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I. Introduction , ;—— .,-
Adaptivo signal proca,ssing,is a topic of conside@blt.tip?’act~ca-~.

-------,-.’
interast. A.common ●pproach to signalprocessing uses predo~i,nan~l-yzfirie~.

,.— J$-
analysiisowhTch not surprisingly,does not perform as well,.asdeslred#hen-

,~:y~
used to process stgnals amftted by a nonlinear system. We.show that b-- .

,– ‘,-?~ -
natural ●xtension of linear mathods into the nonlin~ar domafn is prov~deh.----a91-..
by the nonlinear naural net learnfng ●lgorithm called alb~c~z

,.-’
II(1) AS Qxplafmd fn Saction 11, our tachniques~~s fr~~+!+.

........-
propagation. ...........

relatively si~le fdaa ‘of insertfng “hidden units’s(a layer of,nonl,fnka~e..~,... ,..,

neuron-like ~hmant$) into the Iinaar “Malina”. adaptation fr~or~.

(2)~ (3) ~ ~ri using back propagation ~. eontrO1...t&of Widrow-lioff..., .-..;..8- . , ,-
/ . : ‘“

TM i~ut &d output elannts ● kept ●s li,-8~ e]rnfits....f&
i+

wafght$. ..

ordar to.provida ●n axtandoddynamicrang.. Tha original“Malind! or+ .
‘Least Maafi SqUarQ”(2) ●daptation PUIQ (fn wids us; in ~tirn signal..,-,.

~ proc~ssing) 911Y M thought of ●s.aylmrning rule for 8 totally l.@sr.-. -~=. ~—.

: neural.nat-rlt~ Tham_is &’-a logical progression to the nonlinear=,

networks,that wa us~,.uhlchMy;’basmrizad ●s follows: -..-,. ,-
+-- *

.: .“ ,.. 8?-

. ..

.’! 9 “’Adalina.(Least Ham S&a) ● Uidrou+loff + Porcaptron + 6ackpropagation-
:..”.

.. . --..

o~k” p*~tim so far, has tiinly baon usad in 8itu9tions*m t~ ,

inputsand ouqputaof tlw notuorkm noalinmr ●nd achimm btnary valuas.

That is, it has MM pradsm$nantlyusad in procmlng sslic

‘ informa%iono(11’ ~@ttiW t~ 1~* aM Owput nwons ba linmr damns..... ,;.-.... ..--.—-----.
wtods tha ~rmfc .m~~ and allws p?OCWt~ of TW1 valu~d..

fnput8/alu*uts such “8s &cuF..-fsigMlMPmo8$lw$lw wp~icationsb The

‘hiddo# nonllnw neurons uso a contlnuws nonll~a? (and nonpoly-

noa181)aetW8tfanfunction. It 19 thi *llltytO cont?ol nonllnmrWy

{n Uw MIA nat that allm pmdletfoo III ehaotle tha wk with m
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accuracy far exceeding conventional methods. Chaotic time series are

emitted by deterministicnonlinearsystems and are sufficientlycomplicated

that they i(ppear to be “random” time Series. However, because there is an

underlying deterministic map that generates the series there is a closer

analogy to pseudo random number generators than to stochastic randomness.

Nonlinear neural nets are able to perform well because they extract, and

very accuriltelyapproximate, these underlying maps. Deterministic chaos

has.been implicated in a large number of physical situations including the

[4)s (5) chemical reactions,onset of turbulence in fluids; ‘6) lasers,(7)

and plasma physics(8) to namebut a few. Furthermore,chhotic systems can

also display the full range of less complicated nonlinear behavior (e.g.

attraction to a fixed point and limit cycles) if \arious parameters in the

system are changed. They therefore provide an ●xcellent test bed in which

to investigate nonlinear signal processing techniques. We have selected

two chaotic time series: one generated by ●n explicit nonlinear iterated

map (the logistic or Feigenbaw map) and ●nether generated by a nonlinear,
.

differential delay equation (the Mackey-Glass ●quation). Prediction using

nonlinear neural networks ●xceeds conventional methods by orders of

magnitude illaccuracy. -

In addition to possible applications,the domain of real valued signal

processing nlso provides ● nice setting in which to investigateproperties

of the bath propagation ●lgorithm itself. Onc property, the ●bility to

form limited gen~ralizations, has frequently been tested with “symbolic”

(binary) inPW/Output pairs.‘1)’‘g) Unfortunately, it has bmn difticult

to obtain fI really clean cxanplo

other hand, Section IV provides an

which it is clear that the naural

th. Corrocl,algorltm that trmfom input to output, The somwhat

of this ability to generalize. On the

●xample in nonlinear system modellfng in

not has inferred from ● finlta data set

mysterious ability of namal notuorks to “daduce” algorithm and to “gm-
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eralize” is shown to be nothing more than rea< valued function inter-

polation when viewed in the context of signal processing. The modeling

example we chose to analyze in Section IV is a “plant” (to use control

system temtonology) thiit implements x(t) + ~2(t.1(see Figure 1).

is an arbitrary input wave form and the network has to learn

~2(t) by learning on a training set consisting of input/output

are samples at discrete times. We trained the network on

inputloutput pairs from a specific, broadband x(t), and

Here x(t)

to output

pairs that

a set of

used back

propagation to adjust the network weights. If the net correctly inferred

the algorithm x + ~z(t) then input (after”training) of a different,

●rbitrarywave fom x(t) should result in the correct # of the new signal.

This is the case. .Furthe?wore,if the input to the netwcmk is x(t) and

.X(t - At), then the network output”should ba ●n ●pproximation to [x(t) -

X(t - At]2At2. Thus, ● graph of the output, ~2, versus the inputs x(t),I

x(t ‘At) should be ●n opproxltition parabolic trough. We plot the output
.
of the neural net verflusx(t), x(t - At) (see Figures 11, 12) and the

resultant parabolic trough1,

netmrk has indaad learned
.

I input/outputpairs.
I
I A coapating approach to

is ●xplicit graphic verification that the

the correct ●lgmithm from a finite set of

procwsing nonlinearsignalswould be to fom

polynomials in the data tams (the polynomials providing nonlinearity in

the dat8) end to tijust

polynomial tam Using ttla

advocatod by Gabor ●nd IsI
nonlfnear syste8s. It has

be modelled ●xactly, and

the linear-ight factor coefficient for Qach

Least Mean”Square●lgorfth. This approach was

related to the Volt@rr8-Wein@r●xpansion(10 of

the ●dvantage that polynomial nonlinearftiesIS8y

that one is always ●ssurad of finding ● global

●iniau to the L,oast~Ban Square problea. Dlsadvmtages, however, ●re

considerable.“ FIrst of al1, ‘nonpolynmlal nonlinmrities must be modalled

by polyneaials,which {s wfdoly known to ba ● undeolrab18procedure du~ to
,

----- ------- . .-, .~-” “- ““”
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the rapfd oscillation of polynomials. Secondly, one has an explosion in

@
the number of the polynomial coefficients as the system size, or order of ~,

,-.,
the polynomial, is increased. Finally, a polynomial approximation is.%
wildly unstable under iteration. ‘Iteration, as we demonstrate in Section;=:

III, is the key to achieving accurate predictions over long times. -~

Acceptable accuracy may be achieved by polynomial methods over short times, .E

which is clearly a much less interesting situation fn comparison to long-
“ii

term predictiorl. The nonlinear neural net is orders of magnitude more-$.

accurate for long-termprediction. Finally,we demonstrate in Seetions 111 ~

and IV that if the relevant system nonlinearity is indeed a polynomial, ,,

then very good approximations

nonlinear nonpolynomial neural

neural net method presented

M

to the polynomial may be achieved by using :

nets. We therefore feel that the nonlinear ,

here has considerable advantages in both

accuracy, and flexibility,over the more conventionalmethods.

