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FOREWORD

The National Resource for Computation in Chemistry (NRCC) was
established as a division of the Lawrence Berkeley Laboratory (LBL) in
October 1977. The functions of the NRCC may be broadly categorized as
follows: (1) to make information on existing and developing computa-
tional methodologies available to all segments of the chemistry community,
(2} to make state-of-the-art computational facilities {hardware and soft-
ware) accessible to the chemistry community, and (3) to foster research
and development of new computational methods for application to chemical
problems.

Workshops are planned :s an integral part of the NRCC's program.

A workshop in the titled area was judged timely by key members in the
field and led to a planning meeting held February 23-24, 1979 at the
University of Utah at Salt Lake City. In addition to the co-chairmen,
Professor John Light, University of Chicago, and Or. Lowell Thomas, NRCC,
we were pleased to have the participation of Dr. B. Robert Johnson,
Aerospace Corporation, and Dr. G. Parker, University of Chicago.

As the site for this workshop, we sought Argonne National Laboratory
which has maintained active interest in the development of the NRCC. We
are indebted to Dr. Michael V. Nevitt, Deputy Director, Argonne National
Laboratory for making the ANL available for this purpose.

Finally, I wish to express my thanks to the co-chairmen for their
considerable efforts in organizing the workshop and in editing this

Proceedings.



The National Resource for Computation in Chemistry is funded jointly
by the Basic Energy Sciences Division of the U.S. Department of Energy and

the National Science Foundation.

William A. Lester, Jr.
Director, NRCC
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ALGORITHMS AND COMPUTER CODES FOR
ATOMIC AND MOLECULAR QUANTUM SCATTERING THEORY
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xii
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June 27, 1979

Morning Chairman, William A. Lester, Jr.
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F. T. Krogh, Jet Propulsion Laboratory
10:00 An L* Approach to R-Matrix Propagation
Robert Walker, Los Alamos Scientific Laboratory
10:45 Coffee Break
11:00 A Variation-Iteration Method for a Single Column

of the S-Matrix
Lowell Thomas, NRCC

11:45 Final Remarks

12:00 noon Adjourn

Talks have been scheduled to allow 15 minutes for discussion.
Persons desiring the give short presentations relating to

one of the talks should make arrangements with the floor
chairman of that session. Manuscripts of the scheduled talks
may be mailed to the NRCC, c/o Close Coupling Workshop, or
presented to one of the co-chairmen at the workshop. The

time allotted for each talk includes 15 minutes for discussion.
Manuscripts for unscheduled presentations will also be accepted
for inclusion in the workshop report, and should be presented
to one of the co-chairmen at the workshop.
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PREFACE TO VOLUME I

The goals of this workshop are to identify which of the
existing computer codes for solving the coupled equations of
quantum molecular scattering theory perform most efficiently on
a variety of test problems, and to make tested versions c¢i those
codes available to the chemistry community through the NRCC
software library. To this erd, many of the most active
developers and users of these codes have been invited to discuss
the methods and to solve a set of test problems using *he LBL
computers,

The first wvolume of this workshop report is a collection of
the manuscripts of the talks that were presented at the first
meeting held at the Argonne National Laboratory, Argonne, Iil.
June 25-27, 1979. It is hoped that this will serve as an
up-to-date reference to the most popular methods with their
latest refinements and implementations.

Many of the codes will be used to solve the test problems on
the CDC 7686 computer at LBL. A second meeting will be held in
late October or early November of 1979 at Berkeley to discuss
and compare the performance of the different codes with respect
to the tests. A second report will then be issued containing the
results and conclusions drawn about them, The two reports
together should then serve as a useful guide to both the
inexperienced person wishing to do calculations of this type and
the forefront researcher wishing to advance the state of the
art.

BAugust 1979

John C. Light
Lowell D. Thomas
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OVERVIEW
Don Secrest
School of Chemical Sciences
University of I11inois
Urbana, I11inois 61801

Since the early days of exact quantum scattering calculations 3 great
variety of methods for solving scattering problems have been developed.
One of the aims of this workshop is to identify viable methods and discuss
the advantages of each.

We have all had the experience of attempting a new problem with one
of our favorite techniques and for some reason seen it fail, only to find
that a method we were sure was inferior gave beautiful results. Thus it
is clear that there is no one best method. Each method 15 suited to some
class of scattering problems. As | see it, our mission is to identify a
small collection of programs suited to each class of scattering problems
and make comparative studies of these methods to determine the mest appro-
priate role of each method in inelastic scattering calculations.

The programs we will be discussing are quite general for the

solution of the coupled differential equations,

42 g,(8,41) 2
-S5 + 55— KD FR = -] VR) F(R) m
dR R i1 it o'z

with appropriate boundary bonditions. This s the form of the close

coupling equations for rotation, vibration or rotation-vibration and a number
of other problems., It should be emphasized that many approximate formula-
tions of scattering such as the centrifugal sudden, the energy sudden and

the infinite order sudden approximation lead to equations of the identical
form of Eq. (1), and the methods we are discussing are applicable to a large

variety of systems and approximations.
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| shall discuss some of the methods | am familiar with and try to
glve an impression as to the circumstances under which each should be
used. 1| shall not attempt to discuss, or even mention all of the methods
Jescribed in thie literature, but shall merely classify the various methods
int. broad categories and discuss at least one method in each category.
The various methods in each category differ ir detail, and one or another
of them ay be better for particular situations, but in general one method
is about as good as another within each category.

There are basically two different numerical approaches in common use
for solving the coupled equations. One approach is to solve the egquations
numerically either in their differential equation form, or the egquivalent
integral equation form. I shall call this approach the approximate solu-
tion approach. The othei approach is to approximate the potential matrix ¥
in some acceptable manner and solve the coupled equations exactly. | shall

refer to this as the approximats putential approach.

For each of these two approaches there are two techniques for develop-
ing the solution. This leads to four cateyories of method which are

discussed below.

The first of these techniques | shall call solution-following. This

consists of starting the solution well into the non-classical region

of the problem where the potential energy is greater than the total energy
and proceeding to follow the solution step by step into the asymptotic
region. This is probably the most common technique for the approximate

solution approach, and is exemplified by the DeVogelaere method developed

by Lester,l_3 the Sams and Kourih’5 method, the method of Choi and Tang,6 and

many others. This technique as applied to the approximate potential approach

Is exemplified by the methods of Gordon,” S Light,” ! and Wilson.'?
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The second technique |} shall refer to as invariant imbedding, though

all the methods 1 shall discuss under this heading were derived without

the use of the concept of invariant imbedding. These techniques consist of
solving the problem scattering from a piece of the potential. Then a
connection technique is used for combining the R matrices for parts of the
potential into R matrices for larger portions of the potential, until the
scattering matrix for the entire potential is developed.

The approximate solution approach with this technique was first imple-
mented by the amplitude density”"4 method. This method is no longer used
as a numerical method except in special circumstances. The amplitude den-
sity connection formulas are still of great use however in connecting solu-
tions obtained by different methods in different regions of the interaction
potential. The log-derivative method of .]ohnson]5 is the principal method
in this category stii1 in general use.

The category defined by the approximate potential approach and the
Invariant imbedding technique has a single member, the R-matrix method
of Light and \rlalker.16 This method has been used mostly to date for reac-
tive scattering, but is aiso a valuable method for inelastic scattering in
certaln circumstances.

The four categories are summarized in Table 1. The methods of each
ot these categories have properties which commend them to use in particular
circumstances. The approach one uses is decided by the accuracy required
and the number of solutions required at different energies. In general the
approximate solution approach is capable of higher accuracy at reasonable
machine cost. The approximate potential approach often gives acceptable

accuracy, in many cases two or sometimes 3 significant figures in practical
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problems with very few integration steps. The chief advantage of the
approximate potential approach is that it allows large Iintegration step
sizes. Of course high accuracy can also be obtained by taking smaller steps,
but ail advantage over the approximate solution approach is lost when
this is done, as the work required to fmprove accuracy grows much faster in
the approximate potential approach than in the approaimate so'uifon approach.
The approximate potential approach, though it allows larger steps than the
approximate solution approach, also requires much more work per step than
the approximate solution approach for the first calculation. Thus the two
approaches are of the same order of difficulty for one solution of low
aczuracy. The approximate potential approach has the advantage
that much of the work done for the first solution may be saved and the pro-
blem may be solved at another energy with very little effort. If a large
pumber of solutions to the scattering problem are to be found at different
energies, the approximate potential approach is ideal. If only a few solu-
tions are required or high accuracy is required, the approximate solution
approach can be an order of magnitude less time consuming.

The solution-following techniques are plagued by instabilities requiring
measures to be taken from time to time in the progress of the solution to
ensure stability. The invariant imbedding techniques are inherently stable,
though often time consuming.

Recently two very different techniques have appeared in the literature
which do not fit this scheme very well at all. One is the iteration tech-

17

nique of Lowell Thomas ‘ which allows the solution of huge coupisd systems
which would be very difficult indeed by direct methods, and the other

Is the finite element technique which has been pursued in lts application

to the scattering problem by Rabitz and Askar.w’19 These have been added

as appendages to Table 1.
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There is no need to go through the details of any particular method
as that will be covered by the speakers during the conference. Let me
sketch out in very general terms how the techniques are approached and point
out problems which arise.

Let me start with the solution following technique. How we implement
it depends on the prol .m we are solving. For an inelastic scattering
problem the potential is usually large near the origin. The wavefunction
is zero at the origin and grows exponentially in the nonclassical region.

So we can start here with a small wavefunction and integrate toward large R.
When we get to the asymptotic region presumably we can compute the R matrix
or the $ matrix from the asymptotic form of the solution.

Several problems arise. First though the wavefunction is small in the
nonclassical region unless we are solving a potential scattering problem
there is more than one radial function. There are N solutions to the
problem which decay near the origin. The technique used then is to start
a complete independent set of solutions. When we get to the asymptotic
region we can form linear combinations of these solutions. One of these
combinations will correspond to the solution we are interested in. (Thus
we get a complete set of solutions all at the same total energy whether we

want them or not. This problem is not present in Lowell Thomas's-17

me thod
which | will say more about later.) Now in order to do this it is necessary
that the set of solutions we end up with be linearly independent. This

is difficult to achieve sometimes. When we start we don't know how to pick
the starting values and it probably wouldn't help much if we did. It is
very easy to pick an independent set of starting conditions. But any set

we pick will be a random mix in general of all solutions. All solutions

are growing exponentials as we integrate toward large R, and each set will
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contain some contribution from the most rapidly growing solution. This
solution will rapidly dominate and all columns of the solution matrix will
start looking like the fastest growing solution. This would be alright if
we used infinite precision in solving the equations, but we never do. Thus
after we start integrating it is necessary to alter this process before
we Jose precision. This is extremely easy to do. One merely forms new
combinations of the solutions early in the integration which are orthogonal
or in some similar way strongly independent. In the early days one per-
formed these stabilizations every so often. 1t was found one needed to
stabilize every 10 steps or so. This got time consuming. Roy Gordon
developed some efficient stabilization codes. It was later found that one
need not stabilize often--soon after starting, then much later, and 3 to
5 stabilizations were found to be enough. Thus the need for efficient
stabilization techniques vanished.

This is a good time to say a word about iterative methods. One wculd
hope by interation to obtain the one or two solutions he s interested in
instead of the complete set. If he were to start integrating at small R and
integrate toward large R, small numerical errors would introduce unwanted
solutions which would grow and defeat the scheme. Thus an lterative tech-
nique must start at large R and integrate toward small R. This of course
requires a r asonably good guess.

Now for comparisen purposes | would like to give my impression of the
invariant embedding technique.

In this technique one breaks the R space into segments and takes
the potential to be zerc outside of these regions. Then for this small

region one solves the scattering problem In one step. Usually one nowadays
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obtains the R matrix for the problem. O0ne then solves the next adjacent
region and finds an R matrix for it. Then the two R matrices are combined
exactly to obtain an R matrix for the combined region. One proceeds in
this way into the asymptotic region and the problem is solved. The com-
bining of R matrices is an exact procedure but requires a full matrix
inversion at each step., But the technique Is completely stable. This js
very important for some problems. In a typical rotation vibration problem one
starts integratiaon in the nonclassical region. 1If he is using a solution
following technique and starts too déep into the nonclassical region he
finds it necessary to stabilize often. |If he is very deep into the non-
classical region he must stabilize every step. In fact it is possible to
start so deep that one cannot stabilize the solution at all. For most
inetastic problems this is not serious and can be overcome by starting the
solution nearer the classical region. But there are problems such as
curve crossing prablems for which it is not possible to start near the
classical region. For some curve crossing problems the classical turning
point of one of the curves is deep into the nonclassical region of others.
In cases of this sort the Log-Derivative method or one of the other in-
variant imbedding techniques is ideal. The invariant imbedding techniques
require a lot of computational effort at each step but they are entirely
stable.

Now Jet us look at the approximate potential approaches. The potentia}
is broken up into piecewise continuous polynomials or constant steps depending
on the method used. This simple form of the potentfal allows an exact solu-
tion of the equations in each region., There is still coupling between

the equatlons and it is necessary to diagonalize the potential matrix at each
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Actually it is only possible to diagonalize the potential at a single

step.
point in the region, but the potential remains nearly diagonal for a reasonably
large distance on either side of the diagonalization point. For the next
region the potzntial must again be diagonalized. In general a different
transformation diagonalizes the potential in each region. Thus as the
wavefunction is progated, or as the R matrix is advanced if one is using

an invariant embedding technique, it is necessary to transform the result

at each region boundary. In the solution following technique, even though
the wavefunction for each region is computed analytically it is necessary

to stabilize every so often.

The great advantage of the approximate potential approach is that large
steps may be taken in regions where the potential is varying slowly. The
steps may be larger than the wavelength of the solution. If calculation
at high energies is necessary the approximate solution approaches require
more steps than at low energy as the wavelength is shorter at high energy.
The approximate potential approach however may use the same step size
at high energy as at low. In fact it may even be possible to use a larger
step size at higher energy due to the fact that the solution is not as
sensitive to small changes in the potential at high collision energies
as It is at lower energies.

