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7,.;,neural networks.l First. we dmnstrau that the _formalism

;o057 and  the Gabor-Volterra-Weiner  Polynomial Method. Deter-
E ‘ministic_chaos_is “thought to 'i:o ‘invelved in many physical

B ichaical ructions and_plassa physics. Secondly, we demon-
strato the__use _of _the__formalism__in nonlinear, system

clear _that_the_neural nretwork has_accurately modelled the

the formalism_provides explicit, anaiytic, global, approx-

mnnimioml in_{its_requirements for data_points from the
i —~time _series. We show that_the_neural net is able to perforn
»_t—woll becausie it globally approximates the relevant xaps

- by_performing a kind of generzlized mode decomposition of
.wmtho maps. Use of trigonometric sin's, instead of the usual
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atypc ‘of genaralized Fourier analysis. One may also view the
o approximation_ procedure of the neural net in relation to a
-7 epling fitting method, which in many instances is known to
o _be_preferrable to a simple_polynomial fitting method. The
““specific simulations that are presented are intended to
k <+~ {17ustrate soma_of_the capabilities of the formalism and are
not. t.tmnnt t.o ulmm. tho nm of applicltion.

3
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situations_ including the onset of turbulence in fluids,

;. Autiom _to_the_nonlinear_maps underlying the various time
7 sorim. “Furthermore, the neurzl net seems to be extremely .

‘may’'be used to predict points in a highly chaotic time
-series__ with _orders_of magnitude incrsase in_accuracy over
.conventionai_methods _including the Linear Predictive Method

‘ f-odelling by pmviding a graphic oxm‘lo in which it is
R ngnlinur tmnmr function. ‘It_is_interesting to.note that

- "sigmoids, for the neural net transfer function leads to a .

e e T 4 ST i S ¢y
NONLINEAR SIGNAL PROCESSING USING NEURAL
.PREDICTION AND_ SYSTEM MODELLING . o
Alan Lapedes P
“Robert Farber e =
Theoretica! Division T
Los "Alamos National Laboratory o
Los Alanos, NM 87545 A o=
= - TR W Sgpen - AU .v T ol _:’7;,'*‘-.:'3 A
- ‘B S T R. A c T o ’ L
o S N %‘f*"":’*‘.‘“‘
,aThe backpropagation 1urning algoritm for neural networks -
‘is _developed into a formalism for nonlinear signal“ - ;
! o proccssing We illustrate the method by selecting two common ~ =~ ~
a-~topics ~ in  signal processing, prediction and system E
S modelling, and show_that nonlinear applications can be )
-..handled _extremely well by using. neural networks. The .
0L formalism is a_natural, nonlinur extension of the linear -
i i . Least Mean_ Squares algorithm commonly used in adaptive .
’S‘ j""“jsignu procossing Simulations are presented that document A
ffj - .the  additional_ performance achieved by using nonlinear




" networks, that we use, which uy bo susssrized as follows:

I. Introduc tion

Adaptivo signal processing is a topic of considerab1e pracl

-
3,
-

intomst A.common approach to signal procossing uses prodominant!y Hnear
- :
analysis, which not surprisingly, does not porfom as wol'l as dcsired when
aF-«-
used to process signals emitted by a noanur systm We show that

natural extension of linear methods into the noanur domain fis provideb
by the nonlinear Munl net learning algorithm called "back

propagation. n{1) As explaimd in Sect.ion II, our tochnique stems frou the _

relatively silph idu of inserting "hidden units" (a layer of nonlinur -

" neuron-1ike elements) into _the Tlinear "Adaline" adaptation framork
‘ of Uidrov-uoff (z)' (3) .and _then using back propagation to control . t.hok

weights. The input and output oimnts are kopt as Hnur elements in.
order to _provide an oxtcndod dynu'lc range. The original “Adaline”" or.
"Least Mean .mn'(z)~ adaptation rule (in wide use in modern signal

i processing) may be’ thonght' of is a_learning rule for : totally linear

" neural network. There is then ‘a logical progression to the nonlinear

ERLE

[

~Adaline (Least Mean Square) + Widrow-Hoff < Perceptron < Backpropagation

-Back pmmtion $0 far. lm ninly been uud in situations where tho ,

,mms and outputs of the mmn are nonlinear and achieve binary values.

That s, 1t has been predominantly used in procassing symbolic
information. ‘1 Letting the fnput and output neurons be linear elements

extends the dynamic range, and allows processing of veal valued

inputs/cutputs such as 'qééur_;_vip_sigu'lﬁprpconing applications. The
“hidden® nonlinesr neurons use & continuous, nonlinear (and nonpoly-
nomial)activation function. - It i3 the ability to contro) mnnnurity

{n the neura) net that allows prediction in chaotic time m-m with an
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accuracy far exceeding conventional methods. Chaotic time series are
emitted by deterministic nonlinear systems and are sufficiently complicated
that they appear to be "random" time series. However, because there is an
underlying deterministic map that generates the series there is a closer
analogy to pseudo random number generators than to stochastic randomness.
Nonlinear neural nets are able to perform well because they extract, and
very accurately approximate, these underlying maps. Deterministic chaos
has.been implicated in a large number of physical situations including the
onset of turbulence in f1uids;(4)’ () chemical reactions.(s) lasers.(7)
and plasma physics(s) to name but a few. Furthermore, chaotic systems can
also display the full range of less complicated nonlinear bghavior (e.qg.
attraction to a fixed point and limit cycles) if various parameters in the
system are changed. They therafore provide an excellent test bed in which
to investigate nonlinear signal processing techniques. We have selected
two chaotic time series: one generated b& an explicit nonlinear iterated
map (the 1o§istic or Feigenbaum map) and another generated by a non1ine?r,
differential.deIay equation (the Mackey-Glass equation). Prediction using
nonlinear neural networks exceeds conventional methods by orders of
magnitude in accuracy.

In addition to possible applications, the domain of real valued signal
processing also provides a nice setting in which to investigate properties
of the back propagation algorithm itself. One property, the ability to
form limited generalizations, has froquently b‘on tested with "symbolic"
(binary) input/cutput pairs.(l)’(g) Unfortunately, it has been difficult
to obtain 4 really clean example of this ability to generalize. On the
other hand, Section IV provides an example in nonlinear system modelling in
which it is clear that the neural net has inferred from a finite data set
the correct, afqorithn that transforms input to output. The somewhat

mysterious ability of neural networks to "deduce" algorithms and to “genm-




I‘-

eralize" 1is shown to be nothing more than real valued function inter-
polation when viewed in the context of signal processing. The modeling
example we chose to analyze in Section IV is a "plant" (to use control
system termor;ology) that implements x(t) » x2(t) (see Figure 1). Here x(t)
is an arbitrary input wave form and the network has to learn to output
x2(t) by learning on a training set consisting of input/output pairs that
are samples at discrate times. We trained the network on a set of
input/output pairs firom a specific, broadband x(t), and used back
propagation to adjust the network weights. If the net correctly inferred
the algorithm x <+ x2(t) then input (after’ training) of a different,
arbitrary wave form x(t) should result in the correct x2 of the new signal.
This is the case. .Furthermore, if the input to the network is x(t) and
.x(t = At), then the network output should be an approximation to [x(t) -
x(t - At]2/at2. Thus, a graph of the output, x2, versus the inputs x(t),
x(t -At) should be an approximation parabolic trough. We plot the output
o.f the neural nft versus x(t), x(t - At) (see Figures 11, 12) and the
resultant parabolic trough is explicit graphic vcrificat:ion that the
n;tvork has indeed learnad the correct algorithm from a finite set of
input/output pairs. '

