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ABSTRACT

The focus of this paper is the development of a steady-
state (long-term) characterization of the market allocation
process under uncertainty in prices of delivered products.
The -generic method has been developed with a view toward
incorporation of the methodology within large-scale energy
models such as the LEAP model of the U.S.DOE or the TESOM
model of Brookhaven National Laboratory.
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I. INTRODUCTION

Market penetration from a general perspective is the
gradual substitution over time of a new commodity for one or
more existing commodities in satisfying basic consumption or
production needs. The common measure of penetration is the
fraction of the available market serviced by the challenging
commodity (i.e., its market share) for each time point considered.

Traditional analyses of market penetration models have
focused on the replacement of exfsting processes by technolog-
ical dinnovations which usually reduce unit costs by increased
efficiency of utilization or the gti]ization of less expensive
materials. Hurter ‘and Rubenstein] provide a recent exten-
sive review of market penetration literature while Condap
and Kydeszhave related the Decision FocussInc. (DFI) market
allocation representation to past work. Most of the traditional
market penetration approaches emphasize either behavioral
factors (Bass3) or economic and technologic factors
(B]ackman,4'6 Mansfie]d,7 Fisher and Pry,8 and

Peterkag).

Few have introduced the concept of uncertainty
in delivered prices. Variations in the prices consumers face
can.be due to differences in transportation or delivery costs
or to market imperfections or institutional barriers. These
variations can be substantial,as in the delivered price

of No. 2 home heating oil, which varied in 1979 from $0.60

per gallon in oil refining states such as New Jersey to well

over $2.00 per.ga]ﬁon in parts of Alaska where it has to be



flown in. The differences here are primarily due to trans-
portation cost differences. Further, an accounting framework
‘must be established which reconciles the existence of appar-
ently cost ineffective technologies such as solar heating.
Two recent exceptions to the standard approaches include
the Industrial Sector Technology Use Model (IS-TUM)10
developed by Energy and.Environmenta1 Associates and Peterka

and Fleck's mdde1.]]

ISTUM examines the diffusion (penetration)
of industrial technologies usina a probabilistic approach, The
cost of a technology is derived from the costs of the com-
ponents (building blocks) of ;hat techho]ogy, each of which is
defined as an exponential probability distribution. The choice
of exponential distributions was motivated in part by the ease‘
of integration of the resulting expression for market shares.
The penetration is tempered by behaviofa] lag adjustments in
market penetration, growth in industrial demand,and retirement
of old vintage stocks. The choice of exponential frequency
distribution is appfopriate for life-death processes and'igsues
of reliability but appears inappropriate for characterizing cost
frequency distributions since variations in transportation costs
induce peaking at some non-zero value. The norma],.gamma o;
Weibull distributions appear more appropriate.

Peterka and Fleck exémine the dynamics of substitution
via a logistic substitution model. .Fleck views the diffusion
of a technology as a social learning process under constraints

and usesa stochastic approach to define the diffusion process.



The weak point of the theory is that the critical parameters
have to be measured after the process has begun and are not
reducible to other measurements which could be made béfore the
penetration is initiated.

Peterka follows a more classical route taking economics
as a driving force. He assumes that an industry has to expand
to generate profits. The substitution is driven by differential
growth rates, which are driven by differential profits. Although
the treatment of Peterka is general and incorporates a Bayesian
statistical apbroach,it contains one potential weakness in that
the differential profits are assumed to be constant over long
periods of time in order to induce well-behaved logistics.

Our focus in this paper has been to develop the steady-state
(long-term) characterization of the market allocation process
under<uncertainty} assuming that prices are independent random
variables as a first order approximation. We derive the
resulting market sﬁares formulation for the general N product
case where prices are assumed normally distributed. We then
derive similar resu1t§ for the two product caée for uniform,
gamma ahd Weibull distributions and have provided several test
cases to illustrate the sensitivity of market shares to the

choice of distribution type.



I1. MATHEMATICAL PRELIMINARIES
Useful definitions and identities are summarized here
to facilitate the descriptions and derivations cf the
probabilistic formulation to market shares in the following

sections.

. Definition 2.1. If X is a continuous random variable then

the cumulative (probability) distribution function F(x) is
defined by the relation | |

F(x) = Pr{X € x; x is real valued}. _ (2.1)
In other words, this is the probability that the random

variable X is less than x.

Definition 2.2. If X is a continuous random variable and
F(x) is the cumu]gtive density function, the probability
density function (p.d.f.) of X, p(x), is defined by the
relation
X
F(x) = J p(u)du for all real x. , (2.2)

- 00

Definition 2.3. If X is a continuous random variable with

p.d.f. given by p(x) then the éxpected value of X is given by

E(X) = f xp(x). . | (2.3)

- 00

Note that the expected value of any continuous function

of x, q(x), is given by

E[q(x)] = jmq<x)p(x)dx. (2.3)

- 00



12

See Hogg and Craig for a thorough introductory

discussion of the probability and statistics.

Definition 2.4. A characteristic function, f(t) of a

cumulative distribution function F(x), with p.d.f. p(x), is
defined by the relation
f(t) = J exp(itx)p(x)dx . (2.4)

-00

Definition 2.5. The Fourier transform]3 of a function

g(x) is defined by

G(t) = Flg(x);t] =

Jmexp(itx)g(x)dx. (2.5)

-0

3 |-

Definition'2.6. The inverse of’the Fourier -transform

G(t) s defined by
g(x).z-_l: fmexp(-itx)G(t)dt. (2.6)
V2m
~Note that f(t) can be redefined, 1n view of (2.5) and
(2.6)~as. .