The reason that the neural net formalism for signal processing works

well seems to bc related to the fact.that the network is performing a kind

of generalized mode decomposition of the underlying maps. Changing the

neurons’s transfer function from sigmoids to siniichanges the analysis

to a generalized Fourier analysis. Other nonlinear, neural transfer
.

functions are also possible and should be choosen to make a best match to

the problem at hand. Another interpretation (Section V) is related to

spline fitting procedures. The difference between mode decompoposition

vs simpla polync~ial fitting, distinguishes neural networks from the Gabor

(lo) of nonlinear systems.Weiner. Volterra polynomial●nalysis

The ●xamples of prediction and nonlinear system modelling were choosen

somewhat arbitrarily as a means to illustrate the capabil{tles of the

tormalfsm. The SUCCQSS achieved fn these exanples might reasonably be

taken as ●n indicationthat further developmentof these methods could have

)

,

I

t

I

[

I

I

,~.,. .. ... .. ... ..
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wider applicability. Results of experiments on specific applications will
#

#

be reported elsewhere.

II. The Linear Predictive Method and Back Propagation
.

Prediction is” il useful ability in signal processing that also has

application in many other areas such as data compression. A common method

of pred~ction in signal processing is th~ Linear PredictiveMethod.(n) In

this approach one USC!Sthe values of a continuous signal, x(t), at a set of

discrete times in the past, to predict x(t) at a point in the future. For

example, one might use three values in the past, x(t), x(t - A), x(t - 2A)

to predict a value that is some time in the future, perhaps x(t + 2A). A

is a time increment. The predicted value is a linearlyweighted sum of the

delayed (past) x(t) values. R~presenting this algorithm in a diagram (Fig.

2) makes it clear thot one can view this method ●s ● linear, feedfoward,

neural net with no “hidden units.” Each line $n tha figure linearly

-weights the corresponding input so that the output is a linearlyweighted

sum of input values. (See Figure“2.)

The weight valuw, Tfj are determined in the Linear PredictiveMethod

by training the system using a set of discrete time samples from a segment

of known signal. Lahelling the neurons froa i = O
.

2)

X3(t+~) =tMKO(t) +?31Xl(t - A) +T32X2(t

or more ganerally, if there is more than one output.

to 3 yields (for Figure

-2A)+13 (1)

(2)

For nonlinear naural nats 11 is referrad to as “threshold” and we will

continue to usa thot notation ●ven for linear natworks. If we label
*

discrete”times ~n the training set as tp, then TiJ nay be determined
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by minimizing the mean square error, E

E =~ [xi(tP,A)- Z T,.x.(t,A)- Ii]2
ip

jlJJp (3)

In the above, i ranges over the output units, which for the example of

equation (1) contains just one term for i = 3. p indexes the discrete

times in the training set. This is a usual, linear, least mean squares

problem that may be solved, for example, by steepest descents. Steep~t

-descents is implt?mented by successively changing Tij by an amount ATij

where .

(4)

where & is a small number. Ii is determined in a similar manner. The form

of Eqns. (1) and {4) show that the comonly used Linear Predictivemethod
.

for signal processing is the trivial (i.e. Ifnear) limit of the back

propagationalgorithm for nonlinear neural networks.

The Gabor Polynomial Predictive Method(lo) is a straightforward

●xtension of these ideas. In this formalism,●ach input neuron represents

one term in a polynomial ●xpansion of the data. For example, if the

polynomial-is specified to be second order, then there will be three first

order terms (already represented] and an ●dditional six neurons

representing the $lx possible cross terms of of Xo(t), Xl(t - A), X2(t

‘2A). The weightst ●ppear ●s linear coefficients of these cross terms.

Therefore, the Linear Least Hean Square ●lgorithm works for the Gabor

Polynomial Method with virtually no change in implementation. One

disadvantage of tho polynomial method is already clear. If there are d ‘

data items to be coabined into ● gonaral m ~ order polynomial (for the

above example d * 3, m = 2) then the number of term grows like (m + d)!

/m!d!, which explodos exponentiallyu aithar d or n gets large.

o
~R’.$’-lw*, >%- +.:-A .,.-, ..*. ,&

.-. C.J. .“ .- ----- ?.? - h..’. -,, .. -,-. ,- .’.- -., ,- ,.—:. . .. ..

-
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Given figure 2, and a familiarity with the Backpropagation Algorithm

it is natural to insert a layer of nonlinear “hidden units” and to use back

propagation to control the weights (Fig. 3). “Hidden units” are elements

that do not “have a linear neural transfer function. Instead, the neural

transfer function is sigmoidal as shown in Figure 4. Hidden units greatly

extend the power of neural networks and can be controlled with the back

propagation algorithm. In addition to the weights, Ttj, there are also the

thresholds, Ii, that shift the gcsition of the sigmoid. Thus, if Xi are

inputs to a hidden unit, the output of the unit is not merely the

linearly wt!ighted sum, XT. X , + I.but’theoutput of the sigmoidal
.jljj

transfer function g(ZTi.Xj + If). The Ii ~hifts the sigmoid to the left’or
jJ

rfght. Trairlingthe system involves minimizing an E function which is now

somewhat more complicated than Eqn. 3 because of the nonlinear g( ) func-

tfons. Nevertheless,”a steepest descents algorfthm is often used in back

propagation to minfmfze E. ,.

Back propagation uy thought of as a particular, nonlinear, least

squares algorithm. It may also be thought of as a generalization of the

Perception formalism where the discontinuous,Heaviside step function used

for the Percuptronis neural transfer function fs smoothed into the con-

tinuous, sifpfdal transfer functfon. It is a natural, nonlinear,

extension of’ the lln8ar nets cmnly used in adaptfve signal pro-

cessing. Use of the chain rulo fn coaputfng dorfvatives of E provfdes a

useful into~~retation to the ●fnfnizatfon process and ●llows an ●asy

generalization to multilayers of nonlInear hidden units”‘1) For one

or moro output unfts on. mfnfmfzes

E = Z [targ{p) - 0{i)]2
pi

.

(s)



I

(P)where the targ,i are the specified target outputs for the pth input

pattern, and Oi(P) “ Bthis the actual output of the network’s 1 output unit
.

given the pth iriputpattern and the present set of weight, T.. I.. E is ~
lJ’ 1

to be considered as a function of T..
lJ

and If. For the linear predictive

net considered earlier, expression (5) collapses to a simple form. For ,

this case, the sum over i contains.just one term i = 3,

‘p) = %a(tp + m), and O$p)target output targi(P) would be tar9i

O:p) =~TijXj(tP) + Ii, i.e. a linear function of the inputs

If a ;onlinear layer of hidden neurons were inserted into

then 03(P) would also contain contributions from the outputs of

while the

would be

to unit 3.

Figure 2, ,

the hidden -

1ayer. Because the hidden lay~r has the nonlinear transfer function g( ), -

the output of thle hidden layer is now a nonlinear function of its inputs,

and E in Eqn. (5) becomes the square of a nonlinear function of the weights .

because the hidden layer outputs feed into the topmost output layer. ..

