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ABSTRACT

The nonlinear interaction of tearing modes of different helicity
is studied for realistic wvalues of the tokamak parameters of
resistivity and parallel heat conduction. The self-consistent
evolution of the resistivity 1s taken into account through the electron
heat conduction equation. For equilibrium q profiles inferred from
electron temperature profiles measured before a tokamak disruption, the
essential result 1is that the (m = 2;n = 1) mode nonlinearly
destabilizes other modes on a rapid time scale. Because of the
development of magnetic islands of different helicity, the toroidal
current density is severely deformed. These islands overlap and field
lines become stochastic in a sizable plasma volume, flattening the
temperature profile 1in this region through parallel heat transport.
The deformation of the toroidal current produces a rapid decrease 1in
the self-inductance of the plasma, and the vdltage at the limiter
decreases, becoming increasingly negative. An extensive surve& of
equilibria and initial conditions has been conducted, and a simple

prescription for their nonlinear stability properties is given.



I. TINTRODUCTION

Previous papersl’2

have suggested that the nonlinear interaction
of tearing modes of different helicity could be responsible for some of
the disruptions observed in present-day tokamaks. This suggestion was
based on the results of numerical studies of the nonlinear evolution of
tearing modes in cylindrical geometry. These calculations had some
limitations, as was duly acknowledged in Ref. 2. The resistivity was
high compared with that of real tokamaks, the resistivity profile in
the nonlinear evolution was held independent of time, and only two
particular equilibrium q profiles were considered. The present paper
removes these limitations. Presented here are results for realistic
values of the resistivity and a study of the effect of its
self-consistent evolution. Also, the exploration of a wide class of
equilibria has given more generality to the previous results.

Understanding the detailed mechanism of tokamak disruptions 1is
essential 1in devising methods to control or avoid them. This is not
only important in improving tokamak confinement but also in suppressing
the damaging effects of such disruptions on the device.

To setudy thc nonlinecar evolution of tearing wudes, a reduced set
of resistive magnetohydrodynamic equafions was usgd,2 and the
self-consistent resistivity evolution was incorporated. through the
electron heat conduction equation. The results have been extended to
more realistic tokamak parameters by the development of a new and more
efficient three-dimensional code RSF,3 which uses a Fourier series
expansion in the toroidal and poloidal angles and finite differences in

the radial variable.

W
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For a certain class of safety factor q profiles, which will be
specified in Sec. V and which includes profiles observed before major
tokamak disruptions,["S the (m=23;n =1) and (m = 3;n = 2) teafing
modes are linearly unstable (here m and n denote the poloidal and
toroidal mode number, respectively). Following the nonlinear évolution

of this system reveals that the (m = 3;n = 2) mode and other modes are

1)

nonlinearly destabilized on a rapid time scale by the (m = 2;n
mode. The order of the time scale is given by the (m = 2;n = 1) linear
growth rate. Because of this destabilization, 1islands of different
helicity develop in the plasma. This severely deforms ‘the current
density profile in such a way that the plasma self-inductance decreases
and the voltage at the limiter drops, becoming increasingly negative at
the end of the calculations, in agreement with the 'negative voltage
spikes" observed experimentally. The overlap of islands leads to the
stochastization of the magnetic field lines in a sizable plasma wvolume,
flattening the temperature profile in this region through parallel heat
transport. When the magnetic field lines have become stochastic in a
finite volume, modes having singular surfaces 1in this region are
further destabilized with growth rates several times bigger than the
linear growth rates.

The 1low value of the resistivity separates the time scales
involved in the problem. This allows clear observation of the
different dynamical regimes present in the time evolution of the
tearing modes. When the calcﬁlation is 1initialized with wvery small
perturbations, three different regimes successively appear. First, the
initialized modes that are unstable grow exponentially with time in

what is practically a linear regime. Second, when the magnetic islands



have grown beyond the tearing layer width, nonlinear effects become
important, with the result that the islands grow linearly with time as
if only modes of a single helicity were present.6 Finally, after the
magnetic 1islands touch, there is strong destabilization of the modes
involved and the growth is again approximately exponential, as just
described. In cases where the unstable modes saturate before their
corresponding islands touch, this final exponential phase is absent.

In the ﬁighly nonlinear phase of the calculation, after the strong
destabilization of the (m = 3;n = 2) mode, more and more modes with
high m and/or n valueé are nonlinearly generated. This 1mplies that
increasingly small scale lengths become involved in this process and
»that a fluid model can no longer describe it. This dictates the end of
the calculation.

A wide spectrum of equilibrium q profiles was studied to provide a
better understanding of the characteristics of the nonlinear
interaction. However, since this analysis is for cylindrical geometry,
these profiles are restricted to q(0) > 1 because the toroidal coupling
between the (m = 13n = 1) and (m = 2;n = 1) could be important in cases
where the safety factor 1is below unity.7 A very general result is that
the strong destabilization of the (m = 3;n = 2) mode occurs for q

profiles such that
For = Tan < L(Wai + Was)
21 32 721 327 »

where Ton is the radial position of the singular surface for the (m;n)
mode and W, . 1is its single-helicity saturated island width. For all

the cases considered here, the rapid destabilization of the

“
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(m=3;n=2) mode by the (m = 2;n =1) mode starts after the two
magnetic islands touch. Apparently the usual resistive flow effects,
which reduce the mode growth from exponential to linear,6 are hof
operative in this explosive growth phase because the magnetic flux
surfaces are being destroyed.

The present results confirm those obtained when resistivity

evolution is not taken into account,1

except that here the disruption
proceeds somewhat faster. These low resistivity calculations allow a
more distinct separation of time scales in the different phases of the
nonlinear evolution.