If a series of calculations are to be performed at different energies,
the work in the approximate potential approach to determine the step size,
diagonalize the potential matrix and the transformation from one region to
the next need be done only for the first calculation. It may be saved in
the computer and used for all future calculations.

In the nonclassical region the potential is rapidly varying and the
approximate potential approach must use small steps comparable te those

required for the approximate solution approach.
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In comparing the approximate solution and approximate potential approaches
we can say that the approximate potential approaches allow very large steps
at least where the potential is slowly varying. A great deal more work
is required per step in approximate potential approaches than in approximate
solution approaches however. Thus for a calculation at only a few energies
the approximate solution approaches seem approprizce, Since the work of
the first calculation in the approximate potential approach may be saved
and used at other energies, for large numbers of calculations the approxi-
mate potential methods are the best, For higher accuracy the approximate
solution approaches seem to improve as stepsize is reduced faster than
approximate potential approaches.

The approximate potential approach requires small steps where the
potential is varying rapidly. Thus a method which is superior to both the
approximate potential and approximate solution approaches is to use the
approximate potential approach where the potential is slowly varying and
the approximate solution approach in a rapidly varying regime.

The use of jteration to solve large systems is a new technique and may
prove to be a major breakthrough for accurate scattering calculations.

As this method is applied to the many important praoblems which cannot be
approached by the direct methods we will find either that it is the direc-
tion exact calculations will take in the future or it is too unwieldy to be
practical.

The finite element method is well suited to some problems which are
refractory to the methods we have been discussing. The dissociation problem
which leads naturallv to a two independent variable problem comes immediately
to mind. As we develop more familiarity with this method its role in

scattering theory will become clearer.
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PIECEWISE ANALYTIC SOLUTIONS TO QUANTUM CLOSE-COUPLING EQUATIONS:
A REVIEW OF BECENT DEVELOPMENTS
Roy 6. Gordon
Department of Chemistry

Harvard University
Cambridge, Massachusetts 02138

"pivide and Conquer" is the approach used for the piecewise
analytic solution of the quantum close-coupling equations. The problem
is divided into a set of simpler model problems which approximate the
original problem piecewise in a set of intervals. The model problems
are solved analytically _a each interval. These approximate solutions
are joined together continuously to form the complete solutions which
satisfy the proper boundary conditioms.

The main advantages of the method are greater computational speed
and accuracy, compared to purely numerical methods. Also, the wave
function is available in a relatively convenient and compact form for
use in calculating matrix elements, when needed.

Since the original method! has been reviewed? in some detail,
and a computer program hased on it has been distributed widely,3 the
present paper will focus on more recent developments. These include
the development of piecewise quadratic approximations to a useful form.
The following sections discuss briefly these new results, for comstructing
the analytic zero-th order and first-order solutions using a piecewise
quadratic potential. Then finally we sketch the piecewise analytic
solution to equations with both Ist and 2nd derivatives, such as those

that often arise in reactive scattering theory.
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II. Zero-th order solutions for piecewise quadratic potentials

The originally developed method! uses a set of linear approximations
to the potential function, to generate the zeroth-order approximate
solutions. Deviations of the actual potential from these linear approx-
imations then generate the first-order perturbation correct:ions,1 which
will also be discussed in section IIT below.

The analytic solutions to this linear model problem are the Airy
functions, which may also be considered as special cases of Bessel
functions. Accurate and efficient algorithms for evaluating the two
Airy functions and their first derivatives, were developed,1 using
generalized Gaussian quadrature techniques.

An obvious improvement in accuracy would be gained by using piece-
wise quadratic approximations to the potential. Indeed, it might seem
at first sight that such an approach might rely on the vast amount of
study already given to the harmonic oscillator equation. Unfortunately,
one needs the less-studied solutions at non-eigenvalue energies, and
two linearly independent solutions. Mathematically, these functions were
first defined and studied by Weber; however, accurate and efficient
algorithms for their numerical evaluation were not available for all
ranges of the two arguments "a" and "x". ("a" is a parameter related to
the energy, and "x" is related to the distance variable.,) Power series
and asymptotic series are valid and useful in certain ranges of a and x,
but large areas of the a,x plane could not be treated with previous

methods. Extensions of the Guassian quadrature method,l which was so
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successful for the Airy functions, did not succeed in covering all

the parameter values, either.4 A successful algorithm for the
complete useful ranges of a and x has been achieved by a combination
of uniform asymptotic series for large |af, and recursion relatiomns
for smaller values of [a|, when needed.” Care is needed in choosing
the suitable directions for the recursion relations. For some para-
meter values, recursions in the complex energy plane are requiredi

At present, the program produces function and derivative values
accurate to about seven digits. Higher accuracy could be obtained, if

necessary, at the cost of longer running times.
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III. First-order solutions and accuracy

The zeroth-order solutions discussed above solve exactly model
problems involving piecewise polynomial potentials. First-order
perturbation theory is then used to evaluate the (small) effect of
the deviation between the actual potential and the model potential.
There are two reasons for evaluating this first-order perturbation
currection: (1) to improve the accuracy of the zeroth-order results,
and (2) to decide how large the intervals may be chosen, in the
definition of the model potential.

The first-order perturbation corrections cin be évaluated
analytically, after the perturbing potential (the difference between
the true potential and the polyromial potential) has been approximated
as a higher-order polynomial. The formulas for the perturbation
integrals involve only the zero-th order functions and derivatives at
the end points of the intervals. These integrals were originally
derived for the constant and linear cases.1 and the formulas were later
simplified to about half as many terns.® We have recently found that
the perturbation integrals can also be evaluated analytically for the

piecewise quadratic potentials J



17-

IV, Choice of Method

With the development of constant, linear and quadratic potential
models, and zeroth or first order solutions based on these models, one
has a wide range of possikle methods. The higher order methods offer
higher accuracy and/or smaller numbers of intervals, but with a higher
calculation cost per interval, The choice of an optimum method
depends both on the problem being solved and on the accuracy required
in the solution.

For a problem involving a single equation to solve (single
scattering channel, elastic scattering) or a small number of channels
(e.g., N 2 10), there is a clear trend. The higher the accuracy
required, the higher the order of the optimm method. This is indicated
qualitatively in the figures. At equal numbers of steps, the higher
order methods are generally more accurate. When the comparison is made
at equal computation time, however, lower order methods are more accurate
when larger errors are satisfactory, but the higher order methods become
more efficient when higher accuracy is demanded.

For problems involving many channels, (e.g., N 3 20), the compu-
tation time becomes dominated by matrix operations, such as multiplications
or inversions. These matrix operations require on the order of N3
arithmetic operations, while the special function evaluations only are
called 2N times per interval. Thus for these large problems with many
channels, it is always advantageous to use a higher-order method to

propagate the solutions within an interval.
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V. Equations with both first and second derivatives

The piecewise analytic methods available in the past have been
limited to equations, such as those for non-reactive scattering, in
which first derivacives are absent. Many formulations of reactive
scattering theory,8 however, introduce first-derivative terms as well.
We have recently shown how the piecewise analytic methods can be
adapted to these equations, as we11.9 The coefficient of the first
derivative term may be a linear function of the independent variable,
and the potential may be a linear or quadratic function in each interval.
The basic solutions for this case turn out to be Weber functions, which

can now be evaluated accurately and efficiently.5
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Abstract

Weber's Parabolic Cylinder Functions U(a,x), V(a,x), and
W(a,*x) have recently found wide application as approximations
to quantum mechanical wavefunction propagating through
potential wells or barriers. Available algorithms for
their numerical evaluation are inapplicable in some ranges
of the two arguments., In this paper we present a new
algorithm, based on the combined use of Olver's [13]
uniform asymptotic expansions and Whittaker's [23] complex
recursion relations, to extend their range of usefulness,
The algorithm generates greater than single precision
values of the functions and thelr derivatives over the

whole range of arguments,
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1. Introduction e

As approximations to wavefunctions in quantum mechanical
calculations, Weber's parabolic cylinder function have
received considerable attention. They are used in WKB-type
problems involving two or more transition or turning

points [2,3,7-9,13,21]. Our interest in the evaluation

of these functions grew out of our work on piecewise
analytical solutions for the Schroedinger equatiorn [5],
whereby we approximate the potential locally by a polynomial
function. Then we use the continuity conditions to form the
complete wavefunction as a composite of the local wave-
functions. Previously, we had been able to use only piece-
wise linear polynomial approximations, giving rise to

a basis of Airy functions. A more accurate approximation

to the potential can be formed by a gquadratic polynomial.
The resulting wavefunction is a solution of Weber's complex

linear second order differential equation [22],

2
d 1 1.2 .
;—z—z-Dv(z) + (v +5—-/TZ )DV(Z) = 0. (1.1)

D, (z) is Whittaker's notation for parabolic cylinder
functions, and its value is determined upon specifying a
point in the two dimensional complex space (z,v). Dv(z) is
an entire function of both variables. Throughout the text
v and z will denote complex variables while their real
counterparts will be denoted a , a real parameter, and x

a real independent variable. It is clear that for special
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values of the variables (x,a), (1.1) can be transformed
into either the equation.for the generalized harmonic
oscillator functions, which we write as U(a,x) and Vv(a,x),
or the equation for propagation through a potential barrier,

with a set of solutions W(a,ix).

To allow the greatest flexibility on using (1.1) or speci-
fically its two distinct real forms as approximations to

more complicated differential eguations, we must be able to
evaluate these functions for arbitrary values of v and z

(a and x). The number of numerical studies on the Weber
functions is voluminous [4,10,11,14-17]., While there exist
asymptotic formulas for large magnitudes of the parameter

v and/or the spatial variable z, and power series for small
magnitudes of v and z, there are still ranges for which,
heretofore, no accurate or convenient means of evaluation
existed. Extrapolation from a table of values [4,11] is both
inefficient and inconvenient. Employing an algorithm developed
by Gordon, integral representations for the U(a,x) and V(a,x)
have been evaluated by Gaussian quadrature for small values

of the parameter a [18-20], Attempts to extend the variable
range by recurrence relations, however, leads to instabilities

in the recessive functions.

The most recent thorough analysis of the asymptotic behaviour
{|v| large) of the parabolic cylinder functions, and in
particular U(a,x), Via,x), wi{a,¥x), is in a series of papers

by Olvcr |13-15]., While his asymptotic representations are
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valid only for large |v|, they have the advantage of being
uniform in the spatial variable z. Consequently we were left
only with the problem of devising a convenient method to
evaluate these ‘functions and their derivatives when the

parameters are in the moderate range.

In this paper we present an algorithm for the computation of
the parabolic cylinder functions U{a,x), V(a,x), W(a,*x)

and their derivatives for arbitrary values of the variables.
Those regions of the (x,a) plane, previously inaccessible
by accurate and efficient computational techniques, are
covered by a set of complex recurrence relations first
derived by Whittaker, For large ]al, the uniform asymptotic
formulas of Olver are employed directly, and for moderate
Ial they are employed to generate starting values for the
recurrence relations at some large initial index. In

section 2 we define our choice of standard functions for

the algorithms. In section 3 we examine the recurrence
relations and specify the special discrete paths of the
complex recurrence index in the v-plane. In section 4 we
outline the numerical evaluation of U(a,x) and V(a,x), and

in section 5 W(a,¥x).
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2, Choice of Standard Functions

For most physical problems only the two real standard forms
of (1.1) are of importance. The first, obtained by setting
v + % = -~a and z = x, is the generalized harmonic oscillator

equation

- ¢ x* + ap Jx) = o, (2.1)

Following Miller's criteria [10] for standard solutions we take

as the two linearly independent solutions U{a,x) and V(a,x)

Ula,x) = D 3 () (2.2)
ca -
2
Via,x) = 1 I‘(—1-2 + a){p 1{x) sin an+ D 1(—x)}. (2.3)
T -a-3 -a- g

¥When a is not an half-integer, U(a,¥x) are an alternate pair

of solutions.

The second standard form, obtained by setting v + % = =ia and
=ni
zZ = xe 4 , describes the propagation through or over a

parabolic potential barrier

-l
T
(xe ) -mi
. < x2 - ap ,xe 4 =0, (2.0

dx ~ia - 3

LN B
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Two real solutions to (2.4), w(a,¥x), can be defined in tei.= of

a complex function E(a,x), which with its complex conjugatc

forms another pair of linearly independent solutions:

. ma i @ -7i
+5 (7 + ¢)
E(a,x) =v/Z el 2 8 D , (xe T (2.5)
~la - 5
2
x>0
-1 1
-~ W(a,x) + 1x2 W(a,-x) (2.6)
-1 1
E(a,-x) = k ° W(a,-x) + ik? W(a,+x) x <0 (2.7)
where ¢ = argT(% + ia) and k =v/1 + e21Ta - e"d,

For a few convenient values of the parameters a, we have
plotted in Fig. 1 the functions U(a,ix), v(a,x), and W(a,x)
with respect to the X variable. We make reference to these
graphs in order to emphasize the characteristic behavior
and disparate nature of the standard functions, To describe
the propagation through a potential barrier, the set of

functions most clos +ly satisfying Miller's criteria are
-1 1

k 2 W(a,x) and k2 w(a,-x}.
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3. Recurrence Relations

The following recurrence formulas for the parabolic cylinder

function Dv(z),

D, ,(z) - zD (z) + vD,_,(2) = O, (3.1)
D!(z) + 5 D (2) - vD_,(2) = O, (3.2)
D!(z) - %D, (2) + D, (2) =0, (3.3)

were derived by Whittaker [23] from the contour integral

representation
1 .2 1,2
- 0+ -zt - it -v-1
_ _ T{v+1) 72 -
D\,(z) = —Z‘Hi—e 0{ e (-t) dat
- @ < arg{-t) < @, Re(v) < O, (3.4)

Integration by parts of eguation (3,4) yields (3.1).
Differentiating formally under the integral we obtain (3,2).
We solve for Du_1(z) from equation (3.17) and substitute the
expression into (3.2) to obtain the last relation (3.3).
Unless otherwise stated, the prime notation will denote
differentiation with respect to the independent variable

X or z, which is indicated in the argument of the function.

