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CHARGE CONJUGATION AND ITS VIOLATION IN UNIFIED MODELS+
R. Slansky

]

Theoretical Division, Los Alemos Scientific Laboratory

University of California, Los Alamos. New Mexico 87545

ABSTRACT
Yang-Mills theories admitting a charge conjugation C, which reflects

the representrtion of left-handed fermions f

1, onto itself, are reviewed with

particular attention to flavor chiral thecries, where £L is non-self-conjugete.

Simple cases of the fermion mass mntrices in SO and E6 are studied, and it

10

is observed that the weak isospin ly conserving part of the mar: can be clas-
sified into its C conserving and C violating pieces. If the left-handed

fermions are assigned to families of 1('s of SO, or 27's of EG‘ then the

10

hypothesis of the Eﬁ invariant macs violating C maximally, with the ¢ con-

serving part put to zero, glves a simple cxplanatlon of the low-muss "z + 10"

structure of the families.

t Invited talk at the First Workuhop On Grand Unification, April 10-12, 1960,
in Durham, New Hampshire.

"
Work supported by the U, 3. Department of Energy.



This talk begins with a sketch of the solution of the problem of finding
the possible charge conjugation operators C, which reflect the left-handed
fermions to their left-handed antipart.cle states, in Yang-Mills thecries
where C can be defined. The general analysis can be fourd in a paper with M.,
Gell-Mann [1]; besides reviewing those results, this report provides an
explicit construction of the C operator for SO10 and E6 theories that unify
electromagnetic, weak, and strong !nteractions. The unilqueness of the
construction fsllows from the guneral analysis; although it adds little in
principle, it does ease the analysis of the fermion mass matrix. For example,
the 27 of E6 has five neutral lepton states, but setting up the mass matrix and
identifying the properties of the elemente under C is not complicated., and is
carried out here explicitly. The main reason for showing these examples is to
demonstrate that the mass r.atrix may have special properties under C.
Specifically, it is found that the hypothesis of maximal C violatlon of the ;?
(weak isosnin) invariant part of the fermion mass matrix can provide large
1Y v 0 masses in some models to just those states that have not been observed.
O0f course, confirmatlon of the hypothesis ls not possible until the assignment
of the left-handed fermions to the correct EL has been discovered. However, the
hypothesis may be a helpful guide in searching for the gauge group G and the

representation f. to which the left-handed fermions should be asgsipned.

L
Let us consider rirat the problem of defining C for a “family" of left-
handed fermions . 'asisting of the u, U. d', ﬁT. o_, e+. and Vi, In the SUS
model [E] it 1s not posslble to define €, since although u and u are both In
the same 10, the d' and u+. also In 10, are rnot in the sume irreducible
representation (irrep) as thelr antiparticles d' and ¢, which are in the E.
Thus n reflection taking the SU5 quantum numbers of the u onto those of the u

+
in the 10 will not reflect the d' and ¢ onto the correct quantum numbers in

the E; C cannot be defined.



In the standard SO10 model [3] the state of affairs in much rucer. Each

family is assigned to a 16~dimensional spinor, and the u, d', e_, and their
antiparticles are in the same irrep. 1In addition the Vi is metched up by

the C operation defined below with a neutral, weak singlet stat: (;)L to form

the two halves of a Dirac spinor. It is possible to define C in a unified model
1f a particle and its antiparticle image are always assigned to the same
irrep of the gauge group G.

The generators of the unifying gauge group G must irclude the electric

charge operator Qem and the eight color generators of SU € of the strong

3
interactions. Charge conjugation must flip the sign of Qem' that is, C must
c

3
c

€ for U_c, and V+c lor V_". Thus the

anticommute with Qem_ Similavly, C must invert the SU rcot diagram through

the origin, exchanging I+c for I_c, U+

[ [ [od

C
» F35, F, ¢

color generators F ’ F6c. and F8 anticommute with C and F c, Fs ,

1
and F7C comnute with C. Note that cm. FSC. and F7C. which are left invariant
by C, form an SO3 subgroup of SUBC; it is a symmetric subgroup, as is now
discussed.
The Yang-Mills lagrangian must be invariant under C, which implies that

C must be an automorphism of the Lie algebra of G tha" reverses the signs of

some gencerators A of G, while lcaving che remaining gencrators § of G invariant:
C(Ss) = & , n(A) = =A, (1)
In order for C to be an automorphlam of G, S must define a symmet=le subgroup:

[§,8) €8 &+ 8, Al €A [ A, A] € s, (?)