A competing approach to processing noniinear signals would be to form
polynomifals {n the data terms (the polynomials providing nonlinearity in
the data) and to adjust the linear weight factor coefficient for each
polynomial term using the Least Nun'Squan algorithm. This approach wzs
advocated by Gabor and is related to the Volterra-Weiner oxpansion(m) of
nonlinear systems. It has the advantage that polynomial nonlinearities may
be modelled exactly, and that one is always assured of finding a global
sinisum to the Least Maan Square prodlem. Dis;dvantagos. however, are
considerable. - First of all, ‘nonpolynomial nonlinearities must be modelled

by polynomials, which is widely known to be a undesirable procedure due to

P
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the rapid oscillation of polynomials. Secondly, one has an explosion in:
the number of the polynomial coefficients as the system size, or order ofi“
the polynoﬁial. is increased. Finally, a polynomial approximation is:;___F
wildly unstable under iteration. °Iteration, as we demonstrate in Section;%
III, is the key to achieving accurate predictions over long .times,ng
Acceptable accuracy may be achieved by polynomial methods over short times._{

which is clearly a much less interesting situation in comparison to long~ .

i

term prediction. The nonlinear neural net is orders of magnitude more

e

accurate for long-term prediction. Finally, we demonstrate in Sections III

- and IV that if the relevant system nonlinearity is indeed a polynomial,

then very good apﬁroximations to the polyriomial may be achieved by usin§

nonlinear nonpolynomial neural nets. We therefore feel that the nonlinear

neural net method presented here has considerable advantages in both
accuracy, and flexibility, over the more conventional methods.

The reason that the neural net formalism for signal processing works

well seems to be related to the fact-that the network is performing a kind

of generalized mode decomposition of the underlying maps. Changing the

neurons's transfer function from sigmoids to sind changes the analysis

to a generalized Fourier analysis. Other nonlinear, neural transfer
functions are al'so possible and should be choosen to make a best match to
the problem at hand. Another intarpretation (Section V) is related to

spline fitting procedures. The difference between mode decompoposition

vs simple polynomial fitting, distinguishes neural networks from the Gabor

; ' Weiner, Volterra polynomial analysis(lo)

of nonlinear systems.

The examples of prediction and nonlinear system modelling were choosen
somewhat arbitrarily as a means to illustrate the capabilities of the
formalism. The success achieved in these examples might reasonably be

| taken as an indication that further development of these methods could have
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wider applicability. Results of experiments on specific applications will

be reported elsewhere.

I1. The Linear Predictive Method and Back Propagation

Predictién is- a useful ability in signal processing that also has
application in many other areas such as data compression. A common method
of prediction in signal processing is the Linear Predictive Method.(ll) In
this approach one uses the values of a continuous signal, x(t), at a set of
discrete times in the past, to predict x(t) at a point in the future. For
example, one might use three values in the past, x(t), x(t = 4), x(t - 23)
to predict a value that is some time in the future, perhaps x(t + 24). A
is a timé increment. The predicted value is a 1inearly weighted sum of the
delayed (past) x(t) values. Representing this algorithm in a diagram (Fig.
2) makes it clear that one can view this methed as a linear, feedforward,
neural net with no “hidden units." Each line in tha figure linearly
-weights the corresponding input so that the output is a linearly weighted
sum of input values. (See Figure 2.)

The weight values, T1j are determined in the Linear Predictive Method
by training the system using a set of discrete time samples from a segment
of known signal. Labelling the neurons from i = 0 to 3 yields (for Figure
2)

X3(t +2)) = Taolo(t) + 731X1(t -4a) ¢ T3212(t - 2) + 13 (1)

or more generally, if there is more than one output,
For nonlinear neural neots I1 is referred to as "threshuold" and we wil)
continue to use that notation even for linear networks. If we labe!

discrete timss fn the training set as t_, then Ty may be determined
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by minimizing the mean square error, E

2
E=3 [X.(t.,8) - 2 T,..X.(t_,a) - I.] (3)
ip 1°p j 13J°P 1

In the above, i ranges over the output units, which for the example of

equation (1) contains just one term for i = 3. p indexes the discrete

times in the training set., This is a usual, linear, least mean squares

problem that may be solved, for example, by steepest descents. Steepest

_descents is implemented by successively changing ‘l’i j by an amount ATi j

where
- 3t
ATij = - g a—]j (4)

where ¢ is a small number. I is determined in a similar manner. The form
of Eqns. (1) and {4) show that the commonly used Linear Prediciive method
for signal processing is the tri.vial (i.e. linear) limit of the back
propagation algorithm for nonlinear neural networks.

The Gabor Polynomial Predictive Methoduo) is a straightforward
extension of these ideas. In this formalism, each input neuron represents
one term in a polynomial expansion of the data. 'For example, if the
polynomial'is specified to be second order, then there will be three first
order terms (already represented)} and an additional six neurons
representing the six possible cross terms of of xo(t). xl(t - 4), xz(t
-¢A). The weights appear as linear coefficients of these cross terms.
Therefore, the Lirnear Least Mean Square algoritim works for the Gabor
Polynomial Method with virtually no change in implementation. One
disadvantage of the polynomial method is already clear. If there are d
data items to be combined into a general m 124 order polynomial (for the
above example d = 3, m = 2) then the number of tarms grows like (m + d)!

/m d!, which explodes exponentially as either d or m gets large.
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Given Ffigure 2, and a familiarity with the Backpropagation Algorithm
it is natural to insert a layer of nonlinear "hidden units" and to use back
propagation to control the weights (Fig. 3). "Hidden units" are elements
that do not have a linear neural transfer function. Instead, the neural
transfer function is sigmoidal as shown in Figure 4. Hidden units greatly
extend the power of neural networks and can be controlled with the back
propagation algorithm. In addition to the weights, Tij’ there are also the
thresholds, I;, that shift the position of the sigmoid. Thus, if X; are
inputs to a hidden unit, the output of the unit is not merely the
linearly weighted sum, . ;Tijxj. * Iibut'the output of the sigmoidal
transfer function g(ZTijxj + Ii)‘ The Ii shifts the sigmoid to the left or
right. Training the system involves minimizing an E function which is now
somewhat more complicated than £qn. 3 bhecause of the nonlinear g( ) func-
tions. Nevertheless, ‘a steepest descents algorithm is often used in back
propagation to minimize E. -

