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TUE SIGNIFICANCE OF LAGRANGE MULTIPLIERS IN CROSS—SECTICN ADJUSTMENT

J.J. Wagschal, Y. Yeivin (Hebrew Univ., Jerusalem and ORNL)

This note offers what we believe is the natural derivation of the explicit prescriptions
incorporated in least-squares adjustment codes. We do not gretend to present any really
new results, except perhaps for underlining the central role of the ILagrange miltipliers,
when adjustment of cross-sections by integral data is treated for what it truly is, namely
a conditional-minimum prcblem. The evaluation of the Lagrange multipliers necessitates
the inversion only of a “small'matrix, the order of which is the number of integral data
by which the cross sections are adjusted. The complete solution of the adjustment prcablem,
i.e. the adjusted differential and integral parameters and their respective uncertainty
(variance~covariance) matrices, is then given in terms of the Lagrange multip;iers by

simple expressions, involving no additional matrix inversions.

t us first review what adjustment is all about, which we mainly do in order to introduce
a convenient notation. Consider an evaluated {energy-point pr multigroup) cross-section
library o = (Gi) . 1=1,2,...,N, with the corresponding uncertainty matrix Cozﬁov(oi, oj)
ZEf(Sa) (607‘:“]; and a set of experimental integral data (responses) rE(ri) ,1=1,2,...,n,
with its uncertainty matrix CrEcov(ri,rj) . Consider .lso the corresponding set of the
calqll:ited responses, r=r(c), and their sensitivities to tha cross sections, i.e. the
matrix of the nx} derivatives SE(B?i/OOj) . Note that since r(er6o)=r+8r=r+Sdo, the |

1 yd s e
meertainty o

% Leix corresponding to the calculated responses is
-— R - 4 R 2 g +
szﬂ/ (¢rY (6r) " 1=E[ (S5 ) (8§8a) ' =8 Ef({Sa; (d ) ‘IS'sSCGS ; (1)

which just reflects the propagation of the o0 uncertainties through the calculation of T.
Daniote the deviations of the calculated responses from their respective expourimental

values by d:‘{di): d=r-r, ard note that the deviations' wrcertaint,y matrix ie simple



C d:Cr+CY‘ . Let the (unknown) adjusted cross sections be o', and the adjusted responses
r'=x{cd). Then we further denote the actual adjustments by x=¢'~ocand y=r'-r. We now

assume that the approximation r'=r+S(d-o is valid, so that, in our notation,
y = a+Sx . (2)

Then, the adjustment proposition is that the cptimal adjustments are those values of x

and of y which minimize the quadratic form
0=xcx+yclt (3)
L} = 3 x Y v VA

subject to condition(2).

Now, a straightforward, seemingly natural course to solving this minimum problem is to
eliminate y from Eq.(3), by means of Eq.(2), and then solve the resulting unconditional-

minimm problem. In other words, the problem is reduced to finding the cross-section

adjustments ¥ which minimize

Q' = x+ (C;1+ sfc;IS)x + 2.‘-:+ST"C£Id . (4)

The solution of this minimum problem satisfies the N ecuations

e . P i | + -1
- = o ) =
A = 2[(C +SC 8Six +5C d) =0, (5)
so that
NSRRI G S DN
X (cﬂ+sgr s) Ser. (6)

This expression is rather awkward, as it involves the inversion of a "small" (nxn) and

two "large" (D matricos.  Howevor, it is made to be shown that



<5 +8C_5) 5C =C5 “‘Cr+SCCS" :CDS Cd P (7)

where tho exprossion on the right-hand side involves the inversion only of one small

matrix, C a- Thus, &i.{h! actually reduces to the relatively simple expression

- = TA-l
= CS'Cq a . (8)

The response adjustments are now also given by a simple expression,

a3 - -
y=a+sz= (1-sc s'cshd = e oy e = e cpla (9)

While the solution cf the adjustment problem, as outlined above, is certainly legitimate,
it is obviously not that "straightforward". At least from a methodical point of view, the
more natural course is to treat adjustment as a conditional-minimum problem, which is'what
it really is, and to solve it by the method of Lagrange multipliers. To amplify this

-

argument, we note that to evaluate both x and y, as given by Egs. (8) and (9), we only
have to evaluate C(; M. e question then arises as to a more fundamental significance,
if any, of this vector. It turns ocut that the components of this very vector are the

Lagrange multipliers in the conditional-miniman formulation of the adjustment problem.

Certainly, such insight could have not been gained without resort to this method of solution

In the conditicnal-minimm formulation the form
R(x,v) = Q(x,y) + 2).1.(Sx—y) , (10)

where 9 is the form of ®i.(3) and 2) is the n-limensional vector of Lagrange multipliers,

is to be (uncnnditicnally) minimized, i.e. x and v satisfy the ojuations

AR p) =1 T R q.o~l
T (L,JX*'EA o= 0, -.-—}7: -‘.'\\ry"-‘-) =0 . (11)




Thus indend
®x=-CS4, yv=Ci, (12)
and, by fr. (2),

d=y-5x = (C+SCSHIA=Cgh, A=cyd. (13)

d

Geametrically speaking, the last equation means that A and d are the covariant and

contravariant components, respectively, of one and the same vector with respect to the

"matric" C 4+ In the hypothetical situation of uncorrelated deviations with standard

normal distributicns (i.e. with C d=I) we would indeed have A=d. Incidentally, Eqg. (13)

also means that C, =Cé1 .

Iet us now derive the uncertainty matrices corresponding to the adjusted parameters.

First, fram Ea. (12) it immediately follows that

f

et _ N
Cx "r)S C,\SC(J . Cy CrC\Lr . (14)
Then, since for instance r'=r +vy ,
at
Cr'= Cr + Cy + 2B {Sy) (¢éx) ] . (15)

However, as Sy = Cr'!"‘\ = Cr_(,“~ &(r-r), and because o (and therefore r) and r are uncorrelate

as implied by Eq.(3), we conclude that

E[(Sy) (’r) ) = = C C,C = ~C_ . (16)

A similar cdarivation may, of course, be carried aut for C o and the two final exprassions
AR

aAre




k]

To sum up, we have demonstrated (a) that the vector of Lagrange multipliers, A, and its
associated matrix, C,, are indeed the essence of the cawplete solution of the adjustment
prcehlam; and {(B) that L is just the gecmetrical counterpart of the vector of deviations 4,

with the latter's uncertainty matriz as "metric".