These relations are valid for all complex values of v and z.
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When both variables are real, two sets of relations can be
derived from equations (3.1) = (3.3). In terms of the real

valued functions Ula,x) and V(a,x) the recursion formulas aie

as follows:

Ula-1,x) - xU(a,x) - (a + $U(a+1,x) = O, (3.5)

U'(a,x) +.3 xU(a,x) + (a + 5)U(a+1,x) = 0, (3.6)

U'(a,x) - % xU(a,x) + U(a-1,x) = 0O, (3.7)
and

V(at1,x) - xv(a,x) - (a - H)V(a-1,%) =0, (3.8)

vi{a,x) - % xV(a,x) - (a - -;—)V(a-‘l,x) = o, (3.9)

V' (a,x) + 3 xV(a,x) - V(a+l,x) = O. (3.10)

The stable direction to use the recurrence relations can be
determined from a graph of Ula,x), V(a,x) vs. a for constant
values x, as in Fig., 2, or by an analysis of the asymptotic
form of (3.5) and (3.8). In general, to provide a balance
among the terms in the relations, the following inequalities
must hold:

jo(a-1,x}] > |uta+t,x)|
as a >+ ®, x >0,

[via+1,x)| > |V(a-1,x)]
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For a positive, U(a,x) decays exponentially, and'V(a,x) grows
exponentially. For a negative, they are oscillatory functions
whose moduli are either strictly increasing or decr=asing
functions of a. Since the stable recurrence process is in
the direction of increasing function values, the relations

should be used in a backward (decreasing a) direction to
evaluate U(a,x) and a forward {increasing a) direction to

evaluate V(a,x).

U..fortunately no analogous set of real recurrence relations is
kgown to exist for either set of independent solutions

k*% W(a,¥x) or E(a,x), E*(a,x)..ﬂowever, we observed that
since the recurrence relations are valid for complex values

of v and z, Eguations (3.1) - (3.3) could be used to recur
-7
on D 1 (xe "%) where A is a complex parameter, A = a % iN,

N =0, ;? s Nmax' The raising and lowering of the index

is now in unit intervals along a line parallel to the
imaginary axis in the A-plane. Upon recurring to the real
axis, i.e. A = a, Egs. (2.5) and (2.6) are used to recover
F1/2

E(a.x) and consequently k Wia,Ix).
In practice we find it more convenient to express the
recurrence relations in terms of the complex function

TA 1 [4(R.A) + 7] -mi

/Tete? D (xe 4)

-ip-1/2

E(A,x)

$le(rea) - ¢ (a)]
e E(A,x) (3.11)
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where ¢$(n) = argr(% + iA), and E(A,x) is the analyxtical
continuation of the function E(a,x) defined in Eq. (2.5).
With this substitution, Egs. (3.1) - (3.3) now have the

simple form

E(A+i,x) - XE(A,x) - 1(32- + iA)E(A-i,x) = O, (3.12)
=~y ixz . 1 = . _

E'(Ap,x) - E—E(A,xl + (5 + iA)E(A~i,x) = O, (3.12)
E'(n,x) + -;—"- Ba,x) - 1E(a+i,x) = O. (3.14)

When A is real (A = a), E(a,x) reduces to the function E(a,x).

For uny value of x, the modulus of E(A,x) decreases as the
imaginary component of A is made more negative. One should
then evaluate E(A,x) and ﬁ'(A,x) at A= a - iNmax(a’x)' for
some large integer Nmax’ which is in general dependent on

a and x, and use the recurrence relations in the forward

direction to raise the irndex Nmax times to determine

E(a,x) and E'(a,x).

Returning to the original recurrence formulas in terms of

the general parabolic cylinder function Dv(z), the recurrence
indices in the above relations for U{a,x), V{(a,x) and

E(A,x) can be represented naturally as particular paths

in the v-plane. Defining the initial conditions for

o
stable paths for the recurrence process are indicated in

U(a,x) and V{a,x) as v, = -ai-%, the various numerically

Fig., 3.
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4. Evaluation of U(a,x) and V(a,x)

The combined usage of Olver's asymptotic formulas and the
recurrence relations constitutes a convenient and accurate
algorithm for the evaluation of the generalized Harmonic
oscillator functions Ul(a,x), V(a,x) and their derivatives
for arbitrary real values of a and x. Performing the
calculations in double precision arithmetic on an IBM (360)
and an Univac (1800), values of the functions and their
derivatives are obtained to fourteen significant digits.
The choice of the method depends solely on the value of a,

which we have divided into two complementary domains:

Asymptotic Region Non-asymptotic Region

a>11 or a < -41 -41 £ a =2 1

When a falls within the asymptotic region, Olver's formulas
are employed directly. When the functions are needed for
non-asymptotic values of a, the asymptotic formulas

pProvide the starting values for the recurrence relations

at the initial indices a,. These have heen experimentally

determined:
a, =a+N211 U{a,x)

a =a-MZ25-41 via,x).
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In the case of U{a,x), the function and its derivative,
both evaluated at a,, are first used to obtain U{a,-1,x)
from Eq. (3.7). The index is then lowered N-1 times to a
employing Eq. (3.5) in accordance with the stable direction
for recurring discussed earlier. The symmetry of the parabolic
cylinder functions with respect to x (see Fig. 1) makes
it necessary to develop an algorithm only for x in the
right-half plane (x > 0). The computational algorithm is

summarized in Fig. 4.

For completeness we will now specify which of Olver's
asymptotic series are employed in the algorithm and comment
on any difficulties that arose in their evaluation. Since
we used more terms than Olver originally presented, we have
recorded the necessary expansion coefficients in the
Appendix. The asymptotic representations are derived from
an analysis of the normal equation,

d2

¥ e = ute? - 1) win,n (4.1)
dt

where yu and t are complex, and |u] >> O.

For a positive, (4.1) is brought into the real standard
differential equation for U(a,x) by the following trans-
formations of the dependent and independent variables:

set ¢t = ~iz, 4y = in and y(n,2) = wlin,-1z) to obtain



-33-

2
&Y n,2) - 022 + 1) yn,2)
dz

0, (4.2)

x
and x = zn/2, a = % n2, y(a,x) = y(2a, 2/3) to obtain

g—% (a,x) - (% x2 + a) yla,x) = 0. (4.3)
dax

A satisfactory pair of solutions for (4.3) when a is
positive is U(a,x) and U(a,-x). To preserve Olver's notation,
the asymptotic formulas are more conveniently written as
functions of n and z, and in the following section, we

will denote U(a,x) eguivalently by U(% nz,znlf).

Equation (4,3) exhibits no transition point characteristics
for real, positive a, and the functions can be expressed

in terms of elementary functions [13]:

%8z = G (2)

U(a,x) = U(%nz,nzli) . g(n)e - . —%; (a.4)
(22 T s=0 5, 3 n
z%+1) (z€+1)
a>o0
1.2 i) 2,7 %@ T Vst®) ]
U'{a,x) = U'(zn nz/3) ~ el ;2,44 SE(2) N
7z s=0 3s 2s
(z2+1)2
(4.5)

The auxiliary function g{n) is calculated from the asymptotic

expansion



] +1 2,1 41 2-1 2 1 T 92441
—_— 0+ = n“ sn°+5 1+ ¥ ——l~§ (4.6)
gin)~ 2 9 i_.7 n 2 2 ( %0 RFz )
_ ﬂi(% + % nz) _
where g(n) = e g{in), and £(z) is given by
1 1
Ez2) = 222 + D%+ Jamlz + 2% + D, (a.7)

The functions ﬁs(z) and Gs(z) are defined in terms of the

polynomial functions ug(z) and v (z)

ug(z) = isus(-iz)
: (4.8)
v (z) = 1svs(—iz)

It is a tedious but straightforward exercise to determine

the coefficients us(z) and vs(z) from a set of recurrence

relations. We record the first seven terms along with the

constants 9g in Table II in the Appendix. The branches of

the multi-valued functions agi well defined upon specifiying
2

argy = % {argn = O) and ze e S(%), the domain shown in

Fig. 5a.

In our algorithm the factor g(n) is omitted thereby altering
the normalization, but eliminating an unnecessary calculation
1f only relative values of the parabolic cylinder functions
are needed at different values of x for fixed a. When

X < 0, equation (4.4) is a valid asymptotic representation
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for the linearly independent solution U{a,-x). The corres-
ponding asymptotic formula for V(a,x) can be straight-
forwardly derived by substitution of the expressions for

U(a,x) and U{a,-x) into (2.3).

When a is negative, the change of variables t = z, and

p =1n, followed by nz = =2a and X = nz/2, again transforms

(4.1) into (4.3). However, equation (4.3) now possesses
two real transition points at Xp p, = 12/Ta]. Olver's asymptotic
expansions for U(a,x) and U'(a,x), which are uniform for all x

to the right of the left hand4transition ioint, are in

terms of Airy functions, Ai(ngc) and Bi(nac) [13]:

L.

11

-1 3 3 @ Mg lr)
U(a,x} = U( % nzmzﬁ)-zni n® gme(z) 3 ai(n’n 'EE'"
=0 n

4
3 ® B
+ ALt'(n7r) I s () a<o (4.9)
8 20 nis ’ ‘
3 8 n
n
12 4
- 2 3 © C. (%)
U@, = Ut} a2 ne/z - 4200 g o) ;Ai(q4 D o e
K s=0 n
n
4
o D_{g)
+ R D) T (4.10)
=0 7

1

where ¢(g) = (—%——)I. The variable [ is given by
z2°=1
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3 1 1
% :'2 = —15 2(z2 -1)7 - -;- tn(z + (z2 - 1)2) for z > 1
3 1 1 (4.11)
s Z Zz
and —(—C) 7 arctan(z({z —1) ) - 3 z(z -1) for 0 £ z < 1

with £ = O at the turning point z = 1. The coeffigient
functions A (%), Bg(f), C (¢), and D (Z) are determined from

the following series:

2s5+1

25  _an/2 (172 -3
Agr)= 1 bl i ooy (2) Bg(t) == 1 apg iy (@)
m=0 m=0 -
(4.12)
V% (m=-] b3 (z2) D_(z) = 2§ g%y (2
s 25-m+1 s't mio aps 2s5-m
u, (z) vs(z)

whered (z) =1, d(z)=————§-7-f %(z)=-(—z-2-—1)—3-s7§

and = (2m+1L(2m+3)...(6m-12 - _ 6m+1
m!(144)

=T 3’ with a, = 1.

The analogous expansion for V(a,x) can be obtained, after
some manipulation, from the connection formulas for parabolic

cylinder functions, We will record here only the results.

-1 2 % ﬂ gtn) % et (C)

Via,x) = V(3 mzV2) ~ ”_ T a) () } Bi(n”%) 520 —-4—
4

+ B0 FREINE (4.13)

% =0 n4s
n
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1 2 4
) z.3 3, = cC
Vi) = vt () n2nem - 20 n et ? BvD § Zeln)
T(z-a)e(z) ¥ 50 1
n
4
= D_(z)
3 s
+ Bi' (n°1) =t (4.14)
s£0 n“®

The multi-valued functions are well ¢ ‘ined and the above
expressions valid for z € T(0). T(0) is the unshaded region

in Fig. 5Sb.

As x approaches the right hand transition point 2YTa| or as
z - 1 the factor (—%:?)1/4 z ¢(z) remains well defined and
has a finite value Zt z = 1. However, in a computational
sense, the limit process is ill-conditioned since it is
dependent upon including more and more terms in the series
and the cancellation which must exist between them.
Numerical experiments revealed a preferred direction in
passing through the transition region. The asymptotic
formulas maintain their accuracy longer when the transition
point is approached from the leit. Consequently for z within
a neighborhood of 1,

+8,>1>1~8, =2 where §,,8, > 0,8, > 85, (4.15)

the asymptotic series is evaluated at z  and then contunued
through the transition point region from z~ by a Taylor

series expansion, including seventh-order derivatives.
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5. BEvaluation of W(a,x) and E(a,x)}

As with the U(a,x) and V(a,x) functions, one would like

to use Olver's uniform asymptotic series to evaluate

k;1/2 W(a,*x)or E(a,x) for large magnitudes of a and devise
a recursion scheme, which is dependent on a only, x being
treated as a parameter, to cover the complementary region

of non-asymptotic values of a:

a < =40 or a > 20 Asymptotic Region
(5.1)
-40 £ a £ 20 Complementary Region

We have already outlined such a scheme in section 3 involving
the complex recurrence relations for E(A,x) or D_iA_1/2(xe—“i/4).
For asymptotic values of A, Olver developed series for

~1i/4

E(A,x) or D (xe ) which are uniformly valid with

-ia-1/2
respect to the x variable. For a in the complementary region,
these complex asymptotic series generate values of E(A,x)

and E'(A,x) at A = a - 1Nmax which are subsequently employed

in the recurrence relation (3.14) to obtain E(A+i,x). E(a,x)

is evaluated by raising the index N-1 times using Eg. (3.12)

and E'(a,x) is determined at the end from Eg. (3.13).

The Olver expansions for E(a,x) and W(a,*x) are also derived

from the normal equation
d2w

¥ ey = 0wt t? - 1w (5.2)
at
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in which p and t are complex variables. The following change

of variables transforms (5.2) into the desired form:

-in -1t
set t = ~-iz, n = e 4 u, and y{(n,z) = wine  ,-iz) to obtain

2

-d—-l.} tn,2) = - n*tz2 + 1 yn,2) (5.3)
dz
and X = nz/2, A = - % 2, y(A,x) = y(/~2R, L ) to obtain
2/-R
a2 1.2
X (a,x) = - (3 x° - A) y(Ax). (5.4)
dz

In analogy to Eg, (2.5) we can express E(A,x) in terms of

the principal solution of Eq. (5.4)

A i bl -ni
+ = (¢ + )
E(a,x) =2 e} 2 T suaxe B, (5.5)

where we have made use of Whittaker's notation

U(Alz) = D-A-1/2(z) . (5.6)
When A takes on complex values, (5.4) exhibits no real
transition point characteristics, and the asymptotic series

for E(A,x) can be expressed in terms of elementary functions.

The expansions when Re(A) is negative are [13]
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i
-7 P 2,, = .