Back propagation may thought of as a particular, nonlinear, least
squares algorithm. It may also be thought of as a generalization of the
Perceptron formalism where the discontinuous, Heaviside step function used
for the Perceptron's neural transfer function is smoothed into the con-
tinuous, sigroidal transfer function. It is a natural, non1in§ar.
extension of the linear nets commcnly used in adaptive signal pro-
cessing. Use of the chain rule in computing derivatives of E provides a
useful interpretation to the wminimization process and allows an easy
generalization to wmultilayers of nonlinear hidden units°(1) For one

or more outpu: units one minimizes

€= !1 ttarggp) - o$5’12 (5)
p

s SRR R
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where the targgp) are the specified target outpdts for the pth input
pattern, and Oi(p) is the actual output of the network's ith output unit
given the pth input pattern and the present set of weight, T.., I.. E is

ij* i

to be considered as a function of T.. and I,. For the linear predictive

i .
net considered earlier, expression (5) collapses to a simple form. For

this case, the sum over i contains.just one term § =3, while the

target output targgp) would be targgp) = X3(tp + 2A), and ng) would be

(P -

If a nonlinear layer of hidden neurons were inserted into Figure 2,

)+ Ii’ j.e. a linear function of the inputs to unit 3.

then 03(9) would also contain contributions from the outputs of the hidden
layer. Because the hidden layer has the nonlinear transfer function g( ),
the output of the hidden layer is now a nonlinear function of its inputs,
and E in £gn. (5) becomes the square of a nonlinear function of the weights
because the hidden layer outputs feed into the topmost output layer.
Steepest descents is performed in the normal fashion by letting

= - -1
ATij C R 71—3 | (6)

Defining some intermediate quantities simplifies the partial deriva-
tives in Eqn. 6. Let
be the net input to unit i from the ogtputs, Oj, of other neurons in pre-=
vious layers connected to neuron i. The output of neuron i will then be

0; = g(net,) = g(§ Tijoj + 1) (8)

If one introduces another quantity ci'dofined as

= o _OE_ :
i~ anet, _ S
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then one obtains:
3E _ _
5T 80 (10

Thus gradient descent is implemented by making changes in T.. by the

amount ATi., where

J

. 9E_ _
ATij— 557-;- = g8

where ¢ is & small number. 6{ may be computed by the chain rule. If

unit.§ is an output unit then 6i becomes:

61 = : (targgp) - ng)) g‘(neti)

where g°( ) is the derivative of g(x) with respect to x. If i is not an

output unit, then Gi ‘may be computed recursively starting
layer (which is the output layer):

at the topmost

6; = g°(net,) § Tjisj (13)
Equations 11, 12, and 13 dofjno tha backpropagation steepest descents
procedure for nonlinear neural nets as outlined in Reference (1). The
is
propagated back from the output neurons to other neurons of the network.
II1. Prediction

name "back propagation” arises from Eqn. 13 where an arroi signal

To {ilustrate the use of the nonlinear naural net formalism, we
choose to predict in such a complicated time series that it is "random" and
ergodic. The series is generated by iterating the classic logistic, or
Feigenbaum, map‘l®

X(t + 1) = 4bx()LL = x(t)] - . as

;= %840 an

12)
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where b is set to 1.0. This map is not known to the investigator, of_'

course. He has only a set of samples from the time series and i¢ requirad

to use these samples to perform prediction. This iterated map produces an_
ergodic, chaotic time series if b is choosen equal to 1. (Other values of .

b lead to fixed points, limit cycles or chaos as documented in Refererce

12.) Although ihe time series passes virtually every test for randomness,
it is generated by Eqn. 14 and therefore may be thought of in analegy to

a pseudo random number series. It is widely conjectured that importa.:t

instances of randomness in Nature“' 5, 6, 7, 8) (e.g. tha onset of

turbulence) are due to the deterministic chaotic behavior produced by

similar nonlinear iterated maps.

Because the map, Egn. 14, -is polynomial, it is clear that the con-'_;

ventional Gabor method (10) would alsc work very well if one used a

second order palynomial. We chose this simple nonlinear problem to‘”

introduce the. procedures we will be using; and to demonstrate that non-
linear neural rnets can very accurately model polynomials, in additiqn
to more general nonlinearities. Also, we will return to this example
in Section V, where we are able to graphically demonstrate how the

nonlinear neural net adds up sigmoidal nonlinearities to approximate

quite arbitrary functions. A much more complicated example will be-

considered shortly in which polynomial methods are clcarly inferior to
nonlinear neural net methods. |

Qur goal is to use the back propagation algt.n'ithm to adjust the T{ i
If. enabling a prediction of the next point x(t + 1) in this "random"
series given the present point x(t). We chose a network architecture with
5 hidden units as illustrated in Figure 5 and trained the system, using
back propagation, on 1000 sets of (x(t),x(t + 1)) pairs. The output unit
was a linear unit. The trained network was then used to predict one time

step into the future for 500 additional points. We always assume that the

"past" data neaded to perform the prediction, in this case x(t), is

i+

*
]

B L

i >
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obtained from observing the actual time. series. Thus one makees a
pre-diction, observes what actually occurred, and uses the actual, observed
value to make the next prediction. The normalized root mean square
prediction e;'ror was 1.4 x 1074, "Normalized" means that the root mean
square deviation of the predicted values from the actual vaiues is divided
by the standard deviation of the data. We will refer to this normalized
quantity as the “index." This measure is independent of the dynamic range
of x(t). Because the series is "random" and ergodic, the only way that the
net can perform su well is if in the trainianyg procedure it learns to very
closely approximate the underlying nonlinear map, Eqn. 14, that generates
the series upon iteration. Recall that the network sees only "“random"
numbers ard has no apriori knowledge that a mapping exists between these
numbers.

. In this situation, the map is simple (polynomial) and prediction is
ncf:' done very far into the futuv;e. In Section V, we explicitly show how
the neural nef approximated the map of Eqn. 14 using data from the time
series. This simple quadratic map could also have been exactly recovered
from the time series by using a linear network and including multipliers at
the tap lines to form polynomials in the data. The E function to be min-
imized would still be quadratic in the weights although the data terms
would now be a general polynomial including powars beyond quadratic. This
is the method of Gaber, Weiner, Vot':irra(lo). Although prediction can be
improved over that acnieved by the normal Linear Predictive Method, (for
this simpie exaple, the poiynomial map could be reccvered exactly) in
gencral this multiplicative method will be inferior in predictive ability
to that provided by nonlinear neural nets (in the following more comp-
li{cated example it is worse by orders of magnitude). Furthermore, the multi-

plicative method suffars from an explosion in the number of weights as the

number of tap delays and the orde» of the polynomial is incraased.
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We should also point out that we chose one input neuron in the network -
architecture, Figure S5, solely for i{llustrative purposes. Adding more

|

t

i input neurons (i.e. choosing additional delayed values from the time series i
‘ for input) actually increases the predictive accuracy, at least for the

| case of 3 input neurons that we tested.

