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Abstract

Tarski characterized logical notions as invariant under permutations of the
domain. The outcome, according to Tarski, is that our logic, which is com-
monly said to be a logic of extension rather than intension, is not even a logic
of extension—it is a logic of cardinality (or, more accurately, of “isomorphism
type”). In this paper, I make this idea precise. We look at a scale inspired
by Ruth Barcan Marcus of various levels of meaning: extensions, intensions
and hyperintensions. On this scale, the lower the level of meaning, the more
coarse-grained and less “intensional” it is. I propose to extend this scale to
accommodate a level of meaning appropriate for logic. Thus, below the level
of extension, we will have a more coarse-grained level of form. I employ a
semantic conception of form, adopted from Sher, where forms are features of
things “in the world”. Each expression in the language embodies a form, and
by the definition we give, forms will be invariant under permutations and thus
Tarskian logical notions. I then define the logical terms of a language as those
terms whose extension can be determined by their form. Logicality will be
shown to be a lower level analogue of rigidity. Using Barcan Marcus’s prin-
ciples of explicit and implicit extensionality, we are able to characterize purely
logical languages as “sub-extensional”, namely, as concerned only with form,

and we thus obtain a wider perspective on both logicality and extensionality.
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1 Prelude

A key component of Tarski’s contribution to the foundations of the developing
field of mathematical logic is his characterization of logical notions—the subject
matter with which mathematical logic is concerned. In continuation with Klein’s
characterization of geometric disciplines through invariance properties, Tarski set
logical notions as the most general notions, and characterized them as the ele-
ments of the set-theoretic hierarchy that are invariant under all permutations of
the given underlying domain. Logical notions do not distinguish between ele-

ments of the domain, and are not, in general, sensitive to difference in extension:

It is customary to say that our logic is a logic of extensions and not of
intensions, since two concepts with different intensions but identical
extensions are logically indistinguishable. In the light of [our results]
this assertion can be sharpened: our logic is not even a logic of exten-
sions, but merely a logic of cardinality, since two concepts with differ-
ent extensions are still logically indistinguishable if only the cardinal
numbers of their extensions are equal and the cardinal numbers of the

extensions of the complementary concepts are also equal.

(Lindenbaum & Tarski, 1935, pp. 387-8)

Philosophers have, throughout history, dealt withs different levels of meaning
to which we may refer when interpreting a language: some languages require re-
course to the level of intensions, and others only to the more coarse-grained level
of extensions. In this paper I elaborate on the remark made by Tarski (here with
Lindenbaum and later in (Tarski, 1986) on his own), and I characterize logical
languages—languages whose vocabulary is purely logical—as “sub-extensional”:
as sensitive to a level of meaning even more coarse-grained than that of extension.
Lindenbaum and Tarski mention cardinality as the only aspect of meaning that is
relevant to logic, but to be more accurate, permutation invariance allows further
distinctions—those that more generally concern set-theoretic structure. The idea
I aim to explore is that there is a level of meaning which concerns only structure
and which logical languages make recourse to, which I will label form. That is,
a linguistic expression can be thought to have, besides an intension and an ex-
tension, also a form, the latter construed semantically as a type of meaning more
coarse-grained than extension.

Throughout the paper I will motivate this idea of form building on Tarski,
as well as Barcan Marcus and Sher, and I will present some of its consequences.
However, before moving forward, let me first put forth a characterization of form



that will serve as the basis of our inquiry. The initial characterization will have the
structure of an abstraction principle; it will, in this respect, resemble the initial
characterzation of “isomorphism type” offered in, e.g., (Levy, 1979). This prin-
ciple captures the essence of what shall be meant by form, and will serve as an
adequacy condition for any definition of form. Later on we shall see an explicit
definition of form that satisfies this principle. We thus state when two expressions
have the same form in their respective domains, and this equality will depend on
their extension. We assume that the language is interpreted, and use “extp(t)” to
denote the extension of a term ¢ in a domain D. In so-called extensional contexts,
all that matters to the truth value of a sentence is the extensions of its components.
The elements of the domain serve as the building blocks for extensions. We shall
see that in some contexts the identity of the elements of the domain is immate-
rial, and only the domain’s cardinality will matter—those will be the so-called
formal contexts. In such cases it suffices to speak of the form of an expression in a

domain-size.