Steepest descents is performed in the normal fashion by letting

AT..=-c
lJ %“

(6)
,

Defining some intermediatequantities simplifies the partial deriv%- -

tfves in Eqn. 6. Let

neti =ZT.O +Ii
pjj

(7)

be the net input to un~t i from the outputs, Oj, ot other neurons in pre-

vious layers connected to neuron i. The output of neuron i will then be

Of =g(netf)=g(f TijOj+ Ii)

If one introducesilnotherquantity dl’defined as

(8)

(9]
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then one obtains:
.

Thus gradient descent

amount AT.. wherelJ’

-10-

AT. = -lj VP -=&6. o.
i,j ‘ J

s implemented by making changes in T ij by the

(11)

where e is a smal’1number. i3i may be computed by the chain rule. Sf

unit.i is an output unit then &i becomes:

(P) - o\p)) g-(neti)= X (targf6i p
(12)

where g-( ) is the derivative of g(x) with respect to x. If i is notan

output unit, then 65 “maybe computed recursivelystarting at the topmost
\

layer (which is the output layer):

(13)

Equations 11, ?2, ●nd 13 define the backpropagation steepest descents

procedure for nonlinear neural nets ●s outlined in Reference (1). The

name “back propagation” ●rises f~ Eqn. 13 ~@re ●n ~rroi’si!lnalis

propagated back from the output neurons to othar neurons of the network.

III. Predictfam—-
.

To illustrate ths use of the norilinaarnaural net formalism, we

choo~~ to predict in such a complicated time series that it is “random” and

ergodic. The swigs ‘is generated by itcmtin~ the classic logistic, or

FeiQmb4m, Mp (12)

x(t + 1) ~ 4bx(t)[l - x(t)]
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:*2
,+

where b is set to 1.0. This map is not known to the investigator, of ~~
~.

course. He has only a set of samples from the time series and is requ~red .b
. -+-.,

to use these samples to perform prediction. This iterated map produces an ‘—
““%/

ergodic, chaotic: time series if b is choosen equal to 1. (Other values of ,=

b lead to fixeclpoints, limit cycles or chaos as documented in Referefiee.~
..

12.) Although the time series passes virtuallyevery test for randomness,
w..’

it is generated by Eqn. 14 and therefore may be thought of in analcgy to
.4

a pseudo random number series. It is widely conjectured that importa,:t ~

(4, 5, 6, 79 8) (eoge t~$ onset of ‘instances of ri]ndomness in Nature
4

turbulence) are due to the det~rministic chaotic behavi”orproduced by r

similar nonlinear iteratedmaps.

Because the map, Eqri.14, “is polynomial,

ventional Gabor method (10) would also work

second order
.

introduce the,

linear neural

A

$=
it is clear that the con-....~.

very well if one used a
,, $

polyncsrnial.We chose this simple nonlinear problem to ~
~

procedures we will be using; and to demonstrate that non-
,.

nets can very accurately model polynomials, in addition

to more general nonlinearities.. Also, M will return to this example.

in Section V, where we are “able to graphically demonstrate how the

nonlinear neural net adds up sigmoidal nonlinearities to approximate
...

t quite arbitrary functfons. A much more complicated example will re-

considered shortly in which polynomial cmthods are clearly fnferior to

nonlinaar neural net methods.

Our goal is to use the back propagation algorithm to adjust the Tij,

I ~, enabling a prediction of the next point x(t + 1) in this “random”

swies giv~n the present point x(t). We chose a network architecturewith

5 hidden units as illustrated in Figure 5 and trained the system, uSing

back propagation, on 1000 sets of (x(t),x(t + 1)) pairs. The output unit

was a lfnear unit. Tho trained network was then used to predict one time

step Into the future for 500 additional points. We always assumethat the

“past” data n.odcd to,p.~form th~ pmdictlof!, in this em x(t) t is

~—--’’——”’------”--------” .>.7; ..---7. .--.=-, . !.
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obtained from observing the actual time. ser es. Thus one makes a

pre-diction, observes what actually occurred, and uses the actual, observed

value to make the next prediction. The normalized root mean square
.

prediction error wax 1.4 x 10-4, “Normalized” means that the root mean

square deviation of the p?edicted values from the actual values is divided

by the standurd deviation of the data. We will refer to this normalized

quantity as the “index.” This measure is independentof the dynamic range

of x(t). Because the!series is “random” and er~odic, the only way that the

net can perform so well is if in the trainil~gprocedure it learns to very

closely approximate Bhe underlying nonlinear map, Eqn. 14, that generates

the series upon Wration. Recall that the network sees only “random”

numbers and has no npriori knowledge that a mapping exists between these

numbers.

In this situation, the Mp is siaple (polynomial) and prediction is

n~t”done “veryfar into the future. In Section V, we ●xplicitly show how

‘,.’ tht neural net ●pproximated the map of Eqn. 14 using data from the time
1

/,, series. This.

“, from the time

the tap lines

inized would

simple quadratic map could also have been ●xactly recovered

series hy using a linear network and includingmultipliers at

to fom polynomials in the data. The E function to be min-

Wfll he quadratic in the Wghts ●lthough the data terms

would now be ● gmeral polynmial includingpovms beyond quadratic. This

“ (1°)0 Although prediction Can beis the method of Gabor, Weiner, Vo:tewa

improved over that acnfcved by the nomal Linear Predictive Method, (for

this simple ●xa~le. the polynoafalmap could be recrvered ●xactly) in

general thfs multiplil:ativewthod will be inferior in predictive ability

to that provided by nonlinear neural nets (in the following more comp-

licated ex~le it is worse by orders of mgnitucle). Furthermore,the multi-

plicative method suffers ftw ●n,explosion in the numbwofw eights as the

n-t of tap delays and tha orde?of th8 polynomial is increased.
.

#

b

‘\
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We should also point out that we chose one input neuron in the network

architecture, Figure 5, solely for illustrative purposes. Adding more

input neurons (i.[!.choosing additional delayed values from the time series

for input) actually increases the predictive accuracy, at least for the

case of 3 input neurons that we tested.

A second, mlJch more complicated test of predictive ability, was

suggested to us by 0. Farmer and J. Siciorcwitch.13 In this example the

time series is generated by a

+
dxt = ax(t - r)
t —ml+,l((t-~)

delay differential ●quation

- bx(t) (15)

that was first invwitigatedby Mackey and Glass.(14) Keeping the parameters

a and b fixed at is = .2 and b = .1 leaves r as the only adjustable param_

eter. As t is varied the

chaotic behavior. Choosing

attractor,(Is) with fractal

strange attractor with the

system exhibits fixedpoint, limit cycle, or

t = 17 yields c!naoticbehavior, and a strange

dimension approximately 2.1. t = 30 yields a

fractal dimension approximately 3.5. H~gher

values of t yield higher dimensional chaos. Note that because of the

delay, x(t - r), the phase space of this syste@ is infinite dimensional.

However, as time progresses the system collaps~s onto the low dimensional

strange ●ttractor. Other fnffnfte dimensional chaotic systems, such as

nonlinear partial differential equations, also dfsplay collapse onto \ow

dimensional ●ttractors. Thus, the Mackey-Glisssequatfon (15) exhibits in

—

the simpler settfng

occurs in much more

ferential equatlonso

equation (15) may I>e

be quasiperiodic af~d

of nonlinear, differential quations behavior that

complicated systems such as nonlinear partial dif-

A detailed analysis of the chaotfc properties of

found in Refmnce (16)9 At I = 17, x(t) appears to

the Power spectrun fs bmadbmd wfth numarous spfkes

1
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due to the quasiperiodicity. At~= 30 X(t) is even more irregular.