2 L 4 n“({E(z)+n/d) = u(-iz)
-in T _glne” ) e -1y8 __S .0
i LS 17T LN T

(224113 ¢ 3 (z2+1) 2
and (5.7)
2 ¢ L I nfui+p P
u'("%"l e Taz/m- "2 glne TatnTe Yet
®  (-1)5v_(-1z)
. S - 3= (5.8)
5=0 5 % n
(z°+1)

The tunctions g(n), E(z) are as defined in the previous
section, and the polynomial coefficients us(t), vs(t) for
5 £ 7 are given in the Appendix, g&e region of validity
of the above expressions is z € e2 S(argu), where argu

varies with N as follows:

argn < % where - % nz =a - iN, a < 0. (5.9)

[«]
A

< argy < g

E]
1

The domain S (argu), with the appropriate branch cuts, is

shown in Fig. 6a.

When Re(A) 2 O, Im(A) # O, the corresponding transformation of

-in/
variables which lead to asymptotic series for U(iA,e in/4 x)

or E(A,x) is
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=S

i
n=e4 v, 2=t

(5.10)
2

x nzYZ, A = % n

The series expanslons in terms of these redefined variables

are [13]
2 i ok - u_(t)
uidh e T jar7)-2ine e ] 18— - (5.1)
2_,.% §=0 2,2 "
(z°-1) (z<=-1)

o -1 -ni 1 2. = 1% v (v ;
i e T nz/D- Mgme 1) (2-n? M E L 55 0 =5
2 =0 n

vz (22-1)2
z=1)
(5.12

where E(z) = % z(22-1)1/2 - % inlz + (22-1)1/2].

The range of the arguments of n and u as a function of N is

(o}
1A

N < o

0 2 argn > _% where % n2=a-4iN,a20 (5.13)

-% 2 argp > _%
The branch cuts that define the multi-valued function £(z)

and form the boundaries of the domain S(argu) are labeled

in Fig. 6b.

Evaluation of the complex function E(A,x) for subsequent

use in the recurrence relations with a complex index is only
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necessary when the energy parameter a lies within the
complementa§¥ region defined in (5.1). When a < -40, the
functions k 2 W(a,¥x) can be evaluated directly from the
components of E(a,x) (A real) using (2.6), (5.5) and (5.7).
W2$n a lies in the positive asymptotic range, a 2 20,

+

k 2 w(a,fx) and their derivatives are computed by Olver's

real uniform asymptotic series in terms of Airy functions:

101 1
7.3 7 2 . A_(z)
Wa,x) = W n?, nz/7~ D "é“) (¢ ; ) ;Bi(-n3c) I )% =
1 =n 2°-1 s=0 n s
25 34
3 5
B (g
+ Bi'(-na z) -8 545 f ) (5.14)
3 =0 n
n
1 % 1 4
2 2 2_ _.3 o c_(r)
W ia,x) = W (D nz/7). T0 i(’z" (2 1)1{5“ LR Y e 2
n 3 s=0
ZeT_ n
4
= ® p_(z)
. 3 s 'S
- Bi'(-n” ) (-)° —=5— z (5.15)
szo n4s )
11 1 .
2 3 . ® A_(z)
Wla,~x) = W} ,-nz/z)~ LY Z_, {Ai(-n_j ) ) ()% S
-1 -mn z“~1 * s=
2 z e 4
4
v a3 @ B_(z)
+ AL’ ( . ) 2 (_)5 sds } ) (5.16)
K] 8= n



1 2 1 4
2 2] ) 3 c_.(g)
W' (a,~x)=W' (% ,—nzﬁ)..." n- £(n) (z 1) i Aj( 714 z) 2 (_)S s =
-mn '3 s=0 n
o ¥ n
4
T o D_(z)
Al -nC ) § (S s z (5.17)
s=0 n
1 m? et -
where W' (a,-x) = 921%;251 and 2(n) = 22 e® & 2 gne *

with ¢(a) = argf(% + ia).

The expressions are valid for z in the region T(-%), where
argu = _% and argn = O (Fig. 6c). The expansion coefficients
AS(C), B, (%), CS(C), Ds(c) are evaluated by recurrence

relations recorded in the previous section.

By truncating the series (5.14) - (5.17) at a finite value
of s, the partial cancellation between consecutive terms
which allows the asymptoiic representations to be evaluated
even at the right transition point, z = 1, cannot occur

as X * Xpp = 2/a. Furthermore, as the turning point is
approached, evaluation of the series for As, Bs, Cs, and

D_ (Eq. (4.12)) becomes ill-conditioned. Near x

s TP
-3m/2 .
in the series e.g. b % B (2)2g-me1' 2re large with

the terms

alternating signs, while the series sums are much smaller
than the individual terms. The round-off error is circum-
vented by employing a Taylor series approximation within
the turning region for a > O as was done in the computation

of U(a,x) and V(a,x) in section 4. Use, however, of the
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Taylor series produces function values at Xqp which are
the least accurate in the entire algorithm (8 vs. 11
significant digits), and clearly a table of values for

A (0), B (0), C_(O), and D (0) would improve the' evaluation.

The asymptotic series for W(a,*x) and W'(a,¥x) (Egqs. (5.14) -
(5.17)) have variable accuracy over the asymptotic region,
as was determined from evaluating the Wronskian and spot-
checking against expansions for large and small x found in
the NBS handbook [1]). The accuracy of calculations performed
with double-precision arithmetic on an IBM 360 and an
UNIVAC 1108, expressed as significant digits, is indicated
in Fig. 7 for the 3 term (s < 2) and 4 term (s < 3)

series. The accuracy increases with increasing x since
112;2 + 0 for s > 1 and 112*25 + 0. At the origin, the
coefficients AS, BS, Cs' Ds-are of order 1, e.qg.

As(t=o) = mzo b2m K?gTad(o)zs_zm, and the asymptotic series,
truncated at the s = jth term, are correct to O[Té;773¢7—4.
In the complementary region (5.1), the algorithm using

s = 6 in Egs. (5.7), (5.8), (5.11) and (5.12), e.g. series
include terms up to ue and~v6, and 3 = 2 in the series for

g(n)-1, Eg. (4.6), generates greater than single precision

values of E(a,x) or equivalently k+1/2 W(a,¥x), i.e. 11 - 14
significant digits. For a > 0 and x < Xppr Dumerical
difficulties exist in determining the imaginary part of

E(a,x). The difficulties arise from the disparity in size
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between the real and imaginary components of E(a,x) (see’

Fig. 1e),
_%
Re E(a,x) _ k© W(a,x) . ma
Im E(a,x) = 1 ‘ 2¢’" a>0 0Z2x 3 xp.
k’ wW(a,-x)

In the last step of the recurrence process, two numbers

with the same order of magnitude as Re E(a,x) are substracted
to determine Im E(a,x). If the calculations are performed

in double precision, the use of the complex recurrence
relations must be restricted to a < 3.5 in order to guarantee

single precision values of Im E(a,x).

There are a number of ways to circumvent this pxnblen.
One is to recur on E(A,-x) instead of E(A,x) for small
positive x., A more efficient solution is to employ the
complex recurrence relations in the exponential region,

0 £ x £ 2/a, to obtain just the dominant real component

=1/2 W'(a,-x) _
W' (a,x). The ratio wWa, = - Y

can be evalunated from Miller's [11] non-linear differentiation

x~1/2 W(a,x) and k

equation for the derivative log function,

8y 4+ 2 2 _,=
ax +y°+1/4 x a=0

3 1
Itz + = ia)
_wia0 _ 12 |53 |
here Yo TWTer T MU TATI |

using fourth-order Runge-Kutta integration with stepsizes <

0.005. From the Wronskian relation
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wia,x) T‘F(;_?% - W (a,x) = m':l’—_-i-y

one can solve for W(a,-x) and subsequently W'(a,-x) in a

numerically stable fashion.

The computational methods to evaluate at least single-

precision values (11 - 14 significant digits) of the parabolic

F1/2

cylinder functions k W(a,¥x) and their derivatives are

summarized in Fig. 8, Within the exponential region

-1/2

0 < x < 2/a, for 1 < a < 20 only the functions k W(a,x)

-1/2w'(a,x) are obtained from the complex recurrence

1/2

and k
relations for E(A,x). The imaginary components k W(a,-x)

+1/2

and k W' (a,-x) are disgarded and determined instead from

Miller's derivative-log method discussed above. The number
of steps needed for the recursion relations as a function
of a and x is recorded in Table I. For small |a| and large x,

i.e. x2 >> 4a, a region in which k;1/2

W(a,¥x) are
oscillating functions, the values have been checked against

the Miller's modulus-phase expressions [11,1]:

1/2 ix

k-1/2 W(a,x) + ik wW(a,-x) = Fe

1/2

k-il/2 W'{a,x) + ik W'(a,~x) = -Geiw'

For O < |a| £ 4, x > 200, Olver's exponential expansions,
Egs, (5.7 - 8) and Egs. (5.11 - 12) with N 5 2 agree with

Miller's expressions to at least 11 significant digits.



-47-

Such an agreement is surprising considering that Olver's
representations are supposing valid for asymptotic values

of |al.
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a) U(a,x) and V(a,x) for a=-2.5 and
b) U(a,x) and U(a,-x) for a=2.5.
Coefficient function (1/4 x2 + a) is
indicated by dotted lines. W(a,x) and
W(a,~x) for ¢) a = -1 and d) a = 1.
Coefficient function (a - 1/4 x2) is
indicated by dottad lines.

e} Components of complex function
Ef(a,x) for a = 1
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V= =ik - -]2'-= -ifa-iN) - % for -40 < a < 20.
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Fig. 4. Computational methods to evaluate U{a,x) and v(a,x) and their
derivatives.
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z-plane  a>o
+11

eZ 5(Z)Domain

(a}

z-plane, a<o
T{o) Domain

A

! (b)

Fig. 5. Domain of asymptotic éexpansions for a) U(% nz, nzv2) where
1

3 n2 = a and b) U(~ %nz, nzv2) and V(- % nz, nzv2) where % n2

= -a.
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Table I

Recurrence Index N for E(A, x)a, A=a-1iN

a X N
-40 < a< 20 0sxs 2 60
20 € x < 100 10
-40 < a< 4 100 < x < 200 10
-2 <% ax<2 200 < x 5 500 4

a E(A,x) is evaluated from Eq. (5.7) for a < o and Eq. (5.11)
for a > o, using s=6.g(n) is determined from Eq. (4.6) with
j = 2.
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TABLE 11X

EXPANSION COCFFICIENTS FOR THF POLYNOFMJIAL FUNCTIONS US AND VS

s [

~
PND W

»~
SR ANG VWV

o

PN BaLONNIN=
[CxT

us (k)

-»250000000000000000+00
2 436666666666666666-01

«T25L6B055555555556¢ DO
«216145823333333333400
~e781249999999999990-02

=+625217013EELEEBL20+00
-e3665002E9351E51852400
~e682074652777777761-01

wd3B5E5060U44hkh435-01
=9 766334 E7654320964-02

«320082672747C743312400
«307946129316165124401
«127943288544077922+01
~e 3892 736066640%46E2-02
~e80711E356962734552-D2
+182T4377E9251851E1-02

~e50E4 62B339E5279694401
-t TETES9950333792E4402
~e55871591324€¢EES30+D1
«6E2E549258222260414D0
=a56273LEI000DEE79VE4DD
«2952¢42¢0712247P40+00
-e923FPL621TELES120LE-01
«1231FLE29DL510E278-01

«25L1942P65065753524D1
«626E520£9202154957402
+121717946CL2006520403
2554 96279F12E26809+02
~e31P6e68406760671L7400
«8€0147352945¢10765-D01
=.507653B0ES7T749610-01
171236062690 23699~01
~223D¢71554459576021-02

~oBGSTLIEGH720727198 402
- T461921€6747727207R402
- 925FL5120272627E77402
= T4BEL264579ESE2955402
=e10762440¢022523501¢02

«12GF L3EETP2€4L04L5402
-2 998439454 LQ4LD5155401

522 74F23635E745350401
=+ TFESL9R23777¢CECLIE430T

«3G7140E063355004 57400
~e37£245339177055¢73-01

vs(K)

«25000000000G00OC000400
ek 1666666066656666¢-01
= 12413184444444 4444400
~a253B8541€6L6C6666674(00
«13020£232332321323-41

«62521TOVIEEREEEERT4LC
«S7490556064E14E 140D
—-aB?PIETISR777777755-01
«4BESESDEDLLLLLLLIS (T
-~ QTLOIILETLS54220964-02

~e3043602E41E1455734C0
~e23TLIELI1OC9LG4L5YEELT
—e TALIESEI2T1T2C1 2641401
~e351€7820C550683495-02

«13ES5ECESS025¢E4E7¢2-C
-+3045726L 80192530202

oSDELOR2ETTIBETTOLGL T
2GS PILTHEIOCE252T24(2
eS52C4EE2P72579852224¢1
«STZCEZLETLIIGEN2 bl
~eS6L2LCE7T1707227522470
«X02E32E551LE727465%4(0
-eP22EiEC2178 20302001
#12FIFLER2CT4 5108278 -0

e 2502¢ELLTATEELAIAT140
~e 64t 73700517¢7E4C 02
=e12970034237157104L +(3
—e25175S5E40F 1560225402
w&ICOEE2571122¢ 2212400
-2 16DE5249 1842254458 9(0
«C0ITI7CS 13U PG4TI~
~e290€2920¢C202C T 0201
«3e45525902065583:¢v-02

«PEST2V1EGLT2C737500 402
S 77505056 LDT4e255%¢ 403
wRBL122F €5t 17elPrte 4T
s17R72E3LC27130451%402
~a132402¢50774466444(4L7
«1310222804726813101402
=~ TOG74544 4L (7257977402
$S3LTH1ZETITIP4ELEST 401
e TEETOLLLELCH6I0TSD0640Y
«1Q7V4CE0ETILOLELS74LD
-eI7K220230177055¢72-01
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Table IIIX

Expansion Coefficients for the Function g(n)"1

s 925+1

o) 0.416666666666666666-01
1 - 0.974633487654320964-02
2 0.123184829045108278-01

3 - 0.378229339177055673-01
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APPENDIX

EVALUATION OF COEFFICIENTS FOR ASYMPTOTIC REPRESENTATIONS

OF WEBER'S PARABOLIC CYLINDER FUNCTIONS

The coefficient functions ug and Vg in the asymptotic series
representation of U(a,x) for a > O and E(A,x) for complex A

are either totally even or odd polynomials of maximum degree 3s.
We shall denote the argument of ug and vg generally by t

and evaluate them by a set of recurrence formulas [13].