5 A second, much more complicated test of predictive ability, was
!

; suggested to us by D. Farmer and J. Sidorovitch.13 In this example the

time series is generated by a dzlay differential equation

dx(t

= _ax(t - v
t

1+ x19(t -1) -

= bx(t) (15)

that was first investigated by Mackey and G1ass.(14) Keeping the parameters
aand b fixed at 4 = .2 and b = .1 leaves t as the only adjustable param-
eter. As t is varied the system exhibits fixedpoint, limit cycle, or
chaotic behavior. Choosing t = 17 yields chaotic behavior, and a strange
(15)

! attractor, with fractal dimension approximately 2.1. t = 30 yields a

strange attractor with the fractal dimension approximately 3.5. Higher
values of t yield higher dimensional chaos. Note that because of the
[ delay, x(t - t), the phase space of this system is infinite dimensional.
However, as time progresses the system collapses onto the low dimensional
strange attractor. Other infinite dimensional chaotic systems, such as
nonlinear partial differential equations, also display collapse onto iow
dimensional attractors. Thus, the Mackey-Glass equation (15) exhibits in
o the simpler setting of nonlinear, differential equations behavior that
occurs in much more complicated systems such as nonlinear partial dif-
ferential equations. A detailed analysis of the chaotic properties of
cquation (15) may be found in Reference (16). At t = 17, x(t) appears to

be quasiperiodic and the power spectrum {s broadband with numerous spikes

AP Y ae s ot ae ST
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due to the quasiperiodicity. At t = 30 X(t) is even more irregular.

Figure 6 shows a plot of x(t) vs t for a'time span of 500 time steps for

both t = 17.and <t = 30. A constant function was used as the initial

values, and transients were allowed to die out before the plot was started.
Packard et al..(17) have demonstrated that an attractor may be recon-
structed from a time series by using a set of time delayed samples of the

series. If A is a time delay, and m is an integer, then one may write for
points on the attractor

x(t + P) = f(x(t), x(t - 4), x(t = 28) ... x(t - mp)) (16)

where P 15 a prediction time into the future and f( ) is a map. This may
oe viewed as an m + 1 dimensional surface. Thus, the "embedding dimension"
dE' is defined to he m + 1. Takens18 has proved that a least upper bound
exists fgr which ¥( ) will be a smcoth map. If the dimension of the

attractor is defined to be, dA’ then one needs an embedding dimension less

than or equal to Zd“ +1, i.e.°(18)

de < 2d, + 1 (17)

A minimal requirement is that dE > dA' It is perhaps surprising that
a smooth functional form, such as Eqn. 16, relates values in a time series.
generated by complicated nonlinear differential equations such as Eqn. 15.
That such maroings exist is a consequence of Takens theoren,(la) however
the theorem provides no information on the form that f( ) may take. We
will show below that the neural net uses data from the time series to
provide an explicit, analytical, exprassion that globally approximates f( )
to a suf7icient degree to be able to perform prediction using equation (16)
with an accuracy that exceeds tha conventional Linear Predictive method

and the Cavor, Wainer, Volterra method by orders of magnitude.
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We will now test the predictive accuracy of the nonlinear neural
net and compare it to the conventional metheds of Linear Prediction(Z)‘(”
and Gabor Polynomial Prediction(lo). The test will be performed twice,
once using a time series generated by the Mackey-Glass equation (15) at
t = 17 (fractal dimension = 2.1), and once using the Mackey-Glass equation
at t = 30 (fractal dimension = 3.5). First consider the t = 17 time

series shown in Fig. 6a. Using Eqn. (17) we select an embedding dimension,
d

£ equal to 4. This specifies m in Eqn. (16) to be m = 3. It now
remains to chose A and P. To facilitate later comparison to an alternative
predictive method of Farmer et 31.(13). we choose A = 6. These choices’
of m and Ao imply that a prediction mﬁe P time steps into the future
past the last observed point x(t) will be made using observed data at
times: x(t), x(t - 6), x(t -12), and x(t -18). There are therefore four

inputs to the nonlinear neural nets, representing these values of x(t), and

_one linear output element representing the value x(t + P). We chose 20

hidden units arranged in a two layer architecture. Therefore, the
architecture of the network apnears as Fig. 7. Each neuron in Fig. 7
is connected to all the neurons in the directly previous layer. This
architecture was choosen rather arbitrarily and seemed to yield quite
acceptable performance. Other architectures gave comparable performance.

We now nesd to choose the prediction time P. It is desirable to

test the predictive accuracy as a function of how far the prediction is

made into the future, so we will choose several values of P. For any
given P there are two ways that a prediction P time steps into the future
past the last observed data point may be made. The first way is to train
a separate network for each choice of P. For example, if P = 6 then one
may train a network using a set of samples: x(t,). x(t.i - 6), x(t‘ - 12),
x(t1 = 18) on the four fnputs, and x(t, ¢ 6) on the single 6utput. This
network, after training, will then map any future set of x°(t'). x°(tf - 6),




x°(ti - 12), x°(ti - 18) (where superscript "o" indicates observed values)

into the set x(ti + 6). In this method, one assumes that the data needed

to predict at, say, t = 1,000 is the observed values of the time series at
x9(994), x°(98e), x°(982), x°(976). The network might have been trained,

for example, on data taken from t < 0.

A prediction at any arbitrary time,
t, in the future is made using the last four observed data points. Thus,
no matter how far ahead one is predicting in the time series (e.g. t =
1,000), the precliction is never more than P time steps (in this case P = 6)

past the last observed data point. If, in the example above, one wished to

predict 12 time steps into the future past the last observed point, then a
second network would be trained using x(ti + 12) on the output neuron.
This second network would always predict a value 12 time steps past the

last observed point.

To see how predictive accuracy degrades with incressing P we trained 8

" separate networks to make -predictions at P = 6, 12, 24, 36, 48, 60, 72, 84,

and 100 “ime steps past the last cbserved point. We computed the normal-

jzed root mean square index of accuracy (index = (root mean square

predictive accuricy)/(standard deviation of the data)) for 500 predictions

- and plotted the results, for t = 17 data, in Fig. 8a. We did this for the

nonlinear neural net, the Linear Predictive method, and the Gabor
Polynomial -o;hod. The polynomial order was choosen to be equal to 6,
yielding roughly the same number of polynomial coefficients as weights in
the nonlinear neural net. This was also done for the second (t = 30) time
series and these results are plotted in Fig. 8b. The embedding dimension
ifn this case (t = 30) was choosen to be 6. The Linear Predictive metnod
needed 2,000 dats points in training to achicvp any reasonable accuracy,

while the Gabor mnethod and the nonlinear neural net method seamed to do
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well with 500 data points. It may be seen from Figures 8a, and 8b that
the nonlinear neural. net, using the predictive method just described,
performs best. There is, however, a second way in which one can make‘
predictio'ns at various P values, in which the neural net performs far
better than the method jus: described, and to which the alternative,
conventional methocls can offer little competition.