The body of this paper is organized as follows: In Sec. II, the
reduced set of resistive magnetohydrodynamic equations used in our
calculations 1is presented. 1In Sec. III, the. equilibrium q profiles and
their stability properties from the standpoint of linear and nonlinear
theory are discussed. A description of the nonlinear interaction of
tearing modes for an equilibrium state like the one before a major
disrupﬁion in the Princeton Large Torus (PLT) tokamak is presented in
Sec. IV. In Sec. V, the results of a q profile exploration are given
and compared with an apaLYtical model. Finally, 1in Sec. VI; the

characteristic time scale for the nonlinear process 1is discussed and

the results are compared with experiment.



II. REDUCED SET OF RESISTIVE MAGNETOHYDRODYNAMIC EQUATIONS

The resistive magnetohydrodynamic equations are

>

3v > +>> > > > ‘
P (.a_t.+v°Vv) =-Vp+JxB, . (1)
> > >
9B
—_— ==V E
At X B @
> 1-) >
J-.—.._VXB’ (3)
Yo
and
> --> > >
E=nJ-vxB, (4)
_}

where v 1is the fluid velocity, o»p i3 the mass density, p is the

m
>

pressure, B is the magnetic field, 3 is the current density, E is the
electric field, n 1is the resistivity, and Mo 18 the vacuum magnetic
permeability. To close this system of equations, it 1s necessary to
specify an equation of state and eyuarions for the resistivity and mass
density. The equation for the resistivity wili be discussed later. In
this papet, the mass density is assumed to be constant in space and
time. This 1is consistént with the continuity equation for the mass
density. The equation of state will be a consequence of the
simplifying assumptions that will be used to reduce the system of

magnetohydrodynamic equations.

>



Standard tokamak ordering allows the reduction of the resistive
magnetohydrodynamic equations to a set of two partial differential
equations 1n -two unknowns. It 1is assumed that € = a/Ro << 1, where a

and R, are the minor and major radii of the torus, respectively. The

toroidal field perturbation is given by

B, = e23, (5)

where + and o denote perturbed and unperturbed quantities and f is the
toroidal angle. Contributions only to the 1lowest order in € are
considered, thereby eliminating the fast megnetohydrodynamic time scale
associated with the Alfven waves propagating in the poloidal direction.
A second assumption is introduced when the calculations are restricted
to low B plasmas (i.e., B = 62). These two hypotheses in cylindrical
geometry allow the toroidal component of the fluid velocity to be
neglected and imply that the fluid is incompressible.

A detailed derivation of the reduced set of resistive

" magnetohydrodynamic equations based on the previously stated hypotheses

is given in Ref. 2. These equations in ‘dimensionless form are

3y w 0¥ 1030  10Y¥ 36 20
— I - EY e e e e - —
5"t "k csrrmtriear T (6)

20 , 136 30 _ 30 13U _ 2 (13\{1“; av 197 ”c)
dt r 36 dr Odr r 936 ’

(7)

v=vh, | (8)

and



g =V (9)

Here r, 6, and T are the_usual toroidal coordinates (radial, poloidal,
and toroidal, respectively). Because all toroidal effects are

neglected, ¢ =-£i, where z is the coordinate along the cylinder. All
o

lengths have been normalized to the minor radius a; the resistivity to

gsome typical value‘; [in general,.; is such that n(o) = 1); and the

time to the resistive diffusion time T, = (azuo)/n. The functions V¥

and ¢ are the poloidal flux and velocity stream functions, normalized

to azBCo and aZBCO/Tr, respectively. They are related to the magnetic

field and fluid wvelocity by

> s -~ ~
B = BCO(-eVlW XZ +2T) (10)
aund
+ a.” - .
v = 2 x D), (11)
Ty .

where Z is a unit vector in the toroidal direction and the subscript 1

indicates perpendicularity to . The toroidal current density is

s (12)

and U 1is the toroidal component of the vorticity. The parameter S is

the ratio of the two time scales involved in this problem: S =



S

Tr/Thp’ where Thp is the poloidal Alfven time, or the time for Alfvén
= 1/2
waves to propagate in the toroidal direction, Thp = Ro(uopm) /BCo‘
This reduced set of three-dimensional equations was first derived

by H. R. Strauss8

for rectangular geometry with the resistivity term
omitted. He wused them to study the nonlinear evolution of ideal
magnetohydrodynamic modes. Assuming helical symmetry, these equations
reduce to the onmes derived 1in Ref. 9. These equations, in
three-dimensional cylindrical form, have been used in Refs. 1, 2, and
10 to study the nonlinear interaction of tearing modes in cylindrical
geometry.

fwo different models have been used for the resistivity. The
simplest assumption i1is to take n independent of time throughout the
whole evolution. In this case, its radial dependence 1is obtained by
assuming a constant loop voltage in the equilibrium and not allowing

the magnetic flux to evolve in the absence of tearing mode activity,

which implies

JC(O)
n(c) =n(0)mﬂ- (13)
g .

A second possibility 1s to 1introduce a self-consistent resistivity
evolution through the electron heat conduction equation

aT > > >

3 e . _ 2 2 2

and to use the Spitzer relation between resistivity and electron

temperature
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o "3/2 LS
n Te . | (15) x

In Eq. (14),

- v, ~ (16)

<
1]

n, is the electron number density, and ¥X; and K; are the parallel and

perpendicular heat conduction coefficients, which are assumed to be

constant. In dimensionless form, Eq. (14) becomes

3T . 136 3T 3% 1 3T _— =22 2

—_— et e e _— e e = VET + VET + J. 1

5t T 36 3r  Br r 36 _ XuVit T XLVt T ensy o (17 }
where x| = (ZTrK")/(3R§ne), X1 = (ZTrKi)/(3a2ne), and g =

