TITLE: CHARGE CONLUGATION AND ITS VIOLATION IN UNIFIED MODELS

AUTHOR(S): Richard Slansky

SUBMITTED TO: Invited Talk at the First Workshop On Grand Unification, April 10-12, 1980, In Durham, New Hampshire

April, 1980
By ecceptence of this article, ithe publither recognires thet the US. Government retaint e nomenclunive, royalty- lme liceme to publith or reproduct the published form of this contriou. tion, of to allow athen to do 10 , for U.S. Goverrment pur. penes.

The La Alames Beientific Laboratory nequatis that the publinher tdentity this erticle a work perfor mind under the ans. pices of the U.8. Departiment of Enerov.

Charge conuugation and its violation in unified models ${ }^{\dagger}$

R. Slansky

Theoretical Division, Los Alamos Scientific Laboratory* University of California, Los Alamos: New Mexico 87545

Abstract

Yang-Mills theories admitting a charge conjugation C, which reflects the representation of left-handed fermions f_{L} onto itself, are reviewed with particular attention to flavor chiral thecries, where ${\underset{\mathrm{f}}{\mathrm{L}}}$ is non-self-conjugate. Simple cases of the fermion mass matrices in SO_{10} and E_{6} are studied, and it is observed that the weak isospin \underline{I}^{W} conserving part or the mar: can be classified into its C conserving and C violating fieces. If the left-handed fermions are assigned to families of 16 's of SO_{10} or 27 's of L_{6}, then the hypothesis of the \underline{I}^{W} invariant mass violating C maximally, with the conserving part fut to zero, pives a simple explamation of the low-misis " $\overline{2}+\underline{10}$ structure of the fomilice.

[^0]This talk begins with a sketch of the solution of the problem of finding the possible charge conjugation operators C, which reflect the left-handed fermions to their left-handed antiparticle states, in Yang-Mills theories where C can be defined. The general analysis can be fourd in a paper with M. Gell-Mann [1]; besides reviewing those results, this report provides an explicit construction of the C operator for S_{10} and E_{6} theories that unify electromagnetic, weak, and strong interactions. The uniqueness of the construction follows from the general analysis; although it adds ifttle in principle, it does ease the analysis of the fermion mass matrix. For example, the 27 of E_{6} has five neutral lepton states, but setting, up the mass matrix and identifying the properties of the elements under C is not complicated, and is carried out here explicitly. The main reason for showing these examples is to demonstrate that the mass fatrix may have special properties under C. Specifically, it is found that the hypothesis of maximal C violation of the \underline{I}^{W} (weak isosain) invariant part of the fernion mass matrix can provide large I^{W} a 0 masses in some models to fust those slates that have not been observed. Of course, confirmatinn nf the hypothesis ls not possible until the assignment
 hypothesis may be a helpful fulde in searching for the gange group and the representation f_{-}to which the left-handed fermions should be assipned.

Let 118 ronsider ifrat the prohlem of deflndrip C for a "family" nf lefthanded fermions, insisting of the $u, \bar{u}, d^{\prime}, \overline{J^{\top}}, \mathbf{c}^{-}, e^{+}$, and $v_{c}, ~ I n t h e s u_{5}$ model [2] It in not possbble to define C, alnce although und \bar{u} are both in the same 10 , the d^{\prime} and e^{+}, alse 1 n 10, are rot in the vame irretucible representation (irrep) as thelr antipartleles $\overline{\mathrm{d}^{\prime}}$ and e^{-}, which ure in the $\overline{\mathrm{J}}$. Thus a reflection taking che SH_{5} quantum numbers of the u onto those of the \ddot{u} in the 10 will not reflect the d^{\top} and e^{+}onto the correct quantum numbere in the E; C cannot be defined.

In the standard SO $_{10}$ model [3] the state of affairs in much risear. Each family is assigned to a 16-dimensional spinor, and the u, d^{\prime}, e^{-}, and their antiparticles are in the same irrep. In addition the ν_{L} is matched up by the C operation defined below with a neutral, weak singlet stat: ($\bar{v})_{L}$ to form the two halves of a Dirac spinor. It is possible to define C in a unified model if a particle and its antiparticle image are always asaigned to the same irrep of the gauge group G.