In the cases where the actlon of € on any lrrep of G 1s to reflect it
welight system onto itself, C 1s an Inner automorphliam: but 1f C reflcects a
complex Irrep onto lts conjugnte, or a self-conlugate Irrep onto an inequivalent
irrep of the same dimensfon, then Lt {8 an outer automorphism.  The mathematlceal

analysis s found In Ref. 1.



Let us examine the simplest example of such a reflection. The CP re-
flection, which takes £L to ER' must invert the root diagram of G through
the origin of root space; without i1t, there can be no gauge invariant kine-
tic energy term. (Root space is an Euclidean space of dimension equal to
the rank of G; the root vectors describe the shift in quantum numbers due
to the action of the generators, or currents, on the states of an irrep. A
weight vector is a list of rank(G) guantum numbers carried by a Hilbert-space
vector in the reprcsentation. This language is reviewed in [4].) The inver-
slon of the roots and weights implies that a non-self-conjugate irrep is
carried onto its conjugate; for example, CP must reflect a g? welght onto
minus itself, which is in the zc weight system. Thus, there is no member
of the Cartan subalgebra of G in the symmetric subgroup associated with CP.
(The Cartan subalgebra is the maximal set of diagonalizable generators of G,

of vhich there are rank(G) in number.) The reflected representation must

.
be such that gﬁ X EL contains the identity and the adjoint, which is the
group theoretical restatemeunt of the requirement that the kinetic energy be

gauge invariant. The symmetric subgroups that are left invariant by CP are

su_ D 80 G, O SU, X SU,
5054y 2 50,7 XS0, F, 25U, X Spg
Sp,, 2 SU_ X U E¢  Spg (3)
50,2 §0_ X SO_ L, 2 sUg
Eg D 80,

Notic~ that in ever; caoe, the dimension of the symmetric subgroup is
% (dim(G) - rank(G)), which is due to the fact that the symmetric subgroup

is generated by L (Ea - E ,, where « io a root and E_ is the corresponding
W - @



ladder operator (or generator) of G. This is an obvious generalization
of the discussion above of SU3c.

In the case of a flavor chiral theory, which is a theory where zL is not
self couJugate, the reflection by C of EL onto itself cannot coincide in its
group structure with CP, since CP reflects f onto f - Moreover, since f, X f.
does not ccntain a gauge singlet, any fermion mass violates the gauge symuetry.
Only SUn, sohn+2, and E6 have complex representations, so they are the only
candidate simple groups that can lead to a flavor chiral theory. The emphasis
on flavor chiral theories is, of course, due to the economical way that they
incorporate the standard model of the weak interactions.

The s,/mmetric subgroups of SUp+q' where the assoclated C reflects a com-
plex 1irrep onto itself, are SUP X SUq X Ul' The number of Cartan subalgebra
generators outside the symmetric subgroup is min(p,q); the remaining members
of the Cartan subalgebra are invariant under C. Similarly, Sop+q contains
the symmetric subgroup SOp X SOq, and flavor chiral theories are defined by
the constraint that p + q = bn + 2. Then, only if p and q are even does C
rcflert a coumplex irrep onto itself. The number of Cartan subalgebra genera-
tors that are flippred in sign by C is min(p,q). In addition, SO, contains

2n

SUn X U, as a symmetric subgroup; the integer part of n/2 diagonal generators

1
are changed in sign by C. IFinally, in E6’ the C associated with SU2 X SU(_J
changes the signs of four diagonal generators, and that assocliated with

S0.. X Ul changes only two. Thus, the C associated with SU_2 X SUG is the only

10
suitable ~andidate.

In Ref. [1) we carried out ln a coordinate independent languege the analy-
Bls of several models. Ve cairy out the same discussion here ucing a definlte

coordinatization of rcot spuce. There are practical t.vantages of each formu-

lation, but they arce, of course, physically equivalent,



Ch

The discussion of applications begins with the SO10 model: after selec-
ting C, we show in detail what it does to the SO10 generators. Then, the
action of C on the weights in the lé can be studied, and finally a classifi-
cation of the neutral lepton mess matrix is possible. We do not stuly the
charged particles in this example, because they have, trivially, Jjust C-con=-
serving, IAIYI = 1/2 masses.
10° for SO5 X SOS’
tion flips the sign of five diagonal generators and lé onto EE, so the re-