(fﬁkrB;o)/(thcRo). T has been normalized in =such a way that n = T'/z.
The reduced set of magnetohydrodynamic equations contains three
dimensionless parameters: S, ;ﬁ, and ;l. From the point of view of the
numerical calculations, the pa‘r'ameters S and ;" play‘a critical rolc.
Realistic plasma parameters for a device like PLT are S = 107 and ;h/;i
= 109. These values indicate the disparity of time scales that must be
followed 1in the calculation. This 1s. one of the most serious
difficulties 1in solving the problem numerically. A three-dimensional
code, RSF,3 has been developed to numerically time-advance Eqs. (6), -
(7), and (17). The quantities Y and ¢ are expanded in Fourier series

in the toroidal and poloidal angles to give
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Y =12 ) 18
i Yon () cos (md + n g) (18)

and
) =m§n ¢pn(r) sin (w0 + nz) , (19)

and a finite difference scheme is employed in the radial wvariable.
This has proved to be more efficient than a previous scheme2 that was
based on finite differences in the three coordinates. The use of both
codes has allowed a careful checking of the numerics. More details on
numerics are given elsewhere.>

'The results presepted here use about 30 Fourier components,
although some cases 1include up to 60. The radial grid for high S
calculations has between 200 and 300 points. 1In general, a nonuniform
radial grid has been used to allow the grid points to be concentrated

where they are needed. For high S values, the typical mesh size in the

region where the grid is concentrated is Ar = 2.5 x 10_3.
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III. EQUILIBRIUM CHARACTERISTICS
In the cylindrical geometry 1limit, the tokamak equilibrium is
specified by a given safety factor profile q(r). For Eqs. (6)=(9), an

exact equilibrium solution can be written as

eq = 0
‘ r’dr’
e =) o
EW
Neg(r) = —— (20)
Jeq(T)

In the calculations presented here, the equilibrium has been defined
using either an analytical parameterization of the q profile or a
spline interpolation of a few radial values of q 1inferred from
experimental values of the electron temperature. For discussing the
stabllity properties of the equilibria , it 1s useful to parameterize

the q profiles in a simple way:

1/x
q A
q(r) = q(o) {1 + r2A [(q(—i)- -1]} . (21)

The safety factor profile is then specified by three parameters: its

value at the limiter gy, its value at the magnetic axis q(0), and ). ' -
For A = 1, 2, and 4, this parameterization corresponds to the peaked,
round, and flat profiles introduced in Ref. 11l. As an example, q(0) =

1.08 and q; = 4.2 have been fixed, and the corresponding profiles for A
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= 1, 2, and 4 have been plotted in Fig. 1. It 1is clear from this
figure that with increasing A, the profiles became flatter near the
magnetic axis.

As stated 1in the introduction, the main motivation for the study
of the nonlinear interaction of tearing modes 1is to understand the
mechanism of a ﬁajor disruption 1in a tokamak. It has already been

1,2 the nonlinear

found that for a 1limited number of eqﬁilibria,
interaction of the (m = 2;n = 1) and (m = 3;n = 2) tearing modes could
explain some of the characteristics of a tokamak disruption. This
paper will explore further the dynamics of this interaction by studying
a wider class of equilibria and using realistic tokamak parameters.,
However, because the toroidal effects are absent in the equations
employed, the range of q values will be restricted to a region where
these effects are not expected to be important. Therefore, only q
profiles with q > 1 will be considered, because for q < 1 the toroidal
coupling between the (m = 1ljn=1) and (m = 2;n = 1) modes could
certainly be as important as the nonlinear coupling. Also, the range
of q values corresponds to '"normal" tokamak operation, namely 3 < q <
5 and q(0) < 1.5. For th;s range of parameters, no more than two
linearly unstable modes 1in cylindrical geometry have been found,
namely, the (m = 2;n = 1) and (m = 3;n = 2) modes. This paper will be
mainly c.oncerried with equilibria in which the.(m = 2;n = 1) mode has
high potential energy and the nonlinear interaction of this mode with

the (m = 3;n = 2) mode is likely to be strong.
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FIG. 1. Safety factor q profile given by Eq. (21) for A =1
(—)y A = 2 (== == ==), and A = 4 (-=—-- ). At the origin q(0) = 1.08

and at the limiter qg = 4.2.
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In linear tearing mode theory, the potential energy SW of a mode
is proportional to A',12 where A” 1is the discontinuity in the radial
derivative of the flux function at the corresponding singular surface.

For an (m;n) mode, A’ is defined11 as

dwmm d¢mn
Amn = ;ifg (—dr— |r+ - —a—r— |r~ )/wi!ln(rmn) ’ (22)

where ron is the radial position of the singular surface, q(rmn) = m/n,

f
la
1+

and ry = §. For fixed values of q(0) and qp the value of A’ for

the (m 1) mode does not change much with A, as can be seen 1in

2;n
Fig. 2. The same figure shows that the A’ for the (m = 3;n = 2) mode
increases with A, making this mode linearly unstable for A > 1.5. For
both modes, A’ increases with q(0) and their stability properties are
very sensitive to q(0) when q(Q) is ~1 (see Fig. 3).

Thé nonlinear evolution of an (mj;n) tearing mode‘with m > 1, in
the single~helicity approximation, 18 no longer exponential with time
when the 1island width of the mode exceeds 1its tearing layer
width.§ The width of the magnetic 1island associated with the mode
increases linearly with tihe; and the mode saturates at a finite island
width.13 The saturated 1sland width is a measure of the level of the
instability in the nonlinear regime, and its magnitude can be
correlated with an experimentally measurable quantity,14 the poloidal
field fluctuation at the limiter. 1In addition to A", the saturation
island width for the (m = 2;n = 1) and (m = 3;n = 2) modes has been
plotted as a function of A in Fig.‘2. The saturated island width for
the m = 2 mode increases dramatically with A, 'and the m = 2 magnetic

island encompasses more than 20% of the plasma radius for A = 4. This
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FIC. 2. A’ and the ~“saturation 1$land: width W for the
(m = 3;n=2) and (m = 2;n = 1) modes as a function of \. The
equilibrium q profiles are given by Eq. (21) with q(0) = 1.08 and qp =

4e2e
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fact has been stressed in Ref. 15. The equilibria characterized by ¢
prqfiles with A near 4 have a high level of tearing mode activity.
Moreover, when A increases, the q profile becomes steeper bhetween the q
= 1.5 and q = 2 surfaces (see Fig. 1). This means that the surfaces
get closer to each other and the chance of a strong nonlinear
interaction between the (m = 2;n = 1) and (m = 3;n = 2) modes becomes
more likely. For these reasons, q profiles with A > 2 and profiles
with analogous properties will be studied in detail in this paper.
Profiles of this type have been experimentally measured before some
major disruptions in tokamaks.4’5 These will be considefed
specifically in forthcoming sections.