The recurrence formula for us(t) given in (4.8) is

(€2-nul(e) = 3stu () = r__, (t) a.1)
where

Brg(t) = (t2+2)u () - 12(s+Dtrg_ (1) + 4(t3-1)r)_ (1)

and u,(t) = 1.

The functions rs(t) are determined first from eguation (A.2)
and then substituted into (A.1). Since the coefficient
functions us(t) are polynomials of degree 3s, they can be
derived from equation (A.1) by matching powers of t. For

s even, the coefficients of the leading term 25 in ug (t)

are 2zero.

Once us(t) and rs(t) are known, the coefficient flnction

vs(t) is evaluated from the relation

Ve (t) = ug(t) + 3 tug_ (B)=r__,(¢) (a.3)
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where vo(t) =1,

Olver provided the functions us(t) and vs(t) for s = 0,1,2,3.

In order to increase the accuracy of the asymptotic series
for moderate values of a, at least two more terms should
be included. In Table II we have recorded the coefficients
for the polynomials for s = 1,2 ... 7, obtained from our

program solving (A.1) - (A.3).
The constants g, appearing in (4.6) are defined to be

ug (t)
95 = lim 2 3/2 s °
Jt]+e (t™-1)

Hence 95 = O and 925+1 is the coefficient of the leading

power t65+3 in U2$+1(t) and can be obtained from Table II.
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PIECEWISE ANALYTIC SOLUTION OF SECOND ORDER
LINEAR BOUNDARY VALUE PROBLEMS
USING WEBER PARABOLIC CYLINDER FUNCTIONS*
Randall B. Shirts'
Roy G. Gordomn
and
Sergio Bienstock
Department of Chemistry

Harvard University
Cambridge, Mass. 02138

Abstract

We present a method for obtaining accurate piecewise analytic
solutions of a general second order linear differential equation in-
cluding both first and second derivatives and a small inhomogeneous
term. The method approximates the coefficient functions by piecewise
linear functions and transforms the equation into Weber's equation in
each sub-interval. Algorithms for evaluation of Weber parabolic
cylinder functions are then employed to give analytic expressions for
the solution in each sub-interval. Error analysis and application to
a test problem with known solution show the error to be of fourth order
in the sub-interval size and of at least sixth order when a first order

perturbation term is included.
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I. Introduction -62-

Many problems in applied mathematics can be reduced to solving

the second-order linear boundary value problem

y"' + £(x)y' + g(x)y = h(x) in (a,b),

with general mixed boundary conditions

Loy P@ es,y00en <y 12
J-

The problem (1) is most commonly solved by the method of finite
differences, the solution being obtained at a relatively large number
of mesh points in (a,b).

Another method is to approximate the coefficient functions f, g,
and h by suitable approximants in a series of N sub-intervals given by
the partition 7 = {a = X €xy < .., < = b} where the sub-
intervals are (xn,xn+l). n=1,2, .. .N Pruess1 has shown that if
|m] is the maximum sub-interval size, and £, g, and h are approxi-
mated by a m-th order polynomial by interpolating at the roots of the
(m + 1)st degree Legendre polynomial transformed to (xn, xn+1], then
the error in y is of order ]w]zm+2 for |n| sufficiently small. For
m = 0, the basis solutions are exponential and trigounometric functions.
For m > 0, the basis solutions are special functions which are less
readily evaluaied. In this work, we show that piecewise analytical
solution of (1) for the case of m = 1 can be readily accomplished
and does, in fact, give errors of fourth order. We also demonstrate

that corrections can easily be added to the zeroth order solution

vwhich yield errors of at least sixth order.
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Several authors have treated problems less general than (1).

The most commonly studied case is the radial Schroedinger equation in
which f(x} = h{x) = @. Gordonz’3 first investigated this case and
subsequently obtained accurate solutions for m = 1 in which Airy
functions are the basis solutions. Other authors have developed the
theory for perturbation corrections to the zeroth order solution for
m = 0.4'8 Luthey9 has developed the computational methods for the
m = 2 case, including algorithms for evaluation of the Weber para-
bolic cylinder functions. In this work, we will transform (1} into a
problem closely related to the m = 2 case of the radial Schroedinger
equation and then use Weber parabolic cylinder functions as the basis
solutions.

We emphasize the piecewise analytic character of the solutions
we obtain. After solution, one has an analytic representation of y
for the entire interval which is continuous and has a continuous
first derivative. This analytic character has important advantages
over a finite difference solution in which one has only numerical
values of y at a series of mesh points. The solution has a closed
form expression in each sub-interval which may be differentiated, inte-
grated, or evaluated at arbitrary points within the sub-interval. Iun
addition, because of the high order of the errors, one can use con-
siderably fewer sub-intervals than in other numerical methods. In
such a case, the approximate solution is completely specified by a
small number of parameters.

In Section II we will formally present the method of solution.
Section IIT will consist of a brief error analysis. Section IV will

apply the method to a problem with a known solution. Section V will

discuss the advantages of the method and summarize our conclusions.
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II. Formal Presentation of the Method

Given the partition 7 of (a,b) into sub-intervals of arbitrary,
not necessarily uniform length, we interpolate the functions f and g
(assumed to be real valued) in each sub-interval by linear interpolants
f and E at the zeros of the second degree Legendre polynomial trans-
formed to that sub-interval. This procedure is equivalent to linear
least squares approximation up to fourth order in the interval size.

The difference functions £ and €, are defined in each sub-interval by:

fEf*el,and gEg+ez, i=12,.,..N

The canonical method for analytic solution of equations with
£ # 0 is to transform the equation into normal form in which the first
derivative term is absent. Since we approximate the coefficient func-
tion £ by a linear function, we transform the equation by the change of

dependent variable as if £ were exactly equal to £, i.e,

y = u exp(- % :‘:'\dx)

after which (1) can be rewritten in the form

2 a, . -
u" - u(%—*» % ~g)=h exp(%_ff dx) - Au‘t:1 + Xu(gel - &)

where we have added the factor X on the right hand side as a pertur-
bation parameter which will be taken to be unity. Since f is linear,
the coefficient of u on the left hand side of (5) is quadratic. A

linear change of independent variable can be used to transform (5) to

the first standard form of Weber's equation:

~

2 2 -
g—% - u(%—*- a) = h(z) - Au'elr'l

-2,f
+ hur “{z€, - £,)
dz 271 2
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vhere z = r(x - %{xi + xi+1)) + s, ﬁ(z(x)) = hr'zexp(%]r? dx'), and r,

1, and xo on the

s, and a are determined by the coefficients of xz, x
left hand side of (5).

We can now expand u in perturbation series in A:

Oy 4+ AWMy 32 Ayy |,

M u =

For f and g sufficiently smooth, such series will always converge in
some radius of convergence in A which we assume to be greater than
unity. Substituting (7) into (6) and separating in equations in each

power of A gives the following hierarchy of equations:

2 ~
(O)un - (0)u(2_4_ + a) = h(z),

@
Wy _ @)y 2
u' - u(TT'+ a) = Fi(z), i=1,2...
where Fi(z) = (l'l)ur-z(%gel - 52) - (i_l)u’r—]el. Standard variation
of constants or Green's function techniques yield the following expres-
sions for the solutions:
% .
Ouez) = uGa, )[4y - +f hzV(a,2')ea'] +
1 5+
V(a,z)[By + - [ h(z')U(a,z")dz"]
(&)}

. z
1
Wutz) = v, 2) 1A, - L[ daz'v@zF ] +
1 2
V(a,z)[ui + ;J‘ dz'U(a,z")F,;(z")],
where U and V are Weber parabolic cylinder functions and w is their

Wronskian. The integrals in which h appears are evaluated by two point

Gauss-Legendre quadrature, which is equivalent to approximating h by a
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linear function at the transformed zeros of the second degree Legendre
polynomial. The integrals in the higher order solutions can be evalu-
ated by higher order quadratures, or it is possible to evaluate them
analytically in terms of the integrals f[ABz'dz (A,B = U, V, U', or V')
for which indefinite integrals can be evaluated.10

It is necessary to link up the solutions in each sub-interval in
such a way that the global solution and its first derivative are con-
tinuous and the boundary condition (2) is satisfied. This is done by
adjusting the constants Ai and Bi in eack sub-interval. We set A and
Bi equal to zero for i » 1 by fixing the lower limit of integration in
(9) at X The most officient method to determine the 2N remaining con-
stants A, and By is tc set up a 2-vector of independent solutions at a
and use a shooting method to propag.ce each component of the vector
from sub-interval to sub-interval, making each component and its deriva-
tive continuous at the mesh points. This linking requires the solution
of a 2 x 2 system of linear equations at each of the N - 1 interior
mesh points. When this is complete, a linear combination of the com-
ponent solutions can be found to satisfy the boundary condition (2).

In some instances, it is convenient or necessary to propagate
the vector of solutions from b to a rather than the reverse. This is
done simply by resetting the lower limit of integrations in (9) at

X rather than X,

n+l
We will investigate the accuracy of the solutions obtained by

truncating the perturbation series {7) after the first and second term.

The solution with one term of Eq. (7) we call the zeroth order solution.

We call the second term the first order correction.
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I1I1. Error Analysis

In this discussion, we define the error to be the maximum abso-
lute deviation from the correct result among a set of points, i.e. the
supremum or L norm of these deviatious. The order of error for an
approximate solution we define to be tuc first power in the sub-interval
size which is neglected. For the zeroth order solution, the error can
be most easily estimated from the order of the first order correction.

In each sub-interval, this correction consists of a sum of integrals

Xne1
f ABE(x)dx,
X

of the form:

wiiere A and B are either U(a,s + r(x - %(xn + xn+1))) or V(a,s + r x
x - %(xn + xn+1))) or their derivatives, and £(x) is a function which
has zeros at the zeros of the transformed second degree Legendre poly-
nomial. It is well known11 that the error in k-point Gauss-Legendre
integration is proportional to (xn+1 - xn)2k+1. and for k = 2, the
quadrature sum for (10) vanishes exactly since the Gaussian pivots are
precisely the zeros of the integrand. Thus the integrals must be of

order at least (x - xn)s. Errors of the fifth order in each sub-

n+l
integral give rise to global errors of fourth order. We conclude that
the zeroth order solution in (9) has errors of fourth order. Expanding
the functions in Taylor series about the midpoint of the interval
yields precisely the same result. Pruess has shown that this fourth
order accuracy is the maximum attainable order of accuracy for linear

approximations of the coefficient functions.1 We have demonstrated a

method to construct a piecewise analytic solution with this maximum
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attainable accuracy. This analysis is only applicable to the error at

the mesh points X, In practice we observe errors of fourth order at
non-mesh points as well, although we can theovetically justify errors
of only third order by our simple analysis. We ohserve errors of
fourth order in the derivative of the solution at mesh points, but
errors of second order in the derivative at non-mesh points.

The order of approximation of the first order corrected solution
is estimated by examination of the second perturbation corrections.

These consist of integrals of the form

Xne1
f ae) Bumax.

X
n

The function (I)u(x) is of order (xn - xn)3 for linearly inter-

+1
polated coefficient functions since it consists of integrals over an
interval range of order (xn+1 - xn) each with an integrand of order
(xn’l - xn)z. Integrals of the form (11) were siiown above to be of
1)

u(x) multiplier is o2 oraer

5 <
" xn) , but since the

order (x
n
(xn’l - xn)s, the net order of the integrals for sufficiently small

- X )B. This gives rise to global errors of

sab-intervals is (xn+1 n

seventh order. In practice, we observe errors of at least sixth order
in function value and function derivative at both grid points and non-
grid points. We are umable to distinguish between sixth and higher
order errors numerically due to “ack of precision in evaluating Weber

parabolic cylinder functions.
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IV. Application

We take as an example the following problem treated by Pruesslz

¥ _ix_{yv . 22 y=0 in (0,1/2),
1+x 1+x

y'(0) = 0; y(1/2) = 8000,

which has the known solution y = 104/(1 + xz).

We used sub-intervals of equal length for computational convenience
and for comparison with the results of Ref. 1. The calculation was per-
formed in double precision on the departmental PDP 11-45. Table 1
lists the relative ervor |7y - y.)/yl and |(y' - y';)/y'| where y;
is an approximate solution and primes denote derivatives. In this cal-
calation, first order corrections were evaluated by four point Gauss-
Legendre quadrature. We note that the relative error in our calculation
is limited by the precision to which our present routines evaluate the
Weber parabolic cylinder functions. This precision is approximately
8.E-7 for U and V functions and 4.E-6 for their derivatives. This
precision can easily be improved, but has not yet been implemented in
our present program versions. To within this tolerance, our zercth
order function errors agree with those of Pruess. The impertant feature
of Table 1 is that the error in the first order corrected solution is
three orders of magnitude less than the zero order solution without sub-
division of the interval (0,1/2). Even the derivative is accurate to
five figures. It was necessary to ‘extend the interval to (0,1) in order

to estimate the order of errors in this case.
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V. Discussion and Conclusion

The use of piecewise analytic methods for m 3 7 req:ires the
evaluation of special functions which are slower than simple exponential
or trigonometric functions. The zeroth order solution can be constructed
in N subdntervals with only 2N function evaluatiomns of the Weber para-
bolic cylinder functions and their derivatives. The difficulty of com-
puting special functions is offset in many cases by the higher order of
error of this method, which requires significantly fewer sub-intervals.

