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CHARGE CONJUGATION AND ITS VIOLATION IN UNIFIED MODELS+

R, Slansky

Theoretical Division, Los Almos Scientific Laboratory*

University of California, Los ~mos, New Mexico 8’7545

ABSTRACT

Yang-Mills theories admitting a charge con~ugation C, which reflects

the representhti.onof left-handed fermions ~L onto itself, arc reviewed with

particular attention to flavor chiral thecries, where ~L is non-self-cofi~ugate.

Simple cases of the fermion mass r’IIILtriC(?S in SO
10

and E are studied, and it
6

is observed that the weak isospin ~w conserving part 01”the mu:’: can be clas-

sified into its C conserving und C violating pieces. If the left-l)a]ldcd

fermions are assigned to familiefiof ~’s of SOIO or ~’s of L6, thcr~th(

hypothesis of the ~w invariant ma~s violating C maximally, with the (’cof)-

serving part ~)utto zero, HivcG a Gim])lccxpla~):~tiunof the’low-m/Lb~‘“”+ Q“Y

structure of the familiccl

1’
Invited talk at the ~ir~t,WorkLlllopOn Grand Unificutiorl,A[)ril.10-1:!,19U0,
it]Durham, New llmmp~hirc,

*
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This talk begins with a sketch of the solution of the

the possible charge conjugation operators C, which reflect

problem of finding

the left-handed

fermions to their left-handed antiparticle states, in Yang-Mills theories

where C can be defined. The general analysis can be four.din a paper with M.

Gell-Mann [~]: besides reviewing those results, this report provides an

explicit construction of the C operator for SO
10

and E~ theories that unify

electromagnetic, weak, and strong Lnteractiona. Tl~eu~~iquenessof the

construction follows from the ~eneral.analysis; although it adds little in

principle, it does ease the analysis of the fermion mass matrix. For example,

the 27 of E6 has five neutral lepton states, but settin~ up the mass matrix and—

identifying the properties of the element~ under C is net complicated. and is

carried out here explicitly. The main reason for showing these examples is to

demonstrate that the mass r,.atrixmay have special properties under C.

Spccificnlly, it is found that the hypothesis of maximal C violation

(weak isos:,in)invariant part of the fern,ionmass rnatrlxcan prov.lde

Iw M O masses in some models to just those s~ates that Ilf,vcnot been

w
of the I—

laruc

observed.

Of course, conf~.rmut.lonof the hypothesis Is not posslhle until the assignment

of the left-handed fcrmions to tllccorrect f--Lhus hecn discovered. Howewcr, tho

hypothe~i~ muy he n helpful &uldr in searcll~ngfor the gauge group C and the

rvpret3cntnt~onf
-L

to wl)ichthe left-hnnded fcrmions should h} nssi~tlml.

Let ilscmwaider iir,?tLhc problcrnof clcflnlrig C for n “fumily” of left-

handed fermions .
— -r- +

‘nsisting of the U, u, cl’,d , cl, c), and VL,. In thu SU5

model [2] lt iH not poNHJl)leto define C, ~llnc.c nltl]ou~llu and i“ nrv lmtlI [n.-

+
the Rumc 10, tllod’ cllldL’, nlHrI11)j.!]-,f+rc not in LII(Iuurnc Irrrriucihlo

representation (irrcp) nH Llll*lrnntlpnrtlclc~ 7- ilrIdc-, whlrh urc in th~’3,.-
. ..

onto tho~e of tll~’u

quantum numlJcrHin
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In the standard SOIO model [~] the state of affairs in much r,~cer. Each

family is assigned to a 16-dinlensionalspinor, and the u, d’, e-, and their

antiparticles are in the same irrep. In addition the VL is matched up by

the C operation defined below with a neutral, weak singlet stat,:(U)
L

to form

the two halves of a Dirac spinor. It is possible to define C jn a unified model

if a particle and its antiparticle image are always aaaigneclto the same

irrep of the gauge group C.