There are six symmetriec subgroups of SO the reflec-

flection is suitable for CP as it simply reverses the sign of each root and
weight; the reflection associated with soh X 506 takes 16 onto lé_and flips
the signs of four diagonal generators, and turns out to be the only candidate

for C; the reflection assoclated with SO3 X SOT

tion associated with SO2 X 50g takes 16 onto 16, but flips only two quantum

numbers; the reflection for SO

takes 16 onto 10; the reflec-

g tekes 16 onto 16; and “he reflection associa-

ted with SU5 X Ul flips the sign of only two diagnnal generators. This ex-

huusts the list of symmetric subgroups and the action of the associated re-
flection on complex irreps. We conclude tha* there 1s only onc candidate

for C, and it leaves one quantum number in SO 0 invariant.

1

SOlo contains color and flavor in a well-known way; for example, wec may
follov the maximel subgroup chain, S0, > SU; X ulr, with 5U; D su." x Ul"' X

v and Qr generates the Ulr. This emhedding

10

SU3C. where Yw gencratus the Ul

can be specified uniquely (up to a Weyl reflection) in terms of *he root dla-

gram. If it 1s required that the highest weight of an 50,  irrep is projected

10
onto the highest weights of the SUS irreps contained in its branching rule,

then the embedding in root space is speelfied by the matrix [51,



P(50,, su5X= (4)

where this matrix acts on an SO10 weight, written in the integer basitc of

Dynkin, as . column vector, to give the Dynkin labels of the SU. weight. The

5
axis defined by the Qr generator, which is in the Cartan subalgebra, is

(=1 1-1 0 1). (The weights and axes in root space are always written here

in the Dynkin integer basis, which is dual to the weight written as a linear
combination of simple roots. The Dynkin basis is not orthonormal, so the
computation of scalar products requires knowledge of the metric tencor, which

is essentlally the inverse of the Cartan matrix. The reader who wants a more

detailed resumé of these points might enJoy looking at Ref. [4].) The

SU," X su3° can be embedded in SU, with the projection matrix [5],
011 0
S D = 5
P(.JU5 SU, X SU;) 1 100 (5)
001 1

Now that color and flavor are embedded explicitly into S0 we can identify

10°
the physical sig.ificance of each of the 45 S)lo roots. It is easy to find
that the nonzero color roots are (01 0 0 0), (1 0 0-1 1) and (-1 1 0 1-1),
and their negatives, and the electric charge axis, properly normalized is
%(-2-2 3-1 1). The action of C on the generators is to flip the s'gns of
these roots and axis. The remaining equations can be gotten from the genera-

tors, but it is slightly simpler to study the welghts in the 10. The proce-

dure is to write out the weights of the 10, compute their flavor and color



content according to (4) and (5), and then require that the action of C on
the weights do what it must to color and electric charge. It follows that

the action of C on the SOlO weights is

-1 0 0 0 O

0-1 0 0 O

]
[}

0-1-1-1 (5)

0 0 0 0 1

(@]

0 0 1 0

Thus C leaves invariant the axis with Dynkin labels (0 0 1-1-1), which
corresponds to the diagonal generator 3r” .. hQr - 10I3w; C inverts the SU3c
roots, electric charge, and 2Q° + Yw, where the Y' axis is %{—h—l 6-5-1).

We now study the action of C on the weights in the lé. The u quark
weights, (0 000 1), (-1 001 0), and (0-1 0 0 1) are reflected to the u
weights, (0 0-1 1 0), (1 0-1 0 1), and (0 1-1 1 0), respectively; the d quark
weights (0 1 0-1 0), (-1 1 0 C-1), und (0 O 0-1 0) are reflected to the d
weights, (0-1 1 0-1), (1-1 1-1 ), and (0 0 1 0-1), respectively; and the e
(1 00 0-1) is reflected to the e weight (-1 0 1-1 0). Finally, the v, with

L

weight (1-1 0 1 0) is reflected to (-1 1-1 0 1), which is the SU. singlet and

5
iz called the (G)L.
The weights of the neutral lepton mass matrix is the sums of the weights

of the corresponding states. Thus, the v, mass matrix element <»L|M|vL>

L
has weight (2-2 0 2 0) with IAIYI = 1; certainly we expect it to be less than
about 1 eV. It is reflected by C onto <(3)L[M|(G)L> , which has weight

(-2 2-2 0 2, and is a weak isospln singlet. The off-dlagonal element
<vL|M]3£? and its transpose have weight (0 0-1 1 1), IALWI = 1/2, and are

invariant under C. The mass matrix can be written in the useful form



L L
(1-1 0 1 0) (~1 1-1 0 1)
L ( )
(2-2 0 2 0) 00-111
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where the [ ... ] signify that the mass matrix element is reflected onto
itself by C.