F(t) = (vZm)FLp(x)stl. (2.7)

We now provide some useful definitions or facts from
the theory of generalized functions. The reader is directed

to Sneddon]3

for a more detailed diséussion of these
facts. It should be noted that the word "distribution"
has a different meaning for generalized functions here than
it does for probability distributions. Generalized func-

tions, defined below, are used interchangeably with

"distributions" in gehera]ized function theory.

- 5 -



~Definition 2.7. The space, L, of test functions of rapid

descent is the space of functions for which each member, ¢,
of L and its derivatives decrease to zero faster than every
-1 1

power of | x| For n = 1, e.g., ¢(x) € R', this condition

can be written in the form

x"e K (x) ) s c (2.8)

k
for all non-negative integers m and k and for all values
ul x. If ¢(x) is an n vector valucd function in the set of

reals, R", it will be useful to denote the partial deriva-

tive by .
8k1+k2+...+kr ( K
: O(XqsXps.wesXx, ) = D o(x)
X laxsz L ax " 1772 n .

where K = (k1,k2,...,kn). The equivalent condition to

(2.8) in R" is

1X]™- 108 (x)] < ¢

m. Kk (2.9)

13

(See Sneddon, ° pages 20-22.)

The function e * , for example, bclongs to the set of
functions of rapid descent, L. In general, if f(x) belongs
to L, then f(k)(x) and the Fourier transform F[f(x),t] also

belongs to L (see Ref. 13, p.490).

Definition 2.8. If f(x) belongs to L then the Dirac delta

function, 6(x), is defined by

[wa(x)f(x)dx - £(0). (2.10)

-0



The derivafives of the Dirac delta functions are defined

in a similar way.

Definition 2.9. If f belongs to L and 6“d(x)represents the

k-th order derivative-of the Dirac delta function, then é(k)(x) is

defined by
Iwé(k)(x)f(x)dx - (-1)k jws(x)f(k)(x)dx

- 00 -0

= (-1%e k(0. o (2.17)

Definition 2.10. If f(x) belongs to L, then two functions

p(x),q(x) "are equal in the space of generalized functions"
if and only if -

Jmp(X)f(X)dx = qu(x)f(x)dx -(2.12)

-0 -0

for all f(x) which belong to L.
The following useful relations can easily be derived.

The parameter o is assumed to be a real scalar.

Flel®%,t] = /27 s(t+a) (2.13)
Jmcos(d+t)xdx = 1§(t+a) ‘ (2.14)
0 . ‘ )

o {(a+t)_];t  -a

j sin(o+t)xdx = , (2.15)
0 0 y t = -a

Jiup(-itx)dx = exp(-ity) [n8(t) - i/t]. (2.16)
! _

Finally, we give the Poincaré-Bertrand formula

14

(Tricomi, p. 172) since it will be used in later deriva-



tions. The function ¢(t,k) is assumed to be Holder continuous:

® dt d(t,x) o _ 2 ® o(t,x)dx
J T-t, rx—t dx = -m (b(to,to)‘l'rdxf *(T_im (2.17)

-00 -0

ITI. _STEADY STATE MARKET SHARES

We present in this section a general theoretical deri-
Qation of ‘equations which describe the static market
shares.of multiple competing products in a probabilistic -
framework. The probabilistic approach is reasonable since
it permits the quantification of variations in price due
to (i) different regional costs of transportation, (ii)

- differing regional taxing policy schemes, (iii) imperfect
consumer information/behavior, (iv) differing pricing
schemes,aﬁd (v) imperfect substitution potential.

The case we present here rebresents the steady state
market shares or the case where the market can adjust
immediately. Lag time can be incorporated into the
adjustment process exogenously.

Consider a market for which the prices of NI products
are random variables (X1,X2,...XN) with probability density
functions f1(xl)""?fN(XN)‘ If there is any correlation
between prices for these N products then a joint probability
density function f(x],xz,...,xz) describes the price inter-
relationships. An important assumption for the derived
model of market shares asserts that consumers act rationally

by purchasing the cheapest priced good "known to them."

- 8 -



Another important assumption asserts that, in the steady
state, sufficient capital will be invested to build the
industry to satisfy the prescribed market shares. These

assumptions imply that ‘the market share of the i-th product,

Sys s defined by
Si = f dxii dxj:..J f(x],xz,...,xN)de (3.1)
-0 . X4
- 1 2
J#

~ v

X, deT;ted
for i = 1,2,...,N.

The Case for Three Products

For the three product case, the p.d.f.'s can be

viewed as shown below, and

S] = f dx]J.dxéf f(x1,x2,x3)dx3. | (3.2)
- X1 X1

—

Probability Density

Figure 1. Probability Density Functions
Three Product Case



Assume that X],XZ‘,X3 are independent random variables;
this ignores the cross price effects and presumes that
price is predicated on cost. The Fourijer transform and

its inverse are defined (see Section II) by

S R A )
Filty) = o= f egp(1tjxj)fj(xj)dxj (3.3)
for 3 = 1,2,3;
1 (" . -
f. . = —— - X . ] ydt . .
§0x5) = o= f exp(~1t x;)F () dt; (3.4)

for j = 1,2,3.
If we introduce fj(xj), defined in (3.4), into the
expression for 51 in (3.2) and use the independent random

variable assumption we get

3 ;o [+
- 1 :
Sy = (/55] f F](t])dt]f exp(-1t]x])dx]

-0 - 00

. f F2(t2)dt2{ exp(-itzxz)