In practice, the most efficient choice of partition is not equal
length sub-intervals. The most useful criterion that we have devised is
to require that the first order perturbation correucicn in each sub-
interval be of equal magnitude relative to the zeroth order solution.
This criterion allows the mesh to be adjusted for equal relative error
per sub-interval at the time of propagation of the solution vector as
discussed in Sec. II. This criterion has been successfully used by
the authors in applications to the radial Schroedinger equation, chemi-
cal kinetics, ard charge transport in semiconduct-

It should be understood that there is nothing which prevents the
apprcxisation of g by a piecewise quadratic function. In general, this
might require the use of the second standard form of Weber's equation
with basis solutions W(a, +x). Although we have algorithms9 for evalua-
tion of these functions, they :re considerably slower than those for the
functions U and V. Furthermore, such 2 quadratic approximation to g
would not increase the order of accuracy. Such a method might be suc-
cessful ouly when g dominates f sufficiently.

Some uneasiness sometimes arises over the fact that the piecewise

~ -
linear approximants f and g are discontinuous at the mesh points Xn-
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These discontinuities result only in a discontinuous second derivative

of y. Such a discontinuity is seldom important in second order dife.
ferential equations.

In some instances when the slope of f vanishes in a sub-irnterval,
Eq. (6) reduces to the Airy equation. The use of Airy basis solutions
does not effect the order of accuracy of the solution. If, in addition,
the slope of g vanishes in the same sub-interval, then Eq. (6) has
exponential and trigonometric solutions. These occurrences are usually
only special cases which happen rarely and do not affect the globzal
absolute crror appreciably.

Although the analysis we have presented has been concerned only
with the univariate case, e.g. onc equation (or set of uncoupled equa-
tions), the generalization to M coupled equations is straightforward.
Much of the theoretical and error analysis has been completed by Luthey9
and Smooke.7 In the multivariate case, the amount of computation goes
up as Ms. Since the number of Neber or Airy function evaluations neces-
sary is proportional to NM, the frac:ion of computer time spent doing
function evaluations becomes negligible for large M. In such a case,

a higher order solution such as we have presented becomes much more
desirable.

We have demonstrated a method of solving approximately the second
order linear boundary value problem using piecewise analytic solutions
in terms of Weber parabolic cylinder functions. We have demonstrated
by brief error analysis and nume: ‘cal example that the zeroth order
solution is of fourth order in the step size,and the first order cor-
rected solution is of at least sixth order. We belleve that in many
applications the present method 1. more efficient than other methods

for comparable accuracy. We also feel that the amalytic character of
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our solution gives it advantages not possessed by fully numerical
solution methods, in that the solution can be evaluated at arbitrary
points by closed form expression and is completely specified vy a

small number of parameters.
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Teble 1
arror In £ od for pi ise anslytic to the known solution

of Bq. (12). Mumbers in pareatheses sre limited by the precision of Weber function evalustion.

In] = 12 1/4 s 116
Prusss (Ref. 1) 1.012-3 4.422-5 2.59E-6 1.60E-7
1610 order function 1.01E-3 4.46B-5 (3.14B-6) (7.,28.7)
zero order derivative 2.028-2 S.98E-3 1.57E-3 4.D1E-4
tero order derivative
(at mesh points only) 6.0 -5 4.76E-5 (2.43E-6) {2.37E-6)
first order functicn 2.238-6 (3.41E-7) (5.50E-7) {6.12E-7)

first order derivative 3.40-5 (2.16E-6) {2.88E-6) {3.78E-5)
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QCOL/MK2: AN ACCELERATED GORDON
ALGORITHM FOR INELASTIC COLLISIONS*

Millard H. Alexander
Department of Chemistry
University of Maryland
Cocllege Park., MD 20742
The usual quantum formulation of inelastic molecular
collisions at low energy leads to a set of coupled second- *

order ordinary differential equations, commonly called the

close-coupled (CC) equations. In matrix notation these are

L+ k" - V(R)Ju(r) =0, (1)

where i is the unit matrix, §2 is the diagonal wavevector matrix
and Z(R) is the Hermitian matrix of the coupling potential plus
the centrifugal barrier. Gordon has developedl_3 a widely~used
program for the efficient numerical solution of these equations,
which is based on propagating the solution matrix u(R) outward
through a series of intervals. Within each interval this matrix
is subjected to an orthogonal rotation, gm’ which is chosen to
diagonalize the sum of the wavevector and potential matrices,

Ez - Z(R), at the midpoint of the interval, Rm.

Expanding the transformed potential matrix in a power series

about Rm' one can write the transformed CC equatiocns as

* Research supported by the Computer Science Center, University
of Maryland; the National Science Foundation, grant CHE78-08729;
and by the National Resouirce for Computation in Chemistyy under

a grant from the National Science Foundation and the Basic Energy
ficiences Division of the United States Department of Energy under
Contract No. W-7405-ENG-48.



-76-

B
()

2 =
[ 1+ é - g(R-Rm) - %g(R—Rm) + ... gm(R) =0, (2)

\§)

dR

where ) is the (diagonal) transform of 52 - VA(R)
- V(R)IE (3)

and and H are, respectively the transforms of the first and

({4

second derivatives of V(R), evaluated at R_. namely

I
€7 & @ L™ & )
and
H=ct [-d—z-- V(R)], C (5)
= =m ar = Rm =m

By neglecting the off-diagonal elements of g, the entire 2
matrix, and higher derivatives of Z(R), these equations can
be uncoupled and the (diagonal) solution matrix expressed in
terms of Airy functions. This is eguivalent to replacing the

transformed potential matrix by a diagonal, piecewise linear

matrix. For the nth channel one has
- m _ s .
W) pnt = SpneVa(R) = A Alla, (R+B )1+B Bila (R+8 )] (6)
_ 1/3
where a = (Gnn) and
N 7
n n 24 "nn'm nn m

where Am is the width of the mth interval. The term containing

Hnn is added to provide an optimal piecewise linear potential.z'4
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The coefficients An and Bn are determined by solution-
matching at the boundary of the previous interval. Prior to
this matching, the solutions in the previous interval must be

backtransformed into the original hLasis and subsequently trans-
formed into the basis which diagonalizes Ez - Z(Rm). This step
involves multiplication by the interval-to-interval transfor-

mation matrix, Em’ where
cr (8)
For N coupled equations propagation across a given interval

will require, in the limit of large N, approximately t6%)N3

multiplications, reflecting the following matrix operations

i) % N3 reduction of E? - Z(Rm) to tridiagonal form
ii) N3 backtransformation of eigenvectors of tri-
diagonal matrix to obtain Cn
iii) N3 formation of transformation matrix Tn
iv) % N3 unitary transformation of derivative matrix
[Eq. (4)]
v) ZN3 multiplication of solution matrix in previous

interval, Y1’ and its derivative by trans-

formation matrix T _[Eg.(8)].

=m
At nearby collision energies,2~or, in the case of any

"average~2" decoupling approximation, at other valaes of the

5 . .
6 the same transformation matrices

can be used. Propagation across the mth intervzl then necessi-

orbital angular momentum £,

tates only the 2N3 multiplications corresponding to step (v).

In established versions of the Gordon program,3 the initial

propagation across each interval is accompanied by the determina~
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tion of the first-order perturbation corrections to the solution
matrix, gm(R) arising from the neglected off-diagonal terms in
the transformed first-derivative matrix, g [Eq. (4)}, and diagonal
terms in the second-derivative matrix, g {Eq. (5)]). The largest
of the diagonal and offdiagonal corrections, CDIAG and COFF,
are then used to choose the size of the next interval.

The actual determination of these perturbation corrections
suffers from the following drawbacks:

i) Considerable computational effort and a significant
fraction of the total object code is devcted solely to this
somewhat minor aspect of the overall calculation. Additionally,
mathematical instabilities can arise in certain applications.7

ii) Although the addition of these perturbation corrections
should in principle render the "first-order" solutions more ac-
curate than the "zeroth-order" solutions, in our experience tiie
improvement is small, perhaps because of the approximations
which are made in the evaluation of the crucial off-diagonal
corrections.l’2

iii) For most problems it is desirable to carry out sub-
sequent solutions of the CC equations using the already deter-
mined transformation matrices. The interval width must then
by necessity be small enough to ensure sufficient accuracy not
only in the first-order but also in the zeroth-order solutions.

For these reasons we have modified the original Gordon
program to eliminate the determination of the first-order cor-
rections. The relative magnitudes of the neglected off-diagonal

and diagonal corrections, which are used to determine the next
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step size, can still be adequately estimated by integrating the

neglected terms in the G and H matrices over the interval in

guestion, in a manner similar in spirit to Gordon's work.l’2
Specifically, since
Rm+Am/2
f (r-R ) 2aR = 23/12 (9)
m m ’
Rm-Am/Z

the average integrated magnitude of the diagonal elements of

the second-derivative terms in Eg. {2) is

3 N
A
H =_E_ZIH

av ~ 24N (10

K.

A comparison of this quantity with the average magnitude of the
eigenvalues Aq, will now provide a value for CDIAG, the estimate
of the effect of the neglected diagonal second derivative terms.

We thus have

3
A
_ m
CDIAG = Wn—l— rzl IHnn[ (11)
where the matrix norm in the denominator is defined by8
N
Ity = I Iad (12)
n=1

and is equal tc N times the average eigenvalue magnitude.
Ssimilarly, a value for the parameter COFF, which is a

measure of the effect of the neglected off-diagonal terms in
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G can be obtained by comparing to Hl"l the integrated magnitude

of the largest (in magnitude) off-diagonal element of G. Since

- %n”m/z
[ le-rar = a2/, (13)
R -4 /2
we find
N2
COFF = 3—-“'%"1— max (lc;ijl)i#j . (14)

To incorporate the above changes we have made the following
modifications in the original Gordon program:

i) Propagation across a given interval, even for the
initial energy, is achieved by the subroutine SPROP. The
lengthy subroutines STEP,. DPROP, and FLAT are eliminated.

ii) The algorithm for determination of the width of the

next interval, 4 is unchanged with the exception that the

m+1’
key input parameters CDIAG and COFF are now determined from
Eqs. {11} and (14).

In addition we have made one other modification:

iii) In the subroutine DTRANS, which performs the trans-
formation of Eq.(4), the option which allows additional trans-
formations in the case of nearly degenerate eigenvalues was
eliminated. In practice we have found this option to provide
little gain in accuracy or speed and, in some cases, to con-

tribute possibly to instabilities in the propagated solution

matrix.
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on the UNIVAC 1102 at the University of Maryland these
modifications yieided savings of ~41C0 words of object code
az well as N2+20N words of required data storage. The modified
program, designated QCOL/MK2, was tested both on the Lester-

- f et 9
Bernstein model atom-rigid rotor collision system,” and on the

0

The

vollision of two HF molecules at E,_,=8000 cm ' and J=400.%

to
former calculatioas were performed on the UNIVAC 1108 at Maryland
and the latter on the CDC 7600 at LBL. In both cases the use of
Egs. (11) and (14) resulted in a distribution of interval widths
very similar to that predicted by the error criteria in the original
Gordon program. Table I displays some representative times for
detcvmination of an S-matrix at one value of the total a.gular mo-
mentum.

Figure 1 displays the convergence of the root-mean-square
error of the inelastic and elastic transition probabilities as a

function of CPU time for the Lester-Pernstein model problem at

a 9-channel level. The error quantities are

PPV L (15)

A =[] a5, .
elas ) 3L, 3

for the elastic transitions and

2 5
A, = AL . 72
inel [};j' jL,3'e /72] . (16)
L#L"
for the inelastic transitions. Here Ajl jre is the absolute
’

deviation of the calculated transition probability lsgn j'z"z
7
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from the exact value, taken from Stechel, Walker, and Light.11

Each plotted point corresponds to a different choice of input
parameters.

If one desires only moderate accuracy, it is obvious that
the present modifications offer a substantial decrease in CPU
time, especially for the crucial initial energy calculation. The
degree of convergence of both the original ezad modified Gordon al-
gorithms appears to be substantially similar. The larger scatter
in the QCOL/MK2 generated points in Figs. 1 and 2 at longer CPU
times (high accuracy) probably reflects the fact that Egs. (1l1)
and (14) are only estimates of the error and thus are ultimately
less accurate for the prediction of step sizes.than the actual
corrections to the propagated solution, which are determined in
the original Gordon code. We are presently working on the develop-
ment of alternate procedures for the even more accurate prediction
of step sizes.

In summary, we have developed a simple modification of the
original Gordon program which can result in a substantial saving in
computer time. The new QCOL/MK2 code should ke best suited to the

rapid generation of S-matrices of moderate accuracy.



-83-

R. G. Gordon, J. Chem. Phys. 51, 14 (1969).

R. G. Gordon, Meth. Comput. Phys. 10, 81 (1971).
R. G. Gordon, QCOL, Program 187, Quantum Chemistry
Program Exchange (QCPE), Cepartment of Chemistry,
Indiana University, Bloomington, IN.

M. H. Alexander and R. G. Gordon, J. Chem. Phys. 55,
4890 (1971).

M. H. Alexander, J. Chem. Phys. 61, 5167 (1974).
R. B. Walker and J. C. Light, Chem. Phys. 7, 84 (1975).
M. H. Alexander, J. Comput. Phys. 20, 248 (1576).

E. Isaacson and H. B. Keller, "Analysis of Numerical
Methods, " (John Wiley, N.Y., 1966).

W. A. Lester and R. B. Bernstein, J. Chc». Phys. 48,
4896 (1968).

A. E. DePristo and M. H. Alexander, J. Chem. Phys. 66,
1334 (1977).

E. B. Stechel, R. B. Walker, and J. C. Light, J. Chem.
Phys. 69, 3518 (1978).



-84~

initial subsequent
) o QCOL T I
*e * QCOL/MK2
or{?® { & 10!
. ° ®
4 8 o ] o 8o
— o
. .o% ELASTIC K
© oo L) i ‘om 02
o D040 ®
@ . L] 0~0 y [ a s
w . '™ o © %00 9
» 4 ¢« ° ) Fo N
= 9 . . 3} » ° 2
00014 o 0 o 10 °
@ 89
*® iNELASTIC T ',
¢ 85, / o e
Q.0 a0
. 000 . Lot
. o 0 o0a .o
. LY . o ° . (4 .
[s)
103
0 5 I0 15 20 25 30 o] | 2 3 4 5 6

CPU TIME (Sec) U-1108

Fig. 1. Plot of the root-mean-square error [Egs. (15) and (16)]
for the Lester-Bernste.n model problem (9-channels) as
a function of CPU time (UNIVAC 1108). The left and
right panels refer, recspectively, to initial and
subsequent energy calculations. For clarity the
inelastic points have been displaced downward one
decade. Consequently, the magnitude of the error in
the elastic probabilities should be read from the left
ordinate; the magnitude of the arror in the inelastic
probabilities, from the right ordinate.
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Table I. Representative CPU times (seconds) for determination

of an S-matrix.

