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Abstract

Cognitive scientists, and a number of philosophers also, widely agree
that discovering and assessing explanations of cognitive phenomena involv-
ing states of uncertainty should be done in a Bayesian framework. One
assumption in support of the modelling choice is that Bayes provides the
best method for representing uncertainty. It is unclear, though, that Bayes
possesses special epistemic virtues over alternative modelling frameworks,
especially in explaining cognitive states of uncertainty since a systematic
comparison has yet to be attempted. Currently, it is premature to assert that
cognitive phenomena involving uncertainty are best explained within the
Bayesian framework. The forewarning given in this paper is that progress
in understanding how minds grapple with uncertainty may be hindered if too
many philosophers and scientists continue to focus their efforts on Bayesian
modelling, which risks monopolizing resources that may be better allocated
to alternative approaches.

Keywords: Bayesian cognitive science, representing uncertainty, scientific real-
ism, underdetermination thesis

1 Introduction

Bayesianism has become ever more prominent the cognitive and brain sciences as
well as philosophy.1 Driven by mathematical advances in statistics and computer

1The term ‘Bayesianism’ will be used as a placeholder for a diverse set of interrelated prin-
ciples, methods, and problem-solving procedures, which are unified by three core ideas. First:
single real-valued probability distributions ought to be used to represent uncertainty. Second:
our degrees of belief at a given time ought to satisfy the axioms of the probability calculus. Third:
degrees of belief, represented by determinate probabilities, ought to be updated “optimally” in
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science, as well as engineering successes in fields such as machine learning and
artificial intelligence, Bayesian modelling has been used in studying many cognitive
phenomena including perception, motor control, learning, decision-making, and
reasoning (Chater, Tenenbaum and Yuille 2006; Doya et al. 2007; Gopnik et al.
2004; Knill and Richards 1996; Körding 2007; Maloney 2002; Rao, Lewicki, and
Olhausen 2002; Oaksford and Chater 2007; Tenenbaum et al. 2011).

A common reason for favoring Bayesianism is given by the fact that uncertainty
is an ineliminable feature of cognitive systems’ interactions with the world. In
order to survive and behave adaptively, biological cognitive systems must rely on
knowledge derived from sparse, noisy, and ambiguous sensory data produced by
a constantly changing environment. Because sensory data are sparse, ambiguous,
and corrupted by noise, cognitive systems constantly face problems of inference and
decision making under uncertainty. Unless these problems are effectively solved,
reliable action, accurate perception, and adaptive learning would not be achievable.

Provided that uncertainty is an ineliminable feature of cognitive systems’ inter-
actions with the world—so continues the argument—the explanatory framework
cognitive scientists and philosophers use to seek explanations of epistemic and
cognitive phenomena should account for how cognitive systems effectively deal
with uncertainty. The framework ought to include sound inferential and decision-
making procedures in light of uncertainty, which biological cognitive systems might
deploy when interacting with their environment. Because the Bayesian framework
is the best (allegedly) for representing uncertainty and providing such procedures,
it ought to be the default framework used in seeking explanations of how cognitive
systems handle uncertainty by making sound inferences and decisions in their local
environments.

The argument just canvassed will be referred to as the argument from uncer-
tainty for Bayesian cognitive science. The first aim of this paper is to carefully
reconstruct it. This reconstruction will contribute to clarify the conceptual foun-
dations of Bayesianism in relation to cognitive modelling. While philosophers have
devoted a great deal of attention to Bayesianism as a model of rational belief and
rational choice, they have made little effort to elucidate the nature, aims, scope,
and implications of Bayesian modelling in cognitive science. This is unfortunate
given the prominence of Bayesianism in cognitive science, and given recent contro-
versy among cognitive scientists about both the empirical and theoretical adequacy
of Bayesianism (e.g., Bowers and Davis 2012a, 2012b; Chater et al. 2011; Grif-

light of new data. The most familiar updating rule within Bayesian epistemology and cognitive
science is simple Bayesian conditionalisation. However, Bayesians rely also on other rules for
learning and inference, including Jeffrey’s rule of conditionalisation (Zhao and Osherson 2010),
the minimization of the free energy of sampled data (Friston 2009), the minimization of the
Kullback-Leibler divergence (Diaconis and Zabell 1982; Hartmann and Rafiee Rad 2016), and
Monte Carlo methods (Sanborn, Griffiths, and Navarro, 2010)
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fiths et al. 2012; Jones and Love 2011; for recent philosophical discussions see
Colombo and Seriès 2012; Colombo and Hartmann 2015; Eberhardt and Danks
2011; Rescorla 2015a).

The second aim of our paper is to explicate under which conditions many cog-
nitive scientists’ decision to work within a Bayesian framework is justified. We
believe that ultimately this issue will be resolved empirically, and in fact many
debates about Bayesianism in cognitive science revolve around the question of
whether some non-Bayesian model is equally good at fitting data. However, an im-
portant, neglected aspect of cognitive scientists’ decision to work within Bayesian
concerns the non-empirical (or superempirical) virtues of Bayesianism. Our contri-
bution fills this gap by examining whether the argument from uncertainty provides
sufficient justification for choosing Bayes as a modelling framework in cognitive sci-
ence.

In doing so, we first clarify what the argument is supposed to establish (Sec-
tion 2) and what role it plays in current scientific practice (Section 3). Then, we
consider whether there is any genuine alternative to Bayesianism as a framework
for representing uncertainty and for explaining how biological cognitive systems
effectively deal with it. If alternatives are available, but happen to be systemat-
ically neglected, then the strength of the argument from uncertainty is weakened
(Section 4). The upshot is that Bayes does not enjoy special non-empirical virtues
in comparison to alternatives.

In the conclusion of the paper, a practical reason for choosing a Bayesian ap-
proach is given. Specifically, the Bayesian framework in comparison to alternatives
currently affords cognitive scientists with a richer body of knowledge and tools that
have been well-developed and employed in neighboring fields of machine learning,
artificial intelligence, and statistics (Jordan and Mitchell 2015; Ghahramani 2015).
Provided this reason, the popularity of Bayesianism indicates that theory choice in
cognitive science, similarly to other scientific fields, is not often guided by truth, or
by super-empirical virtues like simplicity, elegance, and unifying power. Instead,
cognitive scientists choose a theory that is most compatible with available tools and
methods from neigbouring fields (Gigerenzer 1991). However, this practice triggers
the concern that progress in cognitive science may be hindered if too many cog-
nitive scientists continue to invest their efforts solely in a single approach, which
ultimately risks monopolizing resources that may be better allocated to alternative
approaches.

2 From Uncertainty to Bayesian Brains

The argument from uncertainty seeks to provide a compelling reason for choosing
the Bayesian framework in the attempt to explain cognitive phenomena whose
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production requires cognitive systems to handle uncertainty. The argument in-
volves two steps. The first step aims to substantiate the claim that biological
cognitive systems must effectively deal with uncertainty in order to survive and
thrive (i.e. in order to interact adaptively with their environment). The second
step aims to establish that Bayesianism is the best for explaining how cognitive
systems effectively deal with uncertainty.

