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Abstract

Graphical models can prove quite powerful for statistical matching,
making secondary data analysis feasible also in situations where joint
information about variables that were not collected together is sought.
Without any constraints regarding the direction of influence of vari-
ables, we develop a method that uses the graphical Ising model to
merge two or more data files containing binary data only. To this end,
we rely on the conditional independence assumption commonly made
in statistical matching to learn a joint Markov network graph structure
over all variables from the given data. Based on this joint graph, the
probability distribution is estimated by an adapted version of the Ising
model. The quality of our new data fusion method is assessed on basis
of a simulation study, sampling data from random Ising models. We
investigate which parameters influence the quality of data integration,
and how violations of the conditional independence assumption affect
the results.

Keywords: statistical matching; data fusion; Markov network; Ising model; con-
ditional independence

1 Introduction

With the ever growing flow of data, methods like statistical matching in-
crease in relevance. Despite the mass of data, we may still face the problem
that we need joint information about variables that have not been jointly
observed. Statistical matching is a powerful tool and a relevant method
of today’s data analysis which tackles this problem (e.g. D’Orazio et al.,
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2006a). The goal of statistical matching is to aggregate at least two in-
dependent data sets, A and B, containing only partly overlapping sets of
variables, to achieve joint information about separately observed variables.

Several methods are available for this aim that differ in assumption, the
presence of auxiliary inforamtion, and the type of results (e.g. D’Orazio
et al., 2006a). Our work concentrates on the commonly used assumption of
conditional independence of the so-called specific variables, given the com-
mon variables. This assumption leads to a factorization of the joint probab-
ility distribution in a form such that the problem of matching two disjoint
data sets becomes solvable.

A framework that uses the decomposition of data by decoding independ-
encies in the data is that of probabilistic graphical models (e.g. Koller and
Friedman, 2009). For the aim of statistical matching it offers a great op-
portunity to handle the matching problem itself, but also to get an intuitive
access to the structure of the data.

In this paper we will make a case for using Markov networks – an un-
directed variation of probabilistic graphical models – to perform statistical
matching. The proceedings of this paper will be as follows. We will start
with a recap of statistical matching in Section 2, followed in Section 3 by a
brief summary of later needed aspects of undirected probabilistic graphical
models. After recalling some general aspects in Subsection 3.1, we focus
in Subsection 3.2 on our case of binary data and cover the Ising model.
After that we will reformulate probabilistic graphical models for the aim of
statistical matching in Section 4. To provide a general frame of how two
independent binary files can be matched with Ising models, we adjust the
Ising model to fit the data situation of statistical matching. To test our
newly developed method, in Section 5 we simulate data from random Ising
models. Knowing the true data, we split the original simulated data set
into two disjoint i.i.d. data files A and B to perform statistical matching
with probabilistic graphical models. Finally, we summarize and discuss our
findings in Section 6.

2 Statistical matching

Data fusion, which is also known as statistical matching or data integration,
means the integration of (at least) two data files A and B. File A is a data
matrix containing nA binary observations �ya1, . . . , yaq, xa1, . . . , xap�, where
the index a is an element of the index set IA and refers to the a-th observa-
tion. Analogously, B contains nB binary observations �xb1, . . . , xbp, zb1, . . . , zbr�,
indexed by b " IB. The index sets IA and IB are disjoint. Altogether,
we consider three sets of random variables: the set of common variables
X � rX1, . . . , Xpx, and the sets of specific variables Y � rY1, . . . , Yqx
and Z � rZ1, . . . , Zrx. The sets of possible realizations are the Cartesian
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yi1 . . . yiq xi1 . . . xip zi1 . . . zir

�

xb1 . . . xbp zb1 . . . zbr

ya1 . . . yaq xa1 . . . xap data file A

data file B

joint information

nA

nB

A < B

Figure 1: Graphical illustration of the data setting for statistical matching
(cf. D’Orazio et al., 2006a, p. 5 (modified)).

products of the sets of possible realizations of the single elements of X, Y,

and Z, respectively, and denoted by X �

p

�
j�1

Xj , Y �

q

�
k�1

Xk, and Z �

r

�
`�1

Z`.