Figure 6 shows a plot of x(t) vs t for a“time span of 500 time steps for

both T = 17.and r = 30. A constant function was used as the initial

values, snd transi~cntswere allowed to die out before the plot was started.

Packard et al.,’17) have demonstrated that an attractor may be recon-

structed from a time series by using a set of time delayed samples of the

series. If A is a time delay, andm is an integer,then ottemay write for ,

points on the attractor I
.:

x(t + P) = f(x(t), x(t- A), x(t- 2A) ... x(t- mA)) (16)
.,

where P fs a predf(ctiontime into the future and f( ) is a map. This may

be viewed as ●n n + 1 dimensional surface. Thus, the “embedding dimension”

dE, fs deffned to be m + 1. Takens18 has proved that a least upper bound

exists for which f( ) will be a smooth -p. If the dimension of the
. .

. attractor is defin~d to be, dA, then one needs an ~edding dimension less

than or ●qual to 2dit+ 1, i.e.:(18) ~

dE:2dA+~ (17)
.

A minimal requirement is that dE ~ dA. It is perhaps Surprising that
.

a smooth functional form, such ●s Eqn. 16, relates values fn a time series.

generated by c-l lcat~d nonl{near differential aquations such as Eqn. 15.

That such mapofngs axist is ● consequence of Takens theorem,’18) however

the theorem provides no information on th~ form that f( ) may take. We

will show balow that the neural net uses data froa tha time series to,

provfde an explfcit, analytical, exprmsion that globally approximates f( )

to a sufficientdegree to be able to pe~form prediction using equation (16)

with an accuracy that ●xceeds tha conventional Linear Predictive mathod

and the (’i*r, Weiner, Volterra method by orders ot magnitude.
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net

and

We will now test the predictive

and compare it to the conventional

Gabor “Polynomial Prediction(10).

accuracy of the nonlinear neural

methods of Linear Prediction(2),(3)

The test will be performed twice,

once using a timo series generated by the Mackey-Glass equation (15) at

t = 17 (fractal dimension = 2.1), and once using the Mackey-Glass equation

at Y = 30 (fractal dimension = 3.5). Fivst consider the T = 17 time

series shown in Fig. 6a. Using Eqn. (17) we select an embedding dimension,

‘E‘ equal to 4. This specifies m in Eqn, (16) to be m = 3. It now

remains to chose A and P. To facilitate later comparison to an alternative

predictive method of Farmer et al.’13), we choose A = 6. These choices”
.

of m and A imply that a prediction made P time steps into the future

past the last observed point x(t) will be made using observed data at

times: x(t), X(t - 6), x(t -12), and x(t -18). There are therefore four

inputs to the nonlinear neural nats, representingthese values of x(t), and

, one linear output element representing the value x(t + P). We chose 20

hidden units arranged in a two layer atmchitecture. Therefore, the

architecture of the network appears as Fig. 7. Each neuron in Fig. 7

is connected to all the neurons in the directly previous layer. This

architecture was choosan rather arbitrarily ●nd seemed to yield quite

acceptable perfornwnce. Other architectures gave comparable performance.

We naw need to choose the prediction tine P. It is desirable t~

test the predictiv@ accuracy as a function of how far the prediction is

made into the future, so we will choose saweral values of P. For any

given P there ●re two ways that ● prediction P time steps into the future

past the last observed data pofnt may be made. The first way is to tra$n

a separate network fop ●ach choice of,P. For example, if P = 6 then one

may train ● network using ● set of samples: x(tl), x(ti - 6), x(ti - 12),

x(t, - 18) on the four tnputs, and x(ti + 6) on the single OutPut~ Thi$

network, aft~r training,will thcnrnap any futuro sot of ~“(ti)~ ~“(ti “ 6)*

.
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.
‘“(tj - 12)$ ‘D(tj - 18) (where superscript “o” indicates observed values) .

into thu set x{ti + 6). In this method, one assumes that the data needed .

to predfct at, say, t = 1,000 is the observed values of the time series at— —

x0(994), x0~98E0, x0(982), x0(976). The network might have been trained,

for example, on data taken from t c 0. A prediction at any arbitrary time,

t, in the future is made using the last four observed data points. Thus, .

no matter how “farahead one is predicting in the time series (e.g. t =

1,000), the prediction

past the last observed

predict 12 time steps

is never more than P time steps (in thiscase P = 6) -

data point. If, in the example above, one wished to

into the future past the-last observed point, then a .

second n@twork would be trairiedusing x(ti + 12) on the output neuron. -

This second network would ●lways predict a value 12 time steps past the

last observed point.

To wse how predictive accuracy degrades with increasingPwe trained 8

separate networko to make-predictions●t P = 6, V, 24, 36, 48, 60, 72, 84,

●nd 100 time steps past the last ob$ewed point. We computed the normal- ,

(root mean square

for 500 predictions

We did this for the

ized root.mean square index of accuracy (index =

predictive accuracy)/(standard deviatfon of the d%ta))

.“ and plotttidthe results, for”% = 17 data, ffiFfg. 8a.

nonlinear neural net, the Linear Predictive method, ●nd the Gabor

Polynomial method. The polynomial order was choosen to be ●qual to 6,

yielding roughly tha saw numbar of polynomial coefflcionts as weights in

the nonlinear naural net. Th{s was also done for the second (r = 30) time

series ●nd thesa results ●re plott~d In Fig. 8b.

in this case (t = 30) was choosen to be 6. The

needed 2,000 data points i,ntraining to achieve

while the Gabor nethod and the nonlinear neural

,,

7he ~edding dimmsion

L\near Predictive metnod

●ny reasonable accuracy,

net mathod se~med to do
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well with 500 data points. It may be

the nonlinear neural net, using the

performs b~st. There is, however, a

seen from Ffgures 8a, and 8b

predictive method just descr

second way in which one can

predictions at various P values, in whfch the neural net perform

that

bed,
,

make

far

better than the method jus~ described, and to which the alternative,

conventional methoclscan offer little cornpetftion.

The second way to make predictions at various choices of P is to place

previously predfctud values on the input lines to bootstrap one’s way to

higher P values. That is, one iteratas the mapping provided by the non-

linear neurallnet. For example, after trainfng a networkto predict at P =

6, one can feed the predicted values back into the inputs to predict at P =

12, 18, 24, ... Ietc. Thus, instaad of training separate networks to

predict at P = U, 18, 24, . . . etc. (as described above) one can simple

iterate the mappin!;provided by the P = 6 network. There are tradeoffs

implicit in this iterative approach. Bacaus@ previously predicted values

(made with some ert”or)are used to naiuasubsequent prediction, the errors

get magnified upon iteration. IteratinGa P=6 net once, to form a P = 12

net will not magnify the errors very much. I{owever,unless the P = 6 map

was an extremely good approximation to the actual P = 6 map implied by .

Takens theorem, further iteration of the P = 6 map will soon get to be a

dangerous procedure. It is intuitively clear that a P = 6 map is lass

irregular than say a P = 36 map (think of how the map changes upon

iteratfon far the classic logistic nap) ●nd so it seems reasonable to

believe that ono cloes have ● possibility of foming ●n ●xtremaly good

approximation to tt)eP = 6 map, and avoiding the danger just described.