2.1 Uncertainty, Underdetermination, and Noise

Most Bayesian cognitive scientists introduce their studies by pointing out that the
mind must constantly grapple with uncertainty. For example, Knill and Pouget
(2004) introduce their discussion of the Bayesian brain hypothesis by claiming that
“humans and other animals operate in a world of sensory uncertainty” (Knill and
Pouget 2004, p. 712). Ma et al. (2006) motivate their study on how populations of
neurons might perform Bayesian computations by saying that “virtually all com-
putations performed by the nervous system are subject to uncertainty” (Ma et
al. 2006, p. 1432). Oaksford and Chater (2007) advocate a Bayesian approach
to human rationality suggesting that “human reasoning is well-adapted to the un-
certain character of everyday reasoning to integrating and applying vast amounts
of world knowledge concerning a partially known and fast-changing environment”
(Oaksford and Chater 2007, p. 67). Pouget et al. (2013, p. 1170) write that
“uncertainty is an intrinsic part of neural computation, whether for sensory pro-
cessing, motor control or cognitive reasoning.” Orbán and Wolpert (2011) focus
on Bayesian approaches to sensorimotor control and motivate their focus by say-
ing that “uncertainty is ubiquitous in our sensorimotor interactions, arising from
factors such as sensory and motor noise and ambiguity about the environment”
(Orbán and Wolpert 2011, p. 1). Tenenbaum et al. (2011) point out that “we
build rich causal models, make strong generalizations, and construct powerful ab-
stractions, whereas the input data are sparse, noisy, and ambiguous—in every way
far too limited” (Tenenbaum et al. 2011, p. 1279). Vilares and Körding (2011)
review several lines of research in Bayesian cognitive neuroscience emphasizing
that “uncertainty is relevant in most situations in which humans need to make
decisions and will thus affect the problems to be solved by the brain” (Vilares and
Körding 2011, p. 22).

There are two ways of understanding the emphasis on uncertainty when it
comes to motivating the Bayesian approach in cognitive science. According to one
reading, the point is merely expository. Claims like the ones just quoted get readers
to see why the Bayesian approach is worth considering when one is interested in
understanding how cognitive systems deal with uncertainty. According to another
reading, the point is justificatory. These claims serve to convince readers that
cognitive scientists’ choice to pursue the Bayesian approach is justified.
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Granted, cognitive systems must grapple with uncertainty. But an inference
from ‘biological agents are faced with states of uncertainty’ to ‘Bayes is the best’
is invalid on either point. If the point is merely expository, then it is puzzling
that no alternatives to the Bayesian approach are ever mentioned in the literature.
Bayesianism is just one possible approach for representing and handling inference
under uncertainty, but it is by no means the only one (Halpern 2003). While
cognitive scientists could choose some other non-Bayesian approach, the alternative
theories just so happen to get neglected without apparent reason.

On the other hand, if the point is justificatory, then there is an implicit assump-
tion that Bayesianism is somehow more empirically adequate, or enjoys greater
(or more) non-empirical virtues over alternative frameworks. However, such an
assumption can be easily undermined, as we shall demonstrate in Section 4. In
particular, it is far from obvious that Bayesianism is simpler, more unifying, or
more rational than alternative frameworks given that advocates have yet to com-
pare the relative non-empirical virtues of alternatives, nor have they systematically
determined to what degree the Bayesian approach is more empirically adequate.
We will have much more to say on this issue later on.

2.2 The Explanatory Power of Bayes

Biological cognitive systems access the world through their senses, which are
viewed as sources of uncertain information about the state obtaining in the world
at any given time. Describing the situation in statistical terminology, we may
refer to the states obtaining in the world as ‘environmental parameters’, ‘hidden
states’, or ‘models’, and the sensory information as ‘sensory data’ or ‘evidence’.
The problem faced by biological cognitive systems at any given time would thus
consist in inferring which hidden state in the environment generated their sensory
data. Unless this problem is effectively solved, reliable action, accurate perception,
and adaptive learning would not be achievable.2

Often times, however, the values of environmental parameters are underdeter-
mined by the available sensory data; that is, there are multiple, different states
in the world that fit the sensory data received by a biological cognitive system at
any given time. Because many different environmental states may fit the same
piece of sensory data, processing sensory data alone is not sufficient to determine
which state in the world caused it. Hence, sensory data underdetermine their
environmental causes, which manifests a state of uncertainty within the system.

2There are many anti-Bayesian cognitive scientists who disagree with this idea, and hold
instead that “cognition is not the representation of a pre-given world by a pre-given mind but
is rather the enactment of a world and a mind on the basis of a history of the variety of actions
that a being in the world performs” (Varela, Thompson, & Rosch, 1991, p. 9)
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So, in part, the term ‘uncertainty’ in Bayesian cognitive science broadly charac-
terizes this problem of underdetermination that biological cognitive systems must
constantly solve.

To give an example, the sensory data generated by a convex object under
normal lighting circumstances underdetermines its external cause (cf., Rescorla
2015a). There are at least two possible environmental states that can fit the avail-
able sensory data: the object in the world that caused the data is convex and the
light illuminating the object comes from overhead; or the object is concave and
the illuminating light comes from below. In order to perceive the world as being
in one specific state, rather than as a superposition of two or more different states,
cognitive systems must find some strategy to solve this problem of underdetermi-
nation.

Furthermore, uncertainty may also result from noise whose source can be inter-
nal or external to biological cognitive systems. In general, noise amounts to data
received, but unwanted by a system. As a noisy signal contains more data than
the original signal by itself, noise modifies the signal and extends the cognitive
system’s freedom of choice in decoding it. This is an undesirable freedom to the
extent that the adaptive behaviour the system can produce requires an appro-
priate degree of fidelity between original and decoded signals. Ultimately, noise
poses a challenge for biological systems in estimating environmental parameters,
and it is not at all an uncommon thing, for “noise permeates every level of the
nervous system, from the perception of sensory signals to the generation of motor
responses” (Faisal et al. 2008, p. 292).

Three sources of noise are characteristic of biological cognitive systems. The
first source of noise lies in the thermodynamic or quantal transduction of the
energy comprised by sensory signals into electrical signals. “For example, all forms
of chemical sensing (including smell and gustation) are affected by thermodynamic
noise because molecules arrive at the receptor at random rates owing to diffusion
and because receptor proteins are limited in their ability to accurately count the
number of signalling molecules” (Knill et al. 1996, p. 4). The second source
of noise lies in biophysical features of ion channels, of synaptic transmission, of
network interactions and random processes governing neural activations. These
biophysical features introduce noise at the level of cellular signalling. A third
source of noise lies in the transduction of signals carried by motor neurons into
mechanical forces in muscle fibers. This transduction introduces noise in the signals
supporting motor control, and can make motor behaviour highly variable even in
the same types of circumstances when the same motor goal is pursued. In order
to perform motor commands reliably and behave intelligently, biological systems
must find some strategy to handle the noise introduced at different levels of neural
processing.
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We have now described how uncertainty tends to manifest within a biological
cognitive system either from noise—random disturbances corrupting the sensory
signals and processes of the system—or ambiguity—the underdetermination of
percepts, as well as of other cognitive states, by sensory data. Whether caused by
noise or surfacing from ambiguity, uncertainty goes hand in hand with variability
in animals’ environment and behaviour. On the one hand, the environment (in-
cluding the body) constantly changes. On the other hand, even assuming that the
environment does not change, cognitive systems’ behaviour shows an ineliminable
degree of variability. For example, if you reach for an object in the darkness, your
visual and motor systems will lack relevant information about the location of the
object. Your uncertainty about its location will be reflected in a lack of accuracy
in any one reaching trial. If you try to reach for that object over and over again,
you’ll observe a large variability in your movement over reaching trials. Likewise,
when a visual stimulus is hold as constant as possible, your visual perceptions
of the stimulus will also vary over time. For biological systems to have accurate
perceptions and to display reliable motor behaviour, they must find some way to
tame this variability.

Biological cognitive systems would effectively deal with sensory and motor
uncertainty if they were equipped with mechanisms that can solve the problem
of underdetermination and mitigate the detrimental effects of noise. There is no
doubt that Bayesianism provides a powerful framework for explaining the success
of handling uncertainty. Within the theory, uncertainty is precisely specified by
non-extreme probabilities, and the probabilities are updated upon obtaining new
sensory information according to some rule, the most familiar of which is simple
Bayesian conditionalisation. Bayesian biological systems would thus maintain,
“at each stage of local computation, a representation of all possible values of
the parameters being computed along with associated probabilities” (Knill and
Pouget 2004, p. 713). With many advancements made in the Bayesian paradigm
over recent decades, cognitive scientists are provided with a suite of algorithms
and tools for precisely representing and computing the uncertainty of cognitive
systems at any given time. These algorithms are currently employed in machine
learning and statistics to solve problems of underdetermination and to mitigate
detrimental effects of noise. Cognitive scientists may then choose the Bayesian
framework to seek explanations of central aspects of cognition and behaviour.