Achieving the aim of statistical matching, namely the estimation of joint
information of the specific variables, is considerably cumbered by a crucial
identification problem. The missingness of any joint information on Y and Z
makes the joint distribution unidentified. Even if we had an infinite number
of observations, the relationship between the specific variables in Y and
Z could not be estimated from the data without further assumptions or
additional information.

Figure 1 shows the data situation graphically and indicates that statist-
ical matching can also be interpreted as a missing data problem. However,
the missing mechanism in the context of statistical matching can justifiably
assumed to be ignorable (e.g. D’Orazio et al., 2006a, p. 6). Throughout
the paper, we solely consider binary data and assume that the observations
in A and B are independently and identically distributed, following a joint
probability distribution

π�x,y, z� �� P�X1 � x1, . . . , Xp � xp, Y1 � y1, . . . , Yq � yq, Z1 � z1, . . . , Zr � zr�.
This means that the union A < B of the two files A and B can be viewed
as a single data file where the observations za � �za1, . . . , zar� and yb ��yb1, . . . , ybq� are missing in a block-wise pattern.

As previously mentioned, the aim of statistical matching is the collection
of joint information on either Y and Z, or X, Y, and Z. According to
D’Orazio et al. (2006a, p. 2), the term joint information refers to

1. the joint probability mass distribution or any of its characteristics
(macro approach), or

2. a complete but synthetic data file with observations of X, Y, and Z
(micro approach).

For instance, D’Orazio et al. (2006a) consider three different groups of ap-
proaches how these aims can be reached:
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1. The oldest and probably most commonly used approach is based on
the assumption of conditional independence of the specific variables
Y and Z given the common variables X. However, the validity of this
assumption cannot be tested because of the missing joint information
of the specific variables.

2. The second group of approaches is based on auxiliary information on
the relationship between the specific variables Y and Z. For instance,
an additional data file might be available containing joint observa-
tions of the specific variables. Using a parametric approach, we could
also have information about the parameters concerning the relation
between Y and Z.

3. The last group of approaches can be summarized under the umbrella
term partial identification. In the absence of auxiliary information on
the specific variables, these approaches do not force potentially unjus-
tified assumptions to achieve a point-identified model for all variables
of interest. In particular, this means that these approaches aim at
finding all models which are compatible with the available data and
rely on tenable assumptions only. These approaches yield a set of com-
plete, synthetic data files for the micro approach or sets of plausible
parameter estimates for the macro approach.

See, for instance, Di Zio and Vantaggi (2017), D’Orazio et al. (2006b), or En-
dres et al. (2018) for methods regarding the last type of statistical matching
approaches. An approach belonging to the second type, which uses auxiliary
information, is, for example, considered in Singh et al. (1993). For an over-
view of approaches that rely on the assumption of conditional independence,
see, for instance, D’Orazio et al. (2006a, Chap. 2). Furthermore, Landes and
Williamson (2016), and Endres and Augustin (2016) show how statistical
matching can be incorporated into the context of Bayesian networks, under
the assumption of conditional independence. A statistical matching method
based on Markov networks for arbitrary categorical data is introduced in
Endres and Augustin (2019).

With this paper, we will introduce a new statistical matching procedure
for binary data. To tackle the identification problem, we work with the first
type of approaches listed above, hence assuming conditional independence
of the specific variables given the common variables. More precisely, we will
embed the statistical matching task into the framework of the undirected
probabilistic graphical Ising model, and derive an expression for the joint
distribution of all specific and common variables that allows estimating it
from the available data. Using the Ising model, the estimation of the joint
distribution is markedly simplified compared to the more general approach
in Endres and Augustin (2019). The factorization of the joint distribution
cannot uniquely be determined from the graph structure. The Ising model is
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a pairwise Markov network that only considers connections between neigh-
bouring variables. This simplifies the estimation of the joint distribution
and the graph can intuitively be interpreted by potential users. In order
to provide a basis for our way to proceed, in the next section we will first
recapitulate a general definition for undirected graphical models, and then
connect graphical models to statistical matching.