) f F3(t3)dt3f exp(ityxy)dt,. | (3.5)
X

- 00

1

Substitution of equation (2.16) into (3.5) yields

3 o YY) =)
_ (] . ,
Sy ¢ (‘ﬂﬂ] f F](tT)dt]f exp( it, 1)dx]f F2(t2)exp(1t2x])

- 10 -



Using the identities of : (3.6) yields

Sq= [7%%]3JwF](t1)dt]J exp(;it]x])dx][sz(tZ)exp(4it2x])

-0 -00 -0

(o]

ﬂpg(o)[na(tz) tz]dtz
I wa (t,)dt Jméxp(-it1x )dt1JwF2(t2)eXp('it2x1)
(a1 T ] -

-0 -0 - 00

. B B °°Fs(ta)exp(-itgxl)dt3
[rotep)- ety | o

- 00

3 o ®L Ly . :
-im % _Fk(O)J Fﬁt])dHJ fiiiggﬂii-f exp[-i(t]+tj)x]]dx]

s J o o oo

B ® ® . (Tdt, [TFa(ts)Fa(ts)
: - J F](t])dtlf exp(-1t]x])dx]J Vf;I 3 3t

3

{exp[—i(t2+t3)]dt3}'.

If z = t2-+t3'then this becomes

3 ' e
S, = [;%%j {2n3F1(0)F2(0)F3(0)f12n2F3(0)J Fqe(ty)dt,

-C0

[ Fa(ts)
fi“_f;" 6(t1+t2)dt2 ;

-0

- 12ﬂ2F2(Q)fmF](£])dt][mF3(t3)6(t1+t3)dt3

dt, z-t2) Fal tz) s
- [»F]( ])dt][mexp( 1t X )dt fw (w 7%, 7 xp( 1zx])dz.

-0 -00

- 11 -



If we interchange the order of integration in the last

integral by using equation (2.17) we obtain

g , s Fi(ti)Fa(-ty)
517 ?75%;?{2“ F1(°?F2(°)F3(°)+12Tr F3(q)f £

-0

wiznery(0)[ Faltalfalots) gp

oo

[oe]

-JWF](t])dt]J

- 00 -0

exp(-it]x])dx](-n2F3(O)F2(O)

dt],

- L {ener ()R, (0)F (0)+izn?Fy(0) [ FrltalFalta) g,

(/27) 3 3 J
+ iznze(o)f Fl(tl):f('tlldt]

- 00

£ 21°F 1 (0)F,(0)F4(0) - [ Fy(e)dt,

- 00

t:

. quwh(z-tz)Fz(tz) dtz]UWEXPF-"(H*Z")’X]]dX]]dZ}

L to(z-t,)

=00 - 00

- L {ontr 0)F (00 (o) sizntr (o) | FrltalE2(oEa) g,

(v2rm)?®

-0

in. 2 “Fa(ti)Fa(-t1)
+ 1217F,(0) | aloti) g

+ 2ﬂ3F](O)FZ(O)F3(0)-2ﬂJwF](t])JwF3(

-0 - 00

- 12 -

-ty -ty )Fa(ta) 4
-t ¢t

2 -



If we define

[ = J F‘](t])f Fa(--t;-tz)Fz(tz)dt2

t2(-t1-t2 )
and make the change'of variables, t2 = -z, then
2 [7 “Fa(-ty+z)F,(-2)
I f F](t])dt]J tpzlfeloz) g,

UIOOdZ_Z[wFl(tl)FZ(:t%-)-fZ:3(-t‘1+Z) dz + 'nzF‘](O)F,Z(O)F:S(O)-

-00 -0

Finally if we introduce I into the last equation for S] we

obtain the expression

- 1 3 c . » Fi(ti)Fj(-ty)
i (/2?)3’{2“ Fl(o)'2(0)F3(0)+12“2k=g,3Fk(0)£ —n
ik
_ z_ﬂrgzéFz(_z) rFl(tl)tFls_(z-t1+Z) dt]} . (37)

-Now we can easily obtain.52,53 by interchanging the index 1
with 2 or 3 in (3.7):
1

S, = ———42m3F (0)F,(0)F,(0)+i2n?
) (m)a{ m2F (0)F,(0)F 5(0)+i 1,
J#

. mFZ(tl)Fj("tl) - 4°°d_z
J‘ = dt, - 2m| 5

- 00 - 00

. ro FZ(tllI:Eg_tl+Z) dt]} ,

- 00

- 13 -



- 1 3 i 2 ‘
s (ﬁa—{zn F(0)Fp(0)Fgl0)wizn® T Fy(0)

N o ik
[Ealtfitet) g
con| Lry(en [ BlBIRCRI) g b (3.9

The N Product Case
The N product generalization to market shares can be

found by following the samc steps as in the case N -3, then

S T I i W N Rt
CY—— .,” . + 3.
" (vZE) jl=|1 J k=1 KoM

where m=1,2,...,N, and

K
f———/"_—_\
Kk N-K N
Ay o = (<1)°m . ) Z[ T Fy(0)
.0 J#m p=3+1 g&=p+] N\UFJ,psls.0.N
k
Rty “Fo(tp) “Folte) 1 ...
J E dt, tp dt Tdtz

: J J Fnl-tytpmto=. oo tn)Pn(tnldtn oy, v (3.1)
n

-00 =CO

Equations (3.10), (3.11) become, for N=2, m=T,

S m[n F1(0)F,(0) + AT,
Ayq = —'i'rrJ FI(‘“%ZE(“)dtZ (3.11a)

- 14 -



Similarly for N=3, m=1 wé have

) .
R . )
3 (/2;)3(“ Fl(O)Fz(O)Fs(O)fkzlAk,l] (3.12)
3 ©
= (-i)72 ~ F1(-tj)F3(tj) ,
Ayq = (-i)m jZZ[U’D’J_FU(O)U 1tj 1 dt
2 3 “Fi(ts) Fr(-tj-t )F‘(t )
= M AR B j=tp/Tpllp
Ayp ﬂjzz pz3[u j,pFu(O)]_L T d'tj_[o 2 dt |
J#1
' =_1T( -FZ'(EZ)dtZJ El('tz't%zFa(ta)dt:3 . (3.13)

We can easily see that equations (3.12) and (3.13) are

exactly the same as equation (3.7).

