A short calculation shows that, for fixed r, /3(7min) 1B deter-

mined by

l/r-03/2-0*/2.

0 + 2a/ (0 + y/02 + 4) a
v L JZ= (11)

V ^ + 4 V

Shown in Fig. 2 are curves of /?(7min) and 7 , ^ plotted versus r
for a = 0 and a = 1. These curves were created by assuming a
value of 0(fmia), calculating the corresponding value of r from
Eq. (11), and then calculating 7^0 from Eq. (10).

When 7 > 7min, two values of 0 are possible. The argu-
ments given so far do not determine whether one of these val-
ues is physically realizable or whether both are. The following
heuristic argument implies that the larger value corresponds to
a stable normal zone whereas the smaller value corresponds to
an unstable normal zone.

Suppose we consider a conductor described by the power
and time parameters 7 and r and choose as our initial condition
the steady solution for a value 7' > 7 (point P' in Fig. 3). Now
the available power 7 is less than the power 7' required for the
initial zone to sustain itself as a steady traveling wave. Since
the advance of the normal front is caused by conduction of heat
from warm to cold conductor, if too little Joule power is being
created, the normal zone will slow down. Thus we expect the
initial condition P' to approach the steady state Q'. A similar
argument holds for initial points P' in the vicinity of Q' for
which 7' < 7. Thus the steady state Q' is stable. A similar
argument indicates that the steady state Q" is unstable.

Discussion

Normal zones of finite size can propagate only if the con-
ductor recovers far behind the advancing front! We have taken
as the condition for this that the conductor is unconditionally



stable when the current is uniformly distributed in the matrix.
This means that o < 1, which for a round conductor becomes

pi2 < 2n2fh (Te - Tb) R
s (12)

where / is the fraction of the total perimeter 2irR that is
cooled. The excess Joule heat density Q is given by

Q = gpW/tf (13)

where g is a geometric factor that depends on the initial current
distribution. If we combine Eqs. (3c), (12), and (13), we find
that

7 < 2*2ga\ (14)

in order to fulfill the criterion of Stekly stability far behind the
front.

When the initial current distribution is confined to the
outer boundary, g = 6.333 x 10~ s , and the right-hand side
of Eq. (14) is then 1.836. According to Fig. 2, however,
Tmin > 2 - a for all /?. Thus the condition of Stekly stability
far behind the front allows propagating normal zones of finite
size only when a > 0.164 if the initial current distribution is
confined to the outer boundary.

When 1 — a < 1, 7 = 1.836 intersects the curve of 7min at
r = 7.935. So, when l - a < l , propagating normal zones are
possible for r > 7.935 whereas for r < 7.935 they are not.

According to the figures assembled below, the foregoing
analysis shows that the conductor of Waynert et al. cannot
support propagating normal zones of finite size at 230 kA.

/ = 2 3 0 k A

Tb = 1.8 K
Tc = 8 . 0 K (2.5 T)
R = 3.0 cm
P = 2irR/'i - 6.28 cm

(one-third surface exposure assumed)

A = irR2 = 28.3 cm2



p = 2.8 /ifl-cm/500 = 5.6 x 10~9 ft-cm
(assumed to include magnetoresistance)

k = 7.88 W-cm-^K"1 (Wiedemann-Franz law)

U ~ 1-38 s
Q = 0.468 J/cm3

Qj = 0.370 W/cm3

5 = 1.13 mJ-cm-'-K"1

S{Te-Tb) =7.00mJ/cm3

h = 0.5 W-cm-^K"1 (Kapitza limited)
a = 0.538
r =67.8
7 = 0.986 < 7min

/?(7mia) =0.137

7mln = 1-77

Further calculations show that propagating normal zones
become possible for currents greater than 281 kA. Uncondi-
tional stability far behind the propagating front fails at 314 kA.

The conductor of Waynert et al. is rather large, and to use
it as an object of experimental study to verify the phenom-
ena under discussion would be cumbersome, to say the least.
How small a conductor can we conveniently use as an object of
study? Now, if we take tn = trf/2, as we have been doing, then
for a cylindrical conductor r = nohR/a\Sp. Now, if r takes
the value at which 7min equals the limit of Eq. (14), then

R = a\TSp/iMQh (15)

For radii exceeding this radius, propagation of normal zones
is possible. Table 1 shows these radii for several values of a.
The first set of three entries (above the dashed line) refers to
a cylindrical conductor with the superconductor confined to
the outer boundary. The second set of three entries (below
the dashed line) rsfers to a cylindrical conductor in which the
superconductor is confined to a core of radius Q.3R (Al/SC =
10.1). For such a conductor the geometric factor g = 0.0190.
It appears, then, that wires in the millimeter range of radii



should allow an experimental search for propagating normal
zones of finite size.

Discussion (concluded)

If a conductor is unstable against propagation of a finite
normal zone, the propagation velocity is given by v = (/3/S) x
(Phk/A)1/2. For the conductor of Waynert et al., v/0 =
8.27 m/s. At 300 kA, for which this conductor allows prop-
agation of finite normal zones, {3 = 0.441, and therefore
v = 3.65 m/3. Since a typical energy storage magnet has of
the order of 1000 km of conductor, a finite normal zone could
take 3.17 days to traverse the entire winding.1 While traversing
the winding, the normal zone would release a steady power in
excess of vQA = 8.22 kW that would have to be removed by
the refrigerator. It would seem, therefore, that the conductors
of energy storage magnets must be designed to operate in the
stable regime that does not permit the propagation of normal
zones of finite size.
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