The generators of the unifying gauge group G must incltidethe electric

charge operator Qem and the eight color generators of Slfc of the strong
3

interactions. Charge conjugation must flip the sign of Qem, that is, C must

anticonmnutewith Qem. Simila?ly, C must invert the SU3C rcot diagram through

the origin, exchanging I+c for I-c, U+c for U-c, and V+c fcIrV-c. Thus the

color generators Flc, F3C, F4C, F6C, and F8C anticommute with C and F2C, ?5C,

and F~c commute with C. Note that F2C, F5C, and F,c, which are left invariant

by C, form an S03 subgroup of SU3C; it is a symmetric subgroup, as is now

discussed.

The Yang-Mill~ lagrangian must be invariant under C, wl)ichfmplfcs thut

C must be nn nutomorphisrnof tlieLit?ulgcbr:lof C tha? reverses thr signs of

some generators A of C, whl]c Icavfng che rcmninJng gcnoriitors S of G inv~lrl:lnl:

c(s) - s * C(A) - -A . (1)

[s,s]~s : [s,A]~A : [ A, A] ~ s. (:’)
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Let UB kxamine the simplest example of such a reflection. The CP re-

flection, which takes XL to &, must invert the root diagram of G through

the origin of root space; without it, there can be no gauge invariant kine-

tic energy term. (Root space is an E~clidean space of dimension equal to

the rank of G; the root vectors describe the shift in quantum numbers due

to the action of the generators, or currents, on the states of an irrep. A

weight vector is a list of rank(G) quantum numbers carried by a Hilbert-space

vector in the representation. This language is reviewed in [~].) The inver-

bion of the roots and weights implies that a non-self-con~ugate irrep is

carried $nto its con~ugate; for example, CP must reflect a AC weight onto

minus itself, which Is in the ~c weight systes. Thus, there is no member

of the Cartan subalgebra of G In the symmetric subgroup associated with CP,

(The Cartan subalgebra is the maximal set of dlagonalizabl.egenera~ors of G,

of which there are rank(G) in nu~ber.) The reflected representation ~ must

be such that ~ X

group theoretical

gauge invariant,.

‘L
contains the identity and the ad~oint, which is the

re~tatemeut of’the requirement that the kinetic ener~y be

The synuwtrlc subgroupc that are left invariant by CP are

(3)

sun 3 son G2 3 SU2 X SU2

‘02n+~ ~ Son+,l x son Fb ~ SJ2 X ~p6

‘p2n
2 Sun X iJl EG ~ Sp8

so2n3 son x so
n

r,T~ SU8

E8 o GOlti

Nu[,icnthat in ever;-caac, the dimension of the uyuuuctricnubgroup is

A (dim(G) - runk(G)), which Ifi due to the fact thnt the ~ymmetric subgroupt-

ia gvuerater.1by L (Eu - E-ai, where (1in a r,>~tand Ea is the correspotldillg
1*
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ladder operator (or generator) of G. This is an obvious generalization

of the discussion abmre of SU3C.

In the case of a flavor chiral

self coil~ugate,the reflection by C

theory, which is a theory where IL is not

of ~L onto itself cannot coincide in its

group structure with CP, since CP reflects ~ onto ILO Moreoveri since IL X~L

does not ccntain a gauge singlet, any fermion mass violates the gauge symuetry.

Only SUn, S04n+2, and E6 have complex representations, so they are the only

candidate simple groups that ckn lead to a flavor chiral theory. The emphasis

on flavor chiral theories is, of course, due to the economical way tha+.they

incorporate the standard model of the weak interactions.