We conclude this section by showing that the market shares sum
Yy S; = 1.
i=1 !
For simplicity we will consider the case N = 3.

If we add equations (3.7), (3.8),and (3.9) we see that the

»

integrals

JmFi(t)Fj(-t)
t

dt

e

cancel and we obtain the equation

1 3
172" %3 f;g%;?{3‘ 2m*Fy(0)F,(0)F5(0)

- QII[J Q-ZAFZ(-L){ Fly(tl)i:f;tl;}-z)dt]

- 00 - 00

- 15 -



*dz
+f_z_[-‘

1 t,-2 1
wQE_ _ °°Fs(t1)F1(‘t1+Z)
+f 2 Fz(,z)f t dty |+ (3.14)

Consider the sum

[ = -f“fz(z-n ds J“mmm-wz)dt . J“fz(z-u iz

ti-2 1
. mFs(tl)Fl('t1+Z) ' | .
J T,z dt] (3.15)

and set -ty *+2z = u in the first integral in (3.15). Then

= _ “Fa(-2) “Fi(-utz)Fs(u) ! “Fal-2)
I J——Z dzf m du + -2 dz
. CFa(ty)F (-t +2)
J t,-2 dt]
C(PFal-z) (7 { 1
J Z d‘f Fpl-tyrz)F 3t g tT}dt] '

Hence, |

_[® FL (-t +2)F5(ty) :

I = J F2(—z)dzf 7] dt, . (3.16)

- 00 - 00

Consider also the integral

_ [TFi(-2) “ “Fo(ti)Fs(-ti+z)
I] = f —-—Eiimdz I 2 = dt

-0 - 00

= 'TTZF](O)}'Z(U)F:a(O) + det]JwFl('Z)F7(t])Fg(-t1+7,) dz

e I, z(t,-2z)
< on2E (0)F,(0)F5(0) + [ p(z) [ Frlipfisloztti) e
" - (3.17)

- 16 -



and if we substitute z for -z and t] for -t] in the last

integral we find that

= 2 - L [TFa(ts)Fs(z-ty)
L = -n?F (0)Fp(0)F5(0) + [ Fp(-z)az| Dbpfalzeta) g .

- 00 - 00

Set t, = z-u; then
L = -n?Fy(0)F,(0)F5(0) + | Fz-g-z)dzf Palz-u)fs (o) g,

- CO - 00

- n?F1(0)Fp(0)F4(0) - [ Fp(-2)az| Falzzulfalu) g

- 00 -0

Adding I and I]

1 +>I = ’TTZF](O)Fz(O)F3(O)

so that (3.14) becomes

| T Coan i |
S 45,455 - (/27?)3{3 2171 (0)F 5 (0)F 5 (0)-2n(1 + 1)}
= -—‘—-—{4 2m3F ., (0) -
- . Fo(0)FL(0)} . (3.18)
; I : .
If we use the re]§t1on Fj(O) = j 1f 2,3, then
(3.18) becomes
3
S, = 1.
j=1 9 _

- 17 -



IV.: MARKET SHARES IN THE CASE OF NORMAL
DISTRIBUTION FUNCTIONS

In this section we consider the special case of norma11y
~distributed price random variables. First, an
analytical method for the ca§e of three products (N =3)
is studied. The same éna]ytica]—procedure may be used for
the general case of N products. Finally a direct numerical
approximation is developed and the numerical results are
compared with the aha]yt1ca1 ones for the case N=2.
~Let
Fi(xy) = ﬁ expl-(x;-p)%/20 )1, . (4.1)

From Sneddon]3 we see that

F.(t.) = %f exp (it x;)fy(x;)dx;

“
e
=~

- 00

™
R U
= == exp(1tjpj)exp[ (Oj.?j)/Z]g (4.2)

=

We write equation (3.7) as

3
- 1 3 1\ E V& g2 g
S.l-(TZ?F{ZTT F](O)FZ(U)F3(0)+Z1T JzzF\](O)Ik-ZHI}
' k#J (4.3)

where
2 . (4.4)
I = foorZ('Z)dzfoorl(t)rs('t+z)dt
z t-2z

1f we introduce (4.2) in the first integral in (4.4),

we have 5k1 = ﬁk— 5], 0$k = 0%4—0E, and
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i exp[—itﬁk] - E_glk]
2 |

T ” t dt
2 ixp
_ _1_[ o1k J (1.5)
- 27 X X v .
where we have made the change of variable, t:=6§1" If we define
'] X [t2] . )
X). = —— | exp|- dt : 4.6
0 = = [exe[- (4.6)
then -
=1 X .
Q(x) —-7(1+-erf(¢?J] (4.7)
where (see ref. 13, p. 155)
2 4 2 '
erf(u) = ——f exp(-t°)dt = 1-erfc(u). (4.8)
Ve
0 .
From equation (4.6) we have
[ R 2
Q(x) = Wor f dEf exp(—%r - iyt)dy
']°° y2 X
= EF{ expﬁjr)dy f exp(-iyt)dt. (4.9)