N initial energy subsequent
channels energy
QCOL QCOL/MK2

UNIVAC 11082

) 7.0 3.6 1.5
16 24.6 11.6 4.2
20 39.8 19.5 6.6
25 74.6 32.1 10.4

coc 7600°
10 0.51 Q.36 0,11
17 1.5 1.0 0.25
28 4.8 3.0 0.71
44 13.2 8.9 2.0
72 53,5 34.5 8."

a) Lester-Bernstein model, Ref. 9.

b) Rotationally inelastic collision between two HF molecules, Ref..".
For most meaningful comparison with atom-diatom calculations the
values shown are exclusive of times required for computation of
the more complex diatom-diatom coupling potential.
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THE LOG DERIVATIVE AND RENORMALIZED
NUMZROV ALGORITHMS

B, R. Johnson
Chemistry and Physics Laboratory
The Ivan A. Getting Laboratories

THE AEROSPACE CORPORATION
El Segundo, Calif., 90245

The Log-Derivative and Renormalized Numerov Algorithms

L. Introduction

Two algorithms for solving the coupled channel differential equations which arise
in atomic and molecular scattering theory will be presented. They are the log-derivative
methcdl’2 and the renormalized Numerov method.z’s Both these elgorithms share the
following desirable properties: They are simple and easy to implement, no special
difficulties are encountered with closed channels, the step size can be easily changed and
no linear dependence or overflow difficulties arise when propagating the solution though
classically forbidden regions.

The log-derivative method will be discussed first, then the renormalized Numerov
method and finally a model ealeulation using both these algorithms will be discussed and

features of the two methods compared.

1L Log-Derivative Method

The "coupled-channel Schroedinger equation” is most conveniently written in the
following matrix differential equation form:
p &

d——a)'— + Q()f)jl‘l’(x) =0 (1)
x2

where

Q) = (24/42) [Ei - vx]. (2)



Here, ! is the unit matrix, 4 is the reduced mass, V(x) is the symmetric potential matrix
which hes the centrifugal potential and the diagonal threshold energy terms included in it
and E is the total energy. The wave function W(x) is a square-matrix function of x.

The log-derivative matrix is defined to be
v = w0 v e, (3)

where the prime means differentiation with respect to x. Differentiating Eq. (3) and
using Eq. (1) to eliminate the second derivative term, we obtain the matrix Rieatti

equation
7 + Qx) + y2x) = 0, @

This equation cannot be integrated by the usual numerical techniques for solving
first order differential equations because y(x) diverges for certain values of x. This is

illustrated by the solution to the simple one channel problem in which Q is a constant:
v(x) = 01724 (g1/2y), (5)

This funetion is infinite at the points x = an'l/ 2 and the usual numerical algorithms
for solving a first order differential equation cannot propagate the solution across these
points. Our algorithm has no difficulty propagating the solution across these singular

points.
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The algorithm is as follows:

- -1 -1
Yy = U+thy )"y, 4, -h "0 (6)

where h is the spacing between the N + 1 grid points Xy KoKy and where

h?/3) Q (x), n=0,N
U = {20%3Q6k), n=24,.82 @
s1+8[I-m¥e)Q )], n=1,3,..N-1

Eq. (6) is & two term recurrence relation that can be iterativly solved once the term y o is
specified. The initial term is related to the initial value of the log-derivative funetion

by the relation

lyg. )

Yo = y(xo) -h o

The calculated value of ¥, is equal to y(xn) only at the final integration point n =N. This

is no problem however, since only this value is needed to calculate the S-matrix.

In actual practice it is somewhat more convenient and efficient to solve for the

quantity

z =I+hvn (9)
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Subsitituting this into Eq. (8) it is easy to show that
- R _ .1
z, =@ -U) -2, (10)
The initiel term is calculated from the relation

z, = a-uvy)+ h_v(xo) (11)

1

For most scattering problems, this leads to z; = 0. The matrix y(xN) is obtained from

zyina final caleulation
yix ) = hlzg - D (12)
N N :

The reaction matrix K is defined by the asymptotic behavior of the wave function.
In the region X > Xy in which all but the centrifugal part of the potential has become

negiigible, the wave function is

T (x) <3 J(x) + N(x)K. (13)

N

The matrices J(x) and N(x) are diagonal. The matrix elements or the open channels are

made up of Riccati-Bessel functions
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_ -t~
[J(x)]ij = &k J‘j(ij) (14)
[N(x)]ij = Oy k;* ﬁ‘j(ij, (15)

and the matrix elements for the closed channels are made up of modified spherical

Bessel functions of the first and third kinds

1
(3] = 65 (o) Ty sl (16)
- ¥
[N(x)]ij aﬁ {ie;x) sz+l,(kj"’ an

where kj is the channel wave number. Differentiate Eq. (13) with respect to x, then
multiply from the right by the inverse of this equation, set X=Xy and solve the

resulting equation for K in terms of y(xN).
K = =[ylxg) Nixg) - NI x [yixyg) ) - 3 ()] (18)

The matrix K is an augmented reaction matrix containing elements connecting closed as

well as open channels, e.g., K can be written in the form

K = a9
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where K 00’ K oo’ Kco' and ch are open-open, open-closed, closed-open, and closed-

closed submatrices of K. The S-matrix is given in terms of the open-open submatrix,

K oo DY the familiar formula
_ e vl s
5 = (I+ K, (1 iK ) (20)

Each of the matrices in Eg. {(18) can be partitioned into open-open, open-closed,

elosed-open and closed-closed submatrices similar to the partitioning of K in Eq. (19).

Written in partitioned form, Eq. (18) is

- 1 -
Koo  Koe ) YooNo "N YocNe !
Keo  Kee Yeolo YoeNe " N
< Yoo0 " To Yoe'e
Yeolo Yeede " Te

Since the S-matrix depends only Koo’ it is clear that the calculation can be simplified

somewhat by only computing the left hand column of partitions of the K-matrix. The

equation then becomes

- N’ -— -
K 'VOONO N o yOQNc ! y00‘]}0 J‘O
(21)

1

K YeoNo YoeNe = N Yeodo
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The matrix J,, which is the closed channel part of J(xN) is not used in this equation.
Thus, the closed channel functions defined by Eq. (16) are not needed to calculate K 00"
However, the closed channel elements of N(xN) defined by Eg. (17) are still required.

The closed channel functions defined by Eq. (17) decrease exponentially with
inereesing x. This is a possible source of numerical difficulty. The problem is easily
eliminated by redefining the closed channel elements of both N(x) and N'(x) by
multiplying these functions by increasing exponential functions which just cancel the

exponential decrease. That i3, we make the following simpie replacement

[N&)] i —-[N(x)]ii exp (k;x) (22a)
] j; — [N0] ; exp (ki) (22b)

It should be noted that after this replacement is made, N'x) is no longer the first
derivative of N(x). It is easily verified that replacing N(x) and N'(x) by the expressions
given in Fg's. (22a) and (22b) will leave K, unchanged. These modified closed channel

functions-can be easily caleulated from recurrence relations.

We have seen from Eq. (21) that the closed channel elements of J(x) are not
required to calculate K 00 but the closed channel elements of N(x) are, in general,
required. The need for these functions ean also be eliminated, but only if the value of
Xy (see Eq. (18)) is sufficiently large. It can be shown that the elements of ycolx) and
yoc{x) must eventually approach zero exponentially as x increases. Thus, the open and
closed channel parts of Eq. (21) decouple and only the open channel elements of N(x) are

required to calculate Koo'
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III. Renormalized Numerov Method

The matrix Numerov aigorithm is an efficient method that ean be used to obtain

numerical solutions of Eq. (1). The basic formula is the three term recurrence relation

(1 - TouylWp,y - @1I+10T, ]9, o[- T, ]9 4 = O (23)
vhere
Wy = W) (24)
and
Ty = - MEn20 &) (25)

Here h is the spacing between the N + 1 equally spaced grid points Xy XpoeeeXyg and the
square matrix O(x) is defined by Eq. (2). Equation (23) is derived by an obvious

generalization of the derivation of the ordinary Numerov algorithm to matrix quantities.

The renormalized Numerov algorithm is derived from Eaq. (23) by making two

transformations. First defin: the matrix

F. = (1-T I, (26)
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and substitute into Eq. (23). This gives

Fn+1 - UnFn + Fn—l = 0. 27
where
_ -1
Un = (I-Tn) (21 + 10Tn). (28)
Next, define the ratio matrix
R =F F! (29)
n n+l “n °

Substitute this into Eq. (27) to obtain the two term recurrence relation
- -1
R =0 -R (30)

This is the basic equation of the renormalized Numerov method. It can be solved once
the value of the initial term RO is specified. In seattering problems, the wual case is to
assume the initial values of the wavefunction are W(xo) =0 and \Il(xl)== 0. The
corresponding vaiue of the initial inverse ratio matrix is R81= 0. (For exceptions to this

rule see Appendix D in Ref. 3 .)



-95-

The matrix U, defined hy Eq. (28), is symmetric. It follows from this and the
symmetry of Ral and also from Eq. (30) that the matrix R, is also svmmetrie. For
computational convenience, Eq. (28) can be reformulated as a symmetric matrix

inversion problem. Define

w

I- Tn’ (31)

then

1

U = 12w; - 101 (32)

n

Thus, at each grid point we must invert two symmetric matrices.
Equation (30) can be solved iterativly to obtain Ry- The value of R;II-I is also
readily available and can be saved at the last integration point. Using these two

quantities the log-derivative matrix can easilv be calculated by means of the formula3

_ -1 R -1,
vx)=h (A R -A L RII-T) (33)

where Tn is defined by Eq. (25) and
An = {0571 - Tn)(l - Tn) (34)

The S-matrix can then be calculated from this log-derivative matrix bv the techniques

outlired in section IL.
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Another method for calculating the S-matrix, which avoids caleulating the log-

derivative matrix, is also possible. Multiply Eq. (13) by (I - Tn) to obtain

F, = j(xn) + n(xn)K (35)
where we have defined

j(xn) =0 - T) IHx) (36)
and

n(xn) = (l-Tn\N(xn) (37

Evaluate Eq. (35) at Xy and X471 caleulate the ratio matrix RN = FN 1 F;;, then solve

the resulting equation for K in terms of Ry
K = - [Rygn(xyg) - nly, 7T [Rygileyg) - iy, )] (38)

This equation is similar to Eq. (18) and can be partitioned and solved in exactly the
same way. If Xy is large enough, the bpen and closed channel parts of this equation
decouple; if not, they are counled and the closed channel elements of n(xN\ will be
required. In order to avoid any possible numerical diffieulty, the closed channel

elements of N(x) in Eq. (37) should be the modified funetions defined in Eq. (22a).
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The K-matrix and S~matrix computed by the renormalized Numerov algorithm will
by symmetric only to within the trunctation error of the ealeulation. In fact, one ean
obtain an estimate of the magnitude of the truneation error from the error in symmetry.
This is in contrast to the log derivative method where there is no relationship between

truncation error and the symmetry of the S-matrix.

IV. Example Cealculations

In this section several of the eharacteristies of the log-derivative and renormalized
Numerov algorithms will be elucidated and compared by applying them to a model
problem.

The model is the atom-collinear harmonie oscillator system deseribed by Secrest
and Johnson.? The Schroedinger equation for this problem is

2 2
AN ~+12+v(x_)_15]‘,=0
{ #m <3x2> 7<8y2) 7y v

where the interaction potential is
V(x-y) = Aexp[-a(x-y)]

This problem was recently solved very accurately by Stechel, Welker and Light5 for the
particular set of parameters: A = 41000, @=0.3, m = 2/3, and E =6.9, 8.0. They used a
six channel expansion of the wave function and an integration range from x = 0-100. We
have chosen this same set of parameters for our model problem. However, we only

solved the E = 4.0 case,
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Accurate, converged values of the transition probabilities are given in Table L
These valies were calculated using the renormalized Numerov algorithm with 2000
points and a grid spacing h = 0.05. Since the transition probability matrix, computed by
the renormalized Numerov method, is symmetric only to within the truncation error, we
have symmetrized the results by averaging Pmn and an. It is these averaged
probabilities that are given in Table I. The inaccuracy of any of these numbers is no

greater than two digits in the last place shown.

In Figs. 1 and 2 we show the relative truncation error of the calculated transition
probabilities as a function of the grid spacing. There are several features to observe:
The error curves are almost linear (on a log-log seale) with a slope very close to 4. This
is consistent with the fact that both slgorithms are fourth-order methods. Next we note
that for a given grid spacing, the renormalized Numerov method is more accurate than
the log-derivative methed. Alternatively, in order to obtain the same relative error, we
must use a smaller grid spacing with the log-derivative methed. The worst case is the
0-1 transition, where the ratio of log derivative to renormalized Numerov grid spacings
must be about 0.63 in order to obtain equal relative errors. The best case is the 1-2

transition where this ratio is about 0.88.

On the other hend, the averege CPU time per grid point is less ‘ur the log
derivative method than for the renormalized Numerov method by an approximately
constant ratio of about 0.76. This ratio is easy to understand. It is approximately the
ratio of the number of matrix inversions. Two inversions per grid point are required for
the renormalized Numerov method whereas, on the average, only 1.5 inversions per grid

point are required for the log erivative methed. The only other procedure that might
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require much computer time at each grid point is the caleulation of the potential matrix.
In the present model problem this is almost negligible. However, if it were not, it would

tend to make the time ratio per grid point less favorable to the log derivative method.