3 Undirected probabilistic graphical models

3.1 General aspects

In general, there are two kinds of probabilistic graphical models. Directed
acyclic graphical models, which are also known under the term Bayesian
networks, and undirected models, which are known as Markov networks
or Markov random fields. Both types of models are suitable for dealing
with categorical variables. For information on Bayesian networks, see, for
instance, Koller and Friedman (2009). In the sequel we will focus on un-
directed probabilistic graphical models, which are discussed in more detail
below.

Markov networks aim at the graphical representation of the dependence
structure among a set of categorical

1
random variables. They are composed

of a graph H � �Ẋ,E� and a probability distribution P containing only
positive components. In this notation, Ẋ refers to a set of nodes which
represent the random variables of the set X, and E N Ẋ � Ẋ refers to the
set of undirected edges in the graph. If two random variables Xj , Xj ¬ " X,

j j j
¬
, are dependent, there is an edge between them, and �Ẋj , Ẋj ¬� is an

element of E. Iff there is only an indirect path from Ẋj to Ẋj ¬ , the random
variables Xj and Xj ¬ are conditionally independent, given the variables that

are traversed by the path. The nodes Ẋj and Ẋj ¬ are then said to be sep-
arated. If the graph is an I-map for the joint distribution of the variables,
which means that all (conditional) independencies that can be read-off the
graph are present in the distribution, the graph structure can be used to
find a suitable factorization of the joint distribution.

In general, a Gibbs distribution is suitable to reflect the factorization
of P according to the corresponding graph structure. It represents the dis-
tribution as a product of so-called factors f , one for each maximal clique
C1, . . . ,Cm. A clique is defined as a subset of Ẋ, where all pairwise edges
between the nodes in the clique are in E. The joint distribution of X is

1
In general, Markov networks can handle continuous data as well. However, we restrict

ourselves to categorical data in this paper.
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given as

π�x� �� 1

N

m

5
o�1

f�Co�, with N � =
x"X

v
m

5
o�1

f�Co�|, (1)

which is a normalized product over m factors f , where f is a function from
the set of possible realizations corresponding to the nodes forming a cer-
tain clique to the positive real numbers. This means that, although not
explicitly visible in Equation (1), the factors are indeed dependent on the
realizations x. The normalizing constant

2
N is needed to ensure that π�x�

is a probability mass function.
In the following, we will focus on pairwise Markov networks. Within

these models, factors are either over single nodes (node potentials f�xj�; j �
1, . . . , p) or over pairwise edges (edge potentials f�xj , xj ¬�; j, j ¬ " r1, . . . , px;

j j j
¬
). This results in two being the highest order of interaction terms.

Moreover, our research is based on a special type of pairwise Markov net-
works, which is limited to binary random variables. This class of models
can be described by the so-called Ising model

3
. With this constraint, the

unhandy normalizing constant N will be much easier to tackle, as we will
show later on.

3.2 The Ising model for binary data

The Ising model, originally developed by Ernst Ising (1925), comes from
statistical physics and was used to describe ferromagnetism under the as-
sumption of solely pairwise interacting neighbouring atoms. The basis is
a magnetic field that is arranged in a grid. The magnetic field consists of
elements which can take values in r0; 1x. They represent whether an atom’s
spin

4
is positive or negative. The spin of an atom is influenced by two

factors: each atom has a ground level that affects the direction of the atom
charge, and additionally each atom is influenced by the charge of its direct
neighbouring atoms (Kindermann and Snell, 1980, pp. 1ff.). In summary, a
ferromagnetic field consisting of p atoms referred to as x1, . . . , xp can have
¶X ¶ � 2

p
different states. The field remains in the state that costs the least

energy. The herein used term energy refers to the physical quantity. In
physical theory it is common to assume that an object prefers the state that