2.3 Bayes and Uncertainty: A Natural Marriage?

The second step in the argument from uncertainty seeks to establish that Bayesian-
ism is indeed the best for seeking explanations of how biological cognitive agents
grapple with uncertainty. The focus is on non-empirical (or super-empirical)
virtues of Bayes. By adopting the Bayesian approach, cognitive scientists would
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be able to explain most simply, most generally, and most rationally how biological
cognitive agents solve the problem of underdetermination and handle the detrimen-
tal effects of internal noise. Hence, cognitive scientists should choose the Bayesian
framework for discovering and assessing explanations of cognitive phenomena and
behaviour. The idea that Bayes is in some sense the best for explaining how a sys-
tem grapples with uncertainty is widely endorsed (e.g. Chater, Tenenbaum and
Yuille 2006, p. 287; Doya et al. 2007; p. xi; Fiser et al. 2010, p. 120; Knill and
Pouget 2004, p. 712; Maloney 2002, p. 145; Mamassian, Landy and Maloney 2002,
p. 13; Orbán and Wolpert 2011, p. 1; Rescorla, 2015a, Sec. 2). Unfortunately,
though, the idea is ambiguous, but hardly clarified.

On one account, the Bayesian framework provides a better language for repre-
senting uncertainty than competing alternatives. It therefore should be preferred
as a way of modelling uncertainty and inference under uncertainty in cognitive
science. On a different account, systems that implement Bayesian algorithms deal
with uncertainty most effectively. Cognitive scientists should then prefer Bayesian-
ism to alternatives, given that it is the best for understanding biological cognitive
systems’ adaptive behaviour in the face of uncertainty. While the first idea con-
cerns the representational virtues of Bayesianism, the second idea concerns the
normative character of the theory. Both sets of virtues concern non-empirical
properties of Bayes.

As for the formal details, uncertainty is represented by probability within a
Bayesian framework. Various rules of conditionalisation, such as simple Bayesian
conditionalisation, Jeffrey’s conditionalisation, or free-energy minimization, spec-
ify how belief is updated in the light of new information. Cognitive systems are
assumed to entertain “beliefs” drawn from a hypothesis space A. Beliefs concern
what in the world could have caused the current sensory data E to the system.
Each belief is associated with a prior probability P (H), which represents the weight
borne by the belief that H on the processes carried out by the system. At any given
time, the system’s beliefs satisfy the axioms of finitely additive probability. Prob-
abilities are also assigned to (E, H) pairs, in the form of a generative model that
specifies a joint probability distribution over sensory data and hypotheses about
states in the world generating those data. Generative models represent likelihoods
concerning how probable it is that the system would receive the current data E,
given a hypothesized state H in the world, viz. P (E|H). With a generative model
P (E|H), the current data E, and prior knowledge P (H), the system computes the
posterior conditional probability P (H|E), thereby reallocating probabilities across
the hypothesis space in accordance with some learning rule.3

3Learning rules govern belief update, but they do not specify how the beliefs entertained
by the system are used to produce a decision, action, or some other behavioural phenomenon.
How the posterior is used to produce a decision requires the definition of a loss function, which
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If such a concise framework provides us with a better way of representing in-
ference under uncertainty than alternative frameworks, then the uncertainties a
cognitive system face should be represented with a classical probability distribu-
tion, and the system’s belief updates should be modelled by some Bayesian learning
rule such as simple conditionalisation.

The idea that systems implementing Bayesian algorithms most effectively deal
with uncertainty is often understood within David Marr’s (1982) three levels of
analysis framework (Griffiths, Vul, and Sanborn 2012). Marr’s levels include the
computational, the algorithmic, and the implementation level. The computational
level specifies the problem to be solved in terms of some generic input-output
mapping. In the case of Bayesian modelling in cognitive science, this is the problem
of handling uncertainty. If the task is one of extracting some property of a noisy
sensory stimulus, the generic input-output mapping that defines the computational
problem is a function mapping the noisy sensory data to an estimate of the stimulus
that caused that data. It is generic in that it does not specify any class of rules for
generating the output. This class is defined at the algorithmic level. The algorithm
specifies how the problem can be solved.

Bayesianism has traditionally been used as a “computational” benchmark of
ideal performance in perceptual tasks (Geisler 2011), since it can define the prob-
lem agents are to solve and its “‘optimal” solution (e.g., Griffiths et al. 2010;
Griffiths et al. 2012). However, the success of Bayesian cognitive scientists in
fitting many different sets of behavioural data has motivated uses of Bayesian
models as process models, which specify algorithms and representations that cog-
nitive systems can employ to actually solve a given problem (Colombo and Seriès
2012; Rescorla 2015a; 2015b; Zednik and Jaekel 2014). Further, more and more
attention is being paid to how probabilistic representations and Bayesian algo-
rithms can be implemented in neurally plausible mechanisms (Pouget et al. 2013;
Ma and Jazayeri 2014).

In fact, Bayesian cognitive scientists are interested in all three Marr’s levels
of analysis (Griffiths, Vul and Sanborn 2012), and “the real interest [of Bayesian
models] comes from the stronger notion that human beings might actually use
the apparatus of probability theory to make their decisions, explicitly (if not con-
sciously) representing prior probabilities, and updating their beliefs in an optimal,
normatively sound fashion based on the mathematics of probability theory” (Mar-
cus and Davis 2013, p. 2358).

To illustrate, let us consider the case of visual perception. Input data to the vi-
sual system consist of the light pattern that strikes the retina, initiating a cascade

specifies the relative cost of making a certain decision based on a certain belief. To determine
the optimal decision available at a given time, the system needs to compute the estimated loss
for any given decision and belief.
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of chemical and electrical events that trigger neural signals. The beliefs (or hy-
potheses) entertained by the visual system consist of neurally encoded probability
distributions of states in the world that could have produced that light pattern.
Based solely on input data, the system cannot determine which particular state
in the world caused the patterned excitation of the cones and rods in the retina.
Any patch of retinal stimulation could correspond to an object of any size and
almost any shape. However, if the system deploys “knowledge” about which size
and shape are more probable a priori, it can determine which state would be most
probable to produce the retinal input data. By applying a simple Bayesian rule of
conditionalisation to combine prior knowledge with the likelihood of the state in
the world producing the input data, the system identifies the worldly state with
the highest posterior probability, which would provide an optimal solution to the
problem of underdetermination.

Prior, probabilistic information embodied in neurons’ receptive fields—viz. in
the portion of sensory space that can elicit neural responses when stimulated—can
be used and processed in a Bayesian fashion also to handle the effects of noise. The
basic strategy is as follows: “If the structure of the signal and/or noise is known
it can be used to distinguish signal from noise,” which is essential to producing
accurate perceptions and reliable motor behaviour (Faisal et al. 2008, p. 298).
Neurons’ prior probabilistic “knowledge” about the expected statistical structure
of a signal from a given source of information would allow a biological system
system to compensate for noise, and to give more weight to more reliable (less
noisy) signals in its processes.

If Bayesianism defines a benchmark for optimal behaviour in the face of uncer-
tainty, and provides us with algorithms that cognitive systems might implement in
order to find optimal solutions to the problems they face, then Bayesianism should
be preferred to seek explanations for cognitive systems’ behaviour in the face of
uncertainty.