The second way to make predictions at various choices of P is to place
previously predicted values on the input lines to bootstrap one's way to
higher P values. That is, one iteratss the mapping provided by the non-
linear neural net. For example, after'training a network to predict at P =
6, one can feed the predicted values back intc the inputs to predict at P =
12, 18, 24, ... etc. Thus, instead of training separate networks to
predict at P = 12, 18, 24, ... etc. (as described above) one can simple
iterate the mapping provided by the P = 6 network. There are tradeoffs
implicit in this iterative approzch. Because previously prédicted values
(made with some error) are used to make subsaquent prediction, the errors
get magnified upoon iteration. Iterating a P = 6 net once, to form a P = 12
net will not magnify the errors very much. However, unless the P = 6 map
was an extremely good approximation to the actual P = 6 map implied by
Takens theorem, further iteration of the P = 6 map will soon get to be a
dangerous procedurs. It is intuitively clear that a P = 6 map is less
irregular than say a P = 36 map (th;lnk of how the map changes upon
iteration for the classic logistic map) and so it seems reasonable to
believe that one cloes have a possibility of forming an extremaly good
approximation to the P = 6 map, and avoiding the danger just described.
Ultimately, one willi magnify the errors §o° an unacceptable degree, but this
may not happen until the effective P is quite large, i.e. for a large
number of ifterations. To test this conjecture, we iterated the P = 6 map

for both tha nonlinear neural net and the Gabor polynomial method, and

collected results on the index of aceuracy in the same wiy as
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before. These are the final two curves plotted in Fig. 8a (t = 17) and
Fig. 8b {tv = 30). It is immediately obvious that for the nonlinear neural
net the danger just described was overcome, and that this proce;!ure is a
far better procedure for making predictions at large P. It is also readily
apparent that the Polynomial method is wildly numerically unstable under
this procedure (due to the errors getting grossly magnified by the high
order polynomial terms). Figures 8a and 8b clearly show that the
iterative, nonlinear neural net procedure is orders of magnitude more
accurate than conventional procedures for large prediction times, P. Our
choice of iterating the P = 6 map was an informed guess, it may well be
that another choice of P would yeild even better results, although we have
not investigated this. Further increased in accuracy may be cbtained by
increasing the number of hidden units in combination with increasing the
number of training patterns.

A new predictive algorithm has recently been published by Farmer and
sidorovitch.$33)  The nusber, ‘and vaiues of the delays for the nonlinear
neural net method for the Mackey-Glass equation were choosen to agree with
those used by Farmer et al. in testing their very recent and powerful Local
Linear Predictive Mothodu” (not to be confused with the conventional
Linear Predictive Method described eariier). The accuracy of the Local
tinear method and the nonlineqr nsural net method (perhaps best described
as a global, nonlinear method, see Section V) are roughly comparable for
this prob‘lu.(m) Increases in accuracy in one method over the other can
be achieved by twiddling the respective algorithms, however the main
conclusion is that both methods are orders of magnitude more accurate than
conventional methods (1nc1udipg' the global polynomial method of Gabor et
a1.¢19) 4ng the Linear Predictive Hothod.(z)'(” and indications are that
both methods may be usted to achieve the fundamental limits on predictive
accuracy dictated by the nature of chaos.

1t seems that the nonlinear neural net method will be very useful for
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performing prediction in real time, and for other real time signal pro-
cessing applications, such as adaptive control and system modelling. This
is due to .the natural mapping of neural nets onto parallel hardware,(zo)
with the resultant possibilities of training times on the order of micro-
seconds. Prediction times (the time taken to make one prediction after
being trained on the data) are already quite short, due to the simplicity
of feedforward networks, however these times could, of course, also be
reduced to microseconds, or so, if done in hardware. Furthermore, the
nonlinear neural net method seems to be achieving roughly comparable
accuracy to the Local Linear Method of Farmer et a1, (13, (19) using
only 500 points from the time series, whereas the Local Linear Method
uses 10,000 - 20,000 points. Parsimony in the requirements for data
points from a time series is a considerable advantage, as a large
number of data points may be collected only through using very short
sampling times, or else collecting data over a long time. In many
applications th.e use of short sampling times, or long data collection
times, is m‘thgr undesirable (short time samples are more correnated.‘
hence yielding less information) or infeasible (the data over a long time
may be unavailable). To be fair, the nonlinear neural net method requires
a longer run time for training fn computer simulation (30 - 60 minutes on a
Cray X-MP, compared to a few minutes on an X-MP, for the Mackey-Glass
P = 72 example using the Local Linear Methcd). However, the neural net
method also y:lolds more fnformation than the l.oéal Linear Method 213 a
result of training (see Section V) so it is not yet clear which method is
faster (when simulated) in producing the same amount of information
IV. Nonlinear System Modelling

A second subject of considerable interest in signal procossling is the

system modelling problem. Here one wishes to construct a model for the

transfer function cf an unknown “plant" using only a finite data set of
{nputs, and associated outputs, of the plant. Applications include adap+
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tive control among other topics. We choose a relatively simple nonlinear
transfer function, x = x2, which is depicted in Figure 1. The reason for
choosing this example as an illustration of the method is that there is a
nice graphical way to depict both the actual transfer function and the

(10) pethod

modelled transfer function. A polynomial Gabor, Weiner, Volterra
would also work quite well for this simple example. We chose it to simply
illustrate how a nonlinear neural net works, and not to demonstrate the
relative effectiveness of the neural net method. This was already done in
the previous section.

A neural network with 2 input units, two layers of hidden units and
. one. output . unit were trained on an I/0 data set generated by passing a
relativelv broadband fnput function through the block box of Figure 1. The
network is shown in IFigure 9. The input was a sum over twenty frequencies
with random phases in the range [0,1].

20

x(t) = % . E ;in(ZMt + 61) ' . (18)

that Qas sampled at times separated by .001 between ¢ = 0 and t = 1. The
factor N is a norsalizer that normalized the resultant output (x2) to a
maximum value of 1.0. The normalization was performed soley for computa-
tional convenionce. Inputs and outputs having arbitrary dynamic range are
easily handled by a scaling agreement, as described in Appendix I.
Training was accomplished by taking data points from Eqn. 18 over a time
interval [0,1] and set:iting the inputs to be x(t) and x(t - .001), with the
output set to be x2. Backpropagatfon was used to adjust the weights.

After training s complete, one should be able to finput a new
waveform, . X(t), and have X2(t) emitted by the output unit of the neural
network. We selected another wave form, similar to Eqn. 18, except with a
different choice of random phases. The normalized rootmean square accuracy

for the test waveform was .0476.
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This example was choosen because it

is possible to graphically

demonstrate that the neural net actually learned the algorithm, x(t) -~

.2
x (t), from a finite data set of input/output pairs. First of all, we plot

the actual algorithm, x -+ x2, by graphing x2, vs (x(t), x(t = .001)). A

finite difference approximation to x2 is

x2(t) = [x(t) - x(t - .001)1° /(.001)2 (19)

which of course yields a parabolic trough if Z = x2(t) is plotted vs x(t)
on the x axis, and x(t - .001) on the y axis. MNc: .: that we are not using
values for x(t) and x(t - .001) taken from a pzriicular wave form to

produce the plot. Instead, x(t -.001) is considered to be an independent

variable from x(t), and we plot the functional dependence of x2(t) on the
two independent variables. Thus we imagine x(t) to be an x axis variable,
x(t - .001) to be a y axis variable, and plot the graph Z =
(x = y)2/(.001)2. The resuitant graph (Z = (x - y)2/(.001)2 is shown in
Figure 10. We have rotated the axes so that we are looking straight down
the trough.