2
The normalizing constant is in some literature also called partition function (e.g.

Koller and Friedman, 2009, Chap. 4).
3
A generalization of the Ising model with arbitrary numbers of categories is covered

by the Potts model (e.g. Koller and Friedman, 2009, p. 127).
4
The original Ising model is based on an effect coding where the elements are either

�1 or 1. The coding with realizations in the set r0; 1x can be attributed to the Boltzmann
distribution. However, it can be shown that the energy functions of the two representations
are equivalent. We use the dummy coding throughout this paper.
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costs the least energy; this is exactly what the Ising model expresses (McCoy
and Wu, 1973, pp. 2ff.).

This Ising model can easily be used to describe a probabilistic model
of p binary random variables with 2

p
possible realizations. As Kindermann

and Snell (1980, p. 2) write, it means to put a probability measure on the
set of possible realizations X . In the following, we will briefly recall how the
joint probability mass distribution of the variables x � �x1, . . . , xp� can be
derived.

By rewriting the factors of Equation (1) with the aid of energy functions
e, we derive

π�x� � 1

N
� exp v �

m

=
o�1

e�Co�|, (2)

with f�C� �� expr�e�C�x. Since we are considering the special case of
pairwise Markov networks with binary variables, this leads to the following
node potentials and edge potentials:

f�xj� � expr�e�xj�x and f�xj , xj ¬� � expr�e�xj , xj ¬�x. (3)

Hence, the joint distribution is

π�x� � 1

N
� exp v � =

Ẋj"Ẋ

e�xj� � =
�Ẋj ,Ẋj¬�"E

e�xj , xj ¬�|. (4)

The overall energy of this distribution can be expressed by a Hamiltonian
function (e.g. van Borkulo et al., 2014, supplementary information) of the
form

H�x� � � =
Ẋj"Ẋ

τj xj � =
�Ẋj ,Ẋj¬�"E

βj,j ¬ xj xj ¬ , (5)

where τj is the weight for the j-th node in the graph, and βj,j ¬ is the weight

of the edge between Ẋj and Ẋj ¬ . This yields the following form for the joint
distribution of the Ising model:

π�x� � 1

N
� exp u �H�x�{ � 1

N
� exp u =

Ẋj"Ẋ

τj xj � =
�Ẋj ,Ẋj¬�"E

βj,j ¬ xj xj ¬{,
(6)

with N �=
x

exp u =
Ẋj"Ẋ

τj xj � =
�Ẋj ,Ẋj¬�"E

βj,j ¬ xj xj ¬{. (7)
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4 Using the Ising model to integrate data

As previously mentioned, probabilistic graphical models consist of a graph
structure and a probability distribution. Given the graph structure, we can
find a factorization of the probability distribution. The single components
of this factorization can be subsequently estimated from the data. Thus,
if the true graph structure is unknown, the first issue we have to tackle is
the estimation of the graph structure of the joint Markov network of X, Y
and Z on A < B. Thus, the assumption of conditional independence will be
crucial.

4.1 Estimating a joint network structure for X, Y and Z

When it comes to the estimation of the joint Markov network for X, Y and
Z, we have to consider the special data situation. The problem we are still
confronted with is the missing joint information on the specific variables.
To address this problem, the assumption of conditional independence of the
specific variables given the common variables comes into play. Thinking of
a Markov network that represents this assumption, it must hold that there
is no direct path between any Ẏk " Ẏ and Ż` " Ż. Note that paths from
nodes in Ẏ to nodes in Ż over at least one Ẋj " Ẋ are allowed after all, and
even wanted. The simplest conceivable situation is sketched in Figure 2. In
these cases, at least one Ẋj " Ẋ separates the specific variables, which is
the graphical counterpart for conditional independence. When it comes to
the graph structure, we have to ensure that every path from Ẏ to Ż leads
over at least one Ẋj " Ẋ, or vice versa.