The generators of the unifying gauge group G must include the electric charge operator $Q^{e m}$ and the eight color generators of $\mathrm{SU}_{3}^{\mathrm{C}}$ of the strong interactions. Charge conjugation must flip the sign of $\mathrm{Q}^{\text {em }}$, that is, C must anticommute with $Q^{e m}$. Similarly, C must invert the ${S L_{3}}^{c}$ rcot diagram through the origin, exchanging $I_{+}{ }^{c}$ for $I_{-}{ }^{C}, U_{+}{ }^{C}$ for $U_{-}{ }^{C}$, and $V_{+}{ }^{C}$ Eor $V_{-}{ }^{c}$. Thus the color generators $\mathrm{F}_{1}{ }^{\mathrm{C}}, \mathrm{F}_{3}{ }^{\mathrm{C}}, \mathrm{F}_{4}{ }^{\mathrm{C}}, \mathrm{F}_{6}{ }^{\mathrm{C}}$, and $\mathrm{F}_{8}{ }^{\mathrm{C}}$ anticommute with C and $\mathrm{F}_{2}{ }^{\mathrm{C}}, \mathrm{V}_{5}{ }^{\mathrm{C}}$, and $\mathrm{F}_{7}{ }^{\mathrm{C}}$ commute with C . Note that $\mathrm{F}_{2}{ }^{\mathrm{C}}, \mathrm{F}_{5}{ }^{\mathrm{C}}$, and $\mathrm{F}_{7}{ }^{\mathrm{C}}$, which are left invariant by C , form an SO_{3} subgroup of $\mathrm{SU}_{3}{ }^{\mathrm{C}}$; it is a symmetric subgroup, as is now discussed.

The Yang-Mills lagrangian must be invariant under C, which implies that C must be an automorphism of the Lie algebra of G that reverses the signs of some generators A of G, whlle leaving che remaindng generitors S of $\mathfrak{i n v a r i a n t : ~}$

$$
\begin{equation*}
C(S)=S \quad, \quad \Gamma(\Lambda)=-\Lambda . \tag{1}
\end{equation*}
$$

In order for C to be an automorphiam of G, S must define a symmetela subgroup:

$$
[s, s] \subseteq s \quad[\quad[s, \wedge] \subseteq \wedge:|\wedge, \Lambda| \subseteq \leq
$$

In the cases where the action of C on any irrep of G is to reflect ith weight system onto ithelf, C is an Innor automorphism: but if \mathbb{C} roficeta n complex lerep onto ite confugnte, or n melf-con! Irrep of the same dimensfon, then it le an out or iutomorphism. The mathematlal analyela is found In Ref. 1.

Let us txamine the ginplest example of such a reflection. The CP reflection, which takes ${\underset{f}{L}}$ to ${\underset{f}{R}}$, must invert the root diagram of G through the origin of root space; without it, there can be no gauge invariant kinetic energy term. (Root space is an Exclidean space of dimension equal to the rank of G; the root vectors describe the shift in quantum numbers due to the action of the generators, or currents, on the states of an irrep. A weight vector is a list of rank(G) quantum numbers carried by a Hilbert-space vector in the reprcsentation. This language is reviewed in [4].) The inversion of the roots and weights implies that a non-self-conjugate irrep is carried onto its conjugste; for example, CP must reflect a $\underline{3}^{\text {c }}$ weight onto minus itself, which is in the $\overline{3}^{c}$ weight system. Thus, there is no member of the Cartan subalgehra of G in the symmetric subgroup associated with $C P$. (The Cartan subalgebra is the maximal set of diagonalizable generators of G, of which there are rank(G) in number.) The reflected representation f_{R} must be such thac $f_{R} X I_{I}$ contains the identity and the adjoint, which is the group theoretical restatement of the requirement that the kinetic energy be gauge invariant. The symmetric subgroups that are left invariant by $C P$ are

