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J. J. Wagschal, Y. Yeivin (Hebrew Univ., Jerusalem and ORNL)

This note offers what we believe is the natural derivation of the explicit prescriptions

incorporated in least-squares adjustment codes. We do not pretend to present any really

new results, except perhaps for underlining the central role of the Lagrange multipliers,

when adjustment of cross-sections by integral data is treated for what it truly is, namely

a conditional-minimum problem. The evaluation of the Lagrange multipliers necessitates

the inversion only of a "small"matrix, the order of which is the number of integral data

by which the cross sections arc adjusted. The complete solution of the adjustment problem,

i.e. the adjusted differential and integral parameters and their respective uncertainty

(varionce-covariance) matrices, is then given in terms of the Lagrange multipliers by

simple expressions, involving no additional matrix inversions.

Let us first review what adjustment is all about, which we mainly do in order to introduce

a convenient notation. Consider an evaluated (energy-point jpr multigroup) cross-section

library o -(c.) , i=l,2,...,N, with the corresponding uncertainty matrix: C =cov(a. , a.)

. 1 -

=E/(6o) (5 a) ']; and a set of experimental integral data (responses) r=(r.) , i= l ,2 , . . . ,n,

with i t s uncertainty matrix C ^cov(r4 ,r.) . Consider ^lso the corresponding set of the

calculated responses, r=F(o), and their sensitivities to the cross sections, i .e . the

matrix of die n*:; derivatives S^Or^/Oa.). Note that since r(ahSo)=r+6r-r+S5o, the
)

uncer ta in ty maLxL-: corresponding to the calcula ted responses i s

C- = E/ (67) (•-:?) T]=E[ (So o) ista) fy=S Ef (iSo; (<S o) ryS t=SC(JS
T, (1)

which just reflects the propagation of the a uncertainties through the calculation of F.

Denote the deviations of the calculated responses from their respective experimental

values by d-(d;) : d=r-r, aid note hh^t. the deviation?
1 urrerraintv matrix is simulv



C,=C +C— . Let the (unknown) adjusted cross sections be o1 , and the adjusted responses

r'=r(c'). Then we further denote the actual adjustments by x=o'-aand y=r'-r. We now

assume that the approximation r'"-r+S( d-d) is valid, so that, in our notation,

y = d+Sx . (2)

Then, the adjustment proposition is that the optimal adjustments are those values of x

and of y which minimise the quadratic form

Q = x'c"1* + yV^y , (3)

subject to condition(2) .

Now, a straightforward, seemingly natural course to solving this minimum problem is to

eliminate y frcm Eq. (3) , by means of Eq. (2) , and then solve the resulting unconditional-

minimum problem. In other words, the problem is reduced to finding the cross-section

adjustments x which minimize
•V.

Q1 = xf{C~*+ S+C^S)x + 2x+S+c'1d . (4)

The solution of this nrjiirnum problem satisfies the N equations

|2'= 2/(C^+ sV lS)x + sV'd? = 0 , (5)

so that

- 1 + - 1 - ! • < • _ !
x = ~(C n + S'C r S) S'C d . (6)

This expression is rather awkward, as it involves the inversion of a "small" (n*n) and

two "large" fri.-Il mtric^s. Ilow^vor, it is made to be shown that



(c l+ s~c 1s)"1sTc x= c.s"<c + scs~) l= e s c , 1 , (7)
G L r 'r r o J a

where the expression on the riqht-hand side involves the inversion only of one small

matrix, C,. Thus, Eq.(f>) actually reduces to the relatively simple expression

x = - C^V^d . (8)

The response adjustments are now also given by a simple expression,

y = d + &c = (I-SC^'c'Sd = ^I+(Cr-Cd)C~'/d - Cr.Cd
ld . (9)

While the solution cf the adjustment problem, as outlined above, is certainly legitimate,

it is obviously not that "straightforward". At least from a methodical point of view, the

more natural course is to treat adjustment as a conditional-minimum problem, which is'what

it really is, and to solve it by the inethod of Laqrange multipliers. To amplify this

argument, we note that to evaluate both x and y, as given by Sqs. (8) and (9) , we only

have to evaluate C, d. The question then arises as to a more fundamental significance,

if any, of this vector. It turns out that the components of this very vector are the

Lacjrange multipliers in the conditional-minimum formulation of the adjustment problem.

Certainlv , such insight could have not been gained without resort to this method of solution

In the condi tional-rrunimimi formulation the form

R(x,y) = Q(x,y) +2A+(Sx-y) , (10)

where 0 is the form of Fi\. (3) and 2A is the n-dimons.ionn.1 vector of Lagrange multipliers,

is to be (unconditionally) minimized, i .e. x and y satisfy the equations

V * + s"^ = °' •§= 2<rily - >•) = o . (ID



Thus indeed

y = Cy\ (12

and, by Fxj.(2) ,

d = y-Sx = (Cr+ SCff)\ ~ Cd.\ , X = Cd
ld (13)

Geometrically speaking, the l a s t equation means that A and d are the covariant and

cor.travariant components, respectively, of one and the same vector with respect to the

"me.trie" C,. In the hypothetical situation of uncorrelated deviations with standard

normal distributions (i.e. with C-pI) we would indeed have A=d. Incidentally, Eq. (13)

also means that C, =C1 .

Let us now derive the uncertainty matrices corresponding to the adjusted parameters.

First, from Eq.(12) i t immediately follows that

c = c sc.se , c = c c,c
x o X a y r \ r

( 1 4 )

Then, sinco for instance r'= r + y ,

Cr,= Cr + C + 2E/(cSy) (cr)T/ . (15)

However, as .-Sy = C ?-\ - C C,(ri(r-r), and because o (and therefore r) and r are uncorrelate

as implied by Eg. (".!) , we conclude that

-s-y) Hr) 1 = - = - C.f . (16)

A similar derivation may, of course, bo carried out for C 7 , , nnd the ta\o final expressions

Ca-= C o ~ Cx ' cr^ C r " Cv •



To sum up, we have danonstrated (a) that the vector of Lagrange multipliers, \, and its

associated matrix, C ̂, are indeed the essence of the complete solution of the adjustment

prcblsn; and (b) that X is just the qeanetrical counterpart of the vector of deviations d,

with the latter's uncertainty inatri:-: as "metric".