The IAIFI = 1/2 mass has the same weight as the u quark, and is expected
to have a value of a few MeV. In order for the small eigenvalue of (7) to be
a few eV or less, the |A£Y| = 0 term must be huge, and if we ignore the

IAEYl = 1 term, the mass matrix has the form [6],

0 m
(° ")
m M

which has small eigenvalue mZ/M, epproximalely. Note that (8) can be restated

as: +the week isospin conserving mass violates C maximally, while the

IAlFI = 1/2 mass conserves C.

The second example is less trivial: the unifying group is E6 and a single
family s assigned to a 27 [7]. Thre 27 has two charge -1/3 quarks and their
antiparticles, so there is an opportunity to study the C properties of the
quark masses in this example.

The symmetric subgroups of EG are Spa, SU2 X SU6, SOlO X Ul’ and Fh'

Of these, the reflection associated with Spg and F reflzct 27 to Ez; CP is
assoclated with SPB' We have already argued that C must be associated with

SU2 X SUG’ because the reflection associated with SOlO X U1 flips the nigus of



10

only two diagonal generators. Thus C leaves invariant two of the six quantum
numbers in E6'

The embedding of color and flavor in E6 can be desc .ed by the subgroup

t r t w c r t .
) T 1
chain E6 o SOlo X Ul ) SU5 X Ul X Ul SU2 X U1 X SU3 X jl X Jl s With
the projection of the E6 to Srlo weights given by [5],
0 1 1.1 06 O
O 0 0 0 0 1
P(Eg D S0 4) = 0 01 00O (9)
0O 0 01 1 O
N1 1 0 0 0O H
the remaining projections are given by (4) and (5).
The C reflection is constructed in the same fashiorn as (6) for 80,5 It

is
0O 0 01 0 O
0 0 0 0 1 O
-1-1-1-1-1 0
C(E6) = (10)
1 0 0 0 0 O
01 0 0 0 O

0 0 0 0 0-1.

It inverts color rocts and reverses the signs of electric charge and QQr + Yw,
while leaving invariunt 3YY - LQ¥ - 1OI3w and Qt.

The weight diagram for the 27 is derived from the highest weight
(100000) in the usual way [4]. Three of the neutral lepton weights are
eigenvectors of C(E6) with eigenvalues +1; (-1 0 1-1 0 0), (0 1-1 0 1 0), and

(1-1 0 1-1 0). The other two neutral weights (0 0 0 1 0-1) and (1 0-1 0 0 1)



11

are transformed into one another b C [Q]. The remaining weights carry
electric charge and transform under C as expected.

The charge 2/3 u quark has weights (1 0 0 0 0 0), (1-1 0 0 1 0), and
(1 00 0 0-1), which are reflected by C in (10) to the u weights, (0 0-1 1 0 0),
(0 1-1 1-1 0), and (0 0-2 1 0 1), respectively. The u quark mass carries
weight (1 0-1 1 0 0), whick 1is a € conserving, |AI"| = 1/2 mass.

The mass matrix of the crarge -1/3 quarks and the charged lepton mess
matrix are similar; they have prec!sely the same welght structure. The charge
-1/3 quarks in *he SUg 10 of the SC,, 16, to be denoted 10(16), have the
weights, (0 0 0 0-1 1), (0-1 0 0 0 1), and (0 0 0 0-1 0); the C partuers
(0-1 1 0 0-1}, (0 0 1 0-1-1), and (0-1 1 0 0 0), respectively, are in 5(16).

The other charge -1/3 quark is in 5(10), with weights (-1 1 0 0 0 0),
(-100010), and (-2 1 0 0 0-1), with C partrers (0 0 0-1 1 0), (0 1 0-2 00 ),
and (0 0 0-1 1 1), respectively, in EI;Q). Iet us write out the mass mutrix

for one color state, (1 0) for quarks, (-1 0) for antiquarks as

D 5(1¢) a4 10(16) Ei 10) D 5(16)
(.1 10000) (0000-21)(000-110) (0-110 0-1)
D 5(19)
- 0000 0 0 (.11 0-110)](-10100-1)"
o | [ |A£“|-0] |ALY| = 0
~
1 10(16) A(S/’
000021 0 0 (0 00-101, 7{0- 11 0-1 0)
( | |ALY| = L/ [ IAI | = 1/2]
d 5(10)
(o 0 0-110) [(-110-110)] (000-101) 0 0
»
. -
D 5(10) (-1 010 0-1) [(0-210-10)) 0 0 .