$$
\begin{align*}
& \mathrm{SU}_{\mathrm{n}} \supset \mathrm{SO}_{\mathrm{n}} \quad \mathrm{G}_{2} \supset \mathrm{SU}_{2} X \mathrm{SU}_{2} \\
& \mathrm{SO}_{2 n+1} \supset \mathrm{SO}_{\mathrm{n}+1} \times \mathrm{SO}_{\mathrm{n}} \quad \mathrm{~F}_{4} \supset \mathrm{SJ}_{2} \times \mathrm{Sp}_{6} \\
& \mathrm{Sp}_{2 \mathrm{n}} \supset \mathrm{SU}_{\mathrm{n}} \times \mathrm{u}_{1} \quad \quad \mathrm{E}_{6} \supset \mathrm{Sp}_{8} \tag{3}\\
& 50_{2 n} \mathrm{JSO}_{n} \times \mathrm{SO}_{\mathrm{n}} \quad \Gamma_{7} \mathrm{JSU}_{8} \\
& \mathrm{E}_{8} \supset \mathrm{SO}_{10}
\end{align*}
$$

Notion that in ever: casc, the dimension of the gymetric subgroup is $\frac{1}{2}(\operatorname{dim}(\sigma)-\operatorname{rank}(G))$, which is due to the fact that the symmetric subgroup Is generated by $\frac{1}{1 \sqrt{2}}\left(E_{\alpha}-E_{-\alpha}\right.$, where ir io a root and E_{α} is the corresponding
ladder oferator (or generator) of G. This is an obvious generalization of the discussion above of $\mathrm{SU}_{3}{ }^{\mathrm{C}}$.

In the case of a flavor chiral theory, which is a theory where f_{L} is not self coujugate, the reflection by C of f onto itself cannot coincide in its group structure with $C P$, since $C P$ reflects \underline{f}_{L} onto \underline{f}_{L}. Moreover, since $\underline{f}_{L} X_{\underline{f}}$ does not ccntain a gauge singlet, any fermion mass violates the gauge symuetry. Only $\mathrm{SU}_{\mathrm{n}}, \mathrm{SO}_{4 \mathrm{n}+2}$, and E_{6} have complex representations, so they are the only candidate simple groups that can lead to a flavor chiral theory. The emphasis on flavor chiral theories is, of course, due to the economical way that they incorporate the standard model of the weak interactions.

The s,mmetric subgroups of $S U_{p+q}$, where the associated C reflects a complex irrep onto itself, are $\mathrm{SU}_{\mathrm{p}} X \mathrm{SU}_{\mathrm{q}} X \mathrm{U}_{1}$. The number of Cartan subalgebra generators outside the symmetric subgroup is $\min (p, q)$; the remaining members of the Cartan subalgebra are invariant under C. Similarly, $\mathrm{SO}_{\mathrm{p}+\mathrm{G}}$ contains the symmetric subgroup $\mathrm{SO}_{\mathrm{p}} \times \mathrm{XO}_{\mathrm{q}}$, and flavor chiral theories are defined by the constraint that $p+q=4 n+2$. Then, only if p and q are even does C reflert a coaplex irrep onto itself. The number of Cartan subaigebra generator's that are flipped in $s i g n$ by C is $m i n(p, q)$. In addition, $\mathrm{SO}_{2 n}$ contains $S_{n} X U_{1}$ as a symmetric subgroup; the integer part of $n / 2$ diagonal generators are changed in sign by C. Finally, in E_{G}, the C associated with $G U_{2} X \operatorname{SU}_{6}$ changes the signs of four diagonal generators, and that associated with $\mathrm{SO}_{10} X \mathrm{U}_{1}$ changes only two. Thus, the C associated with $\mathrm{SU}_{2} X \mathrm{XU}_{\mathrm{C}}$ is the only suitiable sandidate.