For the results shown 1in Figs. 2-3, the resistivity was kept
constant in time. 1In this case, for the parameterization of q given in
Eq. (21), the resistivity profile norﬁalized to 1 at the magnetic axis

is

QG A 1+1/A
n(r) = {1 + 2 [(q(’;)) -1]} . (23)

The resistivity at the singular surface for the (m;n) mode increases
exponentially with A : n(rmn) = [m/nq(O)]A+1. Therefore, the 1linear
growth rate for the (m = 2;n = 1) and (m = 3;n = 2) modes increases
with A not only because A’ increases, but also because the resistivity
increases. The linear growth rates for both modes have been plotted in

Fig. 4.
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FIG. 4. Linear growth rates for the (m = 2;n =3 1) and

]

(m = 3;n = 2) modes as a function of A for the same q pruflle as
Fig. 2. The value of S at the magnetic axis is 2 x 104 for all cases

considered.
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When the self-consistent evolution of the resistivity is taken
into account, there is no qualitative change in previous results for
realistic tokamak parameters. In this case, the parallel transport
term should dominate in Eq. (17), which requires ;ﬁ to be greater than
106. The 1linear growth rates are above the values obtained when theA
resistivity is kept constant in time. In Fig. 5, the (m = 2;n = 1)
growth rate 1is plotted as a function of ;ﬁ for a typical equilibrium at
S = 106. The broken line in Fig. 5 is the value of the groﬁth rate
when the resistivity does not evolve in time.

The nonlinear regime 1s not substantially modified by the
resistivity evolution if ;" > 106. In Fig. 6, the (m = 2;n = 1) island
width evolution 1is shown for different values of ;" and compared with
the case in which the resistivity is constant in time (broken 1line).
For increasing ;ﬁ, the continuous lines tend toward the broken line.
There apparently is a change of regime when ;ﬁ is too small. In such
cases, the convective term dominates the electron heat conduction
equation [Eq. (17)], the 2/1 magnetlc island growr fast, and does not
saturate. Also, modes with large m that otherwise ére stable become
linearly unstable. This change of regime is also apparent when Lhe
temperature contours are compared with the (m = 2;n = 1) helical flux
contours. In the single-helicity approximation, the helical flux

function wg can be written in terms of the paloidal flux function Y as

* ' 1,2
vy = -p [%o + fic, Van c08 (80 + n )] -3 -1, (24)

where p = m/n and w; has been normalized to a?'B° + Plotted in Fig. 7

* -
are the wz contours and the temperature contours for two different Xy
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function of ;ﬁ (continuoué line) compared with 1ts value when the

resistivity is kept constant in time (broken line). The q profile is

the one considered in Sec. IV, and S = 106 at r = 0.
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FIG. 6. The 2/1 iéiand width as a function ot time for different
values of ;" with ;(1 = 0.1 (top) and for different values of ;1 with ;"
=3 x 106 (bottom). The broken line corresponds to the case with no
resistivity evolution. The equilibrium q profile and S value are the

same as in Fig. 5.
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single-helicity calculation.

become a function of the helical flux function.
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values. It should be noted that for the larger value of ;ﬁ, the
temperature becomes a function of w; only.

The effect of perpendicular transport on the nonlinear evolution
of the (m = 2;n = 1) mode is to reduce the growth rate of the magnetic
island. For classical wvalues of the perpendicular transport
coefficient (;l = 3 X 10'3), the effect is very small, but when ;l is
close to its estimated anomalous value (;i = 0.5), the saturation
island width reduces to approximately the value it has when the
resistivity is held independent of time (Fig. 6). If the value of ;l
is increased further, the reduction in the saturation island width is
substantial. These results agree with previous studies by
D. Biskamp.l6

The self-consistent resistivity evolution modifies the time scales
involved in the tearing mode evolution, but for realistic tokamak
parameters, there are no qualitative changes 1in the stability
properties of the equilibrium. Therefore, the main conclusion etill
holds: for flat q profiles near the magnetic axis (large 2), a strong

nonlinear coupling between tearing modes is likely.
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IV. NONLINEAR INTERACTION OF TEARING MODES: DESTABILIZATION OF THE
(m = 3;n = 2) TEARING MODE BY THE (m = 23;n = 1) MODE

1)

This section describes a typical case in which the (m = 23n
and (m = 3;n = 2) nonlinear interaction leads to explosive growth and
to stochastization of field 1lines. As an example, consider an
equilibrium characterized by a q profile obtained frém fitfing the
electron temperature profile measured in the PLT tokamak before a major
disruption.4 This profile is well described by Eq. (21) taking q(0) =
1.34, qq = 4.2, and A = 3.24, which is very similar to the profile
studied in Refs. 1 and 2.