The fact that less time per grid point is required, approximately compensates for
the increased number of points required by the log derivative method. Based on the
figures given, the 1-2 transition could be calculated more efficiently using the log
derivative method whereas the 0-1 transition could be calculated faster with the

renormalized Numerov method.
The average CPU time per grid point as a function of the number of channels is
plotted in Fig. 3. These curves can be approximately extrapolated for N larger than 20

channels by the formulas

= -5,2.8
TRN = 0.208*10 N

and

0.158%10 5N 28

=3
"

LD

By using the information in Figs. 1, 2 and 3 and given the integration range, the time

required to calculate solutions of various accuracies can be determined.
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Table I Transition Probabilities
n o *m
0 0 0.97788564
) 1 0.97699265
% 2 0.999096929
0 1 0.2210932*10" !
1 2 0.898031%10°°

0 2 0.503948%10°7
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DEVOGELAERE'S METHOD
William A. Lester, Jr.
National Resource for Computation in Chemistry
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

For a differential equation of the form
y' = flx.y)

DeVogelaere's method1 consists of cyclic use of the equations

_ 1., .1 1
Np=Yetz¥otsFo-zfan W W
Y =Yty L (F o 2F,) (5 (2
hyy = hyy + 1 (F, + 4, +F) {6} (3)
where
o2
Fo = hoflxg ) - )

The method requires F-1/2 from the previous step and therefore is not self-

starting. For the initial step F-1/2 may be obtained from

F, (3} (5)

o) =t

oy L1
Y2 Y "z Me*

In Eqs. (1) - (5) h is the interval. We further note that the method
requires only two evaluations per interval. Following Ref., 1, we use the
symbol {n} which is equivalent to o(h").

Very recently Coleman and Mohamed have determined truncation error
estimates which permit automatic error contro].2 A FORTRAN program in-

corporating these features is available from Computer Physics Communication.3
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The generalization to a system of differential equations is straight-

forward: For
y§ = f(x.y,) i,k=1,2, ... N (6)

one obtains, in place of Eqs. (1) - (3)

. h 1 ]
Yi,172 " Yi0 * 2 ¥i,0 * § (Fi,o - 7 Fy,-172) (M
. 1
Vi1 Y0 Wi ot (Fyot 2Fy ) (8)
L e w1
hyi g =g ot (Fy ot 92+ Fi0) (9
where
2, .
Fip =0 Tilxp v ) f,k=1,2,...N (10)

The initial step requires
- Ty +1lF (1)
Yi,-172 " Y1,0 "2 Mi,0 "B Ms0

Scr‘atcm4 has indicated that by use of Radau's closed quadrature formula

for any valu: of n, i.e.,

X -1
[ ldx = nlugalny) + T Walxgroh) + Wgbe)] > (2} (12)
rs

X
o]

it can be deduced that

n=1
¥y = ¥+ hyy + W+ ):] W {1-a )F, {2n4+1) (13)
r= r
n=1
hy; = hy, + WoFo + X WF, +WF {2n+2} (14)

r=1 r



-107-

1t is possible to write down a set of equations for the unknowns “r depending

on the order of accuracy required.5

For n=1 one obtains the simple trapezium rule, which leads to

V1= Yoty t 3 F @) (15)

hyj = hyy + 3 (F, + Fy) {4 (16)

This case requires no starting procedure.

For n=2, the Radau formula is Simpson’s rule and the corresponding
equations are Di/ogelaere's method Eqs. (1) - (3). Thus, as Scraton4 states,
higher order cases of this type can be regarded as generalizations of
DeVogeiaere's method.

It is worthwhile examining the n=3 case. which to the author's know-
ledge has not been used in collision studies. Following Scraton,4 Radau's

four point formula (n=3) is

X h )
jh g(x)dx = 75 (g, + 59, + 59;_, *+ ¢;) 7 an
X
where
a=2 ;o/g = 0.2763,9320
This leads to
Yo = ¥, * 0.2763,9320 hy; + 0.0645,7768 F

0.0387,4353 F_a + 0.0187,1643 Fa-l

0.0063,5398 F_, {6} (18)
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Neaa © Y, + 0.7236,0680 hyé + 0.2971,1983 Fa

-0.1294,4272 Fo + 0.1098,7164 F_a - 0.0157,4536 Fa-] {6} (19)

N cod
y1 = yo + hyo + 12 Fo + 0.3015,0283 Fa + 0.1151,6383 F]_a {7} (20)

hyl = hy! + 15 (F, + 5F, + 5F_ +F)) 8y (21)

For the initial step, one can obtain F-a’ Fa-l’ and F_1 to an adequate

degree of accuracy from the following values of y:

1 1
-3 hy) +5F, 31 (22)

Y=Y ]

- 1
Y =Yg~ hyytg (Fo 4 2F ) 5y (23)

Y a=Yy- 0.2763,9320 hya + 0.0286,1197 F

+0.0121,3107 F_y , - 0.0025,4644 F_, 5y (24)

Yooy =¥ - 0.7236,0680 hy, + 0.1180,5469 F,

+0.1612,0227 F_y ,, - 0.0174,53% F_; {5}  (25)

To my knowledge the first application of the DeVogelaere algorithm,
Egs. (1-3), to single channel scattering was by Bernstein et a1.6 in their
studies of barrier penetration and resonance effects. A program for the
multi-channel case was written by me7 and formed the step-wise propagation
part of the code used in some of the earliest convergence tests of coupled-

channel solutions for the atom-rigid rotor prob1em.8
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9 for coupled-

The multi-channel version has since been used by McGuire
channel studies of atom-rotor systems and coupled-states studies of atom-
vibrator systems, and by Launay]o who noted for atom-rotor studies in a
body-fixed formulation that computational time with the DeVagelaere
algorithm should increase as Nz'5 instead of as N3 i{n the SF representation.
This savings arises from the reduced number of non-zerc matrix elements in
the body-fixed coupling matrix and the facile elimination of matrix multi-
plications involving null factors that is possible because of the cyclic
structure of the algorithm. In addition, unlike most other methods, there
are no matrix inversions in the Devogelaere method.

An excellent comparison of the DeVogelaere, matrix Numerov, and

1 and demonstrates the

iterative Numerov has been given by Allison,’
advantage of the latter two methods over the former. Comparisons are also
made with Gordon's linear reference potential met'.hod.]2 The interested
reader is referred to Allison's paper for details.

Finally, it is noted that the multi-channel version of the n=3 single-
channel equations derived from Radau’s formula, Eqs. (17)-(25), does not
appear to have been applied to scattering problems. Such application bears

investigation.
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NEW DEVELOPMENTS N METHODS FOR THE NUMERICAL SOLUTION
OF THE RADIAL SCHRUDINGER EQUATION
Arthur Allison
Department of Computer Science
University of Glasgow
Introduction

For large values of the independent variable r, the soiution of the
radial Schrodinger equation usually behaves in some predictable manner--
either exponentially decaying appropriate to a closed channel or oscillatory
in the case of an open channel.

One of the major disadvantages of the well known Numerov method, or
indeed any of the usual linear multistep integration formulae, is that it
cannot exploit this known behavior. This is because the formulae are based
on polynomial approximation and polynomials do not easily approximate
exponential or trigonometric functions. In this context the Numerov method
integrates polynomials of degree up to five exactly and thus a basis set
for this method is 1, r, rz, r3, r4, r5.

The known asymptotic form of the solution is, of course, assumed when
the effect of the potential is dying away, usually slowly, and a linear
fit to the potential is valid over some reasonably large radial distance.
These are the conditions under which the stepwise perturbative methods,
such as that of Gordon [2], work extremely well. Thus recent comparisons
between Numerov and the stepwise perturbative methods have tended to favor
the latter.

It is possible to modify the Numerov formula, while retaining its

computational simplicity, and circumvent the problems mentioned above using

exponential fitting.
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Exponentially fitted methods

The concept of exponential fitting arose from the study of the problem
of solving sets of stiff differential equations where one of the characteris-
tic values had modulus much greater than the others and hence the step size
of integration was constrained to unacceptably small values. Liniger and
Willoughby [4] developed a method which fitted this single large eigen-
value by adjusting a parameter in their numerical formula, thus allowing
use of an interval size determined by the smaller eigenvalues.

A modification of a definition by Lambert [3] would read "A numerical
method is said to be exponentially fitted at a value )‘o if when the method
is applied to the scalar test problem y" = xzy, y(ro) = Yoo y'(ro) = y(')'
with exact initial conditions, it yields the exact theoretical solution in
the case when X = x(')'.

This approach, meshing with earlier work by Gautschi [1] on fitting
with i‘.rigonometric polynomials, has been developed by Lyche [5], and recently
Raptis and Allison [6] have applied these ideas to the solution of the
radial Schridinger equation. We Tooked for an exponentially fitted analogue

of the Numerov formula and we found the formula

i u " n
Yo~ Wy + Ypeuq = W78 (h)yp, + 8y (h)y, + B (h)yp}

where

(1 - exp(ah))? - 22h? exp(ah)
A hz(l - exp(xh))z

By(h) = 8y(h) =

B](h) =1 - Zso(h) .
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The functions 1, r, rz, r3. exp{ar), exp{-ar) are integrated exactly and
the numerical method would be exact for the differential equation y" = Azy.
To gain this advantage we have had to let our coefficients g8 depend on the
interval size h and so they have to be recalculated any time the interval
size is changed.

There will be exponentially fitted analogues of most of the linear

multistep methods; for example, the Hartree method

Yol = Wyt ¥pp = hzy:’
with its basis set of 1, r, rz, r3, gives rise to the formula
Yps1 = Yy ¥ Yy = HBLR)Y)
g(h) = ;%;Z (exp(ah) + exp(-ah) - 2)

with basis set 1, r, exp(ah), exp(-ah).

Furthermore, for any particular method, there may be several different
choices of the coefficients 8 corresponding to different basis sets.
Implementation

The computational simplicity of the Numerov formulae has been retained
and the main new problem is to decide on the optimal value of the parameter
x. In the asymptotic region x will clearly be set to the wave number, but
in regions where the potential is rapidly varying the correct decision is
not clear. However any reasonable choice of A will still be as good as

Numerov. These points will be discussed further.
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Extrapolation methods

Under the heading of new developments I will raise the topic of
extrapolation methods which have been used in calculations of atomic
polarizabilities by Stewart [7]. This scheme has used the Hartree method
with extrapslation on the O(hz) global truncation error. My colleague,
Dr. M. J. Jamieson,and I have been thinking recently along these lines and

some discussion would be valuable.
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R-MATRIX RECURSION METHODS: CONTINUOUS
AND L® CORRECTIONS*
J. C. Light, T. G. Schmalz, and J. V. Lill

The James Franck Institute and The Department of Chemistry
The University of Chicago, Chicago, Illinois 60637

I. Introduction

Most problems in atomic and molecular scattering require the
solution of the Schrddinger equation for accurate results. Al-
though there are numerous specific approaches and many approxima-
tion schemes to reduce the complexity of the equations, the most
commonly used techniques result in a set of coupled ordinary se-
cond order differential equations to be solved over a specified
range of the independent (scattering) variable for the coefficient
functions of the known (perhaps varying) basis set expansion. For
inelastic scattering only the solutions regular at the origin
are required and, for No open channels, an No x No matrix con-
taining information equivalent to the R-matrix, log derivative
matrix, or the K-matrix is required for the complete physically
meaningful (open channel) S matrix to be evaluated. Thus here
we are concerned with the solution of a set of matrix equations
of the form

- 9’_‘_ * R 1 wike
{-Tfhae tY®I LW EER i f@ fae

where Y is real symmetric and where we assume that the basis
functions corresponding to a given element, )iy, are fixed and

orthonormal over scme range of R. As shown recently(l) these

*This research was supported by NSF Grant CHE76-11809.
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are not unduly restrictive conditions as even reactive and charge
transfer problems can be handled in this fashion locally, with
known traansformation procedures between local sectors.

Although a number of methods are available for solving prob-
lems of this type numerically, the R-matrix recursion approacﬂ2-4)
developed over the last few years has proven useful for a variety
of problems because of its relative simplicity, large step size
for slowly varying potentials, and inherent stability in non-
classical regions. In this paper we shall briefly re-derive
the basic R-matrix equations in terms of matrix Green's func-
tions (see Schneider and Halker(s)) and show how analytic per-
turbative corrections can increase the step size and accuracy.
Results from a model rotational problem will be presented.
Finally we will discuss both remsining problems and possible

future improvements via L2 corrections.

{I. R-Matrix (Green's Function) Recursion Method

If we consider the general solution of Eq. 1 over an interval
of length h, R; - %s R £ Ry + %, a simple formal method is to
construct the Green's function matrix for the interval. Let us

add the Bloch operator(6) to both sides of Eq. 1:
J'L
[-T2, +VR -z +3L}§ ~TL ¢ .
-‘lRt = - - ~ - ~ (2)

where L(R) = = s(R-Ri + h/Z)gR + S(R-Ri - hlz)gﬁ. The operator

on the left is now Hermitian since
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r4 2 Rtk
{ - + L]h(RR = ( (5;;){ W) 4R
R‘.—.;l Y (3)

The Green's function matrix for Eq. (2) satisfies the equation

R;

2
R ST AU 2% SAEICIS I SELS S
Rri€ RRSR)

Thus the solution of Eq. (2) is

Rtﬁh
{(R) - g qm,a')un')gm')aw
-u*
-k (R,Re*% )‘l £R)
= E(RR b)d 4(11;'\’&-‘ g [ g,Lu’

Evaluating this for R=R;-h/2 = ; and R=R;+h/2 ER;, and writing

in matrix form, we have

'F (R.) g(nurR ) glRl;R ) -‘F (R )
o)

[{]

guzt, A7) g(ai.nt) f (R?)

- t\ ; (_Rc
n £ (&)
Equation (6) is easily recogn1zed as the defining relation for a
(2-5)

(6)

generalized (non-diagonal) sector r-matrix giving the values
of the functions on the boundaries in terms of the derivatives
there (e.g. Eq. (9) of Ref. 4 or Ref. 5). Thus the exact sector
r-matrix is just made up of the exact Green's function matrix
(satisfying zero derivative b.c.'s) evaluated at the appropriate

sector boundaries.
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For inelastic scattering problems only the Green's function
(R4 matrix(S's)) evaluated at the final (asymptotic) boundary is
required, and this is given by recursion of the sector Green's

functions:(Z)

GIR &) = q(RR) - g(RER) Z 