Ẏk Ẋj Ż`

Figure 2: Basic form of the Ising model for statistical matching, reflecting
the conditional independence assumption Y áá Z ¶ X.

The estimation of the graph structure takes place in two steps, starting
with the separate estimation of the graph structures on A and on B. With
this procedure, we will receive two graphs, ĤA

Ẋ,Ẏ
� �rẊ, Ẏx, ÊrẊ,Ẏx� and

ĤB
Ẋ,Ż

� �rẊ, Żx, ÊrẊ,Żx�, containing the dependence structures among X
and Y, or X and Z. However, it cannot be guaranteed that the estimated
structure of the common variable is identical for both graphs. This is be-
cause the information for X in the sample is not necessarily the same due to
random variations, even though it is assumed to be from the same popula-
tion. In the event that the structures are different, we propose a procedure
described by Endres and Augustin (2016, p. 5) for obtaining the joint net-

work ĤA<B
ẊẎŻ

� �rẊ, Ẏ, Żx,ErẊ,Ẏ,Żx�. The set of nodes rẊ, Ẏ, Żx simply
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equals the union of the single node sets, i.e. Ẋ < Ẏ < Ż, while the set of
edges ErẊ,Ẏ,Żx is the union of all edges found in the two separate graphs.
Using the union ErẊ,Ẏx < ErẊ,Żx ensures that the subsequent factorization
of the probability distribution contains all the dependencies found in the
data. That is, if a dependence was found in one file but not in the other file,
the edges will still appear in the joint network. Thus, the risk of random in-
dependencies yielding a faulty factorization for the probability distribution
decreases.

4.2 Parameter estimation in the statistical matching context

As any nodes Ẏk " Ẏ and Ż` " Ż are separated by at least one Ẋj "

Ẋ, the interaction terms between Yk and Z`, i.e. the edge potentials, are
always zero. In summary, the overall energy of the Ising model within the
statistical matching framework is, including the assumption of conditional
independence, given by the following equation:

H�x,y, z� � � =
Ẋj"Ẋ

τj xj � =
Ẏk"Ẏ

υk yk (8)

� =
Ż`"Ż

φ` z` � =
�Ẋj ,Ẋj¬�"ErẊ,Ẏ,Żx

βj,j ¬ xj xj ¬

� =
�Ẏk,Ẏk¬�"ErẊ,Ẏ,Żx

γk,k¬ yk yk¬ � =
�Ż`,Ż`¬�"ErẊ,Ẏ,Żx

δ`,`¬ z` z`¬

� =
�Ẋj ,Ẏk�"ErẊ,Ẏ,Żx

εj,k xj yk � =
�Ẋj ,Ż`�"ErẊ,Ẏ,Żx

ζj,` xj z`.

This Hamiltonian function contains a main effect (node potential) for each
node in the corresponding graph, and one interaction effect (edge potential)
for every pair of neighbouring nodes. Due to the assumption of the con-
ditional independence of the specific variables given the common variables,
it contains no term that depends on any Yk " Y and Z` " Z at the same
time. This fact yields the solution for the initial statistical matching prob-
lem. Every term of the energy function can be estimated from a subset of
the available data, namely either from A, from B, or from A < B. The joint
probability distribution arises as

π�x,y, z� � 1

N
� exp u �H�x,y, z�{, (9)
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where N � =
x,y,z

exp u =
Ẋj"Ẋ

τj xj � =
Ẏk"Ẏ

υk yk (10)

� =
Ż`"Ż

φ` z` � =
�Ẋj ,Ẋj¬�"ErẊ,Ẏ,Żx

βj,j ¬ xj xj ¬

� =
�Ẏk,Ẏk¬�"ErẊ,Ẏ,Żx

γk,k¬ yk yk¬ � =
�Ż`,Ż`¬�"ErẊ,Ẏ,Żx

δ`,`¬ z` z`¬

� =
�Ẋj ,Ẏk�"ErẊ,Ẏ,Żx

εj,k xj yk � =
�Ẋj ,Ż`�"ErẊ,Ẏ,Żx

ζj,` xj z`{

denotes the corresponding partition function. More specifically, using this
notation, the parameters τj and βj,j ¬ are estimated from A < B, the para-
meters υk, γk,k¬ , and εj,k are estimated from A, and the parameters φ`, δ`,`¬ ,
and ζj,` are estimated from B.