The nonlinear evolution of the system will be considered with the
assumption that the (m = 2;n = 1) and (m = 3;n = 2) modes have ﬁeen
initially perturbed. The results are summarized in Fig. 8, where, to
simplify the drawing, the time evolution of only three magnetic islands
is plotted. For each helicity, the magnetic island width is calculated
as if only this helicity were present in the plasma. Each island width
is piotted in 1its proper radial location (see Fig. 8). TFor t < l.4

x 10-3 T the evolution of the (m = 2;n = 1) and (m = 3;n = 2) modes

r?
proceeds as 1if the othernmodes were not present. Thelr island widths
grow linearly with time, as in the single-helicity approximation.6 But
when two magnetic islands begin to overlap, the modes start growing on
a faster Uime scale. In particular, when the 2/1 and 3/2 magnetic

islands overlap at t = 1.7 X 1073 1 the (m = 3;n = 2) mode is

r,
strongly destabilized. Its nonlinear growth rate 1Increases (see
Fig. 9) and, in a very short time, At = 0.20 x 10-3 T, [of the order of

the inverse of the (m = 2;n = 1) 1linear growth rate], 1its magnetic

island width becomes >0.la. During this interval, many modes are
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FIG. 9. Nonlinear magnetic encrgy growth rate of the

(m = 23n = 1) mode (continuous 1line) and (m = 3;n = 2) mode (broken
line) for the same case as Fig. 8. The (m = 3;n = 2) growth rate 1is

compared with its value in the single 3/2 helicity evolution.
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nonlinearly generated, and about half of the plasma radius is covered
by overlapping magnetic islands, all growing significantly faster than
the original linear (m = 2;n = 1) mode. The current density profile
becomes severely deformed. This can be seen in Fig. 10, where the
toroidal current density profile is plotfed at the times marked by the
arrows 1in Fig. 8. Near the end of the calculation, because of the
generation of many modes, the current profile displays small scale
length fluctga:ions- These fluctuations are not due to numerical
effects. Each spike in the current covers at least ten radial grid
points with no sharp discontinuities, as is shown in Fig. 11. There 1is
a correlation between the structure in the current profile and the
location of the mode-rational surfaces. That the fluctuations are not
'numerical has been confirmed by redoing the calculation with different
time step sizes and different dénsities of radial grid points.

The temperature profile 1s also critically changed by the
nonlinear interaction of the tearing modes. This profile becomes
flatter in the region of island overlap, where Lhe magnetic field lines
have become stochastic. This can be seen 1in Fig. 12, where the
electron temperéture profile is shown at the same times as the current
density profile. The extent of the stochastic field 1line region at
different times can be seen in Fig. 13.‘ To generate this figure, the
magnetic field is taken at the required time, a slngle magnetic field
line 1s followed  several thousand times around the torus, and the
intersection of this field line wiih the poloidal plane 7 = 0 1=
plotted. These intersections are shown by dots in Fig. 13. Before the
magnetic islan@s overlap, there are well-formed magnetic surfaces. In

this case, all the 1intersection points lie on a closed line on the
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poloidal plane. When magnetic surfaces are broken, the dots are
scattered within a finite area, which represents the region of
stochastic field lines.

When a constant current boundary condition 1s used during the
evolution, a negative voltage spike at the wall is observed after the
strong nonlinear interaction of the (m = 2;n=1) and (m = 3;n = 2)
tearing modes begins. The severe deformation of the current density
(see Fig.A9) causes a decrease in the self-inductqnce of the plasma.
This is the main reason for the negative voltage at the limiter. This
change of voltagg when the constant current boundary condition is wused

can be easily calculated from the conservation of energy, and it is

given by

ave-Lt_m_ Ll %k _7J (25)

where E and E are the magnetic and kinetic energy, respectively; I is
the total current (negative in our normalization); ﬁJ is the change in
the rate of energy dissipation due to Joule heaLlug; and AV 1ie thae
change 1in the voltage.' The voltage is normalized to ;bto/“q' The
dominant term in the right-hand side of Eq. (25) 1is the first one,
which gives a very fast changeAin voltage at the wall [see Fig. l4(a)].
This voltage change is opposite in sign from the equilibrium voltage

(Veq

= 9,35 for the present equilibrium) and can be interpreted as the
change 1in wvoltage generated by the change of the plasma

self~-inductance. When a constant voltage boundary condition 1is used,
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this effect must be -inferred from the change 1in self-inductance in
order to compare with experiment.

A case which allows a better comparison with experiment has also
been numerically simulated. The only difference between these cases is
that for this case only the (m = 2;n = 1) mode is 1nitialiy perturbed.
Because the evolution is in cylindrical geometry, this mode evolves as
in the single-helicity approximation, saturating with an island width
Wop = 0.32a. After it 1is saturated, the (m = 3;n = 2) mode 1is
perturbed and the whole nonlinear evolution takes place as before. The
final results are practically the same as before, but in this case the
slow change 1in voltage at the 1limiter due to the (m = 2;n = 1)
single-helicity evolution can be contrasted to the negative voltage
spike produced after the nonlinear interaction of the (m = 2jn = 1) and
(m = 3;n = 2) modes [Fig. 14(b)]. The (m = 2;n = 1) mode was perturbed
at t = 0, and the (m = 3;n = 2) mode was perturbed at t = 0.97
x 1072 1_.

After the 2/1 and 3/2 1islands overlap, the number of modes
generated nonlinearly increases rapidly. Also, the magnetic energy of
the higher m and n modes 1increases, which 1leads tu shorter ocale
lengths. When these become comparable to the ion Larmor radius, the
validity of a fluid picture is doubtful, and thé calculation 1is
stopped. The proliferation‘of higher m modes can be seen by comparing

the spectrum of magnetic islands before the 2/1 and 3/2 islands overlap

to the spectrum at the end of the calculation (see Fig. 15).
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The nonlinear process just described does not change much when the
resistivity is kept constant in time instead of being permitted to
evolve. There 1s a slightly faster development of the nonlinear
interaction when the resistivity is allowed to change 1in time, with
values of ;ﬁ and ;l close to the experimental values. This effect can
be clearly seen in Fig. 16, which shows the plot of the time evolution
of the 2/1, 3/2, and‘-5/3 island widths taken from two numérical
calculations differing only in the way the resistivity evolves. The
observed 1increase 1in speed 1is of the same order as the increasg in
linear growth rates already mentioned in Sec. III (see Fig. 5).