Ultimately,one will magnify the ●rrors to’an unacceptabledegree, but this

may not happen until the ●ffectiw P is quite large, i.e. for a large

numbe~ of iterations. To test this

for both tho nonlfnear neural net

col hctd r~sultt on tha Mot

conjecture, we

and the Gabor

of W!lmcy

iterated the P = 6 map

polynomial method, and

1n tha same way as



—
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=18= .

before. lhes~ are t,he final two curves plotted in Ffgo aa (T = 17) and ‘
.

Fig. 8b (t = 30). It is immediately obvious that for the nonlinear neural

net the danger just described was overcome, and that this procedure is a

far better procedure for making predictions at large P, It is also readily

apparent that the Polynomial method is wildly numerically unstable under

this procedure (due to the errors getting grossly magnified by the high

order polyndal terms). Figures 8a and 8b clearly, show that the

iterative, nonlinear neural net procedure is orders of magnitude more

accurate than conventional procedures for large prediction times, P. Our

choice of iterattng I:heP = 6 map was an informed guess, it may well be

that another choice of P would yeild ●ven better results, although we have

not investlgatod this. Further increased in accuracy may be obtained by

increasing the tier of hidden units fn coabfnatfon with increasing the

number of training patterns.

A new predictive algorfthm has recently been published by Farmer and

Sidorovftch.(U’ The number, “and values of tho delays for the nonlinedr

neural net method for the Mackey-Glass●quation ware choosen to agree with

those used by Faraer et al. in testing thefr very recent and powerful Local

. Lfnear Predictive Method(13) (not to be confused with the conventional

Lfnear Predictive Method described ●arlier). The ●ccuracy of the Local

Linear method ●nd the nonlinear neural net method (perhaps best described

as ● glob819 nonlinaar method, sea Section V) me roughly comparable for

this problem.) Increases fn accuracy in one method over the other can

be ●chfeved by twiddling the respective ●lgorithms, however the main

. conclusion is that both methods ●re orders of magnftude more accurate than
.

conventional methods (fncludfng”the global polynomial swthod of Gabor et

al,(lo) and the Linear Predfctive M@hod, (2)*(3) •~ Indications are that

both aethods my be u~ed to ●chfovo tho fundamental lfmits on predictive

accuracydictated by the nature of chaos.

It $H tl$atth nonl{nw neural net mthod WI11 be veryusefulfor

I
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performing prediction

cessing applications,

is due to the natura’

with the resultant PO!

in real time, and for other real -time signal pro-

such as adaptive control and system modelling. This

mapping of neural nets onto parallel hardware,(20)

sibilities of training times on the order of micro-

seconds. Prediction times (the time taken to make one prediction after

being trained on the data) are already quite short, due to the simplicity

of feedforward networks, however these times could, of course, also be .

reduced to microseconds, or so, if done in hardware. Furthermore, the

nonlinear neural net method seems to be achieving roughly comparable

accuracy to the Local Lfnear Method of Farmer et al.(13)09(19) using

only 500 points from the time sertes, whereas the Local Linear Method

uses 10,000 - 20,000 pofnts. Parsfmony fn the requirements for data

points from a time series is a considerable advantage, as a large

number of data points may be collected only through using very short

sampling times, or else collecting data over a long time. In many

applications the use of short sampling times, or long data collection

times, is either undesirable (short time samp~es are more correlated,

hence yieldfng les% information)or infeasible (the data over a long time

may be unavailable). To be fair, the nonlinear neural net method requires

a longer run time for trainfng fn coaputer simulation (30 - 60 minutes on a

Cray X-HP, coapared to a few mlnutes on an X-MP, for the Mackcy-Glass

P = 72 ex-ple using the Local Linear Math@d). However, the nwral net

method ●lso yields more information than the Local Linear Method as a

result of training (see Section V) so it is not yet clear which method is

faster (when sfmulated) in producing the sam amount of information

IV, Nonlinear Sy$tem Modellinq

A second subject of considerable !ntercst in sfgnal processing $s the

systcm modellfng problem Here one wishes to construct a model for the

transfar function af an unknown “plant’~using only a finitedata s~t of

inputs, and mtiociated outputs, o’f tha plant. Appl!Catfon$ includ~ ~f@n I
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tive control among other topics.
●

We choose a relatively simple nonlinear

transfer function, x + ~z, which is depicted in Figure 1. The reason for

choosing this example as an illustration of the method is that there is a

nice graphical way to depict both the actual transfer function and the

modelled transfer function. A polynomial Gabor, Weiner, Volterra(lo)method

would also work quite well for this simple example. We chose it to simply

illustrate how a nonlinear neural net works, and not to demonstrate the

relative effectivene!isof the neural net method. This was already done in

the previous section.

A neural network with 2 Input units, two layers of hidden units and

.one..output.unit were trained on an 1/0 data set generated by passing a

relatively broadband input function through the block box of Figure 1. The

network is shown in Figure 9. The input was a sw over twenty frequencies

with random phases in the range [0,1].

(18)

that was sampl~d ●t times separated by .001 between t = O and t = 1. The

factor N is a nomalizer that normalized the resultant output (~2) to a

maximum value of 1.0. The normalizationwas perfomed soley for computa-

tional convenience. Inputs ●nd outputs having arbitrary dynamic range are

●asily handled by a scaling agreement, as descrfbed in Appendix I.

Training was •cc~l f$had by taking data’points from Eqn. 18 over a ti~

interval [0,1] and setting the Inputs to be x(t) and x(t - .001),with the

output set to be ~z. Backpropagation was usad to adjust the weights.

After train~ng 4s c~lete, on. should ba abls to input a new

waveform,,;, ●nd hmve ~z(t) emitted by the output unit of the neural

natwork. We selacted another wave fore,sidlar to Eqn. 18, exceptwith ●

d? fwant cholco Of ta!doa phases. The noratl1zod toot80an squat. accuracy

for the tast wavofom W8S,0476.
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This example was choosen because it is possible to graphically -

demonstrate that the neural net actually learned the algorithm, x(t) +

~2(t), fronra f~nite data set of input/output pairs. First of all, we plot .,7

the actual algorithm, x + ~2, by graphing ~2, vs (x(t), x(t - .001)). A .3,

finite difference approximation to ~2 is ~.
k

i2(t) = [x(t) - X(t - .001)]2/(.001)2 (19) ~
.+

which of course yields a parabolic trough if Z = ;2(t) is plotted VS x(t)
...

on the x axis, ilnd x(t - .001) on the y axis. Nc:<:that we are not using

values for x(t) and .x(t - .001) taken from a particular wave form to

produce the plot. Instead, x(t -.001) is considered to be an independent .

variable from x(t), and we plot the functional dqmdence of ~2(t) on the ,

two independent variables. Thus we imagino x(t) tobe an x axis variable,

X(t - .Oall) to be a y axis variable, and plot the graph Z =

(x - y)zt(.ool)z. The resultant graph (Z = (X - Y)2/(.001)2 is shown in .

Figure 10. We h,sverotated the axes so “thatwe are looking straight down .

the trough. \

Next, we consider the algorithm that was learned by the neural

network. After training, the output neuron value (~z(t)) is a WQ1l defined

function of the values of the input neurons x(t), x(t - .001). The

function is 8 co~l icated sw involving tanh( )‘s (due to the sl~idal

transfe~ function of the hidden units), and certain coefflcient$,which are

the actual values of Tij and If that were detenined by tha training

algorithm. This function is ●asily plotted In ●n analogous manner to the

previous figure mnd is shown in Figure 11. Here ●gain, x(t) and x(t - .

