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APPLICATION OF SURVIVAL STATISTICS TO THE IMPULSIVE

FRAGMENTATION OF DUCTILE RINGS'

D. E. Grady

Sandia National Laboratom‘es2

Albuquerque, New Mexico 87185 USA

An analysis of fragmentation due to tmpulsive stress loading
of solid materials is developed which results in analytic expres-
stons for distributions in fragment sizes. The analysis is :
restricted to a linear (one-dimensional) distribution of matgrzaz
which is loaded uniformly in tension until [racture, and ultimately
ragmentation, occurs. Concepts of survival statistics consistent
j imple physical laws governing the fracture process are used
patial and temporal distribution in fracture
L Analytic fragment distribution curves for duc-'
le fracture are derived and found to provide a good reprfse@tatzon
data obtained from impulsive fragmentation studies on aluminum
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I. INTRODUCTION

The fragmentation of a solid body subjectgd to the ipteqse
forces of high velocity impact, explosive 1oad1ng, or radiation
deposition is a destructive event seemingly outside of the scope
of predictive calculations. Even when a high degree of_symmetry
has been incorporated in both the geometry and the application of
the load the resulting irregularities in fragment sizes and velo-
cities appear to belie the care taken in performing the experiment.
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It seems clear that intrinsic instabilities in the deformation
processes leading to the disruption of the body necessitate the
introduction of statistical as well as physical concepts in the
analysis of dynamic fragmentation.

A problem in dynamic fragmentation which has received active
and continuing attention since the early treatment of Mott (1)
is the rapid expansion and fragmentation of metal rings or cylinders
due to the application of an impulsive load to the inner circum-
ference. The objective is the prediction of the fragment size
distribution resulting from the event. Theoretical treatments of
this problem include the work of Mott (1) and Taylor (2) and
extensive experimental results have accumulated through numerous
efforts (3,4,5,6).

The present study was motivated by the original work of !

Mott (1). In that work the concept of statistically random fractur
. activation was coupled with the physical concept of the growth of ;

plastic tensile relief waves and resulted in a method for ca1cu1a-
ting fragment size distributions. Subsequent studies have
primarily focused on more accurate characterization of the fracture
event; the essential statistical concepts have not apparently been.
extens1ve1y pursued.

This work will focus on the statistical concepts of the frag-
mentation process initiated by Mott. A formalism of survival
statistics is introduced to treat the randomness of fracture initia-
tion and analytic fragment size distribution expressions are derived
for the fragmentation of ductile rings. The results are compared
with recent experimental work of Wesenberg and Sagartz (5).

IT. STATISTICAL CONCEPTS

The present fragmentation analysis will be restricted to a
one-dimensional distribution of material which is loaded uniformly
in tension until stress relief occurs by multiple fracturing
throughout the body. The objective will be to determine a statis-
tical distribution of fragment sizes (lengths) that depends on the
material properties of the body as well as the imposed loading
conditions. The geometry is most easily visualized as a ring of
material, whose width and breadth are vanishingly small compared
to the circumference, which is subjected to a uniform outward
impulse directed along the radius vector as shown in Fig. 1. This
geometry is an idealization of the problem considered by Mott and
will be called the "one-dimensional Mott" problem in the present
study.
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FIGURE L. The one-dimensional Mott problem. A one-dimenstonal
distribution of material is given an outward radial impulse result-
ing in circunferential tension and fracture at random sites on the
ring. Waves originating at the points of fracture propagate at
finite velocities and reduce to zero stress the initial tensile
stress in the body. Time-dependent fracture continues only in the
regions not yet stress relieved. :

To account for the random location at which fractures nucleated
in the unrelieved portion of the ring, Mott used a graphical method
and arrived at a coarse prediction of the resulting fragment dis-
tribution. Recently, Wesenberg and Sagartz (5) compared experi-
mental data with the Mott method. Having the advantage of
high-speed computers, they made use of a random number generator
routine to locate fractures and, when averaged over 1000 rings, i
determined a statistical fragmentation curve in reasonable agree-
ment with their data.

In the present analysis concepts from the theory of survival
statistics will be applied to the one-dimensional Mott problem.
The statistical method will not necessarily provide a predictive
capability better than the earlier work. It will, however, provide
an alternative point of view, and results in analytic relations
which are readily compared with the experimental data and are

. potentially amenable to generalization to more complex fragmenta-.

tion problems.
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The process of dynamic fracture involves spatially random
nucleation and growth of cracks and has similarities to other
nucleation and growth phenomena (melting, recrystallization,
explosive detonation, etc.). In fracture, as in some of the other
phenomena, nucleation and growth of a single crack can be treated
in substantial detail. It is the impingement or influence of one
crack, or region of growth, on others which compounds the complexity

of the total nucieation and growth process.

To treat problems of nucleation and growth, Johnson and
Mehl (7) and Avrami (8) introduced the concept of an extended
volume fraction, Dy, defined as the volume fraction of the body
transformed without regard. for nucleation or for growth within
previously transformed material. The extended volume fraction can
exceed unity.