The perpendicular electron thermal conductivity ;i does ‘not have
much influence on the nonlinear process when the classical value for

d.17 Using an anomalous

the perpendicular transport coefficient is use
value for ;l, smoother temperature préfiles can be obtained during the
calculation. Figure 17 compares for a fixed time the current density
and temperature profiles for two diffgrent valﬁes of ;l (;l = 0.05 and
;l = 5.0, respectively). The effect of ;l on the cu;rent profile is
not as noticeable as it 1s on the temperature profile, but there is a
clear tendency for the smallest scale length fluctuatlons in the
current density profile to disappear as ;i is increased.

Finally, another point to consider is the effect of the initial
cunditions on the nonlinear evolution, i.e., the effect of changing the
initial island widths W%/l and W%/z for the (m = 25n = 1) gnd
(m = 3;n = 2) modes, respectively. This is illustrated in Figs. 18(a)
and 18(b), where the nonlinear growth rates of two modes are plotted as

functions of time for different 1initial conditions. The nonlinear

growth rate for an m/n mode is defined as
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WIZ/1 = 0.0la. The q profile is the one considered in Sec. IV with S =

106. The resistivity is'kept constant in time. In both parts of the

figure, the 3/2 single-helicity result (W%/1 = Q) is also shown.
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Mun

1
m dt ’ (26)

(Y

Yon(t) =

where an is the magnetic energy of this mode, which in terms of the

dimensionless quantities is

1 ay 2 2
Mo (t) =72 [ rde [( d:m +1'L2. wt%n] . (27)
fo) . r

When the 2/1 and 3/2 islands overlap and 'the (m = 3;n = 2) mode is
strongly destabilized, Y32(t) increases and exhibits a definite peak.
This diagnostic was used to detect destabilization 1in previous work
(see Refs. 1 and 2). In Figure 18(a), Y21(t) and Y32(t) for three
different initial values of W%/l have been plotted, keeping W%/z =
0.01a. Decreasing W%/l delays the  destabilization  of the
{(m = 3;n = 2). This results from the fact that the acceleration of
this mode takes place when the islands overlap, and it takes longer for
the 2/1 island to grow to the size (about 0.20a) at which this overlap

can occur. The analytic model presented in Ref. 2 tu interpret the low

S results predicts such a delay, and it 1s given by

1 2/1,° ;;2/1 2
At = ——.
t YZ? 2n [(WI ) /WI ] , (28)

where Ygl is the (m = 2;n = 1) linear growth rate and (w%/l)’ and w%/l

are the 1initial (m = 23n = 1) 1sland widths for two of the cases

considered. For the case shown in Fig. 18(a), Eq. (28) predicts At =
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1. 023 T, for the time interval between two consecutive (m = 3;n = 2)
growth rate peaks. This agrees very well with the numerical results
shown 1in the figure. 1Tt is also important to notice that the magnetic
energy of the (m = 3;n = 2) mode after the peak in the growth rate 1is
the same regardless of the value of W%/l. Therefore, the degree and
size of the field line stochasticity region at this time are also the
same.

In Fig. 18(b), YZl(t) and Y32(t) are plotted for several values of
w3/2 wien w2/l = 0.01a fixed. As predicted by the analytical model,
the position of the (m = 3;n = 2) peak is practically the same in all

cases, and qu(t) is totally unaffected. Thc differeulL values ot the

height of the Y3, peak result in the same final magnetic energy of the

~~
B
fl

(V8
..:;
n

2) mode in all cases. It 1s significant also that the width
of the Y39 peak 1s wunchanged. Thus, the results presented in this
section for a fixed equilibrium are independent of how the
pertufbations are initialized. The effact of changing the equilibrium

q profile will be considered in the next section.
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V. NONLINEAR INTERACTION OF TEARING MODES: PROFILE DEPENDENCE

The previous section concerned the nonlinear interaction of
tearing modes for a particular choice of equilibrium. This interactioﬁ
was particularly violent, and it 1led to magnetic field line
stochastization 1in a sizable volume of the plasma. This is not
generally true. This section analyzes how the interaction of tearing
modes depends on the q profile.

For the presént discussion, it is useful to use the
parameterization of the q profile given by Eq. (21). The results of
the nonlinear evolution of tearing modes will be described as a
function of q(0) and the parameter A. Throughout this section, gqp =
4.1 unless otherwise stated. When q(o) is between 1 and 1.5, only the
(m = 23n =1) and (m = 3;n = 2) tearing modes can be linearly unstable.
Thus, only these two modes are initially perturbed in our calculations.
The results of the nonlinear evolution do not depend on the size of
these initial perturbations, as has been seen in Sec. IV. Therefore,
all thé calculations presented in this section are based on the same
initial magnetic 1island widths of these perturbations (W%/2 = W%/l =
0.01a).

The equilibria considered can be classified in three groups. The
criterion for this classification 1is the nonlinear behavior of the
(m = 3;n = 2) mode. The first group includes equilibrium profiles for
which the (m = 3;n = 2) mode is either stable or has nonlinear growth
which is not affected by the evolution oflthe (m = 230 = 1) mode. For
such cases, the (m = 3;n = 2) mode saturates at very low level, W32 <
0.05a, and in practice only the 2/1 magnetic 1island is detectable.

That happens in general for 1 < A < 2 (region I in Fig. 19). If A 1is
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close to 1 and q(0) is also near 1, the (m = 2;n = 1) mode 1is also
stable.