Let t = -z+x, dt = -dz. Then

[eo] 2 [s0]
Q(x) = Z]—ﬁf exp(,-lz—- iyx) dyf exp(iyz)dz
-00 0

_ z]—nrexp(- ’%2 ”X)dy{"am +1} 

Yy
- 00 ( . yz]
_1, i (7 expllyx - : <
= E”FfFf ; dy. (4.10)
From (4.5) and (4.10) we find
Py 1
Q[ ] - = = I . (4.]1)

%1k 2 k
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If we use relation (4.7) in (4.11) we find that I

givén by

] Pk1 ]
I, = 5 erf[
k 2 V2 01k

To evaluate I in (4.4) we use the relation

(cf. Erdelyi et a].]s)

fm(ix)nexp(-azxz)exp(-ixy)dx

- CO
5 -n-1

=%2 ) a exp( yz-%i]nr(f%a']y)’
0 + Lo ] ol ]
)

n > -1.

0,

Making the change of variables t]-z = u in
(4.4) gives
{sz('Z)dZJwFl(U+Z)F3('U)du

z

- 00 - 00

1 o eXp(-'iZE)z - 022 ] d
(/75)3I z .

- g,(z+u)?

I

k

is

(4.12)

(4.13)

(4.14)

u

] (w exp(-izp2.) exn[ EL%E-]d
(vam) 2l z ‘

vfm exn(-iﬁalu)exp[- - OfZUJ

N

n

- 00

- 20 -

fw exp[i(z+u)prlexp |- —*——7————)6Xp(i“53)expﬁ

(4.15)



. ] " 8K 2 2
A Taylor expansion of exp(-oizu) gives exp(-ofzu) =71- ofzu * LQL%%l_+ .

. 2 n
(-1)" (Glﬁﬁ + ... and introducing it in (4.15) gives
. 2 2
etz enf g
_(/ﬂ)slf 2 i

o 2 2
2 . -
T du - 01( exp(-1zp21)expﬁgl%5sz
S 2 2 N . _ 2 2
-J exp(-iups1) exp(-gi%g—]du4-olrlprdzﬁzﬂeprgigiizdz

- 00 =00

. 2 2
-fmexp(-iﬁ31u)exp(--gl%iL-]u du - . . .} . (4.16)

-00

After using (4.5), (4.13), (4.14) we get

1 fn _*3_2_1_].1 (_p_iu] }
I (/?F)3{i er‘f{/E _— : eff o1 . et

From (4.16), (4.12),and (4.3) we can compyté the nominal
market share'S1. |

The previous method of evaluating the market shares can
be extended for the general case of N products. It is more
convenient, however, to use direct numerical methods for the
evaluation of market shares. Since we can eva]date the mar-
ket shares analytically, the numerical results and the
efficiency of the numerical method can be tested.

From equations (3.1), (4.1) we have
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V2T oj

2

Tyl ok e}

V2 0 j 03
Jj#i
i=1,2,...,N. (4.17)
Let us define
® , L.y 2
E(xi) = —:J———f exp(-iﬁl—g%l—1dx.. (4.18)
V21 oj X 2°j J
[hen
E(X,) - exp(-uz)du = 1 oerfe XiThy (4.19)
1 v 2 Y2 os '
Xi-Pj -
V2 o
where
_2 [ 2\ 40
erfc(u) = = exp(-t°)dt (4.20)
/T
u

is defined in Sneddon,]3 page 155,
There are several numerical methods for
evaluating E(xi);.see Abramowitz et_a1.16 We use
a simple numerical method, the trapezoidal rule, for
the evaluation of E(x.) and Si' If a function is piece-

j
wise continuous then the trapezoidal rule is defined by

b f f :
v = ni-0 4. " _nl - 4.21
Lf(x)dx h(z AR TR T BT ( )
where
b-a . _
= — Py = + Py .= f ’ J = O,], > N
h - tJ a+jh fJ (tJ)
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From (4.17) we have

P N o
:.i. - 2 = ]— - 2 .
51 = f exp(-u”)f(u)du, f(u) ;Eﬂ = Lﬁexp( t ydt,
'°°O. . j#i
where v = (ll—l + LN
95 V2 03

When the representation of f(u) is exact then the:
trapezoidal rule yields very accuraté results for the approxi-
mation of S, over the interval [-6,6] since exp(—uz)f(u)
has derivatives almost equal to zero for u < -6 and u 2 6
(cf. Dahlquist et a1.}7 p. 296). When f(u) is itself approxi-
mated then the trapezoidal rule will give an approximation of
order 0(h2), since v may become zero and the advanfaée of

having small derivatives in f(u) is no'1onger useful. One -

can use a higher order accuracy method for better results,

e.g., Gaussian quadrature. "In the code we have chosen a very
sma]] h (h = ??6%5) for the evaluation of the integrals in
f(u), and for the evaluation of S:» h = %g% since the error
Ais of greater order 0(h4).

Two Product Case - Example 1

Expected.Prices (51l _ Standard Deviations (oil
5] = 4.2426407 oy = 3.0
52 = 7.0710678 0, = 4.0

Market Shares (Si) (approximated)

S

1 (0.7141959334

5o

0.0000000000
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From (3.11a) and (4.10) we can obtain the following analytical

expression for S,, where 52]v= Py-Pys Oqp = Yol + ol :

012 7

_ofp2x) 21,1 _ P2y
sy = (B = g ere(Ru].