.001) are taken to be independent variables (i.●. nOt fr~ a Particular

tine serie$), and the.value of the output neuron is plotted vs tha values

of the two input neurons in the sana rotatad coordinate syst~. Mote that

~ pt?tbellt trough doaa appaar in Figure 31, although as ona proceeds away
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from the bottom of the trough the sides stop rising and flatten out. This

flat region is irrelevant. The region of” interest is the bottom of the.—

trough, because it is only in this region that x(t) ~ x(t - .001),
.

indicating a sufficiently small sampling time to be able to approximate

~2(t) by the fin~te difference approximation. We depicted the “flattefied

region”as well so’iely for illustrative purposes. In Figure 12, we plot a

“blow up” of the ‘relevant,~;ion, x ~y, over a range of x between -.1 and

+,1 and sf~flarly for ye It is therefore graphically clear that the

network did learn the algorithm x + &2(t) because the region x - y, cor-
.

corresponding to x(t) ~ x(t - .001) (which is always satisfied for

#

“

continuous wave form assuming .001 is a sufficiently small sampling

interval) is inded ● parabolic trough. Furthermore,we numericallyverify

the accuracy of thm network’s algoritlnsby calculatingtho normalized root

mean square ●rror of the network in comparison to the output of the finite

differeficeapproximation for ~2 for 10,000 data points ●vanly spaced over a

square of =[-.05, .05]; ytc=.05, .05~. The resultant value was .0403.

which is a value of the match of the algorithms. Add3ng more input units

I (further delays) ●ctually increases

can’tplotthe outputin 3 dimension.

We also not@ that the parabolic

the ●ccuracy,

.
trough is not

although of course we

ganaratedby somesort .\

of Taylor’s serlcs f’orsmall input values. Tho sigmidal transfer function

used in consl:ructf~ Figure 12 has only odd terms in its Taylor expansion

and t%a’afora Ffgumt M was generatad by ●dding togother full si~idal

functions with appropriate coefficients (Tij) that are sufficient to

closely approximtc ● parabollc trough in the region of interest. Exactly

how a neural net aay ●dd tog~ther si~ids to approximate essentially

arbitraryfunctionsis described more fullyin SectionV. This abilityto

approximateI’unctiom, polynomial or otharwise, is th~ r~ason for the

SUCCQSS of nmlfnaar neuralnetworks. A strictly1inear natwork,trained
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with the usual Least Mean Square Rule of adaptive signal processing, would

only be able to produce planes (or hyperplanes, if one used more than two

delays on ~he input lines) if graphed in a similar manner to Figure 12. A

second order Gabor Polynomial method would, of course, do very well on this

problem, but as seen in the previous section, it offers no competition in

more complicated examples. Finally, we point out that the graphs in

Figures 11 arid 12, are a clear example of “generalization” by neural

networks. After training on a finite data set the neural net was able to

deduce the correct algorithm (compare the troughs of Figures 10 and 12)

such that when new data is presented a correct output is given. We see “

“that th~ somewhat mysterious ability of neural networks

algorithms” anld to perform “generalization” is nothing more

valued function interpolation, at least in the context

processing.

to “infer

than real

of signal

JV. Mode Decomposition by Nonlinear Neural Networks

1 It is natural to ask “why does a nsturalnet do so well at nonlinear

I signal processing?” We answer this question by analyzing the simplest

I prediction example, the logistic map and then remark on the system
1
1 modelling problem. Firs~; note that at the end of the training period, all

~
r the synaptic weights, Tij, and thresholds, Ii, are specified numbers.
I
1 Therefore the output neuron, which represents x(t + 1), is a specified
I
I function of tho input neurons x(t). In particular, ifwe take the weights
I
I

which lod to the root mean square predictive accuracy (1.4 x 10-4) quoted!
I
r in Sect”lonIII, then one obtains’from these waights, and Figure (5), the

I
} formula
I

x(t+l)=- 0.64g(- 1.11 X - .26) ? l,3g(2022 X - 1,71) (20)

i
- 2.285g(3,91 x + 4.82) - 3.90Sg(2.46 x - 3.05)
+ 5.99g(lc~ x + ,60)

1

\

i

+ (.31 x “ 2.04)

where g(x) =} (1+ tanhX)O

I
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We may write this as

X(t + 1) = T(x(t)) (21)

and”compare “thismap to the actual map that produced the time series

X(t + 1) = f(x(t)) = 4x(t)[l - x(t)] :22)

A plot of Eqn. 22, i.e. plotting x(t + 1) vs x(t) yields (of course) a

parabolic curve.

A plot of Eqn. (20), again plotting x(t + 1) vs x(t), yields a

virtually identical curve over the range O + 1. Therefore Eqn. (20) is a

very geod approximation to the global map generating the time series. The
.

reason this can occur may be seen by consideri~g the sum of just two

. si~ids with pnrametersa,b occurring in a similar fashion to the Tij and

Ii’s in iiqn.(2[1)

s = alg(blx (23)+ cl) + a2g(b2x + C2)

Parametersb adjust the slope of the sigmo’ids,c adjust the shifts, while a

adjusts the amplitudes. If, for example, al is positive, while az is

negative, and if c1 * C2 then a “bump” will be formed when the sigmoids are

added together as in Eqn. (20, 23). The function, Eqn. (22), or virtually

‘1) function, may be approximatecivery wal1 by appropriatelyany othev C
.

forming and adding up “b~s.” This is somewhat analogous to the method of

splines(21) for approximating ●rbitrary functions. Splines ●re constructed

in such away to aaxlmizc smoothness. TM smooth formof the tanh acts in

●n ●nalogous fashion. Splines are,howmm, difficult to work with in nany

dimensions. A similar effect occurs in tha Mackey-Glass •x~lQ of Section

II, however the four dimensional embedding dimension precludes plotting in
.

three dinonsions,

The way tha si~ids add to approximate ● parabola for the logistic

aapuy bo seen ‘inFig. 13. Figure 13 should be read froa left top down to

bottondght. In each wlndw, 8 termfron Eqn. (20) is plottedas a dotted
i’\
I

I ‘.
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sum of the terms appearing in previous w~ndow are plotted as a .,3.

Thust window (1) initially shows term (1) as a solfd line and .=
....

be added in, as a dotted lfne. Wfndow (2) then shciwsterm (1) ,=

+ term (2) as a solid line and term (3)9 to be added fn, as a dotted line, .%,

and so on. The final window shows the complete plot of the sum of all

terms in equation 20. Each tick mark is one unit, so the final bump

appearing between O and 1 fn window (6) is the approximation to equation

22, which is a parabola with domain of O + 1 and range of O * 1. We

continued the plots in all windows outside the valid range of O + 1 just to

show more of each sigmoid that is added in. This range is actually

irrelevant as far as using the network for prediction is concerned, and was

shown for illustrativepurposes only.

Adding together sigmoids to approximate a particular function is

re~iiniscent of Wi~lsh analysis. Walsh functions are a complete set of’

functions, rangirlgfrom O to 1, that are made up out of step functions.A

consnontechnique of signal processing is mode decomposition of a function

into sums of Wa15h functions. A sigmoid may be viewed as a smoothed step

function, and therefore approximating a function with sums of sigmoids

seems somewhat similar to a mode decompositionof the function in terms of

a Walsh function basis set.