Adequacy Condition (form) Lett and ¢’ be primitive expressions in a given lan-
guage L. formp(t) = formp/(t’) if and only if there is a bijection f : D — D’ such
that f(extp(t)) = extp ().}

This condition will be explained in due course. We can already see, however,
that form, as presented here, is not a syntactic feature of expressions, but a se-
mantic one. This kind of approach to forms and to formality is inspired by Sher’s
semantic conception of form, as I shall explain in §4. That form can be thought of as
a level of meaning will be the main concern of this paper. At this point, I would
like to draw attention to two crucial points. First, that forms of expressions are
more coarse-grained than their extensions in any given domain. Secondly, that
the adequacy condition is borne out of Tarski’s characterization of logical notions
as permutation invariant. We shall attend to Tarski’s account shortly, but for now,
note that forms are insensitive to the particular identity of individuals in the do-
main and are invariant under permutations of the domains over which they are
defined.

IWe extend a bijection f between two domains to a function between the set-theoretic hierarchies
built over those domains by recursion in the natural way. By “domains” we mean sets of ur-elements.
The restrictions of domains to ur-elements enables the recursion by which f is extended to work, by
blocking a set from being both a member and a subset of the domain.

Note that on the left we have an identity statement, and that the condition on the right (there is a
bijection f : D — D’ such that f(extp(t)) = extps(t’)) is an equivalence relation on pairs of domains
and expressions, and thereby the bi-conditional has the structure of an abstraction principle.



2 Introduction: Logical Notions and Logical Terms

In a lecture delivered in 1966, Tarski gave an account of logical notions, the entities
he assumed to be the subject matter of logical inquiry. Tarski characterized logical
notions as the set-theoretic entities invariant under permutations of the given un-
derlying domain. More recent discussions have taken up Tarski’s characterization
in an effort to demarcate logical terms. The idea is that logical terms denote logical
notions, as characterized by Tarski or in a similar modified way. The common
contention is that logical notions are the extensions of logical terms.

While form in the context of language is frequently associated with syntactic
structure, the semantic tradition in logic following Tarski treats formality in a
semantic manner. That is, formality does not have to do only with the way ex-
pressions combine to form more complex structures, but it also has to do with the
things in the world which expressions mean or denote and their properties. The
main proponent of the semantic approach to formality is Gila Sher, who takes the
semantic conception of formality a step further. As for Tarski, for Sher formal-
ity is not merely a syntactic phenomenon, and the logical terms—characterized
as formal—are defined through semantic characteristics. But further, for Sher,
formality itself is not only a feature of expressions (vis-a-vis their semantic prop-
erties), but can be found “in the world”. Thus, on such an approach, logical terms
refer to formal features (of extensions) in the world. Quantifiers, for instance,
are treated in the Fregean manner as second-level predicates. They thus denote
higher-order extensions, i.e., things in the world, some of which are formal. The
quantifier There are exactly 3 denotes the higher order property of having three
members (Sher, 1996, p. 674). Forms are thus higher-order extensions, and are
structural, rigidified, features or properties of lower order extensions. And so,
for Sher formality is not merely a linguistic phenomenon: it is rather grounded
in non-linguistic, “objectual” properties (Sher, 1996, p. 670). The connection
between forms on the objectual level and language is manifested by the logical
vocabulary.

In this paper, I take up Tarski’s characterization of logical notions and Sher’s
semantic approach to form, and shift them to another field. Not only shall forms
be non-linguistic and in the world, I shall moreover consider (semantic) form as its
own type of semantic value comparable to extension, intension and hypertension.
I treat those types as occupying different levels of meaning lying on a scale of
coarseness, starting with the most coarse-grained at the bottom, and going up to
the more fine-grained at the top. The level of form will be coarser than that of

extension and thus might be considered as “sub-extensional”. I shall then employ



Barcan Marcus’s principles of explicit and implicit extensionality to situate forms
under extensions in the scale. The basic idea is therefore that starting with an
interpreted language, each expression (not just the logical ones) has, in addition
to its extension and intension, also a form that will be derived from its extension.
Tarski’s logical notions serve as inspiration for this definition. Logical terms will
then be defined. While in the Tarski-Sher tradition, logical terms are defined as
those terms denoting logical notions, here logical terms will be characterized as

having a special kind of form.

In the proposed theory we thereby obtain a wider perspective on both logi-
cality and extensionality. The formality of logical languages is characterized as
a low level of intensionality. Namely, we are able to characterize purely logical

languages as “sub-extensional”—as concerned only with form.