3 Representing Uncertainty and Explaining Op-

timally

The previous section illustrated how one might come to think that the Bayesian
framework is the best for explaining how cognitive systems deal with uncertainty
due to its representational virtues or its normative virtues. Unfortunately, nei-
ther set of virtues provides cognitive scientists with a compelling reason to prefer
the Bayesian framework over alternatives as one’s basis for discovering and as-
sessing explanations of cognitive phenomena. To understand why, let’s ask two
questions: What are the properties of Bayesianism that contribute to its repre-
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sentational power? What are the properties of the theory that contribute to its
capacity to define computational problems and to provide “optimal” solutions to
such problems?

3.1 Representing Uncertainty

Any given explanatory framework has certain epistemic, non-empirical properties
that contribute to its representational power. Two such properties are its simplicity
and unificatory power. If a framework F possesses more of these properties or each
of the properties to greater extent in comparison to an alternative framework F ∗,
then there is reason based on non-empirical virtues to prefer F to F ∗ as one’s
working framework for scientific explanation.

In the proceeding discussion, simplicity may plausibly be understood as a mea-
sure of the number and conciseness of the framework’s basic principles while uni-
fication may be understood as a measure of the number of different kinds of phe-
nomena to which the framework can be applied. Although the simplicity of a
framework might bring with it pragmatic advantages like being more perspicuous
and easier to use and to manipulate, unification can bring with it epistemic advan-
tages related to explanation (Friedman 1974; Kitcher 1989) and to confirmation
(Sober 2003).

Considering the Bayesian approach in cognitive science, the framework achieves
simplicity. In particular, the basic principles of the theory are threefold: (i) an
agent’s beliefs that differ in strength are modeled by determinate probabilities; (ii)
at any given time, an agent’s beliefs obey the axioms of finitely additive probabil-
ity; (iii) over time, an agent updates their beliefs according to a rule of condition-
alisation. These three principles allow cognitive scientists to formulate research
questions in a compact and precise manner (Chater et al. 2006, p. 287). Addi-
tionally, the language has great unifying power (e.g. Tenenbaum et al., 2011, p.
1285). In fact, it offers a common, encompassing, and flexible mathematical lan-
guage for studying a wide variety of phenomena (Knill and Pouget 2004; Griffiths
et al. 2010).

Despite the apparent virtues, many Bayesian models of real-world, high-
dimensional tasks are hard to formulate and manipulate. The first challenge is
choosing a suitable model and prior. A suitable model should not limit unduly the
form of probability distributions (e.g., normal) or functions (e.g. linear), which are
involved in the solution of a given cognitive task. A suitable prior should not rule
out serious candidate hypotheses by assigning them zero probability, nor should it
spread uniform mass over hypotheses. It should be noted that critics have pointed
out that Bayesian cognitive scientists often select priors and likelihood functions
post-hoc, in response to the data (Bowers & Davis 2012a). The second challenge
concerns computing the posterior distribution, which is intractable for most real-
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world problems and calls for approximations and heuristics that might themselves
be computationally intractable (Kwisthout, Wareham, and van Rooij 2011).

As for unification, although the theory has been used to fit an impressive range
of data from a diverse variety of cognitive and behavioural tasks, this kind of unify-
ing power does not obviously have explanatory or confirmatory import (Colombo
and Hartmann 2015). Similar to Bayesianism, the language of Lagrangian field
theory can be used for studying many kinds of systems. For example, it can be
applied both to the behaviour of a system of gravitational masses and that of an
electric circuit. This fact, however, does not warrant the conclusion that we thus
have a common explanation of the behaviour of both systems (Woodward 2014,
5.4).

3.2 Explaining Optimally

Ignoring our latest contentions for the moment, Bayesianism undoubtedly appears
to be an ideal framework to many cognitive scientists given that it sets an intuitive
normative standard for how adaptive agents should combine and weigh different
beliefs, how they should update their beliefs upon receiving novel information, and
how they should make decision under uncertainty (Doya et al. 2007; Griffiths et
al. 2010; see also Bovens and Hartmann 2003).

The normative force of the theory tends to depend on an agent’s degrees of
belief obeying the probability calculus and being updated via conditionalisation,
which in turn is typically justified by appealing to (synchronic and diachronic)
Dutch book arguments or to Cox’s (1946) theorem. While Dutch book arguments
purport to establish that it is practically irrational for an agent to have degrees of
belief that violate the axioms of the probability calculus due to sure loss in expec-
tation, Cox’s (1946) theorem yields a more “commonsense” justification showing
that any rational measure of belief is isomorphic to a probability measure.

Alternatively, justification for the rationality of Bayesianism may be grounded
in considerations of accuracy rather than betting behaviour where the accuracy
of a belief is determined by its “closeness to truth” (Joyce 1998). Accuracy-based
justifications involve the use of a proper scoring rule for measuring the accuracy
of a belief function at a world w where a scoring rule gradually penalizes belief
functions as the distance from the ideal belief function at a world w increases, e.g.
a belief P (H) = 0 is given a maximum penalty x if w ∈ H and a lesser penalty
y < x otherwise. The accuracy of a belief state is reflected in the total score given
to one’s beliefs over an opinion set (Pettigrew 2016). Recent results show that, for
some scoring rule, Bayes agents will minimize the overall inaccuracy of their belief
state synchronically and diachronically (e.g. Leitgeb and Pettigrew, 2010a,b).

Both kinds of justifications have been challenged, however. Douven (1999),
for example, demonstrates that there are packages of decision and inference rules
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that include non-Bayesian update rules that are not subject to dynamic Dutch
books. Even if non-Bayesian approaches to reasoning and decision making make
agents vulnerable to dynamic Dutch books, non-Bayesian approaches have advan-
tages that might outweigh the risk of suffering from a monetary loss. Douven
(2013) showed that the beliefs of agents employing some non-Bayesian learning
rule sometimes converge to the truth faster than those of their Bayesian rivals.
Furthermore, accuracy arguments, which—unlike Dutch book arguments—aim to
provide a direct justification of the epistemic rationality of Bayesianism, trade on
ambiguity. There are different ways of understanding the epistemic goal of inaccu-
racy minimization. On some plausible understanding of inaccuracy minimization,
Bayesianism is outperformed by alternative approaches (Douven 2013; Douven
and Wenmackers 2015). In addition, there has been recent doubt casted on the
viability of such an accuracy program (Littlejohn 2015).

4 Trafficking with Uncertainty: A Zoo of Ap-

proaches

Early on, we alluded to a significant problem that cognitive scientists who en-
dorse the argument from uncertainty face, which concerns the neglect of different,
yet promising, models that capture inference under uncertainty. The neglect has
blinded them from recognizing the limitations of Bayesianism, especially since the
literature surrounding alternative frameworks in computer science and statistics
make such limitations transparent.

With this problem brought into focus, we contend that it should not be taken
for granted that states of uncertainty involved in cognitive systems’ processes are
best represented and explained by Bayesianism, namely, because a systematic com-
parison of the non-empirical virtues of Bayes and other models remains to be seen
within the cognitive sciences. In absence of such comparison, the Bayesian ap-
proach has unjustifiably gained its support by shielding itself from other plausible
theoretical frameworks.

In this section, we correct the deficiency by detailing five different formal frame-
works including Dempster-Shafer theory, imprecise probability, possibility theory,
ranking theory, and quantum probability theory.4 Of course, what follows is not
intended to be an exhaustive literary review (see e.g. Halpern 2003; Huber 2014).

4While each framework provides a representation of uncertainty within the scope of probability
theory, there are implicit, non-probabilistic approaches to uncertainty also (see e.g. Simoncelli
2009; Drugowitsch and Pouget, 2012). Although such theories are not discussed here, pointing
them out at least expands the set of alternatives to the classical Bayesian framework. Taking into
account a wider range of alternatives will make the case against the argument from uncertainty
more convincing.
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Nevertheless, the merits of each model considered suffice to undermine the as-
sumption that Bayes supplies cognitive scientists with the most simple, unifying,
and rational approach for explaining uncertainty-involving cognitive phenomena.