This notion that the neural net performs a type of mode decomposition

to approximate a function may be made clearer if one considers transfer

functionsof tha jtonlinoarneurons involving trigonometricsin’s instead of

sigmoids.(23) Th”lsis, ifwe replace g(x) by

g(x) =1 (1 + sin(px)), p = a constant’ (24)

then g(x) is still an elament of [0,1] and th~ back propagation algorithms

wfll still work irrespcctlvaof the formchosenfor the transfer function.

-.—..~.,... : ---------------- —------ - -.—---
~~

.. ,------ . . . . . .
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1
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I

I
I

I

I

I

I
1

.

(The range condition on g(x) : g(x) c [0,1] “is not important, we chose it ●

for convenience.)
.

If we now consider Eqn. 23, which is a generic form for output in

terms of input for feed forward nets, then we see that the ai’s act like

Fcurier amplitudes, the hi’s like frequencies, and the ci’s like phases.

Recall that the ai’s are the synaptfc weights of the hidden to output

layer, the hi’s are synaptic weights of the input to the hidden layer, and

that the number of g functions (i.e. sin’s) that occur in the sum is the

number of hidden units in the hidden layer. Thus, training the neural net

is, in essence, constructinga discrete Fourier series. However, in con-

trast to a normal Fourier decomposition in whfch the values of the fre-

quencies are fixed, the net has the ability to adjust the values of the——

frequencies to obtain the minfnwm leazt mean square error. The number of

adjustabl~ frequencies is determined by the nuaber of neurons in the hidden

1ayer. It is, therefore, clear that specifying the number of hidden units

specifies the number of frequencies available to the net, and that the net

then adjusts the numerical value of these frequencies, and their amp-

litudes,and phases, to produce a best fft. Presumably, addfng more hidden

. units, i;e. adding more adjustable frequoncfes, will improve accuracy.

Because in conventional Fourier Uode Analysis only the amplitudes are

adjusted, and tho frequencies ●re fixed, we label the mode decomposition I

performed by the neural net “Generalized Fourier Oecoaposition,” where

“generaliz@d” refers to the ability to ●djust frequencies. Further

generalizations are possfble by considering multilayer networks and

. different expres!;ions for the transfer functfon. We point out that

using sfn’s often leads to numericalproblems,and nonglobal minima,

:dwhereas sigmoids seemed to avoid such problems throughout all our

M extensfveafmulationso .
It is worth emphasizingthat the networkis & approx~mattngby a

Mode dacoq)ositlof~the tha $eriea that was usedIn Wainlng. Fot chaotfe

\
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time series, there is a huge spread of frequencies and we,have typically

given the neural nl?ta relative few number of hidden units. Instead,the

neural net is approximating the underlying map that generates the time

series.

In the logistic example the neural net, of course, approximated the

parabolic map that was used to generate the time series. In the Mackey-

Glass equation a nonlinear differential equation generated the time series.

However, .it is known on general grounds that a deterministic, nonlinear map

underlays the time series, (see Section III) although the form of the -p

is not known. It is this map that was approximated by the’neural net

using data from th[~time series. The ability of neural nets to provide

explicit formulae that are excellent approximations to the unknown maps

implicit in chaotic time series may be of interest in the analysis of chaos

and other nonlinear behavior. Finally, we note that the parabolic trough

plots in Section IV are an example in two dimensions of this type of
.

analysis.

Vx. Summary . .

We have shown that the back propagationalgorithm for nonlinear neural

nets is a natural gen~ralization of the widaly used lJ4Srule or Linear

Predictive Method for signal processing. Use!of back propagation in the

context of stgnal processing ●llows solution @f nonlinear system modelling

probleas as well a:} excellent prediction on complicated, “random,” time

series. Pr@dlctivo performance greatly ●xceeds all known (to us) conven-

tional methods

Polynomial(lo)

Method. In

imation to tha

pointsfrom the

of prediction including Linear Prediction’, Global

methods and is coapctitive with the new Local Linear

addition, tho natwork providm ●n ●xplicit, global, approx-

underlying nonlinear nap with minimal requirementsfor data

tima sorieso $pac~fic applicationshavenot been discussed,

houev.~{t swms thot thereare many. One may expect that other areas of

signal ‘proca!lsingt{n addition to’ prediction and system mod~l1ing, may
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.
, be fruitfully investigated with this method. The advent of neural net “

.
hardware ’20) will make certain real time applicationspossible.

I
Among the issues not addressed in this paper are:I

(1) thdeffectoofnonglobalminima (not a problem in our simulations)
t

(2) the effect of noisy data; and

I (3) pralcedures to update predictions “on the fly” a la Kalman-

Bucy.(24)
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Aopendix I: Scaling and Dynamic Range

We have found that the certain n~rical problem could be ●voided by

having inputs and ouiputs in th~ range of O + 1 during training. We wi11

gtve ● slaple scallng procedure that scales the weights that com from

training on voriable!}O + 1, to those appropriate to handle inputs and

output variables of ●rbitrary dynamic range. Note that the numbers for the

normalized root mean oquare index of ●ccuracy that we quote in the text are

independentof dynamicrange. Suppose that the real world Inputs Xin, and

outputs,x‘Ut have an e~tended dynamic range i.e. greater than O * 1. We
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can always write them in terms of variables Xfn and Xout that range..

between o and 1:

x‘in=~xin ,,~ (Al)

plt = yx out+ *

where a, $, y, 6 are appropriateconstants that adjust the range: O + 1 of

in, ~clutx to the range: min fi“in + max Xin and min XOut + max Xout; where

min and max refer to the minimum and maximum values of X’n“ and XOut in the

train!ng set. One then trains the nonlinear neural net using the variables
.

‘Ut with range O + 1.x‘n and x This results in a set of weights and thres-
.

holds, Tij and Ii, geared to the range O + 1.

We now wish to scale Tlj and Ii to enable the network to handle the

. . .._

inreal world dynamic range of the variables X , Xout. We will

scaling procedure for a network with a single hidden layer

Hidden + Output connectivity. Similar arguments work for

describe the

and Input ~

any network

I
I

connectivity. .

First, consider the connectionsbetween
.

‘j
‘n representsthe inputs in a range O + 1,

the Input and Hidden layer. If

then the Hidden layer produces

an output involvingthe nonlinear transfer function g( )
.

‘n+I) (A2)
qTUxJ

If one now usd the original, real world, values XjOut for the Input layer

then tho hidden lay8r would, of course, output ● different number. We w$sh

seal●d sealedto scala Tlj and Ii to Tlj ●nd Ii so that the hidden layer

‘“ and Tijscaled, ~iscaled,when using X
J

will output the samo number as

number as from expression (A2). It will then be trivial to scale the

\ Hidden * Output connections”toget the outputs in the dasired dynamic range.
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Thus we require:

.
ln+ Ii)=9(fTijxj g(;T;;a’ed “ scaled‘.n+ 1;

‘J o )
(A3).