We shall see that as Tarskian logical notions, forms are invariant under per-
mutations. An added benefit we obtain from the proposed theory is that Tarski’s
proposal becomes an inherent part of a theory about language. Tarski first formu-
lated his characterization in the context of Klein’s Erlangen Program, where vari-
ous geometric disciplines were characterized through different invariance criteria.
Tarski then construed logical notions—the subject matter of logical inquiry—as
the most general notions, compared to other notions in the Program. However,
when employed in a logical-linguistic inquiry, the comparison to geometric disci-
plines seems out of place. Here, I adopt Tarski’s idea of logical notions as general
and coarse-grained, and import it to a linguistic scale, where the granularity of
various levels of meaning is compared. Logic is commonly said to be concerned
with forms of expressions, and here this saying will be understood in a new way,

as forms will constitute now their own, sui generis, semantic role.

The plan of the paper is as follows. In §3, I present Tarski’s characterization of
logical notions in the context of Klein’s Erlangen Program. In §4, I define forms
of primitive expressions. I compare forms to Tarskian logical notions, and invoke
Sher’s semantic conception of form. In §5, I discuss logicality: I define logical
terms by a special property of their form. I show that logicality is analogous to
rigid designation on a lower level of meaning. In §6, I relate forms to other levels
of meaning through Barcan Marcus’s principles of explicit extensionality, the basic
idea of which is that different levels of meaning can be loosely ordered by the
granularity of their associated semantic values, from the more extensional to the
more intensional. I then discuss Barcan Marcus’s principles of implicit extension-
ality, where various levels of meaning are compared in terms of the contexts in
which they enable substitution salva veritate. In both cases, the logical vocabulary



defined in §5 is used in characterizing the languages and contexts appropriate
for the level of form. Further, I show, using McGee’s theorem on the definabil-
ity of permutation invariant operations, that the first order infinitary language
Loooo can serve to define “formal contexts”, those contexts where expressions of
the same form can be substituted salva veritate. In §7, I define forms of complex
expressions, and discuss the logicality of sentences. Logical sentences in this con-
text, as other logical expressions, are sensitive to the cardinality of the domain,
and thus constitute a wider class than that of logical truths and falsehoods.

3 Tarski and Klein’s Erlangen Program

Take a geometric space, or manifold, S. For simplicity, assume that S is two-
dimensional, i.e., a plane, and that S consists of points that are specified by two
coordinates from the real field. By taking sets of points in this space we can form
lines and geometric figures. Take a notion in this context to be any entity in the set-
theoretic hierarchy built over a given domain, in this case the geometric space S.
Now, we can consider the notion of triangle. A triangle is a set of points consisting
of three intervals adjoining at the ends. The notion of triangle is thus the set of all
such sets.

Now, it is a basic feature of notions of Euclidean geometry that they are in-
different to motions: transformations of the space that preserve distances (also
termed isometric transformations).> That is, if you take an isometric transforma-
tion, a one-one and onto function of the plane which preserves distance, the image
of a triangle under that transformation will be a triangle. If you extend the trans-
formation in a natural way to apply to sets built over the plane, then the image
of the set of triangles under a motion is just the set of triangles: and thus we say
that the notion of triangle is invariant under motions. And more generally, every
property referred to in Euclidean geometry is invariant under motions. In a way,
then, there is some arbitrariness in the system of coordinates. Euclidean geom-
etry at its base is not concerned with the particular identity of points in space,
but rather with higher-order structures, such as properties and relations between
figures, that are unaffected by distance-preserving mappings.

This modern conception of geometry is most prominent in the work of Fe-
lix Klein (1893). In the so-called Erlangen Program, Klein showed how various
geometric disciplines can be characterized by groups of transformations over a
geometrical space. Indeed, we can take the previous observation on Euclidean

2We use “transformation”, as Tarski, to mean a one-one function from the space onto itself.



geometry a step further and use a group of transformations to define the notions
relevant to the discipline. In the case of Eucledean geometry, we can use isometric
transformations as defining the discipline.

A space with a group of transformations gives us an identity criterion of sorts
for the entities of the relevant discipline, which is more coarse-grained than ex-
tensional identity of sets (Marquis, 2008). We can have two different sets of points
which can yet be identified if they do not differ with respect to any notion of Eu-
clidean geometry. In any such case, one of the sets will be the image of the other
under some isometric transformation. We can thus define an equivalence rela-
tion =g, which holds between two sets if one is the image of another under an
isometric transformation. Note that we obtain such an equivalence relation from
any class of transformations as long as they form a group.® The relation =g, can
be thought of as “identity with respect to the notions of Euclidean geometry.”