The actual transformed volume fraction, D, of the body is
determined from the ratio in the change of the extended and actual
transformed volume fraction. Namely,

—=1-0D, (1)

D=1-¢e * (2]

Equation 2 is the essential relation derived in this section and
will hereafter be called the JMA relation. The JMA relation is
applicable to two-dimensional bodies, or areas, as well as to one-
dimensional bodies or lines.

Although the work of Johnson and Mehl (7) and Avrami (8) was
focused on phasé transtormations, their results have more general
application. Their results are based strictly on the statistics
of survival; in this case, survival at any time of the as yet
untransformed volume. The concept is independent of the physics
involved and 1s applicable to any nucleation and growth process
which is random in nature. The JMA relation allows initial atten-
tion to focus on the physics of the nucleation and growth process
at a single site. Equation 2 will then account for the coalescence
of multiple transforming regions.
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ITT. PHYSICAL CONCEPTS

The process of fracture nucleation and the growth of stress-
relieved regions during tensile loading will depend on both material
properties and the conditions of loading. 1In particular, the
nucleation rate is expected to depend on strain, strain rate, or
time, coupling the activation process intimately with the loading
conditions. impressed on the body. In addition the defect structure
which provides sites for fracture nucleation will characterize a
material property important to the fracture rate. The nucleation
process is poorly understood and a simple uniform nucleation rate
will be assumed in the present calculation.

The Taw governing the growth of stress-relieved regions after
fracture initiation, or equivalently, the velocity of the stress-
release waves shown in Fig. 1, is determined by the response of
material still in tension. Following Mott we will assume that
response of the material preceding fracture is rigid plastic and
governed by a flow stress o¢,. Mott has shown through momentum
conservation concepts that the release wave originating at the
point of fracture and propagating into the deforming plastic region
depends on both time and loading rate. The result is not well
known and the derivation will be outlined briefly.

Consider a linear body of initial length L fixed at the origin,
and with initial density p and undergoing uniform deformation at a
constant strain rate ¢ in response to a stress o,. At time zero
the body is released at the origin (simulating fracture ) and the

. resulting stress-release wave propagates in the positive x direc-

tion. The trajectory of the wave is determined from momentum
conservation. At time zero the momentum of the body is

L,
Py 4f vodx = Lol . 3]

At time t the momentum is
2 L
Py = pex + {f Xepdx

or

Py = %oéxz + %oLZé . ) (4]

Equating the change in momentum to the impulse applied,

Py = Py = oyt (5] r
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results in a trajectory for the release wave,

AN o

pe

and a velocity

ol 2
Y ) -
C (20 ét) 5 [7]

An exact plastic wave calculation by Lee (9) shows that the release
velocity is initially equal to the elastic wave velocity but rapidly
approaches Equation 7. The expression in Equation 7 will be assumed
for the present analysis.

IV. APPLICATION TO DUCTILE FRACTURE

Before proceeding, one final concept in the fracture process
must be introduced. When a fracture initiates at some point on
the one-dimensional body, two release waves, one propagating to
the left and one propagating to the right, will be created. Each
region between the fracture point and the right or left directed
release wave will be called a domain of release (DOR). Since the
point at which each release wave arrests is statistically indepen-
dent of the other, it will be necessary, in the bookkeeping process
leading to the fragment distribution, to account for each DOR
separately. '

Consequently, if we assume that the uniform nucleation rate
of DOR (twice the fracture nucleation rate) is a constant IX, then
the extended length fraction of stress-relieved material at time t
due to fractures nucleated at an earl)ijer time 1 is,

do, = 21 «(t-t)dt , (8]
where the release-wave velocity from Equation 9 has been used.
Integrating to time t results in a total extended length of

_ 4 3/2 .

DX —3—' I'A' at . [9] '
To correct for arrest of DOR and nucleation in previously stress-
relieved regions, ignored in the calculation of Dy, the JMA

relation is applied, resulting in an actual stress-relieved length
fraction of,
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% IX at3/2

D=1-c¢ . . (10]

To determine the resulting fragment distribution it will be
necessary to account for both nucleation and arrest of DOR. The
nucleation rate and number of DOR, ignoring arrest and nucleation
in previous stress-relieved regions are I, and N,, respectively.
The actual nucleation rate and active DOR at time t are then
I = 1,(1-D) and N = N (1-D). Using Equation 10 results in

3/2
3

I=Le , 1]

4
-= IX at
and

4 3/2
-§Ix°‘t

N =1 te : . 2]

Since the nucleation rate is given by Equation 11 the arrest rate
I3 can be determined from Equation 12 through the relation
dN/dt = 1 + I3. The resulting arrest rate is

. 1/2
I 21, at N . (13]

The form of Equation 13 has an analogy in the kinetic theory
of gases where the collision rate is proportional to the number of
particles and to some hazard function characterizing the probability
of collision.