Toward the end of this section, we illustrate that the Bayesian approach is lim-
ited in handling a range of uncertainty-involving cognitive phenomena. To drive
the point home, we turn our attention to a mathematically distinct framework of
quantum probability and its application in cognitive science. Given that quantum
probability is a genuine alternative theory to Bayesianism, the evidence supporting
inference under uncertainty via quantum probability reduces support for Bayes,
further undermining the assumption that the latter best represents and explains
how cognitive systems handle uncertainty. Section 4.8 will then support our rec-
ommendation that the cognitive science community, if it cares about the health
of their discipline and believe in its promise for accumulating knowledge about
human mind, should not exhaust all of their efforts within a single approach with
an argument from Bayesian confirmation theory.

4.1 The Dempster-Shafer Framework

The Dempster-Shafer (D-S) theory of evidence offers a more general framework
than Bayesianism, for it represents “degrees of belief” through a pair of non-
additive functions rather than a single additive probability function and accommo-
dates learning through Dempster’s rule for aggregating evidence instead of simple
conditionalisation (Shafer 1992).

There are three functions used in modeling uncertainty in this framework: a
mass function, a belief function, and a plausibility function. Let W be a finite set
of states. A mass function m is a mapping of subsets from the power set or frame
of discernment ℘(W ) (the set of all subsets including ⊘) to the unit interval [0,1],
where m(⊘) = 0 and the sum of the masses for all X ⊆ W is 1. The D-S belief
function, Bel, and the plausibility function, Pl, define a lower and upper bound,
respectively, representing the levels of support and lack of evidence against each
element X ∈ ℘(W ). The lower bound, Bel, is defined as the sum of the masses for
all the subsets of a set of interest, X ∈ ℘(W ). The upper bound, Pl, is defined as
the sum of the masses for all the subsets that intersect the set of interest. Consider
a simple example in Table 1 involving a finite set of states W = {ω1, ω2, ω3}.

We see that
∑

X⊆W m(X) = Bel(W ) = Pl(W ) = 1, thus entailing a complete
lack of uncertainty with respect to the sure event W . For each proper subset
of W , however, the same cannot be said. Levels of uncertainty associated with
each proper subset are realized by Bel() and Pl(). Take the subset {ω1, ω3}, for
example, which we will label X. The sum of the masses assigned to {}, {ω1}, {ω3},
and {ω1, ω3} is 0.3, which is the lower bound, Bel(X). The sum of all the masses of
subsets that intersect the set of interest is the upper bound, Pl(X) = 0.8. The pair
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{} {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

Mass 0 0.1 0.2 0.1 0.1 0.1 0.3 0.1
Belief 0 0.1 0.2 0.1 0.4 0.3 0.6 1
Plausibility 0 0.4 0.7 0.6 0.9 0.8 0.9 1

Table 1: Dempster-Shafer Example

generates a “belief interval”, [0.3, 0.8], which in addition captures partial ignorance,
illustrated by the difference between Bel and Pl with Bel ≤ Pl.

A further distinctive feature of D-S theory is that the union of disjoint events
are believed at least as strongly as the sum of the lower bounds given for each
event instead of there being strict equality between the probability of the union
and the sum of the marginal probabilities. This implies that Bel is superadditive,
i.e. Bel(X ∪ Y) ≥ Bel(X) + Bel(Y) for all disjoint elements X, Y ∈ ℘(W ). The
conjugate Pl, on the other hand, is subadditive, i.e. Pl(X∪Y) ≤ Pl(X)+Pl(Y) for
all disjoint elements X, Y ∈ ℘(W ). So, “degrees of belief” in D-S theory turn out
to be non-additive, unlike in classical Bayesian theory.

In regard to belief updating, D-S theory employs Dempster’s rule of combi-
nation for aggregating mass functions associated with information from multiple,
independent sources:

(m1 ⊗m2)(X) =

∑

{X1,X2:X1∩X2=X}

m1(X1)m2(X2)

1−K

where K =
∑

{X1,X2:X1∩X2=⊘}m1(X1)m2(X2), X 6= ⊘, and m(⊘) = 0. This rule
corresponds to a normalized joint operation in which information is combined
by favouring the agreement between the sources and ignoring all the conflicting
evidence (Dempster 1968).

4.2 The Imprecise Probability Framework

In imprecise probability theory (IP), belief is usually modeled by a credal set, which
is a non-empty set of probability functions P closed under convex combinations,
and each probability function P ∈ P is defined on an algebra A generated by
means of a finite set of states W (see Levi 1974; Walley 1991; Joyce 2010).

Credal sets are bounded where the lower bound with respect to an event X
is defined by a lower probability P(X) = inf{P (X) : P ∈ P} for all X ∈ A. The
upper bound is defined by an upper probability P(X) = sup{P (X) : P ∈ P}.
Lower and upper probabilities are conjugates such that P(X) = 1 − P(Xc) and
P(X) = 1−P(Xc). Given these conjugacy relations, it is only necessary to specify
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either a lower P or an upper P (the same goes for Bel and Pl in DS-theory) since
they automatically define each other. As typical in the literature, IP proponents
have established a preference for the language of (coherent) lower probabilities
relative to a lower probability space (W,A,P,P) (Pederson and Wheeler 2014).5

Like in D-S theory, imprecise probability is distinct from classical probability in
that the lower P and upper P functionals are non-additive. Instead, P is superad-
ditive and P is subadditive: P(X∪Y) ≥ P(X)+P(Y) and P(X∪Y) ≤ P(X)+P(Y),
for all X, Y ∈ A. If we assume, as typically done, that P is closed under convex
combinations—that is, for any λ ∈ [0, 1] and P1, P2 ∈ P, λP1 + (1 − λ)P2 ∈ P—
then beliefs are represented by non-additive, interval-valued, imprecise probabili-
ties: P(X) = [P(X),P(X)], for all X ∈ A. On the surface, lower probability and
belief functions look very much alike.

By contrast, though, IP is more general than Dempster-Shafer given that every
D-S belief interval is an imprecise probability, but not every imprecise probability
is a D-S belief interval (Huber 2016). Furthermore, IP collapses into Bayesianism
with less restriction. To demonstrate, suppose that P is a singleton set, i.e. {P},
for all events in a respective algebra. Then, the probability function P realizes the
lower and upper probabilities, i.e. P = P = P. What we learn from this fact is
that P can in principle always be Bayesian, but whether Bel is Bayesian or not
will ultimately depend on the masses assigned to subsets.

Additionally, IP more closely resembles Bayes in its belief updating method.
Updating proceeds by way of conditioning each individually precise P ∈ P on new
information E, assuming P (E) > 0. The result is a set of conditional probabilities
P(.|E) bounded by lower and upper conditional probabilities, P(.|E) and P(.|E).
In the instance that P(.) and P(E) are singleton sets, P(.|E) is also a singleton
set, i.e. P(.|E) = {P (.|E)}, yielding the same result as the classical model. Again,
imprecise probability collapses into Bayesianism with less restriction since P(.|E)
can in principle always be Bayesian whereas Dempster’s rule is a more limiting
case. We conclude that IP retains many of the benefits of Bayesianism, but it also
has the expressive power that Dempster-Shafer enjoys.

4.3 The Possibility Framework

Possibility theory was originally inspired by ideas from fuzzy logic aiming at ac-
commodating vagueness (Zadeh 1975). Using possibility theory for the purpose of
measuring degrees of uncertainty rather than degrees of truth, a possibility mea-
sure, Π, models “the knowledge of an agent (about the actual state of affairs)

5Alternatively, Williams (2007) gives a more general theory of previsions taking the upper as
primitive rather than the lower. For our discussion, nothing significant depends on whether we
choose the lower or upper as primitive.
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distinguishing what is plausible from what is less plausible, what is the normal
course of things from what is not, what is surprising from what is expected”
(Dubois and Prade 2007).