Next, we consider the algorithm that was learned by the neural
network. After training, the output neuron value (i’(t)) is a wall defined
function of the values of the input neurons x(t), x(t = .001). The
function is a complicated sum involving tanh( )'s (due to the sigmoidal
transfer function of the hidden units), and certain coefficients, which are
the actual values of Tij and I1 that were determined by tha training
aigorithm. This function is easily plotted in an analogous manner to the
previous figure and is shown in Figure 1l1. Here again, x(t) and x(t -
.001) are taken o be independent variablas (i.e. not from a particular
time series), and the value of the output neuron is plotted vs the values
of the two input neurons in the same rotated coordinate system. Note that

& parabolic trough does appear in Figure 11, although as one proceeds awdy

.off
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from the hottom of the trough the sides stop rising and flatten out. This
flat regicn is irrelevant. The region of interest is the bottom of the
trough, because it 1is only in this region that x(t) ~ x(t - .001),
indicating a sufficiently small sampling time to be able to approximate

x2(t) by the finite difference approximation. We depicted the "flattered

region"as well solely for illustrative purposes. In Figure 12, we plot a~

"blow up" of the relevant .c/ion, x ~ y, over a range of x between -.1 and
+.1 and similarly for y. It is therefore graphically clear that the
network did learn the algorithm x + x2(t) because the region x ~y, cor-
corresponding to x(t) ~ x(t - .001) (which is always satisfied for
continuous 'wave forms assuming .001 is a sufficiently small sampling
interval) is indeec a parabolic trough. Furthermore, we numerically verify
the accuracy of the network's algorithm by calculating the normalized root
mean square error of the network in compaison to the output of the finite
difference approximation for x2 for 10,000 data points evenly spaced over a
square of xe[-.05, .05]); ye[=.05, .05]. The resultant value was .0403,
which is a value of the match of the algorithms. .Adding more input units
(further delays) actually increases the accuracy, although of course we

can't plot the output in 3 dimension.

We also note that the parabolic trough is not generated by some sort .

of Taylor's series for small input values. The sigmoidal transfer function
used in constructing Figure 12 has only odd terms in its Tiylor expansion
and thorefore Figure 12 was generated by adding together full sigmoidal
functions with appropriate coefficients (Tij) that are sufficient to
closely approximate a paraboiic trough in the region of interest. Exactly
how a neural net say add together sigmoids to approximate essentially
arbitrary fpnctions {s described more fully in Section V. This ability to

spproximate functions, polynomial or otherwise, is the reason for the

success of nonlinear neural networks. A strictly linear network, trained
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with the usual Least Mean Square Rule of adaptive signal processing, would
only be able to produce planes (or hyperplanes, if one used more than two
delays on the input lines) if graphed in a similar manner to Figure 12. A
second order Gabor Polynomial method would, of course, do very wall on this
problem, but as seen in the previous section, it offers no competition in
more complicated examples. Finally, we point out that the graphs in
Figures 11 and 12, are a clear example of '"generalization" by neural
networks. After training on a finite data set the neural net was able to
deduce the correct algorithm (compare the troughs of Figures 10 and 12)
such that when new data is presented a correct output is ﬁiven. We see
‘that th: somewhat mysterious ability éf neural networks to "“infer
algorithms" and to perform '"generalization" s nothing more than real

valued function interpolation, at 1least in the context of signal

processing.

IV. Mode Decomposition by Nonlinear Neural Networks

It is natural to ask "why does a neural net do so well at nonlinear
signal processing?" We answer this question by analyzing the simplest
prediction example, the logistic map and then remark on the system
modelling problem. Firsi; note that at the end of the training period, all
the synaptic .weights, Tij' and thresholds, Ii’ are specified numbers.
Therefore the output neuron, which represents x(t + 1), is a specified
functfom of the input neurons x(t). In particular, if we take the weights
which lad to the root mean square predictive accuracy (1.4 x 10“) quoted
in Section III, then one obtains from these weights, and Figure (5), the

formula

x(t + 1) = - 0.64g(- 1.11 x - .26) = 1.3g(2.22 x = 1.71) (20)
- 2.285¢(3.91 x + 4.82) - 3.905g(2.46 x - 3.05)
+ 5.999(1.68 x + .60)
+ (.31 x - 2.04)

where g(x) = % (1 + tanh x).




We may write this as

x(t + 1) = T(x(t)) ‘ (21)
and'compare ‘this map to the actual map that produced the time series
x(t + 1) = f(x(t)) = 4x(t)[1 - x(t)] | (22)

A plot of Egqn. 22, i.e. plotting x(t + 1) vs x(t) yields (of course) a
parabolic curve.

A plot of Eqn. (20), again plotting x(t + 1) vs x(t), yields a
virtually identical curve over the range 0 + 1. Therefore Egn. (20) is a
very good approximation to the global map generaiing the time series. The
reason this camn occur may be seen by considering the sum of just two
sigmoids with parameters: a,b occurring in a similar fashion to thé Tij and
I;'s in Eqn. (20)

S = alg(blx + cl) + azg(bzx + cz) (23)

Parzmeters b adjust the slope of the sigmoids, ¢ adjust the shifts, while a
adjusts the amplitudes. 1If, for example, 3y is positive, while 3, is
negative, and if CL* ¢Sy then a "bump" will be formed when the sigmoids are
added together as in Eqn. (20, 23). The function, Eqn. (22), or virtually
any other cm function, may be approximated very wall by appropriately
for;ing and adding up “bumps.” This is somewhat analogous to the method of
Sp1ines(21) for approximating arbitrary functions. Splines are constructed
in such & way to maximize smoothness. The smooth form of the tanh acts in
an analogous fashion. Splines are, however, difficult to work with in many
dimensions. A similar effect occurs in the Mackey-Glass example of Section
II, however the four dinonsisnaI embedding dimension precludes plotting in
three dimansions, . ‘
The way the sigmoids add to approximate a parabola for the logistic
map may be seen in Fig. 13. Figure 13 should be read from left top down to

bottom right. 1In each window, a ters from Eqn. (20) is plotted as a dotted
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line and the sum of the terms appearing in previous window are plotted as a e

solid lire. Thus, window (1) initially shows term (1) as a solid line and
term (2), to be added in, as a dotted Yine. Window (2) then shows term (1)
+ term (2) as a solid line and term (3), to be added in, as a dotted line,
and so on. The final window shows the complete plot of the sum of all
terms in equation 20. Each tick mark is one unit, so the final bump
appearing between 0 and 1 in window (6) is the approximation to equation
22, which is a parabola with domain of C -+ 1 and range of 0 + 1. We
continued the plots in all windows outside the valid range of 0 + 1 just to
show more of each sigmoid that is added in. This range is actually
irrelevant as far as using the network for prediction is concerned, and was
shown for illustrative purposes only.