The sdmunetricsubgroups of SU where the associated C reflects a com-p+q‘

plex irrep onto itself, are SU X SUq X U1. The number of Cartan subalgebra
P

generators outside the symmetric subgroup is min(p,q); the remaining members

of the Cartan subalgebra are invariant under C. Similarly, SO contains
F+q

the symmetric subgroup SO
P

X SOq, and flavor chiral theories are defined by

the constraint that 2 + q = bn + 2. Then, only if p and q are even does C

reflect a complex irrep onto itself. The number of Cartan subalgebra genera-

tors that are flippt?din sign by C is min(p,q). In addition, S02n contains

SUn X Ul as a symmetric subgroup; the inte~er part of n/2 diagonal generator

are changed in sim by C. l~nally, in E6, the C associated with GU2 X SUL

charigesthe signs of four diagonal generator~, and that associated with

%0 X Ul changes only tWO. Thus, the C associated with SU2 X SU6 is the oIlly

suitable ~andidate.

In Ref. [lJ we carried out in a coordinate independent lungunge the ILnaly-

IIiS of several models, Ve ca~ry out the same discussion here ufiin~a dcfin]+,c

coordinatizatio~ of rcat spuce. There are practical ~.vantngcs of ench formu-

lation, but they arc, of course, physically equivalent,



The discussion of applications begins with the SOlfimodel: after selec-

ting C, we show in detail what it

action of C on the weights in the

cation of the ueutral lepton mass

AU

does to the solo generators. Then, the

16 can be studied, and finally a classifi-—

matrix is possible. we do not stuly the

charged particles in this example, because they have, trivially, dust C-con-

serving, lA~wl = 1/2 masses.

There are six symmetric subgroups of SOIO: for S05 X S05, the reflec-

tion flips the sign of five diagonal generators and & onto ~, so the re-

flection is suitable for CP as it simply reverses the sign of each root aud

weight; the reflection associated with S04 X S06 takes & onto & and flips

&he signs of four diagonal generators, and turns out to be the only candidate

for C; the reflection associated with S03 X S07 takes ~ onto ~; the reflec-

tion associated with S02 X S08 takes ~ onto 16, but flips only two quantum

numbers; the reflection for SO takes ~ onto ~; and ‘he reflection associa-
9

ted with SU5 X Ul flips the sign of only two diagmal generators. This ex-

h~usts the list of symmetric subcroups and the action of the associated re-

flection on complex irreps. We conclude that there is only onc candidate

for C, and it leaves one quantum number in SOLO invariant.

so10
contains color and flavor in a well-known way; for example, we may

follow the maximal subgroup chain, SOlo~ SU5 X Ulr, with GU5~ SUOW X Ulw X
&

‘U3C‘
where Yw gencrat,eGthe iJ

w r
1 and Qr gcneratec the U1 . This embcddinG

can be specified uniquely (up to a Weyl rcflectiou) in terms of the?root dia-

grsm. If it is required that the higheot weight of m 2010

onto the highest weightG of the GU~ irreps contained in its

then the cmbcddinf;in root space is spreificd by the mutrix

~rrcp ig proJcctcd

branchinflrule,

1~1,



where this

Dynkin, as

(4)

7

()

11OOU

00101
P(solo ~ SU5),=

00010

01100
s

matrix acts on an SOlo weight, written in the integer basis of

i column vector, to give the Dynkin labels of the SU5 weight. The

axis defined b~-the Qr generator, which is in the Cartw? subalgebra, is

(-1 1-10 1). (The weights and axes in root space are always written here

in the ~nkin integer basis, which is dual to the weight written as a linear

combination of

computation of

1s essentially

detailed resunu$

SU2Wx Su c
3

can

3imple roots. The Dynkin basis is not orthonormal, so the

Jcalar products requires knowledge of the metric tencor, which

Lhe inverse of the Cartan matrix. The reader who wants a more

of these points might enjoy looking at Ref. [~].) The

be embedded in SU5 with the projection matrix [~],

(5)