(0-1 1 0 0-1) (11)
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[The charged lepton mass matrix has the same weight structure 1i the weigit

of D is replaced by the charge 1 lepton weight, (0 0 1-1 1-1), the weight of

d by (1-1 1-1 0 U) of charge 1, the weight of d by /-1 1-1 0 0 1) of charge -1,

and the weight of D by (-1 0 0 1-1 0) of charge -1.] There are two candidate
assignments for the weak isospin conserving mass: either the (-1 01 0 0-1)
mass 1s nonzero, the d state is left massless (before the weak breaking), and
C is maximally violated; or the (-1 1 0-1 1 O) mass is nonzero, the D is mass-
l:s8, and the mass 1s C conserving. For the purposes of studying the charged
particle masses, these situations appear interchangeable, although the E.* 10
left massless 1n the limit of no weak breaking differs in the two cases, Re-

call that 27 = 16 + 10 + 1 of S0 In the first case (d massless), the 3

10°
belongs to the SOlolg; in the second case (D massless), the E comes from the
Sololg. The same considerations also apply to the two charged leptons in the
27.

In order to decide which assignment 1s more attractive, we turn to a
study of the neutral lepton mass matrix, which can be written as a matrix of

welghts where the lubels on the rows und columns should, by now, be obvious

(Just divide the diagonal entries by 2):

(0o o020-2) [(20-2100)] (1-1 o1p-1-1) (=1 01,0 0=1) (0 1-1.1 1-1) \

\.\ V] _\L N
[(L0-2100)] (20-2002) (2-1-171-11) (000-191) (11-2011)

(1=-1 0 =1 1)==>(2-1-1 1-1 1) [(2-2 0 2-2 0)][(0-1 1 0-1 0)] [(1 0-1 1 0 0)]

\|
\|

\

(01-11 1-1)>(11-2711) [((Lo-2100)] [(-210.1120)][(02-2020))/,

{-10100-1)e(000-201) [(0-210-10)]) [(-202-200))[(=110-11 oii//

(1)
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where the I3w value of the mass matrix element is one-l.alf the sum of the
first five Dyrkir labels. Let us Jirst assume that the weak isospin con-
serving part of (12) is maximally C violating, so that only the entries with
veights (2 0-2 0 0 2), (2-1-1 1~1 1), and (-1 0 1 O 0-1) are nonzero., For a
general choice of parameters, (12) has four nonzero eigenvalues and onc zero
eigenvalue; the massless fermion has weight (0 1-1 0 1 0), which is in E(;g).
Thus, with maximel C violation, the massless fermions at the weak lsospin con-
serving level are classifiad by E + 10.

In che case of C conservation, the elements with weights (2-2 0 2-2 0)

and (-1 1 0-1 1 0) are nonzero, and the neutrals in the SO 1+ 10 get masses.

10
Both neutral states in the 16 remain massless, at least until some C violation
is latroduced at the SOlo level. Tbus, the C conservation hypotheals leaves
als+ E + 10 of SU5 1o get mwasses from other sources, such as the weak intcer-
actions. If the four component v uass comes from the weak interactions, then
its mnes is of order the u mass, not in accord with experience.

Stuted in a uslightly different way, all the € conserving weuk isosinpglet
masses leave SO10 invariant, so the fermions occur in SOlO

case, but tae C violating masses leave just SU5 invariant, while violating

irreps, 16's in this

50,4 and the low mass fermlons in the 27 occur in a 5010) + 10(16) pattern.
In summary, we find that the hypothesis of maximal C violatlon of the
weak isosplin invarlant musses leuade to u outlcfuctory fermion epcctrum in
several flavor chlral modelc. Of course, this oclection rule mupst be tested
on the "correct" represcntation before it car be con®irmed or rejected. How=
ever, the general siructure of the macns matrlces lu suca that Lhe hypotheslo

may provide a helpful guideline in searchlng for oatinfactory theories.
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