Klein observed that various geometrical disciplines can be characterized by a
space and a group of transformations. If we look at affine transformations, trans-
formations which preserve betweeness and co-linearity, we obtain the notions of
affine geometry. Affine transformations include isometric transformations and
much more, and so the notions of affine geometry are a subset of the notions of
Euclidean geometry. The more transformations we include, the more general the
notions we obtain. Topology is yet a more general discipline, allowing only no-
tions invariant under homeomorphisms (continuous transformations with a con-
tinuous inverse).

Klein’s Erlangen Program has been employed and extended in various ways
(see e.g. (Marquis, 2008)). An extension to logic was most famously carried out
by Tarski ((Tarski, 1986), but see also (Mautner, 1946)). How does logic fit into
this scheme, which classifies geometric disciplines and concerns geometric spaces
at its base? The idea is that if we take Klein’s method to the limit, and consider
all transformations on a given space, we thus obtain the most general notions.
Tarski’s logical notions are those notions that are invariant under all transforma-
tions (or permutations, to use the expression prevalent in contemporary litera-
ture). In this case we can conceive of an equivalence relation =;,, which holds
between two notions if one is the image of the other under some permutation,
coding “identity with respect to the notions of logic.” The generality of logical
notions strips them from any content specific to some geometric discipline: no

notion that could be reasonably conceived as distinctive of some geometric disci-

3The group’s associated operation is composition of functions. Reflexivity is obtained from the
identity element which is the identity function, symmetry is obtained from the existence of an inverse,
and transitivity is obtained by closure under composition.



pline, as abstract as it may be, will be logical.

Indeed, which notions are permutation-invariant? On the first, base level, that
of points in space, no notion is invariant: logic does not distinguish between par-
ticular points. But so far, there is no departure from Eulidean geometry, which, as
we have seen, does not concern the particular identity of points, but rather only
higher-order properties of figures in geometric space. On the next level, that of
sets of points, only the empty set and the whole space are invariant under permu-
tations. Again, that is the case also in Euclidean geometry: only those two sets are
invariant under isometric transformations. The difference in generality between
the two disciplines becomes apparent when we move further, to relations over
the given space or to sets of subsets of the domain. Consider the quadric relation
R(x,v,z,w) which holds if the distance between x and p is equal to the distance
between z and w. This relation is invariant under isometric transformations, but
not under all transformations. Alternatively, consider the second level property of
being a triangle, which holds of a set of points only if they form a triangle. Surely,
the notion of triangle is invariant under isometric transformations, but not under
all transformations. When it comes to relations, the only logical notions we have
are those that have to do with equality or distinctness (so, the only logical binary
relations are the empty and universal relations, the relation of being equal, and
the relation of being non-equal). As for second-level properties and relations, we
only have notions that are set-theoretic or have to do with size: being non-empty,
having three elements, being a subset of, being bigger than, etc.

We see that there is nothing particularly geometric about the logical notions.
It is as if by accident we used as the base a geometric space, as the dimension or
coordinates associated with the points in space come nowhere into play: we could
have used any domain as our base, with all its permutations. And indeed, con-
sidering a domain and its associated transformations is an idea of great generality
which transcends the realm of geometry, as is made manifest in contemporary
category theory.*

Notwithstanding Tarski’s characterization, logic is traditionally conceived of
from a very different perspective, as concerned with validity of arguments. Log-
ical validity is commonly said to be a matter of the form of the argument, and
as arguments are often taken to be linguistic entities, logic has a distinctive con-
nection with language. Tarski himself made a central contribution to our current

understanding of validity in his (Tarski, 1936). Thirty years later, Tarski’s lec-

4Though, through the influence of Klein, the mere idea of characterizing a discipline by a space
and a group of transformations is thought of as “geometric,” referring to the method of classification
rather than the distinctive content of geometric disciplines.



ture connecting logic to a program so influential in mathematics represents, in
contrast, the modern conception of logic as a bona fide mathematical discipline.
Tarski’s focus is on the subject-matter of this rising discipline, and so here he turns
away from the traditional philosophical concerns. The turn to the geometric com-
parison class in Klein’s Erlangen Program is foreign to the traditional view of logic
as having a distinctive connection with validity and language.