In Ref. [1] we carried out in a coordinate independent languege the unalybis of several models. Ve calry out the same discussion here uaing a defindte coordinatization of root space. There are practical l. .vantages of each formulation, but they are, of course, physically equivalent.

The discussion of applications begins with the SO_{10} model: after selecting C, we show in detail what it does to the SO_{10} generators. Then, the action of C on the weights in the 16 can be studied, and finally a classification of the neutral lepton mass matrix is possible. We do not stuly the charged particles in this example, because they have, trivially, just c-conserving, $\left|\Delta I^{W}\right|=1 / 2$ masses.

There are six symmetric subgroups of SO_{10} : for $\mathrm{SO}_{5} \times \mathrm{SO}_{5}$, the reflection flips the slgn of five diagonal generators and $\underline{16}$ onto $\overline{16}$, so the reflection is suitable for $C P$ as it simply reverses the sign of each root and weight; the reflection associated with $\mathrm{SO}_{4} \times \mathrm{SO}_{6}$ takes 16 onto 16 and flips the signs of four diagonal generators, and turns out to bo the only candidate for C; the reflection assoclated with $\mathrm{SO}_{3} \times \mathrm{SO}_{7}$ takes 16 onto $\overline{16}$; the reflection associated with $\mathrm{SO}_{2} \times \mathrm{SO}_{8}$ takes 16 onto 16 , but flips oniy two quantum numbers; the reflection for SO_{9} takes 16 onto $\overline{16}$; and the reflection associated with $\mathrm{SU}_{5} X \mathrm{U}_{1}$ flips the sign of only two diagonal generators. This exhsusts the list of symmetric subgroups and the action of the associated reflection on complex irreps. We conclude that there is only onc candidate for C, and it leaves one quantur number in S_{10} invariant.
SO_{10} contains culur and flavor in a well-known way; for example, we may
 $S U_{3}{ }^{c}$, where Y^{W} generatus the $U_{1}{ }^{W}$ and Q^{r} generates the $U_{1}{ }^{r}$. This embeddine can be specified uniquely (up to a Weyl reflection) in terms of the root diagram. If it is required that the highest welght of an $30{ }_{10}$ irrepis projected onto the highest weights of the iUS_{5} irreps contained in its branching rule, then the cmboddine in root space is specified by the matrix [5],

$$
P\left(\mathrm{SO}_{10} \partial \mathrm{SU}_{5}\right)=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \tag{4}\\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Where this matrix acts on an SO_{10} weight, written in the integer basis of Dynkin, as ; column vector, to give the Dynkin labels of the SU_{5} weight. The axis defined by the Q^{r} generator, which is in the Carten subalgebra, is (-1 l-1 01). (The weights and axes in root space are always written here in the Dynkin integer basis, which is dual to the weight written as a linear combination of simple roots. The Dynkin basis is not orthonormal, so the computation of scalar products requires knowledge of the metric tencor, which is essentially the inverse of the Cartan matrix. The reader who wants a more detailed resumé of these points might enjoy looking at Ref. [4].) The $\mathrm{SU}_{2}{ }^{\mathrm{W}} \mathrm{X} \mathrm{SU}_{3}{ }^{\mathrm{c}}$ can be embedded in SU_{5} with the projection matrix [5],

$$
P\left(\mathrm{SU}_{5} \supset \mathrm{SU}_{2} \times \mathrm{SU}_{3}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \tag{5}\\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Now that color and flavor are embedded explicitly into SO_{10}, we can identify the physical sie.ificance of each of the 45 s $)_{10}$ roots. It is easy to find that the nonzero color roots are (01000), (100-11) and (-1 $101-1$), and their negatives, and the electric charge axis, properly normalized is $\frac{1}{3}(-2-2$ 3-1 2). The action of C on the generators is to flip the s.gns of these roots and axis. The remaining equations can be gotten from the eencrators, but it is slightly simpler to study the weights in the 10 . The procedure is to write out the weights of the 10, compute their flavor and color
content according to (4) and (5), and then require that the action of C on the weights do what it must to color and electria charge. It follows that the action of C on the SO_{10} weights is

$$
C\left(S 0_{10}\right)=\left(\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 0 \tag{5}\\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Thus C leaves invariant the axis with Dynkin labels (00 1-1-1), which corresponds to the diagonal generator $3 Y^{W} .4 G_{4}{ }^{\mathrm{F}}-10 I_{3}{ }^{W} ; C$ inverts the $\mathrm{SU}_{3}{ }^{\mathrm{C}}$ roots, electric charge, and $2 Q^{r}+Y^{W}$, where the Y^{W} axis is $\frac{1}{3}(-4-16-5-1)$.