We begin the explication by defining a possibility distribution π on a finite set
of states W . The function π maps a state w ∈ W to a real number in the unit
interval [0, 1] and π(w) = 1 for at least one w ∈ W . From a possibility distribution,
we can introduce a possibility measure Π : A → R that assigns 0 to ⊘ and 1 to
W . For any X ∈ A, Π(X) = supw∈X π(w). Basically, Π gives the degree to which
an event is possible with 1 being maximally possible and 0 being impossible. A
possibility measure also defines a conjugate necessity measure N : A → R and
N (X) = infw∈X π(w) for all X ∈ A. A necessity measure N gives the degree to
which an event is necessary.

Distinct from additive probability functions, a possibility function, Π, has the
property of “maxitivity”. Accordingly, if X and Y are disjoint sets, then Π(X ∪
Y) = max(Π(X),Π(Y)). This means that the union of disjoint sets is at least as
possible as the maximally possible disjoint set, yet the union is no more possible
than such set—hence, subadditivity. While Π(X) is an upper bound with respect
to uncertainty toward X, N (X) is the lower bound where N (X) = 1 − Π(Xc).
Consequently, we obtain a dual N (X∩ Y ) = min(N (X),N (Y)) (see Huber 2016).

In regard to conditional possibilities, if Π(Y) > 0 and the set X is non-empty,
then the canonical way to incorporate information is as follows:

Π(X|Y) =

{

1 if Π(X ∩Y) = Π(Y);

Π(X ∩Y) if Π(X ∩Y) < Π(Y).

The difference between conditioning in possibility theory and Bayesian condition-
ing is that Π(X∩Y) cannot be the product Π(X|Y )Π(Y) in an ordinal setting and
so × is replaced by min.

With the bigger picture in mind here, Π and N are similar to Pl and Bel,
respectively. In fact, if a mass function m on a finite frame of discernment is
consonant by assigning positive mass only to an increasing sequence of sets, then a
plausibility function Pl, relative to m, is a possibility measure (see Theorem 2.5.4
in Halpern 2003). With Belm being the conjugate of Plm, it follows that Belm is a
necessity measure. Thus, possibility theory is a limiting case of D-S and also IP.

4.4 The Ranking Framework

Ranking functions measure how surprising it would be if an event were to occur
(or if some hypothesis is true). Formally, a ranking function K : 2W → N ∪ {∞}
models the degree of disbelief or surprise assigned to a subset of a finite space W

(Spohn 2012). We say that a subset X is surprising or disbelieved just in case its
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rank is positive, i.e. K(X) > 0. Subsets that are disbelieved are ranked gradually
by the natural numbers to a max of ∞. The higher rank, the higher degree of
surprise. Intuitively, the empty set should be disbelieved to the highest degree.

On the other hand, if any subset X of W is not at all surprising, then the
subset is assigned a rank of 0. Intuitively, W should never be disbelieved for it is
not surprising that one of the states in W will obtain. However, unsurprisingness
does not necessarily imply that if X is assigned a rank of 0, then X is believed.
The subset X is said to be believed just in case its complement is disbelieved, i.e.
K(Xc) > 0. Otherwise, a rank of 0 assigned to X and Xc would seem to suggest
suspension of judgment since one has yet to come to disbelieve one of the disjoint
sets.

Moreover, in reverse of possibility theory, a union of (non-empty) sets, X and
Y, has a rank equal to the rank of the lowest ranking set. So we observe the
connection to possibility measures with 0 and 1 being replaced by ∞ and 0 and
max replaced with min. As for conditional rankings, they are defined as such:
K(X|Y) = K(X∩Y)−K(Y). Using conditional ranks, the main rules for updating
on new information correspond to Bayesian conditionalisation with an analogue
to Bayes’ rule: K(X|Y) = K(Y|X) +K(X)−K(Y).

4.5 The Quantum Probability Framework

Quantum probability theory is a geometric model of uncertainty. It uses frag-
ments of the language of mathematical probability, but outcomes are distinctively
represented as subspaces of varying dimensionality in a multidimensional Hilbert
space, which is a vector space used to represent all possible outcomes for questions
asked about a system. Unit vectors correspond to possible states of the system,
and embody knowledge about the states of the system under consideration.

Probabilities of outcomes are determined by projecting the state vector onto
different sub-spaces and computing the squared length of the projection. The
determination of probabilities is context- and order-dependent, as individual states
can be superposition states and composite systems can be entangled. Thus, while
in the Bayesian framework P (X ∩ Y) = P (Y ∩ X), the commutative property in
quantum probability does not always hold. More generally, unlike in Bayesianism,
quantum probability does not obey the law of total probability (see Rédei and
Summers 2007 for an introduction to the theory).

Incompatibility in quantum probability theory entails that it is impossible to
concurrently assign a truth-value to two hypotheses. Psychologically, two incom-
patible hypotheses in this sense can be processed only serially because the pro-
cessing of one hypothesis interferes with the other. Given hypotheses A and B,
for example, if A is true at a certain time, then B can be neither true nor false at
that time. Conjunctions between incompatible hypotheses are then defined in a
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sequential way as “A and then B.”
One advantage of using the quantum probability framework is that it allows

for explanations of cognitive systems being in a superposition of different states.
Superposition can give rise to a specific kind of uncertainty that is dependent on
the fuzziness and ambiguity of information and that characterizes the ambivalence
of many of our everyday judgments. Additionally, entanglement tracks the inter-
dependencies between different parts of complex cognitive systems. In entangled
systems, it is not possible to define a joint probability distribution from the prob-
ability distributions of variables corresponding to different constituent parts. In
such systems, changes in one constituent part entails instantaneous changes in
another part.

Courtesy of interference, superposition and entanglement, we are able to ex-
plain the conjunction fallacy, non-compositional conceptual semantics, order ef-
fects in perception, and violations of the sure thing principle (Busemeyer and
Bruza 2012).

4.6 Heir to the Throne?

Each framework sketched has some advantage over Bayesianism, but limitations
also. The Dempster-Shafer theory, for instance, has an advantage of representing
states of complete ignorance without precise degrees of belief: 0 mass everywhere
except for the sure event.6 Furthermore, combining evidence with Dempster’s rule
has the desirability of relaxing strong independence assumptions. Upon gathering
new evidence, beliefs should be determined by combining the vacuous belief func-
tion with the total evidence. Finally, beliefs and evidence are represented by the
same type of mathematical objects, viz. belief functions. All of this suggests that
Bayes might not be the most unifying or explanatory theory after all.

A problem for D-S theory, however, is that inference is computationally ineffi-
cient compared to Bayesian inference. The inefficiency stems from evidence being
represented by a belief function that is induced by a mass function on the frame
of discernment instead of a probability distribution over a partition. Combining
evidence by Dempster’s rule increases computational complexity as the number
of possible states increases. In an attempt alleviate the complexity issue, though,
Shafer and Tversky (1985) emphasised that “[t]he usefulness of one of these for-
mal languages [i.e., the Bayesian and the D-S language] for a specific problem may
depend both on the problem and on the skill of the user... A person may find one
language better for one problem and another language better for another” (Shafer
and Tversky 1985, p. 311).

6See Norton (2007, 2011) for a series of challenges that the Bayesian faces in representing
complete ignorance. Norton, however, is not convinced that Dempster-Shafer theory does any
better, but we will leave those matters to the side in this paper.
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Moreover, one should recognize that D-S and Bayes are not incompatible theo-
ries, despite their dissimilarities. Some precise probability distributions are special
cases of D-S belief functions and some Bayesian conditional probability distribu-
tions are special instances of applying Dempster’s rule. D-S theory, then, is a
generalization of Bayesianism. Pitting the theories against each other makes lit-
tle sense from a confirmation-theoretic standpoint since any evidence confirming
Bayes confirms D-S theory also.