Now that color and flavor

the physical si@”Aific~nce

\o o 1 1/ ●

are embedded explicitly into SOIO, we can identify

of each of the 42 S“)10 roots. It is easy to find

that the nonzero color roots are (O 1 0 0 O), (1 O 0-1 1) and (-1 1 0 1-1),

and their negatives, and the electric chargC axis, properly normalized is
.
*(-2-2 3-1 1)0 The action of C on the generators is to flip the s!gns of

these roots and axis. The remaininC equations can be gotten from th,?gcncru-

tors, but it is slightly simpler to study the weights in the I&. The proce-

dure is to write out the wei~htu o!’the ~ , compute their flavor and color
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content according to (4) and (5), and then require that the action of C on

the weights do what it must to color and electric charge. It follows that

the action of C on the SOIO weights is

(5)()
.1 0 0 00

0-1 0 0 0

C(solo) = co-l-l-l

00001

0 0 010 “

Thus C leaves invariant the &xis with Dynkin labels (O O l-l-l), which

corresponds to the diagonal generator 3YW- LCir - 1013W; C inverts the SU3C

:(-4-1 6-5-1).roots, electric charge, and 2Qr + Yw, where the Yw axis is

We now study the action of C on the weights in the 16. The u quark—

weights, (O O 0 0 2), (-1 O 0 1 O), and (O-1 O 0 1) are reflected to the =

weights, (O 0-2 1 0), (1 0-1 0 1), and (O 1-1 1 O), respectively; the d quark

weights (O 1 0-1 O), (-1 1 0 L 1), und (O O 0-1 O) are reflected to the ~

weights, (O-1 1 O-l), (1-l 1-1 ), and (O O 1 O-l), respectively; and the e-

(1 O 0 0-1) iS reflected to the e+ weight (-1 O 1-1 O). Finally, the v, with

weight (1-1 O 1 O) is reflected to (-1

i: called the (;)L.

The weights of the neutral lepton

u

1-1 0 1), which is the SU singlet and
5

mass matrix is the sums of the weights

of the corresponding states. Thus, the VL mass matrix element <VLIMIVL>

has weight (2-2 O 2 O) with lAI_wl= 1; certainly we expect it to be less than

about 1 eV. It is re::lectedby C onto <(~),lMl(~),> , which has weight

(-2 2-2 0

<V1,IMI:L>

invariant

~.
L1

2: and is a weak isospi.nsinglet. The off-diagonal element

and its transpose have weight (O O-1 1 1), lA~.wl= 1/2, and

ander C. The mass matrix can be written in the useful form

are



‘L
:L

(l-1 o 1 o) (-1 1-10 1)

‘L
(l-1 01 o)

‘L
(-1 1-1 0 i) (

(2-2 02 o)
[
(o 0-11 1)

lA~wl =1

\

lAI_wl = 1/2 1

[
(o o-1 1 1)

1
(-2 2-20 2)

IA~wl = 1/2 IAJWI = O
)

(7)

Y

where the [ ... ] signify that the mass matrix element is reflected onto

itself by C.

The l~wl = 1/2 mass has

to have a value of a few MeV.

a few eV or less, the lA~wl =

the same weight as the u quark, and is expected

In order for the small eigenvalue of (7) to be

O term must be huge, and if we ignore the

lA~wI = 1 term, the mass matrix has the form [~],

()Omm M,
(a)

2
which has small eigenvalue m /}!,approximately. Note that (8) can be restated

as: the we~k isospin conserving mass violates C maximally, while the

IALWI = 1/2 mass conserves C.

The second example is less trivial: the unifying group is E6 and a single

family LS assigned to a~[~]. The ~has two charge -1/3 quarks and their

antiparticles, so there is an opportunity to study the C properties uf th~

quark masses in this example.