5 Simulation study

To investigate statistical matching of binary data with a graphical Ising
model, we have performed a simulation study whose basis is the log-linear
model in Equation (9). Altogether, we varied the following simulation para-
meters:

1. the number of nodes in the graph:

(a) a total of seven variables (three common variables, two specific
variables in each file),

(b) a total of twelve variables (four common variables, four specific
variables in each file);

2. the (in)dependence structure:

(a) the assumption of conditional independence applies (all interac-
tion terms between the specific variables are zero),

(b) the assumption of conditional independence is violated for some
variables (an interaction term between two specific variables is
zero with probability 0.2),

(c) the assumption of conditional independence is violated for all
variables (all interaction terms between the specific variables are
not equal to zero);

3. the number of observations n with nA � nB � n©2 (n � 50, n � 250,
n=1000);

4. the sizes of the interaction coefficients are sampled from a uniform
distribution:
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(a) U�0.5; 2�,
(b) U�2; 5�;

5. the adjacency of two nodes in the graph is determined randomly either
with probability 0.7 or with probability 0.3.

In summary, this leads to 72 simulation designs, each of which has been
repeated 50 times.

The simulation and all analyses are conducted in R (R Core Team, 2018),
using the packages IsingSampler (Epskamp, 2015) for data simulations, and
IsingFit (van Borkulo et al., 2016) for structure and parameter learning.
The basis of the learning algorithms in IsingFit is the so-called eLasso. It
integrates the extended Bayesian information criterion into the estimation of
(conditional) logistic regression models to find relevant edges in the graph
structure (van Borkulo et al., 2014). Former simulation studies showed
that the eLasso performs very well and that errors are mainly due to ‘the
suppression of very weak edges to zero’ (van Borkulo et al., 2014). Details on
the eLasso method can, for instance, be found in van Borkulo et al. (2014)
and van Borkulo (2018).

To generate data files A and B with a known joint distribution, we simu-
late a complete file containing nA � nB observations, and randomly allocate
the observations into A or B. Subsequently, the observations of the specific
variables Z are removed from A, and the observations of Y are removed
from B. The resulting files fit the context of statistical matching and they
can be integrated to assess the performance of our proposed method.

5.1 Simulation results

To assess the quality of the statistical matching results obtained by our pro-
posed method, we analyze the Jensen-Shannon divergence (e.g. Lin, 1991)
between the distribution in the complete simulation file and the distribution
in the synthetic file achieved by statistical matching. The investigation of the
divergence between these two distributions corresponds to the second qual-
ity criterion for statistical matching developed by Rässler (2002). Overall,
Rässler (2002) determines the quality of a statistical matching procedure
by investigating whether the individual values, the joint distribution, the
correlation structure, and the marginal distributions have been preserved.
As already stated by D’Orazio et al. (2006a, p. 10), the preservation of
the individual values is not crucial for statistical analysis since the relev-
ant information lies within the joint distribution, and the third and fourth
quality levels are per se not sufficient to assess the statistical matching qual-
ity. Thus, the second level, which ensures that all statistical information
of the joint distribution from the complete sample is preserved in the joint
distribution of the synthetic file, is our means of choice.
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Figure 3: Jensen-Shannon divergences for the simulation setups, where the
conditional independence assumption applies. The different rows indicate
different sample sizes.
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Figure 4: Jensen-Shannon divergences for the simulation setups, where the
conditional independence assumption is violated for some variables. The
different rows indicate different sample sizes.
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Figure 5: Jensen-Shannon divergences for the simulation setups, where the
conditional independence assumption is violated for all variables. The dif-
ferent rows indicate different sample sizes.
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The results of the Jensen-Shannon divergences are shown in Figures 3–5,
separately for the different settings of the conditional independence assump-
tion. Each figure contains three rows, each of which shows results for dif-
ferent numbers of observations. In every row, eight boxplots are displayed,
which can be interpreted according to the parameter combinations listed in
Table 1.