Like Dempster-Shafer theory, imprecise probability is a generalization of Bayes.
So again, any evidence that confirms Bayes also confirms IP. This logical fact does
not provide reason to ignore the more expressive IP framework. In fact, there are
explanatory reason for why Bayesian cognitive scientists should be compelled to
adopt the broader language of imprecise probability to capture several cognitive
phenomena. For instance, Daniel Ellsberg (1961) pointed out the phenomenon of
ambiguity aversion and demonstrated that the preferences of tested subjects are
inconsistent within a Bayesian framework. The results have since been replicated,
indicating that many are averse to ambiguity in decision making (see Camerer
and Weber 1992 for a survey). Mathematical economists later joined imprecise
probability together with a maxmin decision criterion, which plausibly explained
the results of Ellsberg’s experiments under an axiomatized scheme (Gilboa and
Schmeidler 1989). This example from psychology shows that Bayes is neither the
most unifying nor rational framework.

IP theory, however, has a computational inefficiency problem, similar to D-
S theory, involving great computational complexity when updating convex sets of
probabilities. The theory also encounters trouble when it comes to updating “triv-
ial states of uncertainty” or the non-informative prior, [0, 1], which has prompted
some to rule out the vacuous prior (see Walley 1991: Rinard 2013). But in doing so,
the theory becomes restricted to representing partial ignorance and loses the capa-
bility of representing complete ignorance. In order to recover such representation,
IP theory will need to be extended with a non-Bayes updating rule. Until then,
IP is limited in its modelling capabilities with respect to uncertainty-involving
phenomena.

The possibility framework has a computational advantage over probability as
“maxitivity” makes possibility measures compositional—viz. Π(X ∪ Y) is deter-
mined by the maximum of Π(X) and Π(Y). Minimal computation indicates that
possibility theory is at least simpler than Bayesianism. Within the larger picture,
there are similarities between possibility theory and Dempster-Shafer theory in
which a Pl function can be a possibility measure. However, possibility need not
be restricted to a D-S interpretation. In general, possibility theory “can be seen
either as a coarse, non-numerical version of probability theory, or as a framework
for reasoning with extreme probabilities, or yet as a simple approach to reasoning
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with imprecise probabilities” (Dubois and Prade 2007). The upshot of possibility
theory is its usefulness in assessing vague statements like ‘Bob is tall’ or ‘the shirt
is blueish’. Given its application to vagueness, possibility theory may offer cogni-
tive scientists a more unified method for explaining reasoning under uncertainty
with vague concepts. But since fuzzy approaches to uncertainty such as possibility
theory are not isomorphic to probability theory, it could be suggested that Cox’s
theorem rules out possibility theory as a rational means of quantifying uncertainty
(Lindley 1982; but see Colyvan 2008).

Ranking theory has parallels to possibility theory. But distinct from Bayesian-
ism and the considered theoretical frameworks, proponents point out that ranking
theory accommodates the everyday, categorical notion of belief (and disbelief), not
just quantitative degrees of belief. On these grounds, they claim that the rank-
ing theoretic approach has advantages over probabilistic approaches because it
allows for everything that we can do with quantitative measures and also to tackle
traditional problems in epistemology that center around the traditional tripartite
concept of belief (Spohn 2012).7 Ranking theory, then, can be thought of as more
unifying than Bayesianism. In the cognitive sciences, ranking theory has received
some attention especially in the AI community (e.g., Kern-Isberner and Eichorn
2014). However, its applications in experimental psychology are currently limited,
since it is not obvious how to derive experimentally distinguishable predictions
from ranking theory (but see Skovgaard-Olsen 2015).

Finally, quantum probability theory is uniquely based on a set of axioms allow-
ing for an agent to be Dutch-booked. As we noted, Dutch book arguments do not
provide a decisive reason for the superiority of Bayesianism for there are other ways
of vindicating Bayes. Moreover, while quantum probability theory “is perhaps a
framework for bounded rationality and not as rational as in principle possible”
(Pothos and Busemeyer 2014, p. 2), courtesy of its unique properties, including
superposition, entanglement, incompatibility, and interference, it accommodates
empirical results related to order and context effects that are not plausibly cap-
tured within a Bayesian framework (Pothos and Busemeyer 2013). Such capability
indicates that quantum probability is more unifying. An example of this will be
detailed in the following subsection, which we turn to now.

4.7 Casting Further Doubt: Perceptual order Effects

The observations made in this section thus far undermine the assumption that
Bayesianism is the best for representing and explaining uncertainty, and that it is

7Ranking theory is not the only approach to unifying degrees of belief and categorical belief.
For example, Hannes Leitgeb’s (2014) stability theory of belief proposes a unified theory also.
Another approach, which sidesteps deductive closure of full belief, is Easwaran and Fitelson’s
(2015) accuracy-based account.
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the most rational approach, too. However, virtually all Bayesian cognitive scien-
tists have neglected the above possibilities in their work and proceeded by taking
for granted the superiority of Bayesianism, or assuming that Bayesianism is the
only game in town. This is ultimately a methodological problem hindering progress
in cognitive science. In fact, recent findings in perception, judgment, and decision
making have been shown to be unaccommodated by the Bayesian framework, but
are plausibly explained by quantum probability.

For example, the experimental results of Conte and colleagues (2009) who in-
vestigated quantum-like interference effects in the perceptual domain show the
failure of Bayesianism. In their experiment, participants were presented with am-
biguous images, which could be perceived in two mutually exclusive manners. One
group of participants was presented with a single image A and asked to make a
binary choice between A = a or A = q on the basis of the manner in which they
perceived the image at the instance of observation. Another group of participants
was presented with two ambiguous images, B and A. After each presentation, par-
ticipations had to make a binary choice between B = b and B = r, and between
A = a and A = q.

By the law of total probability, Bayesian probability predicted the probability
that a participant chooses A = a in any of the trials is: P (A = a) = P (B = b)P (A
= a | B = b) + P (B = r)P (A = a | B = r). The results were inconsistent with this
prediction.8 They were instead consistent with the quantum probability prediction
that participants’ choices would be affected by quantum like interference where the
context generated by making the first perceptual choice interfered with the second
so that the participants’ choices showed order effects implying non-commutativity.
Since such interference effects are ubiquitous in psychology (e.g., Kvam, Pleskac,
Yu, and Busemeyer 2015), but incompatible with natural predictions of Bayesian-
ism, the quantum probability approach can account for some phenomena that
cannot be captured by Bayes.

Although the evidence does not fully vindicate quantum probability, it does
undermine the view that Bayesianism is the most empirically adequate framework.
If the argument from uncertainty is to succeed in justifying the Bayesian approach
in cognitive science, then other plausible theoretical frameworks should not be
ignored. Unless the relative epistemic, empirical and non-empirical virtues of the
Bayesian framework are probed against the virtues and limitations of alternatives
on an array of case-studies, the choice may be too premature to focus scientific
resources on this one approach. For it needs to be established that Bayesianism
is actually the “most simple”, “most unifying”, and “most rational” framework to

8Bayesians will be quick to point out that context effects can straightforwardly be handled
in Bayesian models by adjusting the likelihoods so that they no longer assume independent and
identically distributed samples. While this move underwrites the flexibility of Bayes, it also
highlights the risk of ad-hocery that may come with this flexibility
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H E

Figure 1: The Bayesian Network with the variables H and E.

understand uncertainty-involving phenomena produced by cognitive systems.