Nevertheless, Tarski’s characterization of logical notions has been deployed
widely in current debates on logical terms: the part of the vocabulary of a language
which determines its relation of logical consequence. According to the criterion of
permutation-invariance, logical terms are the terms that denote Tarskian logical
notions, and those are the terms that are to be held fixed when checking for log-
ical validity. Now it is important to stress that Tarski himself did not present his
characterizarion of logical notions as relating to the question of logical terms, at
least not as those are connected to the concept of logical consequence. Quite the
contrary: in his lecture (Tarski, 1986) Tarski expressly distinguishes the matter
of logical notions and the matter of logical truth. Logical consequence, or valid-
ity, is not even mentioned. It is thus rash to interpret Tarski’s logical notions as
filling a gap left open in his paper on logical consequence (Tarski, 1936), where
Tarski expresses skepticism about the existence of a sharp boundary between log-
ical and nonlogical terms.’> The later employment of permutation-invariance in
the literature on logical consequence thus extends the initial project of the 1966
lecture which simply seems to address mathematical logic as a mathematical dis-
cipline with its own subject-matter, on a par with other mathematical disciplines,
including the geometric ones.® In sum, it appears that logical notions were de-

5Especially as we may note that the idea of permutation invariance is prominent in (Lindenbaum
& Tarski, 1935) and so was salient for Tarski at the time of writing the paper on logical consequence
(Tarski, 1936)—and yet Tarski does not appeal to it. Tarski notes that the results in (Lindenbaum &
Tarski, 1935) were presented as early as 1932-3. In a letter to Morton White, as late as 1944 (White &
Tarski, 1987), Tarski remains skeptical regarding a principled criterion for logicality, and again, does
not even mention the results from the paper with Lindenbaum published in 1935.

Another interpretive option is to view Tarski as attending to the 1936 lacuna in his 1966 lecture,
but not seeing himself as providing an absolute criterion. The characterization of logical notions as
invariant under permutations still leaves room for relativity: what comes out as logical will depend
on the background set theory (see (Gémez-Torrente, 2015)). This interpretation sits well with the fact
that Tarski does not declare that he had filled the gap of the 1936 paper, but it does not explain why
Tarski, in the later lecture, avoids drawing any connection to that paper or to the concept of logical
consequence.

6But see the later (Tarski & Givant, 1987) where an explicit connection between logical terms in a
given formal language and logical notions is made. Note, however, that when the link is finally made,
it is in the context of a mathematical text on languages for set theory. The definition there of logical
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fined independently from the motivations guiding the model-theoretic definition
of logical consequence in (Tarski, 1936).

There is, however, a connection between logical notions and language and lin-
guistic expressions that Tarski makes in his 1966 lecture. Tarski notes that the
notions definable in conventional systems such as that of Principia Mathematica
are all invariant under permutations, referring to a result from (Lindenbaum &
Tarski, 1935). But note that this remark does not set logical notions apart from
geometric notions in an essential way. In the same article referred to, the defin-
ability of geometric notions is described as well, with respect to various axiomatic
systems for geometry. Thus, the notions definable in a system for Euclidean geom-
etry are all found to be invariant under isometric transformations. By these lights,
Tarskian logical notions appear to be of a most general nature through a compar-
ison to geometric notions. Even if the end-result appears to be independent of
all geometric content, logical notions have no special connection to language, let
alone to truth or logical consequence. Logical notions are connected to language
as much as any set of geometric notions: each can be associated with a subset of
the vocabulary used to refer to them—we use the geometric vocabulary to talk
about geometry and we use the logical vocabulary to talk about logic.

Now, one can retain this Tarskian attitude and extend the analogy between
logic and other disciplines to the context of consequence relations as well. Gila
Sher takes a step further and makes an explicit connection between permutation
invariance (or, to be accurate, isomorphism invariance) through logical terms to
logical consequence. As with Tarski, logic is the most general discipline, though
Sher does not limit herself to the geometrical context. Thus, according to Sher,
as there is logical consequence, so there is biological or legal consequence (Sher,
1996, p. 670). For each kind of consequence relation one fixes an appropriate
vocabulary, where logical consequence is distinguished as being general and for-
mal. Indeed, the denotations of logical terms (which are isomorphism invariant,
and are thus Tarskian logical notions) are, according to Sher, formal features of
the world, whereas the biological vocabulary concerns biological features of the
world, and so on. We shall return to this point in the next section.