Adding together sigmoids to approximate a particular function is
reniniscent of Walsh analysis. Walsh functions(zz) are a complete set of
functions, ranging from 0 to 1, that are made up out of step functions. A
common fechnique of signal processing is mode decomposition of a function
into sums of Walsh functions. A sigmoid may be viewed as a smoothed step
function, and therefore approximating a function with sums of sigmoids

seeris somewhat similar to a mode decomposition of the function in terms of

a Walsh function basis set.

This notion that the neural net performs a type of mode decomposition

to approximate a function may be made clearer if one considers transfer
functions of the nonlinear neurons involving trigonometric sin's instead of

signoids.(za) This is, if we replace g(x) by
gix) = % (1 + sin(Bx)), B = a constant’ (24)

then g(x) is stil) an element of [0,1]) and the back propagation algorithm

will sti1l work irrespective of the form chosen for the transfer function.

=
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(The range condition on g(x) : g(x) € [0,1] is not important, we chose it
for conveniencé.)

If we now consider Eqn. 23, which is a generic form for ouiput in
terms of input for feed forward nets, then we see that the ai's act like
Feurier amplitudes, the bi‘s like frequencies, and the ci's like phases.
Recall that the ai's are the synaptic weights of the hidden to output
layer, the bi's are synaptic weights of the input to the hidden layer, and
that the number of g functions (i.e. sin's) that occur in the sum is the
number of hidden units in ihe hidden layer. Thus, training the neural net
is, in essence, contructing a discrete Fourier series. However, in con-
trast to a normal Fourier decomposition in which the values of the fre-

quencies are fixed, the net has the ability to adjust the values of the
frequencies to obtain the minimum leact mean square error. The number of
adjustable frequencies is determined by the number of neurons in the hidden
layer. It is, therefore, clear that specifying the hunber of hidden units
specifies the number of frequencies available to the net, and that the net
then adjusts the numerical value of these frequencies, and their amp-
litudes, and phases, to produce a best fit. Presumably, adding more hidden
units, i.e. addﬁhg more adjustable frequencies, will improve accuracy.
Because in conventional Fourier Mode Analysis only the amplitudes are
adjusted, and the frequencies are fixed, we label the mode decomposition
performed by the neural net “écnora!ized Fourier Decomposition,"” where
"generalized" refers to the ability to adjust frequencies. Further

generalizations are possible by considering multilayer networks and

. different expressions for the ¢transfer function. We point out that

using sin's often leads to ngnirica! problems, and nonglobal minima,

whereas sigmoids seemed to avoid such problems throughout all our
extensive simulations.

It is worth emphasizing that the network is not approximating by a

Mode decomposition the time series that was used in training. For chaotic
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time series, there is a huge spread of frequencies and we have typically
given the naural net a relative few number of hidden units. Instead, the
neural net is approximating the underlying map that generates the time
series.

In the logistic example the neural net, of course, approximated the
parabolic map that was used to generate the time series. In the Mackey-
Glass equation a nonlinear differential equation generated the time series.
However, .it is known on general grounds that a deterministic, nonlinear map
underlays the time series, (see Section III) although the form of the map
is not known. It is this map that was approximated by the’' neural net
using data from the time series. The abilily of neural nets to.provide
explicit formulae that are excelleat approximations to the unknown maps
implicit in chaotic time series may be of interest in the analysis of chaos
and other nonlinear behavior. Finally, we note that the parabolic trough
plots in Section IV are an example in two dimensions of this type of
analysis. . |
VI. Summa .

We have shown that the back propagation algorithm for nonlinear neural
nets is a natural gensralization of the widely used LMS rule or Linear
Predictive Method for signal processing. Use of back propagation in the
context of sfignal procassing allows solution of nonlinear system modelling
problems as well as excellent prediction on compiicated, "random," time
series. Predictive performance greatly exceeds all known (to us) conven-
tfonal methods of prediction including Linear Prediction(z)'(a). Global

(10) methods and is competitive with the new Local Linear

Polynomial
Mcthod.(ls) In addition, the network provides an explicit, global, approx-
imation to the underlying nonlinear map with minimal requirements for data
points from the time series. Specific applications have not been discussed,
however it scems that there are many. One may expect that other areas of

signal processing, in addition to prediction and system modelling, may
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be fruitfully investigated with this method. The advent of neural
(20)

net

hardware will make certain real time applications possible.

Among the issues not addressed in this paper are:

(1) the effect of nonglobal minima (not a problem in our simulations)

(2) the effect of noisy data; and

(3) procedures to update predictions "on the fly" a la Kalman-

Bucy. (24)
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Appendix I: Scaling and Oynamic Range

We have found that the certain numerical problems could be avoided by
having inputs and outputs in the range of '0 + 1 during training. We will
give a simple scaling procedurs that scales the weights that come from
training on variables 0 -~ 1, to those appropriate to handle inputs and
output variablas of arbitrary dynamic range. Nota that the numbers for the
normalized rool. mean square index of accuracy that we quote in the text are
independent of dynamic range. Suppose that the real world Inputs x“‘. and

Outputs, xout have an extended dynamic range i.e. greater than 0 = 1. We
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can aiways write them in terms of variables xi" and x°“% that range..
between 0 and 1:

XM = ox!" « g (A1)

xout - out,

YX

where «, B, Yy, & are appropriate constants that adjust the range: 0 - 1 of
" X% t5 the range: min X' » max X'™ and min XOUt 4 max XOU%; where
min and max refer to the minimum and maximum values of Xin and X°Ut in the

training set. One then trains the nonlinear neural net using the variables

xi" and x°“% with range 0 + 1. This results in a set of weights and thres-

holds, Tij and I;, geared to the range 0 » 1.

We now wish to scale Tij and I, to enable the network to handle the
real world dynamic range of the variables Xi", X°“t. We will describe the
scaling procedure for a network with a single hidden layer and Input =
Hidden -+ OQutput connectivity. Similar arguments work for any network

connectivity.

First, consider the connections between the Input and Hidden layer. If

xji" represents the inputs in a range 0 + 1, then the Hidden layer produces

an output involving the nonlinear transfer function g( )
9T 3" + 1) | (A2)
J

If one now used the original, real world, values Xj°“t for the Input layer
thoh the hidden layer would, of course, output a different number. We wish

to scale Tyy and I; to Tij’°'1‘d and Iisc'I'd so that the hidden layer

in scaled scaled
Tij Ii

and » Will output the same number as

when using Xj
number as from expression (A2). It will then be trivial to scale the

Hidden + Output connections to get the outputs in the desired dynamic range.
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Thus we require:

2T§qaled x{n §caled
i ij j * I! )
Equations (A3) and (Al) then yield (for Input » Hidden connections)

g(zT; xi" + 1;) = o(
J .

scaled _
scaled _ - :
Ii - ii (B/Q,?Tij
Since the Output layer sees
T390 ) + 1 (AS5)

J
where j rangés over the Hidden indices, and since g( ) 1is outputting

the same value for the scaled inputs as for the unscaled inputs, we

see from the Eqns. (Al and A5) that we merely need to define

scaled _ . -
LET I LT | (A6)
‘yscaled _ |
Ii - fIi + 6

for the Hidden -+ Qutput connections to achieve the desired dynamic range
for the outputs.