The second group of profiles is characterized by the (m = 3;n =,25
mode being strongly destabilized during its evolufion' by the
(m=2;n=1) on a very. short time scale. A typical example is the
case described in the previous section. The equilibrium q profiles for
these cases are icharacterized by A > 2.5 and‘q(O) > 1 (region II in
Fig. 19). The destabilization of the (m = 3;n = 2) mode will be shown

to be mainly due to the coupling to the (m = 2;n = 1) mode through the

3) and (m = 1ljn = 1) modes, rather than through the

(m = 5;n

(m = O3n = 0) mode.

Finally, the third group includes cases that are between the other
two groups. The (m = 33n = 2) is destabilized on a slow time scale,
the destabilization essentially resulting from the deformation of the
equilibrium current by the (m = 2;n = 1) mode. This corresponds to a
narrow range of values for the parameter A, as can be seen in Fig. 19,
regionlIII. There is not a well-defined boundary between the three
regions.

In classifying the results of the calculations, it is necessary to
analyze them carefully. As a diagnostic for the destabilization of the
(m = 33n = 2) mode, the nonlinear growth rate of the magnetic energy of
this mode, 732(t), is used. Using Y32(t) allows a simple analysis of
the results and makes comparison with the analytic model presented in
Refs. 1 and 2 easy. The present analysis will be limited to the first
phase of destabilization, lasting up to the peak of the (m = 3;n = 2)
nonlinear growth rate. The reason 1is that only a few modes .are

11,2

involved at this time, which allows the analytic mode to be used to
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interpret the results. After that, when the growth rates increase very
rapidly (see Fig. 9), many modes are 1involved and the model is no
longer valid.

To distinguish the cases in which ‘the dominant destabilization
mechanism 1s mode coupling from the cases in which the destabilization
is mainly due to the deformation of the current profiie (quasi-linear
effect), the RSF code 'has been a wuseful tool. This code permiﬁs
inclusion or suppression, at will, of individual modes in the nonlinear
evolution. A.quasi-linear case can be run; it is analogous to the one
discussed in Sec. IV but includes only the m/n = 2 and m/n = 3/2
helicities.‘ In this way, there is no possibility of a direct coupling
between the two helicities, and each i3 aware of the other only through
the deformation of the equilibrium profile. Figure 20(a) shows that in
region II, the deformation of the equilibrium current does not explain
the (m = B;ﬁ = 2) destabilization. However, the opposite result is
obtained if the equilibrium q profile belongs to region III, as shown
in Fig. 20(b).

Such cases can be further analyzed by subtracting the quasi-linear
contribution [the broken line in Fig. 20(a)] from the £full nonlinear
growth rate of the (m = 3;n = ?) mnde ([the aontinucus 1line I1u
Fig. 20(a)]; the resulting function ;32(t) gives a measure of the
dcotabilization due to mode coupling. In Fig. 21, ;32(t) is plotted
for four different profiles, with q(0) = 1.08; qp = 4.1, and A = 2.25,
2.5, 3, and 3.5, respectively. To show the correlation between the
overlap of the 2/1 and 3/2 magnetic islands and the beginning of the
destabilization of the (m = 3;n = 2) mode, the time when the islands

touch in each case is marked with an arrow in Fig. 21. For A > 3.0,



47

ORNL-DWG 79-2559 FED.

EERARRSEEREEREERRERRRAR T T T |

700 | ' - s00 }- —
- .
E X==2.5

3

> 600 |- —{ a00 |- —
2 .
a
‘»

® 500} — 300 | -
w
2
C 400 —{ 200 |- —
I
[
2
® 300} — 100} —
(&)
x
o
Y 200 4 o
J \
3 \
Z 100 |- \\ —~{-100 |- —
N
& (a) \\ (5)
W ool tri il INTINL L 5eg | | | |

E 0 1 2 0 1 2 3 4

(t x 10%)/7, (t x 109 /T,

FIG; 20, Time evolutipn of the nonlinear growth rate of the
(m = 3;n = 2) mode exhibiting the peak due to the destabilization by
the (m = 2;n = 1) mode (continuous line). The case in which only the
2/1 and 3/2 helicities are included in the calculation corresponds to.
the broken line. The equilibrium profiles are given by Eq. (21), with

q(0) = 1.08, q¢ = 4.2, and A = 3.5(a) and 2.5(b), respectively.



4

48

ORNL-DWG 79-2558 FED
I l l I | I | ! |

400 —
300 —

200

732

100 —

(t x 10%)/ T,

"FIG. 21. The contribution to the peak of the (m = 3;n = 2)
nonlinear growth rate due to mode coupling. The equilibrium q profiles

are given by Eq. (21), with q(0) = 1.08, qp = 4.
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there 1is a clear destabilizing effect due to mode coupling. This is

characterized by the quantity

8 = [ v4,(t) dt

being positive. The case with A = 2.5 1s borderline, where g = 0. For
this case, the quasi-linear destabilization dominates. Finally, for A
= 2.25 the mode coupling has, if anything, a stabilizing effect, but in
practice the (m = 3;n = 2) mode is not significantly affected by the
evolution of the (m = 2;n = 1) mode.

In Ref. 4, an analytic model was developed to clarify the main
features of the strong destabilization of the (m = 3;n = 2) mode by the ..
(m = 2;n = 1) mode. The main assumption of the model is that only the
nonlinear coupling of five tearing modes (m = 2;n = 1), (m = 33;n = 2),
(m=5n=3), (m=1;n=1), and (m = 0O;n = 0) 1is required. This
assumption has been fully tested with the RSF code. 1In Fig. 22, Y32(t)
is compared for three cases: one with five modes, one with 29 modes,
and the single-helicity case. The main features of the (m = 3;n = 2)
destablillzation are present even in the five mode run. However, thig
run fails to give an accurate description of the last part of the
evolution, in which a stochastic region has been generated. As 1is
shown in Fig. 15, these final stages of the calculation require a large
number of modes. The results in Fig. 22 are for the q profile and
parameters discussed in Sec. IV, except that the evolution of the