4.8 A Bayesian Argument

In closing this section, we would like to give a Bayesian argument to the effect
that the cognitive science, as well as the philosophical communities should not
endorse Bayes too quickly. To do so, we consider a theory H which accounts
for the evidence E. Introducing binary propositional variables H and E with the
values H (“The hypothesis is true”) and ¬H (“The hypothesis is false’) and E
(“The evidence obtains”) and ¬E (“The evidence does not obtain”), the Bayesian
Network depicted in Figure 1 describes the probabilistic relation between H and
E.9

We assume that H entails E, i.e. that the evidence is a deductive consequence
of the theory. Hence, we set

P (H) = h , P (E|H) = 1 , P (E|¬H) = α (1)

with 0 < α < 1. It is then easy to show that the posterior probability of H, i.e.
the probability of H after learning that E is true, is given by10

P (H|E) =
h

h + αh̄
> h (2)

Hence, E confirms H. But how much? As one sees from eq. (2), P (H|E) is a
decreasing function of α. For α → 0, i.e. if we consider it to be impossible that
an alternative theory (which is contained in the “catch-all” ¬H) accounts for the
evidence, then P (H|E) → 1. For α → 1, i.e. if we are convinced that an alternative
theory accounts for the evidence, then P (H|E) → h. Hence, if we consider it quite
likely that an alternative theory accounts for the evidence, i.e. if we set α ≈ 1,
then P (H|E) ≈ h and we won’t get much confirmation for H after observing E.

This situation changes is we consider several independent pieces of evidence
E1, . . . , En. Assuming Ei ⊥⊥ Ej|H for i 6= j = 1, . . . , n and setting P (H) =
h, P (Ei|H) = 1 and P (Ei|¬H) = α for i = 1, . . . , n, we obtain

P (H|E1, . . . ,En) =
h

h + αeff h̄
. (3)

9See Bovens and Hartmann (2003) for an introduction to the application of Bayesian Network
methods in epistemology and philosophy of science.

10Here and throughout we use the abbreviation x̄ := 1− x.
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Figure 2: The Bayesian Network with the variables H,E and A.

For large n, αeff := αn ≈ 0 and hence P (H|E) ≈ 1. Given that Bayesian Cog-
nitive Science accounts for many different phenomena, this seems to justify tak-
ing Bayesian Cognitive Science very seriously. Note, however, that we made two
important assumptions. First, we assumed that the different pieces of evidence
E1, . . . , En are independent (given H). This is controversial and needs to be justi-
fied on a case by case basis. Second, we assumed that all pieces of evidence are a
deductive consequence of H, i.e. we assumed that P (Ei|H) = 1 for all i = 1, . . . , n.
This is controversial as H may make Ei only highly likely, and so we should set
P (Ei|H) to a value smaller than 1. Assigning a value smaller than 1 to P (Ei|H) is
also supported by the observation that Ei typically does not follow from H alone,
but from H and some additional auxiliary assumptions. (This is the famous Duhem
Quine Problem.) Hence, P (Ei|H) < 1 (for all i = 1, . . . , n) which effectively lowers
the posterior probability P (H|E1, . . . ,En).

To accept H, we would also like to make sure that the posterior probability of
H is fairly high. As eq. (2) shows, the value of P (H|E) also depends on the prior
probability of H (i.e. on h) and neglecting it would mean to commit the base-rate
fallacy.

So let us now explore what we can say about the prior probability of H. We
will argue that it depends on our beliefs about the existence of alternative theories
that explain the evidence. To proceed with our analysis, we additionally introduce
the binary propositional variable A with the values A := “There is an alternative
explanation for E” and ¬A accordingly and study the Bayesian Network depicted
in Figure 2. We set

P (A) = a , P (H|A) = β (4)

with 0 < a, β < 1. β will be large if we believe that H is part of a better explanation
(provided there is one) or if we believe that there can be multiple equally acceptable
explanations for E. β will be small if we believe that an alternative explanation will
be better and eventually replace H. β will also be small if one beliefs that either
H or some alternative is right and that there can be only one explanation for E.
Hence, if there is an alternative, this alternative might well be the true theory
and hence one assigns a small value to β. Given that there are several more or
less unexplored alternative theoretical frameworks in cognitive science (as argued
above), it seems rational to assign a rather low value to the parameter β.
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We also set
P (H|¬A) = 1 (5)

as there must be (or so we assume) an explanation for E. If A is false and there is
no alternative explanation for E, then H has to be true.

With this, we calculate

P (H) = h = aβ + ā. (6)

Hence, if one has good reasons to believe that a is fairly large (i.e. if, as in the case
of Bayesian Cognitive Science, alternatives to H are known and we can assume that
they provide alternative explanations of E) and if β is fairly small (as we argued),
then the “prior” h is relatively small and hence the posterior probability P (H|E)
is relatively small.

We have therefore given a Bayesian argument to the effect that we have to
be careful and not accept Bayesian Cognitive Science too quickly. It might well
be worth the effort to systematically explore alternative theoretical frameworks
and identify phenomena that can distinguish between the different explanatory
theories.

5 Conclusion. Against Monopoly

If there is good reason to doubt that the Bayesian approach provides us with the
best explanations for many cognitive phenomena, then there is good reason to
remain agnostic about the truth of Bayesian models of cognitive phenomena and
behaviour, contrary to what has been claimed in the philosophical literature (e.g.,
Rescorla 2015a; 2015b), and in the cognitive science literature (e.g., Knill and
Pouget 2004; Ma et al. 2006; Friston 2009).

Facts about the institutional organization of contemporary scientific inquiry
bolster this agnosticism, providing us with some explanation of why alternatives
to Bayesianism have been neglected. As pointed out by Stanford (2015), the
institutional apparatus of contemporary scientific inquiry has “served to reduce
not only the incentives but also the freedom scientists have to pursue research
that challenges existing theoretical orthodoxy or seeks to develop fundamental
theoretical innovation.” While this conservatism has fostered specialization in the
sciences, it has also shielded popular theories and frameworks from comparison
with relevant, under-considered alternatives. This conservatism, coupled with the
neglect for available alternatives, pose a challenge to a realistic attitude towards
Bayesian models of cognition. More important, this conservatism substantiates
the concern that valuable scientific resources are being unjustifiably monopolized
by Bayesians.
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Currently, there is little doubt that Bayesianism is the most popular approach
to represent and deal with uncertainty (Halpern 2003, p. 4). The tools which a
Bayesian cognitive scientist can currently use to address problems of uncertain in-
ference are more sophisticated than alternatives, being routinely used in neighbor-
ing fields like machine learning, artificial intelligence, and statistics. In comparison
to Dempster-Shafer theory, possibility theory, ranking theory, and quantum prob-
ability theory, the Bayesian approach is more widespread in each of a wide variety
of fields ranging from statistics to machine learning and AI (Poirier 2006; Jordan
and Mitchell 2015). And the popularity of Bayesian modelling has been growing
in cognitive science too, as evidenced by an increase in the number of articles, con-
ference papers and workshops dedicated to Bayesian modelling of cognition and
its foundations (cf. Kwisthout et al. 2011, note 1).

Given this popularity, and given that it is not obvious that the Bayesian frame-
work enjoys special epistemic virtues in comparison to alternatives, many cognitive
scientists’ choice to carry out their research within the Bayesian framework can
be plausibly explained in terms sociological factors connected with the reward
structure of scientific institutions, which is biased towards conservatism (Stanford
2015). These sociological factors may have led more and more scientists to ap-
proach research questions within the Bayesian framework, while neglecting some
of the alternatives. As more and more cognitive scientists have addressed research
questions within the Bayesian framework, a division of cognitive labour has been
fostered in the field. Sophisticated tools have been developed (Jordan and Mitchell
2015). Such tools have been exploited to approach problems at a higher level of
specialization in both machine learning and human cognition (Gershman, Horvitz
and Tenenbaum 2015). But if a higher degree of specialization arises within a sci-
entific community with an incentive structure that strongly favours conservatism,
then exploring and developing novel theoretical frameworks will happen with much
more difficulty. As this will impact the trajectory of cognitive science, we believe
– like Gigerenzer (1991) before us – that it is important to take a step back and
evaluate whether the net result is the best way to advancing our understanding of
how minds work.
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