Finally we evaluate S, by using the tables of erf(u) given

in Abramowitz et a].,]6 p. 310, and compare:

S; = 0.7141962 (analytic).

Several other examplies are yiven below for different values.
of‘ﬁi, gy This provides infurmation on the sensitivily ouf
market shares to variations in expected prices and/or

standard deviations (variability).

Two Product Case - Example 2

Expected Prices (Bil - Standard Deviations (oil
5] = 1.5000000 0y = 1.00
Po = 2.5000000 0, = 1.25

Market Shares (Sil

S]'= 0.7339141395

S, = 0.2660856802
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Two Product Case - Example 3

Expected Prices (511 - Standard Deviations (oil

5] 0.50

52 = 2.5000000

1.5000000 94

1.25

2
Market Shares (S.)
=0.7711926108

51

S,=0.2288070444

2

Two Product Case - Example 4

Standard Deviations (o)

Expected Prices p.) i)

b, = 1.5000000 oy = 1.00
52 = 2.5000000 0, = 1.00
Market Shares (Sil
S] =0.7602497116
52= 0.2397501717
Three Product Case - Example 5
Expected Prices(ﬁil Standard Deviations (oil
5] = 1.5000000 o1 7 1.00
52 = 2.0000000 Oy = 0.50
P, = 2.5000000 o, = 1.00

Market Shares (Sil

S, =0.5935275848
S, =0.2458337014
‘53; 0.1606383466
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Ten Product Case - Example 6

Expected PriceS(Bil. Standard Deviations.(oil
51 = 1.000000 op 7 0.50
32 = 2.000000 0, = 1.50
53 = 3.000000 Oy = 2.00
P, = 4.000000 o, = 3.00
55 = 5.000000 Og = 4.00
56 = 6.000000 g = 2.00
F, = 8.000000 o, = 5.00
PS = 9.,000000 Oy = 7.00
59 = 10.000000 Og = 5.00
5]0= 15.000000 S10 " 2.00

Market Shares (Sil

w
1l
o

.34725
S, =0.15300
$.=0.09499
S, =0.10600
S, =0.11476
S.=0.00070
S, =0.05727
$S,=0.10174

§,=0.02404

S;,=0.00000

10
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V. AVERAGE PRICES.
The present practice in the DFI model is to pass a
price to the consumer which is the average of market share

prices. For N = 2 we have

p = S1P1 * S,Py- - (5.1)
Notice that this implies the average price faced by con-
sumers is greater than the minimum of the average prices
5],52. We would expect the actual average price to be
smaller than the minimum.of (5],52,...,5N) by the
"rational consumer behavior" assumption. The rational
consumer behavior assumption would require the average

price to be computed as

p. = 1.724\_iE(x1.|x1. S x5). . (5.2)

For the case of two products (N=2) (5.2) becomes

I

p E(x]lx] < x2)+E(x2|x2 < x])

" . 5.
f f X]f(x],xz)dx]dx2+-f f x2f(x],x2)dx]dx2 (5.3)

- X - X,
In the general case of N products we have

N o« pw % .
N = 5.4
P izl ( f .o f xif(x],x2,...,xN)dx]dx2...de. ( )
ST Xy X5

To gain somé insight into the potential price differences
rasulting from equaliun (5.2) versus equafion (5.1) we
will examine the case of two products for a normal distri-

bution in some detail. In the case of N products we will

- 27 -



develop a numerical code similar to the one for market shares.

Let us introduce relation (3.4) in

E(X]IX] < x2) = f f x1f(x])f(x2)dx1'dx2

. (f exp(-ixztz)dledt2
X1 ’

x1exp(—ix]t])dx]}dt]f F2(t2)

- 00 - 00 -0

I}
3~
—
—_—

8

N

—
——

+

o
~
—_
—_—
-8
x
—

[}

b
o
———

1

1o

x

—
‘—f
J—
g
o
x
pu—
————
oo
(-f
—

- mF,(0) - 1fw’F](t])Umx1e>_<p(,—1‘x]t])dx1] dty

-0 - Q0

. J,oo Fg(t?),exp(-'itle) dtz}

.tz

izi{""Fz(O)rFﬁt])Z“é'(t1)dt1";"'f Fylty)dty

- T -

. ® Fz(tz) !

1
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t12
--sz(o)F'](o)+wa1(“)§'§( Blgy - Bihloee i
+f t]—{F'](t])FZ(-t]) - F](t])F'Z( ) Hdt, (5.5)
Finally
Elxylx, € x,] = —1T1F2(0)F'](O)+[ F (tl)f;l( t)) dt,,  (5.6)
and -similarly
Elx,]x, € x;] = -1nF'2<o)F](0)+f Folt)Fal-t) gy (5.7)

If fj(t) is normal then

1 - i - - *
(0) = —, F.(0) = —— = [ xf,
Fi(0) = 2. Fi(0) = -5y, B fx ()
and from (4.2),
2,2
Fl.(t) = —l—exp(itﬁ.)exp(«Ojt ]{15.- o2ty .
J 2m - 2 . 737

Substituting the last equation in (5.6) we obtain

- 29 -



= exp(-itps; - g-ii]