Similar scaling arguments work for arbitrary connectivity. If the
traning data set is not typical of the range of values to be used for later
predicticn, then a possibility for error exists. However, one must always
assume the training set is a typical data set, or elise the whole concept of
training fafls. We also reiterate that the normalized root mean square
index of accuracy used throughout this is insensitive to the scale of the
data.

Appendix II: A Note on Simulations

In contrast to simulations of problems involving symbolic data, where
an accurscy of .1 is commonly used to generate answers where outputs are
fdentified as 0 or 1‘:.(1)’(9) the real number problems considared in this

paper require high accuracy. For this reason, we typically ran our simula-
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tions on a Cray X-MP to speed-up convergence to an exact minimum. In __
addition, we found that use of a conjugate gradient minimizing procedure,
instead of the commonly used steepest descents procedure, produced orders
of magnitude speedups in convergence. All simulations were run with a
general purpose mathematical simulation package that is in development by
R. Farber at Los Alamos. The package includes a general p;rpose, menu
driven, interactive frontend module (written in C), which accepts network
parameters and also data files. It then communicates them to a computa-
tional module that can be written in either C or Fortran, which can then be
run on any number of machines, including parallel machines. ‘An automatic
code generation module was also devaloped and used to produce optimally

vectorizing Cray Fortran code. Results are automatically collected at a

host machine, formatted, saved to disk with unique run name file labels,
and a formatted hardcopy is also produced Tor aiding documentation of the
runs. The package fis still in an experimental state and is presently
tailored to the jpeculiarities of the Los Alamos computer network. Run times
were on the order of ninytes for the logistic map prediction and approxi-
mately an hour for the longer term predictions in the Glass-Macky equation.
These run times were needed to obtain exceedingly accurate approximations
to the minima of {:he back propagation energy function. Acceptable accuracy
m3y be achieved with significantly shorter run times, however we decided to
sce'juit how close to the exact minimum one could come given virtually
unlimited run time. It {s inherent in the operation of the neural net that
it produces an excellent global approximation to the maps underlying the
time series. If such a global map were produced by patching together a
large numbar of local linear approximations obtained from the method of
Farmer and Sidorovitch then presumably run times of similar length would be
encountered. The advent of paralle), neural net hardware (chipi) should
allow the nonlinear neural net method to run in real time for numerous

signal processing applications.

o e = Ao + et N M
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Figure 1

Figure 2

Figure 3

Figure 4

Figure S

Figure 6a

Figure 6b

Figure 7 -

FIGURE CAPTIONS

A plant implementing the nonlinear transfer function
x » x2

A lYinear feedforward neural net representation for linear
prediction.

A feedforward neural net with a nonlinear hidden layer
for prediction. Arrows schematically indicate the feed-
forvard connections from Input to Hidden to Qutput layers.

The transfer function g{ ) of a hidden unit is commonly
taken to be a nonlinear, sigmoidal function with range
0 - 1. This is a plot of g(x) = ¥(1 + tanh(x)). The
exact analytic form of the sigmoid is not critical to
results.

A network with 5 nonlinear hidden units used to predict
x(t + 1) given x(t). The arrows schematically indicate
connections from the Input layer to all the units in the
Hidden Tayer, as well as connections from all Hidden
units to the Output unit. Also, the Input layer directly
connucts to the Output layer.

A plot of x(t) vs t for a time span of 500 time steps
in units where t = 17 for the Mackey-Glass equation (15).
There s a quasiperifodicity, however details of the bumps
change chaotically over time.

Figurs 6b s a similar plot to Figure 6a for t = 30.
The 2 Hidden layer network architecture for prediction

in the Mackey-Glass equation (15). The arrows schematically
indicate connections from Input to Hidden to Output layers.

L]




Figure 8a -

Figure 8b -

Figure 9 -

Figure 10 -

FIGURE CAPTIONS (continued)

A plot of the normalized rootmean square error (the
root mean square error divided by the standard deviation _
of the data) versus prediction time step, P, into the _
future for the Mackey-Glass equation at t = 17. Five
curves are shown, labelled A, B, C, D, E. A = Sixth order
polynomial (iterated from P = 6). B = The Linear Pre-
dictive method. C = Sixth order polynomial trained at
each prediction time step, P. 0 = Nonlinear neural net
trained at each prediction time step, P. E = Nonlinear
neural net (iterated from P = 6). The iterated ;.)o1ynomia1
is wildly unstable and quickly blows up. The iterated
nonlinear neural net perfoms best. V

An identical plot to Figure 8a except for the Mackey-
Glass equation at t = 30. The labelling of the curves.
is the same. The success of the iterated nonlinear neural
net method is even more evident.

The 2 Hidden 1layer network architecture for modelling
x + x2. The arrows schematically indicate connections
from Input to Hidden to Output layers. Another net-
work, with a single layer of 40 hidden units performed
comparably to the 2 layer network.

A graph of x2 = [x(t) - x(t -At)/(At)? where At = .001
anrd Z = x2 is plotted as a function of two independent
vairiables x = x(t), y = x(t - At). The axes have been
rotated 30 that one is looking straight down a parabolic
trough. In the rotated coordinate system, the region
x(t) ~ x(t - .001) is along the bottom of the trough.
The horizonal, 45 degree and vertical lines represer: the
X, y, 2 axes. The z axis has been drawn to the left of

the parabola to avoid cluttering the paraboliic surface,




Figure 11 - .

Figure 12 -

Figure 13 -

FIGURE CAPTIONS (continued)

The output of the network in Figure 9 plotted as a fun-
ction of the two input variables. The range of the plot
has been considerably extended past the range of validity
of the map. The x and y axes extend to from -1 to 1
while Z extends from 0 to 5.125. The range of validity,
x(t) = x(t - At), is along the bottom of the trough
becaus® we have rotated axes so that one is 1looking

straight down the trough.

A blow up of the bottom of the trough in Figure 11. It
is. only the bottom of the trough in Figure 11 that is
relevant. The axes are rotated so that one is looking
straight down a parabolic trough.

A plot of successive sums of terms of equation (20. The
first window contains -terml as a solid line and term2,
to be added in, as a dotted line. Yindow(2) shows the
sum of term(l) + term(2) as a solid line and term(3),
to be added in as a dotted line, and so on. Window(6)
contains the sum of all 6 terms of equation (20) plotted
as a finmal solid 1line. Each tick mark is one unit, so
that the approximation to the parabolic map, Egqn. (22),
is contained in the region 0 + 1. Recall that the normal-
ized root mean suare predictive accuracy of this map
was 1.6 x 10°% i.e. it s an excellent approximation.
Portions of the graphs in windows(l) to window(6) outside
the valid range of 0 + 1 are plotted so that the form
of each sigmoid that is addad together may be seen.
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