We now study the action of C on the weights in the 16 . The u quark weights, $\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llll}-1 & 0 & 0 & 1\end{array}\right)$, and ($\left.0-1001\right)$ are reflected to the \bar{u} weights, ($00-110$), ($10-101)$, and (0 l-1 10), respectively; the d quark weights $\left(\begin{array}{lll}0 & 1 & 0-1\end{array}\right),\left(\begin{array}{lll}-1 & 1 & 0 \\ C & 1\end{array}\right)$, and $(000-10)$ are reflected to the \bar{d} weights, ($0 .-110-1$) , (1-1 1-1), and ($0010-1$), respectively; and the e^{-} $\left(\begin{array}{llll}1 & 0 & 0 & 0-1\end{array}\right)$ is reflected to the e^{+}weight $\left(\begin{array}{llll}-1 & 0 & 1-1 & 0\end{array}\right)$. Finally, the v_{L} with weight (1-1 010) is reflected to ($-11-101$, which is the SU_{5} singlet and $i=$ called the $(\bar{v})_{L}$.

The weights of the neutral lepton mass matrix is the sums of the weiehts of the corresponding states. Thus, the ν_{L} mass matrix element $\left.<\psi_{L}|M| \nu_{L}\right\rangle$ has weight (2-2 020) with $\left|\Delta I^{W}\right|=1$; certainly we expect it to be less than about 1 eV . It is re: lected by C onto $\left\langle(\bar{v})_{L}\right| M\left|(\bar{v})_{L}\right\rangle$, which has weight (-2 2-2 02 : and is a weak isospin singlet. The off-diagonal element $\left\langle\nu_{I_{1}}\right| M\left|\bar{\nu}_{L}\right\rangle$ and its transpose have weight $\left(\begin{array}{llll}0 & 0-1 & 1 & 1\end{array}\right),\left|\Delta I^{W}\right|=1 / 2$, and are invariant ander C. The mass matrix can be written in the useful form

where the [...] signify tlat the mass matrix element is reflected onto itself by C.

The $\left|\Delta I^{W}\right|=1 / 2$ mass has the same weight as the u quark, and is expected to have a value of a few MeV. In order for the small eigenvalue of (7) to be a few $e V$ or less, the $\left|\Delta I^{W}\right|=0$ term must be huge, and if we ignore the $\left|\Delta \underline{I}^{W}\right|=1$ term, the mass matrix has the form [ㅢ],

$$
\left(\begin{array}{ll}
0 & m \tag{8}\\
m & m
\end{array}\right),
$$

which has small eigenvalue m^{2} / M, approxima'iely. Note that (8) can be restated as: the weak isospin conserving mass violates C maximally, while the $\left|\Delta \underline{I}^{W}\right|=1 / 2$ mass conserves C.

The second example is less trivial: the unifying group is E_{6} and a single family is assigned to a 27 [7]. Tre 27 has two charge $-1 / 3$ quarks and their antiparticles, so there is an opportunity to study the C properties of the quark masses in this example.

The symmetric subgroups of E_{6} are $\mathrm{Sp}_{8}, \mathrm{SU}_{2} \times \mathrm{SU}_{6}, \mathrm{SO}_{10} X U_{1}$, and F_{4}. Of these, the reflection associated with SF_{8} and F_{4} reflect $\underline{27}$ to $\overline{27}$; CP is associated with Sp_{8}. We have aiready argued that C must be associated with $\mathrm{SH}_{2} \mathrm{X} \mathrm{SU}_{6}$, because the reflection associated with $\mathrm{SO}_{10} \mathrm{X}_{1}$ flips the aigns of
only two diagonal generators. Thus C leaves invariant two of the six quantum numbers in E_{6}.

