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I. INTRODUCTION

At normal cdensity and for modest compressions, the clectronic stnicture
of a metal can be accurately described by treating the conduction electrons
and their interactions with the usual methods of band theory. The core
electrons remain essentially the same as for an isolated free atam and do
not participate in the bonding forces responsible for creating a condensed
phase. As the density increases, the core electrons begin tu "see" one
another as the overlap of the tails of wawe functions can no longer be
neglected. The electronic structure of the core electrons is responsible
for an effectiw repulsive interaction that eventually becumes free—
electron-like at very high campressions.

The electronic structure of the interacting core electrons may be
treated in a simple manner using the Atamic Surface Method (ASM).1 The ASM
is a first-principles treatment. of the electronic structure inwolving a
rigorous integration of the Schrodinger equation within the atomic-sphere

2 Solid phase wave functions are constructed fram isolated

approximation.
atom wave functions and the band width W, and the center of gravity of the
band C; are obtained from sinmple formulas. The ASM can also utilize
analytic forms of the atomic wawe functions and thus provide direct func-
tional dependence of varicus aspects of the electronic structure. Of
particular use in understanding the behavior of the core electrons, the ASM

provides the analytic density deperdence of the band widths and positions.



The Atamic Surface Method is discussed in Sec. II with a complete
derivation and applications to transition metals and f-shell metals given
in Ref. 1. ’

The process whereby core states interact with one another is best
viewed as the formation of narrow electron bands formed from atomic states.
As the core-core owverlap increases, the bands increase in width and mean
energy. In Sec. III this picture is further deweloped and from the ASM one
obtains the analytic dependence on density of the relative motion of the
different bands. Also in Sec. III is a discussion of the transition to
free—electron bands. As an example, the results for the 3s. 3p, and 3d
core states and their ewvolution into bands for nickel are given.

II. THE ATOMIC SURFACE METHOD FOR ELECTRONIC STRUCTURE

It is now possible to make a simple calculation of the electronic
structure for overlapping core orbitals using the Atamic Surface Method
(ASM) .1 The ASM is a first-principles treatment of the electronic
structure that is computationally simple ard can provide immediate analytic
dependence of the principal band quantities. The theory has been deriwved
in detail in Ref. 1, and only the main results of the theory will be
presented here.

The ASM makes use of the properties of linear combinations of atamic
orbitals (LCAO) wave functions. The theory can be roughly characterized in
three main steps. The first step consists of using the atomic-sphere
approximationz and a rigorous integration of the radial Schrddinger
equatior €£.. the & th orbital to obtain an exact expression for the
bandwidth w,. in terms of the condensed phase wave function evaluated at the
atomic sphere radius roe Next, the condensed phase wave function is
constructed in temms of the wave functions of an isolated atom. This then
allows one to use analytic forms for atomic wave functions that are
accurate in the asymptotic regions and which remain valid in the solid ewn
for large campressions. The final step oonsists of writing the position
of the band center Cl in terms of the owerlap integrals from adjacent sites
using once again LCAO results and the atomic sphere approximation. A
complete description of the electronic structure is obtained with the
Friedel model3 for the density of states nx(E).

The result for the band width is

W=

1 m N

22 Y anin)
—_ —h—g—— . (11.1)
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N is the normalization integral equa’ to

L
N= hrsz(r)dr , (I1.2)

and is near unity at the zero pressure density. N departs significantly
from one only at extremely high campressions., The position for the center

rs

of gravity is giwven by

C.,=¢ +1/25 W, =
3 1/115

1 N W ' (I1.3)
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where Sl= 291 2 is the owrlap integral. Q, is the atamic sphere volume
equal to 41;1'8)/3 and Ao is the surface area of the atamic sphere equal to
4111'6. The Friedel model for the density of states is

2(22+1) 1 1
s - - C + - ’ -
nx w1 for CJl > wl E < C1 > wl (I1.4)

and zero otherwise.

As expressed above, the entire problem of describing the electronic
structure has been reduced to finding the wavefunction and its first
derivative at a single position, the atomic sphere radius rye In addition,
at Ly the wave function has been expressed in terms of the wave function of
an isolated atam and may be evaluated from the Hartree-Fock tables of
m:nn.5 This procedure has worked remarkably well for the transition-metal
and f-shell-metal systeris and the results are contained in Ref. 1. We will
now proceed to the use >f analytic expressions for the atomic
wave functions.

At sufficiently large distances, the potential in the Hartree-Fock

calculation of tho electronic structure of a neutral atam approaches —e?/r.