= m _l_. 2 = = _ 2
Elxqlxy = xp] = 5+ 4 2n( T lipy - oytlhdt
et 2 2
- - _itn. . G312t Y}
LBy g m R (ither - ]
21T t
0'2 oo 0_2 t2
- =1 —i+n _932
S f exp(,1tp21)exp( 5 ]dt
et 2 .2
C g g exp(-ither - D5
i pr{f’fﬂf 3 dt}

iﬁ 12
0,” —92
= n . -1 _ 12
p]S] 2may2 exp( 20%2]

where we have used the known result,

2 2
_ 1 e exp[-it521 —946541
S, = 4 % - ’ -
1 2 21T[ t

- 00

If we use the symmetry of the problem we find that

2 _2
< = n . - _{.T_l___ __E..L?.:—:
Elxylxy S x,1 = Bys, VT exp[ 2°§2]’
2 -2
Elx,|x, £ x = PAS, - —22 - ex P 21]. 5.8
L 2| 2 ]] P2°2 V2T Oi2 P —2%11: ( )

If we add the equations (5.8) we get,

-2
5 = p.5§ s - J12 y4(.P32.
p p]5]+p252 /Z—HEXP( ] (5.9)

The implication for the algorithm is that the perceived
consumer price average is less than 5]S]-+5252 by an

amount proportional to the combined uncertainty, Cqp> and
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functionally dependent on the normal distribution. Conse-
quently, the final prices found by the model are likely to
be overestimates of the market clearing prices. This then
implies that the market is not in equilibrium.

For the general case of N products we use the same
direct nhmerica] method for the evaluation of the average
prices described in Section IV. The only difference in the
numerical approximation is that in (4.22) the function
exp(-uz)f(u) is now replaced by (uoi/?+-pi)exp(-u2)f(u).
The code developed here finds the market shares and
average prices for any arbitrary N. A numerical example
below shows the ‘agreement of the numerical method and the

analytical one for average prices.

Two Product Case - Example 7

Expected Prices(ﬁil ) Standard Deviations (oil
by = 4.24264070 | oy = 3.00
52 = .7.07106780 P =\4.00

Market Shares (Sil

5y = 0.7141959334
S, =0.2858038765
Approximate average price = 3.3512352,
2
= _ %12 _ P12 _
Exact = p;S, +‘p252 2 exp( g%?;] ' 3.3512337.
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VI. SENSITIVITY OF MARKET SHARES TO THE FORM
OF PROBABILITY FUNCTION

One of the important issues which arises when considering
probabilistic interpretations of market shares, and indeed any
model, is the sensitivity of the model to the type of proba-
bility distribution selected. Results that are not extremely
sensitive to the choice of p.d.f. imply that less care (or
empirical work) is necded to calibrate and use the model.
Sensilive results imply that grcat care must be taken to collect
and analyze the neéded data before the model can be usefully
applied. We examine the sensitivity issue byrderiving thé
market share formulations for uniform and gamma distributions.
The uniform distribution was selected for its simplicity, and
the gamma distribution was selected for its more
realistic representation of market'behavior.

The»implications are intuitively appealing. The results
are moderately sensitive to the choice of distribution. There
are substantial differences implied by the choice of unifofm
distributions as contrasted to either thé normal or gamma
distributions. Howéver, the market shareszre5u1ts for gamma
versus tHe normal distribution do not appear to be substantially

different for the cases studied. The details follow below.

Uniform Distribution
Consider the following probability density functions

(p.d.f.'s) (Figure 2).
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pdf

C]. C2 C3 C4

'Figure 2. Two Product Case; Uniform Distributions

That is,
1
c.. < x5 £ ¢
c,-Cy ° 1 1 3
flxg) =9 371 ‘
0 , elsewhere
1 c, $x, ¢
o _Jeq-cy ? 2 - "2 - *~4
2(x5)

0 , elsewhere. _ (6.1) .

The mean 5] and standard deviation 01 for the p.d.f. f]

defined in (6.1) are given by

- _ C3+C1

Py T T
2 _ (cs3-¢c)?

59 T T2

We repeat the definition of market shares for two products
(formula 3.1) below.
Sy = Jf1(x.l)dx1 ! f,(x,)dx,. , (6.2)

-0 x1

Substituting the uniform distribution. (6.1) in (6.2) we get
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1 Cj Cy
S] = J dx]J f2(,x2)dx2 '(x].s xz)

c,-C,
Ca X1
_ 1 Co Cy 1 Cs Cy 1
T C3-C; {I dx]f Cy-Co2 dx2+ J dx]J cu-cdeZ}'
Cy " Co C, X3

After integration this becomes

S, = ] (cy-cq)(cy-c5) - (cuea)” , (euzca)’) (6.3)
1 (.C3-C1)(Cu-C2) 2 71 4 ~? 2 2 J '
which can be rewritten as |
- LE;'C2)7
S1 % L3350,

Similarly, we find that

. . 1 (ca-c2)® _ (ca-c)® (6.4)

2 - (ACLF.-CZ)(-CSFCI) 2 24'01'02

Two Product Case - Example 8.

Expected Prices (pj) Standard Deviations (o;)
5] = 1.500 ' oy = 1.000
p, = 2.500 . o, 1.000

Market Shares (S;) (Normal distribution)

31 0.7602

I

52 0.2398

If we consider uniform distributions with the same expected
values and standard deviatinns, we can find c],c,L,,c,;,'c,| in
(6.3) from the formulas .