boxplot number of nodes interaction coefficients adjacency probability

1 7 U�0.5; 2� 0.7
2 12 U�0.5; 2� 0.7
3 7 U�2; 5� 0.7
4 12 U�2; 5� 0.7
5 7 U�0.5; 2� 0.3
6 12 U�0.5; 2� 0.3
7 7 U�2; 5� 0.3
8 12 U�2; 5� 0.3

Table 1: Parameter combinations needed to interpret the boxplots in Fig-
ures 3–5.

All simulation scenarios support the statement that the higher the num-
ber of observations, the closer the distribution obtained by statistical match-
ing is to the complete sample distribution. This effect can easily be ex-
plained: proportionally, we lose less statistical information when removing
Z from A and Y from B if the overall number of observations is higher. Fur-
thermore, we can observe that – as expected – the conditional independence
has an influence on the quality of statistical matching. If the assumption
holds, the Jensen-Shannon divergence between the complete sample dis-
tribution and the synthetic statistical matching distribution is in all cases
smaller than in scenarios where the assumption is violated. Moreover, a
slight violation of the assumption yields indeed better results than scen-
arios where the assumption is violated for all specific variables. This effect
is most visible in boxplots 7–8, where the interaction coefficients are large
and the adjacency probability is small. Interestingly, also all scenarios show
that the number of nodes in the graph has a strong influence on the results.
An overall number of seven nodes performs much better than a number of
twelve nodes regarding the Jensen-Shannon divergence. This effect can in-
directly also be attributed to the number of observations that is available for
the estimation of node and edge potentials. Having more nodes and edges
means that proportionally fewer observations are at hand that can be used
for the estimation. Interaction coefficients drawn from the uniform distri-
bution U�0.5; 2� lead to better results than the higher values drawn from
U�2; 5�, especially in cases where the total number of observations is 250 or
1000. Further research should consider whether this is due to the fact that
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methods using the conditional independence assumption also establish con-
ditional independence in the matched, synthetic distribution (e.g. Rässler,
2002, p. 4). The generation of conditional independence may possibly result
in the underestimation of large interaction coefficients. In most of the scen-
arios, a small adjacency probability seems to reduce the Jensen-Shannon
divergence.

Since the simulation results were analysed by comparing the synthetic,
matched distribution with the distribution estimated from the simulated
complete sample, we particularly investigate the influence of the identific-
ation uncertainty on the Jensen-Shannon divergence. We can see that the
smaller the sample sizes and the larger the number of nodes, the larger the
divergences. This can be explained simply by the fact that the missing
data has a stronger effect on smaller sample sizes, since markedly less data
is available for estimation. Dependencies that are present in the complete
sample are lost due to the block-wise lack of observations in the incomplete
sample. Furthermore, high interaction effects get moderated if a lot of data
is missing.

Summing up, the best results are obtained with a small number of
nodes, combined with small interaction coefficients sampled from U�0.5; 2�.
This parameter combination, moreover, affects the Jensen-Shannon diver-
gence between the complete sample distribution and the synthetic statistical
matching distribution in a very positive way. Even in situation where the
conditional independence assumption is violated, this parameter combina-
tion yields divergences that are comparatively small and in the best case
smaller than 0.1. This is a relevant finding since we face the problem that
there is no way to test the assumption of conditional independence before
matching the data. With this in mind, we were able to show that especially
in a setting with less nodes (seven), interaction coefficients within U�0.5; 2�,
an adjacency probability of 0.3, and a large sample size, the results obtained
by statistical matching are still very good.