Tie asymptotic form of the solution of the radial Schrodinger eguation is
given by

R, (r) - Ve ™ (11.5)
where the exponential coefficlent is related to the atomic term value ¢ by

-¢ *h2,2/2m , (11.6)



and
Yy = e‘'mmi -1 . (I11.7)

For -e=1 Ry, 1is identically zero. We set v=0 for all energy lewels since
the wave function is domrnated by the exponential term and nonzero Y

makes only a small quantitative difference. 1In the transition metal
series, the atamic term values are near 1 Ry and the approximation is an
excellent one. Normalizing the wave functions to 1 gives a radial wawe
function

Ry(r) = 2 u¥/2 g7 . (11.8)

This form of the wawve function may be cambined with Eqs. (II.l) and (II.3)
to give the band width as

16 (-€) (ur) e 2"
W, = , (11.9)
o -
1- 22 e 2ir

and the center of gravity of the band as

Cpoo = €p + Qo Wo ua/rr e-2ur0 . (I1.10)

The = symbol is used to designate tnhe large-r, asymptotic analytic form of
the wave function. The band width and center of gravity are still
dependent upon the angular momentum quantum number ? thru the value of the

atomic term value ¢ The approximation works hest with ¢ = 0,1,2

E‘I
(s,p,d-states) but gives quite reasonable results for 1=3 (f-states) as

well.

ITI. ATOMIC CORE LEVELS UNDER CCMPRESSION
A. Core States From A Band-Structure Picture

In a metal at zero pressure, we can divide the elactrons into two
groups, the conduction electrons and the core electrons. The conduction
electrons are primarily responsible for the cohesive energy in a metal.
The core electrons are considered to b those whose orbitals are initially
un~hanged fram the orbitals in an isolated atom and are much more tightly
bound to the nucleus. We now wish to consider the situation whereby the
core electrona begin tc "see™ one another when the overlap of their wawe
functions becomes finite as tha compression increases. One should picture



the process as the ewlution of zero width atamic states on individual
sites changing into narrow width band states that extend over the entire
system.

Strictly speaking, whenevwer core electrons interact with one another
they also interac=- with all the conduction electrons plus all of the other
core electrons. A quite reasonable approach is to first treat the
interaction for a given angular momentum core state between ions on
adjacent sites and then add the hvbridization between different core
angular momentum states. This is similar to the procedure of band theory.
For instance, the s-s, p-p, d-d, etc. interact.cs are treated separately
and only when there is actual owerlap of the resulting bands will s-p, s-d,
etc. hybridization be important since that interaction goes as the inverse
of the energy difference between states. The ewolution of core states from
zero width atamic lewels into broadened bands is a continuous process and
one would expect that LCAO's would be an appropriate expansion set. Also,
the ASM is well suited to this problem because the approximations inwolwved
are such that it limits exactly to Hartree-Fock atams at infinite
separation,

The results for nickel using the ASM and Hartree-~Fock tables in the
formulae in Section II are shown in Fig. 1 for the band widths and Fig. 2
for the relative positions of the bands. Both sets of curves are plotted
as a function of Ly The ASM results are in excellent agreemnent with full
band calculations. For a value of r, just greater than 1 a, (a0= Bohr
radius), the band widths for the 3s, 3p, and 3d orbitals equal one another
and are also equal to the band width of free electrons. The 3s, 3p, and 3d

bands aiso overlap one another near r.=1.3 a,- The zero pressure density

0
o= 2.61 a_.

Missing fram Fig. 2 is the s-p conduction band that is strongly coupled
to the 3d band thru hybridization. The ASM can be used to provide all the

parameters for the entire band structure in the solid using the method of

corresponds to a value of r

Harrison and Froyen.7 The results for Ni at normal density are giwan in
Ref. 1. To do the full band calculation, one must determine the average
d-band energy and the hybridization matrix elements between the d-orbitals
and the s-p conduction band. The awrage d-band energy may be determined
entirely frum neutral-atom atomic term values (and ro). The procedure
inwlves using the renormalized atom approach of Watson, Ehrenreich, and
Hodgesa, the energy nf the bottam of the conduction band as given by
E‘royenG, and the coulamb energy required to shift an atomic electron from a
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Fig. 1. The widths for the 3s, 3p, and 3d bands of nickel as a
function of r.,. The dashed line is the band width for a
system of free electrons. All of the band widths
including the free electron width become equal at the same

value of Ly

s-orbital to a d-orbital. (See Eq.(27) of Ref. 1) The hybridizaticn matrix
element can be evaluated using the asymptotic form of the 1~ tial wave
function with all of the resulting parameters again determined from atomic
term values.