2
= . Ci*cCs 2 _ (c3~cy)
B R M
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cq -0.2321 Co 0.7679

o 3.2321

Finally the market shares for the uniform distributions can
be found from (6.3), (6.4), and (6.5):

S

] 0.8970

S

2 0.1031

Gamma Distributioh

The gamma distribution p.d.f. is defined by

aj ri-1
TT??T(uixi) exp(eaixi), x; >0
f(xi) =
0 , elsewhere (6.6)
. N - rs
where the mean of such a distribution is P; = a} and the
: ;
r.
variance is 0,2 = —1 .
i o 2

1 .
Notice that the p.d.f. is positive for X > 0 and zero

elsewhere, which implies that "free goods" are precluded.
The market share of product one is given by
Sy = f f](x])dx]J folx,)dx,, (6.7)

- 00 X1

Notice that

r(p) = { xp']exp(-x)dx.
. 0
If we assume the r. are integers then F(ri) =(ri-1)!. Sub-

stituting (6.6) into (6.7) (see Meye\r‘,]8 p. 195) we

obtain

- 35 -



o -1
- X
S] = I‘arl j' (U,-]X-‘)rl eXp( OL-\ ])dX]'{ 0L2 -——“—_‘—‘e(az 2) Xp("az Z)dxz

r(r,)
0 X1 7
0 Y'Z-] k
- ‘(rurlﬁf ()3 exp(ayxy g L @xplagry)lagny /K
0
ra raly ke g
= T kZO __Z—J xp T expl-(ogrop )Xy Jdxy
0
If we let (a]+aé)x = u then
Y'z—] er']” k r _-I+k
o e r 11K xp(ud
' Ml kb k! (bas) R
r, 1 -1k : , o
= —T—_T 3 B T(r,+k) . (6.6)
1 kZO k‘(a1+OL2)r1+k ! '

Weibull Distribution

The market allocation formulation within the Decision
Focus, Inc. (DFI) energy equilibrium mode1]9 has occasionally
shown some unusual behavior and.has prompted interest in deriving
the probabilistic formulation which is equivalent to the DFI

formulation. Static market shares in the DFI model are defined

by the relation

S; = (6.8)

where the p. can be viewed as the mean prices of some price dis-
tribution, the fi are weighting factors which indicate any
inherent bias by consumers under equal price assumptions, and

vy is the price sensitivity parameter.
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D. B. Reister and B. Phillips have independently shown
in unpublished technical memoranda that the DFI static market
shares formulation is equivalent to assuming that prices are

independent random variables from Weibull distributions of the

form

f(x) = ayxy']exp(-ax

Y)"

The mean price p and variance, o2, are defined by
5= o« T+ 1/y),

2

02 = o ¥/ Y0 (14 2/y) - T2(1 +1/v)].

Notice that'D(p) is positive for x positive, and the maximum
value of T(p) is attained in the interval pe (1,2). Reister
and Phillips have shown that the static market shares, usihg
the Weibull distfibution with identical Va]ues of v and

arbitrary ass reduce to

Loy Loy
= S j=1

We examine the behavior of the Weibull distribution and
relate it to the implications qu market shares.

For large values of y the quantities (1+1/y) and (1+2/Y)
approach one and o? approaches zero while the mean price»ﬁ

approaches one. For example, for values of y 2 20 and

0.1 £ a s 100,
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0.77 s < 1.09 and

ol

0.0023 < o2 £ 0.0045.

The current parameter values for y used in the DFI model belong
to the range (10,40). This implies that fuel prices from

all suppliers tend to $1.00 with very small variability. See

Figure 3, below.

pdf

[\ Increasing vy

>

Figure 3. The Weibull Density Function

In view ol these observations, it is not surprising when
small changes in mean prices provide Targe changes in static
market shares for large values of y. As an example consider the

two-product case below. Notice that a s]%ght shift of the mean

- 38 -



price would drastically alter the market shares due to the narrow

cost band implied by the price distributions. See Figure 4.

pdf

Figure 4. Sens{tivity of Market Shares for
‘ the Weibull Distribution with Large v.

Additional empirical study will be required to deter-
mine the most appropriate frequency distribution and resulting
market allocation formulation in the DFI model. Itvappearé, oﬁ
sensitivity grouﬁds, that the Weibull distribution with large y

is inappropriate for deriving the market allocation formula.
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Additional Examples

Two Product Case - Example 9

Assume that ry = 4.0, ro = 2.0 and ayp T Ay = 1, then

A

pdf >< ‘
e , \\
| - /\\\:g

Figure 5. Behavior of the Gamma Distribution.

From (6.6) the market share for product one is

S o {M ) Oirl-]otz ( )
== T(r + T(r,t1l }
1 T(r, (a1+u2)r1 1 (a1+a,) 1] 1

Hence S] = 0.19 and 82 = 0.81. Using the formulas for the

' P i 2y, 5. = L1 2= i
mean prices (P;) and variances (o;?), Pi = gr > 94 R
we find
Expecfed'Prices (pi) " Standard Deviations (o)
5] = 4'0 0'1 = 2.0
52 = 2'0 02 = /?
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Market Shares (Si) (Normal distribution)

S

1 - 0.2

S
2

Market Shares (S3) (Uniform distribution)

0.79

w
It

1 0.11
S, = 0.89

Two Product Case - Example 10 | -

We assume that r] = 3, r = 2, a; = 1 then

Expected Prices (pj) Standard Deviations (o)
Py = 3.0 : o, = V3
52 = 2.0 oy = V2

The market share of product one for the gamma distribution is

S] = 0.31 (gamma)

while the normal gives

S] = 0.33 (normal).

Evidently the market shares estimates assuming either a
normal price distribution or a gamma price distribution with
relatively few degrees of freedom give very sfmi1ar results.
The uniform distribution can give somewhat different results
than either normal or gamma distributions. For long-range

planning the differences .or errors implied may be insignificant.
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