. JO

Equations (A31 and (Al) then yield (for Input+ Hidden connections)

Ts~~~@d
ij = ‘ij’a (A4)

~scaled =
11 - ($/~;{~T1j .i

Since the Output layer sees

~Tijg( ) +
J

where j ranges

the

see

for

for

Ii (AS)

over the Hidden indices, and since g( ) is outputting

for the scaled inputs as for the unscaled inputs, we

●

✎

✎
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same value

from the Eqns. (Al and A5) thatwe merely need to define

~scaled
...

id .
= ‘rlij

.Iscaled
i

=yli +5

(A6)

the Hidden + Output connections

the outputs.

to achieve the desired dynamic range

Sinilar scaling ●rguments work for arbitrary connectivity. If the

traning data set is not typical of the range of values to be used for later.

predicticln,then a possibility for @rror exists. However, one must always

assuae the training set Is ● typical data sttF m else the whole concept of

training

index of

data.

fails. UC ●lso reiterata that the normalized root mean square

accuracy used throughout thfs Is insensitive to the scale of the

Appendfx II: A Not. on Simulations

In contrast to simulations of problem fnvolving symbolic data, where

an accuracy of .1 fs comonly used to ganerate ●nswers where outputs are

.idantlftedas O or It$,(3)‘(g) tho real number problaas COnsfdQ~d in this

paper raqufra hfgh accuracy. For thfs r~ason, we typically ran oursimula-

!,
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tions on a Craiy )(-MP to speed-up convergence to an exact minimum. In

addition,we found that use of a conjugate gradient minimizing procedure,

instead of the commonly used steepest descents procedure, produced orders

of magnitude speedups in convergence. All simulations were run with a

general purpose mathematical simulation package that is in development by

R. Farber at Los Alamos. The package includes a general purpose, menu

driven, interactivefrontend module (writtianin C), which accepts network

parameters and also data files. It then communicatesthem to a computa-

tional module thnt can be written in ●ither C or Fortran,which can then be

run on any number of machines, including parallel machines. “An automatic

code generation module was also developed and used to produce optimally

vectorizing Cray Fortran code. Results are automaticalIy CO1lected at a

host machine, formatted, saved to disk with uniquo run name file labels,

and a formatted hardcopy is also produced for aiding doc~ntation of the

ru~s. The pacluq~eis still in an experimental state and is presently

tailored to the ~eculiaritiesof the Los Alamos c~uter network. Run times

were on the order of minutes for the logistic map prediction and approxi-

mately an hour fop the longer term predictions in the Glass-MacIcy●quation.

These run times were needed to obtain ●xceedingly accuratt approximations

to the minha ot the back propagation●nargy function. Acceptable accuracy

may b. ●chieved with significantlyshorter run tines, hweverwe decided to

see” ju8t how clote to the $xact ninimu one could come given virtually

unlimited run time. It is inherent in the operation of the neural net that

it produce$ ●n excellent global ●pproximation to the maps underlying the

time series. If uuch a global map were produced by patching together a

large nunbor of local 1inear approximation obtained from the method of

Farmer ●nd Sidorovitch then pres~bly run times of similar length would be

encountered. The advent of parallel, neural net hardware (chips) should

allow the nonlinoor neural net ~tha~ to run 111r901 tlm fof tlwPOUS

signal procegging applications,

- =.
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FIGURE CAPTIONS

.

Figure 1 -

Figure 2 -

Figure 3 -

Figure4 -

Figure 5 -

I

.

Figure 6a -

) F{guro 6b -

I Ffgure7 -

A plant implementing the nonlinear transfer function

A linear feedforward neural net

prediction.

A I’eedforwardneural net with

representation for linear

a nonlinear hidden layer -

for prediction. Arrows schematically indicate the feed-

foruard connections from Input to Hidden to Output layers.

The transfer function g( ) of a hidden unit is commonly

taken to be a nonlinear, stgmoidal function with range
0+1. This is a plot of g(x) = 4(1 + tanh(x)). The

exact ●nalytic form of the sigmoid is not critical to

results. ..

A ne!tworkwith 5 nonlinear hidden units used to predict

x(t + 1) given x(t). The arrows schematically indicate

connections from the Input layer to all the units in the

Ilidd(!nlayer, as well as connections from all Hidden

units to tha Output unit. Also, the Input layer directly

connocts to the Output layer.

A plot Of x(t) VS t for a time span of 500 tim steps
in units wheve x = 17 for the Mackey-Glass ●quation (15).

There is ● quasiperiodicity, however detai1s of tha bumps

change chaotically over time.

Figure 6b is a similarplot to

The ,2 Hidden layer network

Figure 6a for z = 30.

architecture for prediction

in tho Mackey-Glass equation (15]. Tha arrows schematically

fndieoteconnectfons from Inputto Hiddento Output 1ayers.

‘\ I
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Figure 13b-

Figure 9 -

Figure 10-

4&-

-35-
:~

4

.J-,.,.:-
...>.,

FIGURE CAPTIONS (continued)
;;,

A plot of the normalized rootmean square error (the ~:

root mean square error divided by the standard deviation .=

~f the data) versus pred~ction time step, P, into the -

future for the Mackey-Glass equation at Y = 17. Five ,a.

curves are shown, labelled A, B, C, D, E. A = Sixth order ~.

polynomial (iterated from P = 6). B = The Linear pre- .

dictive method. C = Sixth order polynomial trained at ~

each prediction time step, P. O = Nonlinear neural net ,

trained at each prediction time step, P. E = Nonlinear .
neural net (iterated from P = 6). The iterated polynomial

is wildly unstable and quickly blows up. The iterated ~

nonlinear neural net performs best..
.

An identical plot to Figure 8a ●xcept for the Mackey-

Glasseequation at t = 30. The labelling of the curves

i!;the same. The success of the iterated nonlinear neural

net method is even more evident.

The 2 Hidden layer network architecture for modelling

x + ~z. The arrows schematically indicate connections

from Input to Hidden to Output layers. Another net-

work, with a single layer of 40 hidden units performed

comparably to the 2 layer netwrk.

A graph of ia = [x(t) - x(t -AtJ/(M)2 where At = .001
and Z = i2 is plotted as a functionof two Independent

variables x = x(t), y = x(t - At). The axes have been
rotated so that one is looking straight down a parabolic

trough. In the rotated coordinatesystem, the re!lion
x(t) : X(t “ .001) is along the bottom of the trough.

The horizonal, 45 degree and verticallines represe~:the
x, y, z axes. The z axis has been drawn to the leftof
the parabola to avoid cluttering the parabolicsurface.
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FIGURE CAPTIONS (continued)

Figure 11 - “ The output of the network in Figure 9 plotted as a fun-

ction of the two input variables. The range of the plot

has been considerably extended past the range of validity

of the

while Z

x(t) ::

becausls

straight

map. The x and y axes extend to from -1 to 1

extends from O to 5.125. The range of validity,

X(t - At), is along the bottom of the trough

we have rotated axes so that one is looking

down the trough.

Figure 12 - A blow up of the bottom of the trough in Figure 11. It

is. only the bottom of the trough in Figure 11 that is

relevant. The axes are rotated so that one is looking

straight down a parabolic trough.

Figure 13 - A plot of successive s-s of terms of equation (20. The

first window contains “terml as a solid line and term2,

to be added in, as a dotted line. Uindow(2) shows the

sum of term(1) + term(2) as a solid line and term(3),

to be added in as a dotted line, and so on. Window(6).
contairdsthe sum of all 6 terms of equation (20) plotted

as a final solid line. Each tick mark is one unit, so

that the ●pproximation to the parabolic map, Eqn. (22),

is conl~inad in the region O + 1. Recall that the normal-

ized root mean suare

was 1.4 x 10-4, i.e.
Portiornsof the graphs
the valid range of O

of ●ach si~id that is

predictive accuracy of this map

it is an ●xcellent approximation.

in windows(l) to window(6) outside

+ 2 are plotted so that tho form

addad togather may be seen.
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