6 Summary, limitations, and outlook

The goal of this paper is to investigate the application and performance of
a special type of Markov networks, namely the Ising model, as a method to
perform statistical matching. Users are facing one main issue when match-
ing data sets: the absence of any joint information about the specific vari-
ables. One popular option to solve this identification problem is to assume
conditional independence of the specific variable blocks given the common
variables. On basis of this assumption, we connect statistical matching of
binary data with the probabilistic graphical Ising model, which uses the
conditional independence assumption to derive a joint probability distribu-
tion of a set of binary variables. Beside the performance of the Ising model
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for the aim of statistical matching, the intuitive interpretation of Markov
networks speaks for itself. Conclusions about the joint probability distri-
bution can very easily be drawn. The user is not confronted with a set of
parameters that is hard to understand, but rather with an intuitive graph.
This undirected graph reveals the estimated dependence structure of the
variables at first sight.

After a short recap of the theory of statistical matching and undirected
probabilistic models, we presented the Ising model, which is the state-of-the-
art model when fitting a Markov network for binary data. It has two main
computational advantages compared to the more general Markov models:
the computationally intensive normalization constant, which guarantees the
characteristics of a density function, simplifies greatly with the help of the
Ising model, and the model equation contains interaction effects of a max-
imum order of two. Our adapted version of the Ising model ensures that
the block-wise missing data will not lead to any intractable problem. To
achieve this goal no additional assumptions are made; only the conditional
independence assumption is used. Although, critics may argue that this as-
sumption is unjustified, we know that the stronger the relationship between
the common and specific variables, and thus the higher the predictive power
of the common variables for Y and Z, the is higher the chance of obtaining
a good result for data fusion. To see how the graphical Ising model performs
as a tool for statistical matching, we conducted a broad simulation study.
On the basis of the adjusted log-linear model in Equation (9) we simulated
data, which shows that the Ising model handles the task of matching two
data sets very well. As we showed, the central assumption of conditional
independence is relevant for the performance of the matching process. The
best results are obtained in situations where the assumption holds. However,
a main result of the simulation study is that the violation of the conditional
independence assumption has less impact on the performance of statistical
matching than expected. Even in settings that violated the conditional inde-
pendence assumption for all variables, we found combinations of parameters
that still gave good results.

As it could be expected, we are also facing limitations. The assumption
of conditional independence is a strong one. When having serious doubts,
that the assumption is fulfilled, the validity of results should be doubted as
well. In this case another way of performing statistical matching is to prefer.
Although, we investigated the influence of this assumption on the results,
the simulation study cannot cover all possible parameters which might affect
the statistical matching results. Moreover, the comparison of our proposed
method to other statistical matching methods should be conducted in further
simulation studies. A further natural progression of this work is to assess
whether and how the Potts model, which is a generalization of the Ising
model, can be used for statistical matching task. In connection with this,
one could also investigate how this procedure theoretically and practically
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differs from the approach in Endres and Augustin (2019).
Right now, statistical matching is mostly used for official statistics. But

with improving methods and better interpretation, statistical matching will
become more relevant for applicants from other fields. Especially in areas
like marketing research, where statistical matching has already been used in
the past (see D’Orazio et al., 2006a, p. 174, for an overview of applications
in this area), it is still of relevance to bring together data from surveys on
an individual level. With statistical matching, the survey data can be used
to get new results. Furthermore statistical matching can be a chance for
biostatistics or medicine. In those areas it is often hard to collect meaningful
data, especially where humans are involved. The secondary analysis of data
can be a chance to reduce the number of respondents or variables. Taking
this thought one step further, also personalized medicine can benefit from
statistical matching. By putting together data sets with individual data, for
example, forecasts on the success of certain treatments can be made.
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