The symmetric subgroupB of E6 are Sp8, SU2 X SU69 SOIO

Uf these, the reflection associated with SF8

aasoc~ated with SpO. We have already argued

‘[12x ‘U6’ because the reflection associated

and F4 refl?ct

that C must be

with SOIO X U
1

X U , and F
1 4“

27 to ~; CP is——

associated with

flips the signs of
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only two diagonal generators. Thus C leaves

numbers in E6“

The embedding of color and flavor in E6

invariant two of the six quantum

can be desc .ed by the subgroup

chain E 2 SO6 10 x

the projection of the E6 to SCLO weights given by [~],

P(E63 solo) (
o

0

= o

0

‘\1

1

0

0

0

1

1

0

1

0

0

1

0

0

1

(J

o

0

0

1

0

0

1

0

0

0); (9)

the remaining projections are given by (4) and (5).

The C reflection is constructed in the same fashion as (6) for SOIO. It

is

(
000100

00 0 01 0

-1 -1 -1 -1 -1 0
C(E6) =

()

100000

010000

0 0 0 0 0-1, .

(10)

It inverts color ro6ts and reverses the signs

while leaving invar~nnt 3YW - 4Qr - 101 w
3

and

The weight diagram for the 27 is deriv~d—

(1 ~ ~ O 0 0) in the usual way [~]. Three of

w
of elpctric charge and 2Qr + Y ,

Qt.

from the highest veight

the neutral leptol~weights are

eigenvectors of C(E6) with eigenvalues ●1; (-1 O 1-1 0 0), (O 1-1 0 1 0), and

(1-1 o 1-1 o). The other two neutral weights (O O 0 1 O-1) and (1 O-1 0 0 1)
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are transformed inta one another b C [~]. The remaining weights carry

electric

The

(1000

charge and transform under C as expected.

charge 2/3 u quark has weights (1 O 0 0 0 O),

O-l), vhich are reflected by C in (10) to the

(0 1-1 1-1 0), and (O O-2 1 0 1), respectively. The u

weight (1 O-1 .10 O), which is a C conserving, lA~wl -

The mass matrix of the e~.arge-1/3 quarks and the

(1-1 00J.0), and

~ weights, (00-1100),

quark mass carries

1/2 mass.

charged lepton mess

matrix are similar; they have prec!sc~y the same weight structure. The charge

-1./3quarks in the SIJ 16, to be denoted 1o(16), have the
5Qofthe “lo-- ——

weights, (O O 0 0-l 1), (O-1 O 0 0 1), and (O O 0 0-1 0); th~ C Partliers

(O-1 1 0 J-1!, (O O 1 O-l-l), and (O-1 1 0 0 0), respectively, are in~(16).- -.

The other charge -1./’3quark is in 5(10), with weights (-1 1 0 0 0 O),-—

(-1 OOO1O), and (-11 000-1), with Cpartfiers (000-110), (010-1.00 ),

and (O 9 0-1 1 1), respectively, in ~(10). Iet us write out the mass tnutrix—

for me color state, (1 U) for quarks, (-1 O) fJr antiquarks as

II j(J&) d 10(1.6) 3T(1G) 5 1(16_)—— -—

(-1-! .0000) (0000-11)(000-110) (0-1100-1)

Dj(lLJ)

(-110000)

f-l 10(16)—.—
(0 o 0 0-?. 1)

z~(lo)
(o o-~-i 1 o)

~7(16)

(O-l-ln o-1)

0

\ [( -1 1 0-1 i u)] (0 ~ 0-1 ~ 1) o 0

/’ J--”
(-1 01 CJo-1) [(0-1 10-1 o)] o / ,

(11)
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[The charged leptonmassmatrixhas the same weight structure if the weigilt

of D is replaced by the charge 1 lepton weight, (O O 1-1 1-1), the weight of

d by (l-1 1-1 0 G) of charge 1, the weight of ~by ‘-l 1-1 0 0 1) of charge -7,

and the weight ~f ~

assignments for the

by (-1 0 0 1-1 0) of charge -l.] There are two candidate

weak isospin conserving msss: either the (-1 O 1 0 O-1)

mass is nonzero, the d stats is left massless (before the weak breaking), and

C is maximally violated; or the (-1 1 0-1 1 O) mass is nonzero, the D is mass-

l~ss, and the mass is C conserving. For the purposes of studying the charged

particle masses, these situations a?pear interchangeable,

left massless in the limit of no weak breaking differs in

cailthat~=l&+l& +~ofSO
10”