B. Analytic Treatment of the Relative Movement of Different Angular
Momentum Rands

The formulas of Sec. II can be used to determine the analytic
dependence of the relative movement under caompression for bands with
different orbjtal angular romentum guantum numbers. This may be
accamplished in two ways, first, by using the asymptotic form of the radial
waw function given in Bg. (11.5), and second, by using Andersen's
muffin-tin-orbita) theory7 to obtain the functional depandence of the wave
function upon ry
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Fig. 2. The bottam, center, and top of the 3s, 3p, and 3d bands of
nickel. The 3d band was calculated in the same manner as
the 3s and 3p bands and does not include any hybridization
with the conduction band,

The overlap integral may also be obtained fram Bg. (I1I.3), (II.5), and
the electron densiiy p = Ri/‘ln. The result is

= 3 3 -2|l,1' .
S,' 8/3 Wy fp € X 0 . ({II.1)

1
and Sy varying as exp(-2p1r0) and Cl. varying as exp(—4p1r0). Values for a

sampling of elements are given in Table I. For all elements, Mg > “p > By

The exponential term dcminates the ry dependence in all cases with W

for the same value of n, the principal quantim number. Thus, the s-band
will rise in energy with respect to the p-band as L, decreases, the p-band
will rise with respect to the d-band, and so forth. This result is easily
seen in Fig. 1 for the band widths as well as the damination of the
exponential term. 1In the f-shelli elements the situation is more
cunplicatad, For instance. in tungsten Par lies between Mg and “Sp' but



TABLE I.

Values of By for selected core states. The values of Ly in units of
Bohr radii a,r are for zero pressure. The M, are calculated from the
tables of Mann5 and are in units of 1/a0. The number preceding the

angular mamentum label is the principal quantum number.

Yo 25 2
Na 3.94 2.37 1.74
Al 2.98 3.13 2.54
3s 3p 3d
Mn 2.70 2.78 2.24  1.06
Fe 2.67 2.89 2.35  1.10
Ni 2.6l 3.13 2.56  1.18
af 5s 5p 5d
Bu 2.27 1.10 1.91 1.47
W 2.95 2.10 2.42  1.93  0.90
5¢ 65 6p 6d
U 3.21 1.13 1.83  1.44  0.73

the predictions for the density dependence of the bands should still be
reliable for small band widths. Improved numerical results are possible

using atomic wawve functions that include relativistic rorrections.

Muffin-tin-orbital theory gives a similar prediction for the relatiwve
motion of the bands. In muffin-tin-orbital theory we noce that the local
orbitals vary as r * ! at and beyond the atomic sphere if the muffin-tin
zero is taken at the free—atam energy. Thus, the electron density varies

as r 242 anc the band width is

W = F/m dn (2042) r 1/r 221 (111.2)
1 o Py~ 0 . .

The overlap integral and center of gravity of the band are dependent upon
Ly by

22-1 42
S, - 1,/1'0 , C,l - l/r0 . (111.3)
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One obtairs the same result as with the asymptotic form of the wawe
function, namely, a band with a smaller value of 2 will rise faster in
energy relative to a band with a larger value.

C. Transition to Free—Electron Bands

At extremely large comp.essions, the bands will completely overlap as
shown in Fig. 2 anC may be crnsidered free—electron bands. For ¢ and p
bands the free—clectron band width can be written (bcc structure)

We, = 212 (3/81) V 262 /m r} ) (I1I.4)

In Fig. 1, the s, p, d widths become equal and also equal to the
free—electron width near the same value of Y and all may be treated as
free—electron bands.1 Another aspect of the identification with
free—electron bands is their energy orderirg, which should be s,p,d. In
sodium and aluminum this same energy ordering also occurs as the 3s band
moves above the 3d band (and above the Fermi energy) and “he bands became
ordered 2s, 2p, 3d. It should be noted that free-electron bahavior occurs
at extremely large compressions (a factor of 50 to 100) and corresponds to
pressures of over 1000 Mbars. Perhaps more important is the result that an
entire shell of electrons with the same principal quantum rumber n becames
free—electron-like at the same camwpression rather than one t-orbital at a
time. For instance, in sodium and aluminum all 8 electrons in the n=2
shell became free—electron-like instead of first the 6 p—electrons and
later the 2 s-electrons. The n=2 alectrons are then describable by simple
metal theory, but with an jonic charqge of Z=11 for alumiram and Z=9 for
sodium. Similarly for nickel, tle 16 n=3 electrons becomz
free—electron-like together.

IV. SUMMARY

The electronic structure for core states of nickel has been calculated
vsing the Atamic-Surface-Method. The ewolution of the core electrons from
isolated free—atam states to narrow bands and finally to free—electron
behavior has been described in & simple thecry thac allows the
determination of t'.e analytic dependence of the electronic structure upon
density. One f 3 that the band widths of an entire shell of electrons



with the same principal quantum rumber become free—electron-like at the
same density. In the case of nickel, this means that all 16 of the n=3
shell of electrons approach free electron behavior together.
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