The embedding of color and flavor in E_{6} can be dess jed by the subgroup
 the projection of the E_{6} to S_{10} weights given by [${ }^{5}$],

$$
P\left(E_{6} \supset S 0_{10}\right)=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \tag{9}\\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

the remaining projections are given by (4) and (5).
The C reflection is constructed in the same fashion as (6) for SO_{10}. It is

$$
C\left(E_{6}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \tag{10}\\
0 & 0 & 0 & 0 & 1 & 0 \\
-1 & -1 & -1 & -1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right)
$$

It inverts color roots and reverses the signs of electric charge and $2 Q^{\mathbf{r}}+Y^{W}$, while leavine invaratant $3 Y^{W}-4 Q^{r}-10 I_{3}{ }^{W}$ and Q^{t}.

The weight diagram for the 27 is derived from the highest veight (100000) in the usual way [4]. Three of the neutral lepton weightis are eigenvectors of $C\left(E_{6}\right)$ with eigenvalues +1 ; ($\left.\begin{array}{llllll}-1 & 0 & 1-1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1-1 & 0 \\ 1\end{array}\right)$, and

are transformed into one another b. C [8]. The remaining weights carry electric charge and transforn under C as expected.

The charge $2 / 3$ u quark has weights (10000000 , ($\left.\begin{array}{lllllll}1 & -1 & 0 & 0 & 0\end{array}\right)$, and (1 $0000-1$), which are reflected by C in (10) to the \bar{u} weights, ($00-1100$), (0 1-1 1-1 0), and (0 0-1 101), respectively. The u quark mass carries weight ($10-1.100$, which is a conserving, $\left|\Delta I^{W}\right|=1 / 2$ mass.

The mass matrix of the enarge $-1 / 3$ quarks and the charged lepton mess matrix are similar; they have prec!sely the same weight structure. The sharge $-1 . / 3$ quarks in the $\mathrm{SJ}_{5} \underline{10}$ of the SC_{10} - -6 , to be denoted $10(16)$, have the weights, $(0000-11),(0-10001)$, and ($0000-10)$; the 0 partuers (0-1 $100-1$), ($0010-1-1$), and ($0-11000$), respestively, are in $\overline{\mathrm{I}}(16)$. The other charge -1.13 guark is in $5(10)$, with weights (-110000$)$, (-1 00010), and ($-11000-1$), with C partrers ($000-110),(010-100)$, and (0 0 0-1 1 1), respectively, in $\underline{5}(10)$. Let us write out the mass matrix for one color state, (1 0) for cuarks, (-10) for antiquarks as

D $2(\underline{10})$

[The charged leption mass matrix has the same weight structure if the weigit of D is replaced by the charge 1 lepton weight, (00 l-l 1-1), the weight of d by (1-1 1-1 00) of charge 1 , the weight of \bar{d} by ($-11-1001$) of charge -1 , and the weight of $\overline{\mathrm{D}}$ by ($-1001-10$) of charge -1.$]$ There are two candidate assignments for the weak isospin conserving mass: either the ($-10100-1$) mass is nonzero, the d state is left massless (before the weak breaking), and C is maximally violated; or the ($-110-110$) mass is nonzero, the D is masslass, and the mass is C conserving. For the purposes of studying the charged particle masses, these situations appear interchangeable, although the $\overline{\underline{5}}+\underline{10}$ left massless in the limit of no weak breaking differs in the two cases, Recail that $27=16+10+1$ of SO_{10}. In the first case (α massiess), the $\overline{\underline{5}}$ belongs to the $\mathrm{SO}_{10} \underline{10}$; in the second case (D massless), the $\bar{\Sigma}$ comes from the $50_{10} 16$. The same considerations also apply to the two charged leptons in the 27.