In the first case (d

although the ~

the two cases,

massless), the

belongs to the Sol@; in the second case (D masslesB), the ~ comeu from

SOL*. The same considerations also apply to the two charged leptonriir.the

27.—

In order to decide which assignment is moru attractive, we turn to u

study of the neutra: lcptar nuws matrix, which can I.mwritten as u matrix of

weights where the l~be,lscm the rows und colurnnGshould, by now, be obvious

(just divirlcthe diagonal entries hy 2):

(-000 ‘;)l

(00 02 0-2) [(1 0-1 10 O)] (J,-lCI:!-1-1)
y,

[(l C-11 OJ)] (20-2002)
~ ,~,”;)::::$::::’”

2-1-1”1-1 1 -’.——— -L \

(1.-1 o :!-1 1)4+JLM..1 1.-11. 2-2 0 2-2 0
\

[(0-1 10-10)] [(1 O-.LIO O)] ;

-l~e(o 0 0-1 0 1) [(0-1 1 0-1. o)] [(-:’ o 2-2 0 0)][(-1 1 ()-1 1 0) ~

7(01-11 1-1)-(11-J 911) [(10-11 o 0)] [(-1 1 f-)..l1O)1[(O2-:!U:?O)] ,

(12)
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whsre the I w
3

value of’the mass matrix element is one-1.alf’the sum of the

first five ~.kir? la5ele. Let us ;irst as~ume that the weak isospin con-

serving part of (12) is maximally C violating, so that only the entries with

weights (2 O-2 0 0 2), (2-l-1 1-1 1), and (-1 O 1 0 O-1) are nonzero, For a

general choice of’parameters, (12) has four nonzero eigenvalues and onc zero

eigenvalue; the massless fermion has weight (O 1-1 0 1 O), which is in 5(10).- --

Thus, with muime,l C violation, the ma~sless fermicms at the weak isos~in con-

serving level are classifi~d by ~+ ~.

In ‘~hecase of C consenation, the elements with weights (2-2 O 2-2 O)

and (-1 1 0-1 1 O) are nonzero, and the neutrals in the SOIO ~ k ~ get masses.

Both neutral states in the fi remain massless, at least until some C violation

iB introduced at the SOIO level. Tk’i~,the C conservation hypothesis leaves

a 1 + 3 + 10 of SU. to get masses from c~thersources, such as--- - the weak intcr-
>

actions. If the four component v uass comes frcm the weak intcrartionu, thcll

its mnss is of order the u macz, not in accord with experience.

Gtuted in u uli~htly different way, all the C conserving wcuk itiosi:l~;lct.

maoses letiveSOlo invuriant, uo the fcrmionu occur i?)SOIO irrcpfi,~’~ in this

cufie, bht t,:cC vl~luting musflc~leave ju~t GU invariant, whilr violutinu
5

solo, and the ltjwmaufiferrnlonuin the 2’~occur in u j-(L(I)+ 10(1~) puttern.— — .—

In ~ummary, we find that the hypothesis of’mmximul C violatlon of’the

weuk isospin invarianl,musf3eslcudu to u nut!cfuctory fermiou .cImctru:flin

Bevcral fl~vor chlrml mudclu. Of courcc, thiu nclection rulr mllutbc t,cfitcd

On the “correct” repreucntution before it car Lw counirnml or rejcctud. l[ow-

ever, thu general utructure of the macn mntrlucu ltiOUC,lihat,I,hchyI)othcIGIu

may provide a helpful guidc,linrin Gonrchl:lHfor untlnfnctory thruricl;.
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