The next objective is to calculate the number of DOR which
nucleate at time 1 and arrest_at time t since we can assign a
final length of & = 2a(t - T)]/Z to these DOR. The total number
of DOR which arrest at time t within an interval dt is Izdt. Only
a fraction of these will have nucleated at time t. If the number
of DOR active at time t and which nucleated at time t within an
interval 61 is 8N.(t) then the portion arrested at time t is

d(eN ) = —% I, dt . 4]

Substituting from Equation 12 results in

1/2

d(dNT) = -21 ats N dt - 5]
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and integration provides the active DOR at time t which nucleated

at time 1,
- IX cnt3/2

6N (t) = 1, sre (16]

Using Equation 16 and & = 2a{t - T)]/z in Equation 15 results 1in
2 3/2
1 212 A1l ) .
d(6N_ ) = - —— (7 + —2) éte 4 ede [17]
T « 44

Integrating over all past times provi
lengths of the DOR,

(a8
o

One further step remains in calc
bution.
not proportional to the distribution
of specified length results from two
providing only that the sum of their
fragment length. Equation 18 can be
distribution by normalizing with the
integral of Eguation 18), resulting i

N
f(s) = c<—57> Le ba ’
6o

des the distribution over

(18]

ulating the fragment distri-

It is readily appreciated that the distribution of DOR is

of fragments. Each fragment

DOR whose lengths are arbitrary

lengths equals the specified

converted to a probability

total number of DOR (the
n)

[19]



The DOR combine in pairs to form fragments and the fraction of
fragments of length L within interval dL is,

F(L)dL = f f(ey) f(5) disds, [20]
_ ] 2) 98445,
L—,Q]H'.Z :

where the integral is over all 2,, and &, which sum to L. The
.integral can be completed throug% the transformation

L= 2y * 2,
cT b0

32y ,2,)
dg 1°°2

) d22 = —(——)—a [t dLdz

2

I
X
L - X1
1 4/3 | . 7 Lo
[o4

ot

IV. COMPARISON WITH EXPERIMENTS ON ALUMINUM RINGS

Wesenberg and Sagartz (5) performed eleven experiments on
thin 6061-T6 aluminum cylinders (127 mm diameter by 102 mm length).
A capacitive discharge method was used to impart radial impulsive
loading at-a circumferential strain rate of approximately 10%/s.
Fracturc was observed photgraphically to occur at a strain of
about 30%. A total of 125 fragments from 11 equivalent experiments
were collected and assigned an effective length by weight.

The fragment distribution function for ductile fracture
(Equation 21) scales with respect to a single characteristic length
parameter L* = (6a2/1,)1/3, where « is defined in Equation 7. A
value of L* = 22.8 mm provided the best fit to the data of Wesenberg
and Sagartz shown in Fig. 2. ,

Wesenberg and Sagartz directly applied the method suggested
by Mott through the use of a computer program relying on a random
number generator routine. The method was applied to 1000 rings
before statistical convergence was adequate. Their best fit for
the Mott method is also shown in Fig. 2.
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1ure 2. Fragment distribution curves for 6061-TE alwnirmwn.
The gata of Wesenberg and Sagartz (5) was obtained by fragmentation
©irprulse loaded rings. The solid curve represents a best fit
of the data for the present theori with a characteristic length
“ = 22.8 rm.  The dashed curve is « best fit of the data by
Wesenbers and Sagartz using the method suggested by Mott (1).

It is not clear why the distribution curve from the present
theory and that predicted by the Mott method are different. The
nucleation law assumed by Wesenberg and Sagartz differed from Lhe
constant rate of nucleation assumed in the present work, and was
determined by two parameters, although in fitting their data, the
authors found that only one parameter sensitively influenced the
curve. The differences in nucleation laws might account for the
difference in distribution curves. Alternatively, the Mott method
applied by Wesenberg and Sagartz assumed the nucieation of fracture
was incremented on the strain history rather than allowing for the
statistical occurrence of fracture in time. This might also
account for the differences.



€T el

S T e . . 54 15

V. SUMMARY AND DISCUSSION

The current study has addressed the problem of predicting
fragment size distributions resulting from the tensile fracture of
impulsive loaded bodies. The theory has been restricted to one-
dimensional bodies subjected to uniform loading. A rigorous
treatment of the statistics of dynamic fragmentation has been
attempted using concepts of survival -statistics and incorporated
here through the relation derived by Johnson and Mehl (7) and
Avrami (8). Physical concepts are introduced through the assumption
of a uniform nucleation rate of fracture and the propagation of
stress-relief wavesgoverned by the tensile response of an ideally
ductile material.

An analytic distribution curve -was derived for ductile fracture
and compared with the fragmentation data of Wesenberg and Sagartz
(5) on aluminum rings. The analytic expression was found to
provide a good representation of the data although further experi-
mental work in this area is strongly needed.

The present analysis and resulting fragment size distribution
expressions are fairly complex even for the very simple geometry
and loading conditions considered. Direct application of the
method to more complicated fragmentation events would probably be
difficult. Perhaps the greatest value of the present type of
analysis will be the insight that it provides on thec statistical
nature of impulse fragmentation; hopefully a source of fresh ideas
for computational models currently under development (10,11,12).
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