resistivity io not included.
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FIG. 22. Nonlinear growth rate of the (m = 3;n = 2) mode for_a
calculation in which 5 modes were included (----) compared with the
same case with 29 modes included (—0m0m—)., Finally, 1t i3 also
compared with the case in which only the 3/2 helicity 1is included in

the calculation (== == ==).
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One of the predictions of the analytic model is that the width T

of the peak of the (m = 3;n = 2) nonlinear growth rate is

I = D, , (29)

where Yz? is the linear growth rate‘of the (ﬁ = 23n = 1) mode. " For S =
2 x 104, 13 different ¢ profile; for which the (m = 33n = 2) 1is
strongly destabilized have been studied. For each case, T  was
calculated as the width of the Y32(t) peak at half of 1its maximum
value. The mean value of T ng for all these cases is 1.44, the
standard deviation being 0.16. Although this model was derived for low
S, the numerical results indicate that the relation in Eq. (29) holds
for higher values of S, as can be seen in Fig. 23.

Equilibria that cannot be characterized by the simple
parameterization given by Eq. (21) have also been studied. The main
problem with the parameterization of Eq. (21) 1is that a single
parameter XA controls the flattening of the profile near the magnetic
axis, the slope of the equilibrium current near the singular surface,
and the value of the resistivity at this point., To decouple the
shaping of the profile neﬁr the singular surface from the behavior near
the magnetic axis, A can be made functionally dependent on r. This
allows more flexibility but makes a parametric study of the stability
properties more difficult. The result is that the high gradients near
the singular surfaces of the (m = 23n = 1) and (m = 3j;n = 2) modes,
more than the flattening near the magnefic axis, makes the interaction
strong between these two modes. In general, it can be coﬁcluded that

the interaction between the two modes will be very strong if, in the
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inverse of the (m = 2;n = 1) linear growth rate. The calculations were

done for the q profile discussed in Sec. IV.
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nonlinear evolution, the magnetic 1slands associated with them can

overlap, that is, if
r - <.l(w + Wahh)
21 32 2+°21 32/

where Ton is the position of the singular surface for the (m;n) mode

and Won 18 1ts saturated island width 1in the single-helicity

approximation.
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VIi. COMPARISON WITH EXPERIMENT

Many of the features of the strong nonlinear interaction of
tearing modes described 1in preceding sections are similar to the
characteristic features of a tokamak disruption. The detailed
calculations presented in this paper give stronger support to the

suggestion1

that this interaction is the dynamical mechanism
responsible for some tokamak disruptions. If the width of the peak of
the (m = 33n = 2) growth rate I' is identified with the characteristie
time scale for the nonlinear process, then I' can be compared with the
experimental disruption time, taken to be the width of the voltage
spike. As previously reported,18 this comparison was favorable when
extrapolated from low S results. The present results confirm that even
at large S, I' is of the order of the inverse of the (m = 2;n = 1)
lineér growth rate (Fig. 23). This type of scaling agrees with the
experimental disruption time for present-day tokamaks. 18

A more detailed comparison of the present resuits with experiment
would require knowledge of tho oxporimental current density profile
prior to a major disruption and of the mode structure before and during
a major tokamak disruption. In a few cases, some indirect knowledge of
the current density profile can be gained through the measurement of
the electron temperature profile.[”5 "Also, there is ample experimental
evidence of the prcocnece of a (m = 23n = 1) mode before major
disruptions. However, no details are known about the modes involved

during the disruption. Thus, only a partial comparison can be made

with experiment.
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Two cases 1in which there is detailed'measurement of the electron
temperature profilé before a major disruption Qill be considered. The
first case corresponds to a major disruption in the PLT tokamak.? The
equilibrium q profile considered 1in Sec. IV was obtained from the
electron temperature profile measured in this case. The values of the
parameters S = 106,;u = 107, and ;l = 0.05 are close to the values for
this experiment (S = 107, ;ﬁ = 108, and ;l = 0.005). The results of
the calculation show agreement with the experimental
observations:- poloidal asymmetry due to the presence of the odd m
modes and the right order of magnitude for the time scale of the
process (I' = 200 Thp). However, no experimental information exists on
the mode number of the odd component observed during the disruption,
making a complete comparison impossible. The second case'considered is
a major disruption produced in the Impurity Study Experiment (ISX-A)
tokamak by a deliberate tungsten injection. Here, an electron
temperature profile measurement was obtained prior to the major
disruption.5 This electron temperature profile [as well as the
toroidal current, see Fig. (24)] 1is slightly hollow, Put this
hollowness is not essential for the résults obtained. The
(m = 2;n = 1) and (m = 3;n = 2) modes are linearly unstable,‘and their
nonlinear evolution 1is similar to that of the previous case. The
results for this case have been summarized in Fig. 24, which shows the
time evolution of the magnetic islands énd the voltage at the limiter.
In this case, experimental information on the magnetohydrodynamic modes

during the disruption is also lacking.
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VII. CONCLUSIONS

The results presented here indicate the following:
(1) The nonlinear destabilization of the (m = 3;n = 2) mode by thé
(m = 2;n = 1) mode has been confirmed for a wide set of equilibria.
There 1is now clear evidence of this effect and of its consequences
(generation of many islands of different helicities, field 1line
stochastization 1in a sizable plasma volume, and negative voltage spike
at the limiter).
(11) The time scale for this process ?s of the order of (YZl )—1, but
its precise value depends on details of the dynamics such as
temperature effects. This time scale holds even at large S (106)-
(i11) This mechanism could be responsible for major disruptions in
tokamaks. It appears to be consistent with present experimental data.
However, to confirm this mechanism to the exclusion of others, more
experimental information is necessary, particularly on the
magnetohydrodynamic modes involved in the disruption.

Finally, it should be noted that for a more complete understanding
of the nonlinear interaction of tearing modes 1in tokamaks, it 1is
necessary to incorporate toroldal and finite B effects. This effort is

currently under way.
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