In order to decide which assignment is more attractive, we turn to a study of the neutrai ieption mass matrix, which can be written as a matrix of weights where the lubels on the rows and columns thould, by now, be obvious (just divide the diagonal entries by 2):

where the $I_{3}{ }^{W}$ value of the mass matrix element is one-l.alf the sum of the first five Dyrkin labels. Let us iirst assume that the weak isospin conserving part of (12) is maximally C violating, so that only the entries with weights (2 0-2 002), (2-1-1 1-1 1), and ($-10100-1$) are nonzero. For a general choice of parameters, (12) has four nonzero eigenvalues and one zero eigenvalue; the massless fermion has weight ($01-1010$), which is in $\underline{\overline{5}}(\underline{1} 0)$. Thus, with maximel C violation, the massless fermions at the weak isospin conserving level are classifiad by $\overline{\underline{\Sigma}}+10$.

In the case of C conservation, the elements with weights (2-2 0 2-2 0) and ($-1 \geq 0-110$) are nonzero, and the neutrals in the $\mathrm{SO}_{10} 1+10$ get masses. Both neutral states in the 16 remain massless, at least until some C violation is Latroduced at the SO_{10} level. Trus, the C sonservation hypotheals leaves a $\underline{1}+\overline{5}+10$ of $S U_{5}$ wo get wasses from cther sources, such as the weak interactions. If the four component v uass comes from the weak interartions, theu its mass is of order the umas, not in accord with experience.

Stated in a ulightly different way, all the conservine wouk isosiaflet masses leave $S O_{10}$ invariant, so the formions occur in So $_{10}$ irreps, 16 is in this case, but tic C vislatine masses leave just $S U_{5}$ invariant, while violutine SO_{10}, and the low mass fermions in the $\underline{27}$ occur in a $\overline{2}(10)+10(16)$ pattern.

In summary, we find that the hypothesis of maximal C violation of the weak isospin invariant, masses leads to a outlofnctory fermion epectrua in several flavor chlral models. Of cource, this oclection rule munt be tebted on the "correct" repreacntation before it car be con"irmed or refected. However, the general biructure of the mana matirlees las auc. that the hypotheosu may provide a helpful guideline in toarehinf for ontinfectory theorien.

ACK! OWT,EDGMENTS
Most of the work reported in this talk was done in collaboration
with M. Gell-Mai:n. P. Ramond has provided us with much encouragement and many helpful comments.

REFERENCES

1. M. Gell-Mann and R. Slansky, preprint (1980).
2. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
3. H. Georgi, Particles and Fields (1974) (APS/DPF Williamsburg) ed. C. E. Carlson (AIP, New York, 1975), p. 575; H. Fritzfin and P. Minkowski, Ann. of Phys. (N. Y.) 93, 193 (1975).
4. R. Slansky, Coral Gables Talk (1980), Los Alamos preprint LA-UR-80-591; G. Shaw and R. Slansky, Los Alamos preprint LA-UR-80-1001. Further references are given there.
5. W. McKay, J. Patera, and D. Sarkoff, "Computers in Non Associative Rings and Algebras", ed. R. Beck and B. Kolman (Academic Press, New York, 1977), 1. 235.
G. P. Ramond, Sanibel Lectures, Caltech preprint CAL7-68-709; M. Gel. - -Mnnn, P. Ramond, und R. Slansky, "Supereravity," ed. P. Van Nleuwenhuizen and D. Freedman (North Holland, Amsterdam, 1979), p. 315; E. Witten, Harvard Preprint HUT-79/A076.
6. F. Güruey, P. Ramond, and F. Sikivie, Phys. Lett. BGO, 177 (1975).
7. For a pedagugical diacussion of the distinction of Dirac anc Majorama massec, see E. Witten, contribution to this conference.

[^0]: ${ }^{+}$Invited talk at the Firat, Workuhop On Grand Unification, April $10-10,1980$, in Durham, New Hmpiohire.
 *Work supported by the (1. S. Department of Einergy.