In what follows I will employ some of the fundamental ideas of Tarski and Sher
on logical notions. However, I will make their linguistic role more significant.
The relevant comparison class will not be that of mathematical disciplines (or

symbols (p. 57) serves for proving a mathematical theorem, and is not used elsewhere in the book.
The definition is not backed by any philosophical analysis, and no connection is made to Tarski’s work
on logical consequence (though other relevant works: Tarski’s lecture and Tarski’s earlier paper with
Lindenbaum are mentioned).
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other scientific disciplines), but will rather be of a linguistic nature, and more
specifically, will consist of levels of meaning. Sher’s semantic conception of form
will facilitate the new connection.

Recall the quote from Lindenbaum and Tarski with which the paper starts. At
the end of the 1966 lecture, Tarski reiterates:

This result seems to me rather interesting because in the nineteenth
century there were discussions about whether our logic is the logic
of extensions or the logic of intensions. It was said many times, es-
pecially by mathematical logicians, that our logic is really a logic of
extensions.” This means that two notions cannot be logically distin-
guished if they have the same extension, even if their intensions are
different. As it is usually put, we cannot logically distinguish proper-
ties from classes. Now in the light of our suggestion it turns out that
our logic is even less than a logic of extension, it is a logic of number, of
numerical relations. We cannot logically distinguish two classes from
each other if each of them has exactly two individuals, because if you
have two classes, each of which consists of two individuals, you can
always find a transformation of the universe under which one of these
classes is transformed into the other. Every logical property which be-
longs to one class of two individuals belongs to every class containing
exactly two individuals.

(Tarski, 1986, p. 151).

It is the idea gestured at by Tarski in this quote that I would like to develop in
the following sections. From a linguistic perspective, logic is concerned neither
with intension nor with extension, but with an even more course-grained level
of meaning which I will call form. Tarski’s quote would have us associate this
level of meaning with cardinality. Indeed, cardinality plays a major role, but a
more accurate description of what is preserved by permutations is isomorphism
type. Strictly speaking, Tarski’s quote is applicable only to sets of the first level:
if A and B are sets of individuals of the same cardinality (here: “number”), and
their complement in the domain are also of the same cardinality, then A =,, B.
However, when it comes to relations, cardinality is insufficient for identifying
logical notions, as further set-theoretic structure can make a difference (to take
a simple example, by any acceptable set-theoretic definition of the ordered pair,
{{a,a)} 2104 {(a,b)} if a = b: both sets are singletons, but none can be obtained by a

7Tarski refers here in a footnote to (Whitehead & Russell, 1910, III (2)).
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permutation from the other). The notion of form we shall explore in what follows
will be associated with isomorphism type. However, as we shall see, cardinality
plays an essential role in logical languages, as the cardinality of the domain is all

that matters for the truth values of their sentences.

4 The Semantic Notion of Form

On the picture I propose, as there are intensional and extensional languages, there
are also formal languages: these languages do not mind differences in extension,
but only differences in form. In this section I shall define forms, and in later
sections I shall characterize formal languages in this new sense.

The idea of form to be employed here is a purely semantic one. As the other
notions of meaning mentioned, forms will be nonlinguistic entities. This might
defy an intuition by which form has to do with syntax. The idea is not to replace
the syntactic idea of form, but to focus on the semantic perspective.

We begin with an interpreted language, understood in a very wide sense. Thus,
we assume that each well-formed expression of the language may be assigned at
least one of an extension, an intension and a hyperintension, via some intended
model appropriate for the language. We view those different types of seman-
tic values as inhabiting different levels of meaning. Normally, an interpretation
or model for a language takes into account just some of these levels. Thus, we
might consider extensions, but not intensions as the relevant meanings for some
discussion—and make do with extensional models, or we might consider exten-
sions and intensions, but not hyperintensions—and work with possible worlds
models. Here we assume that all the levels exist, though perhaps disregarded in
certain contexts.

Moreover, the levels of meaning are distinguished by their granularity, where
the most coarse-grained meanings are extensions, and the finer the distinctions
we make, the more intensional the relevant notion of meaning is. In the formal-
ism, extensions are set-theoretic constructions over a given domain: elements,
sets, relations etc. are the extensions of individual constants, monadic predicates,
polyadic predicates etc.® We adopt here the standard technical definition of in-
tensions as functions from possible worlds to appropriate extensions therein. The

8Extensions for connectives can be defined as operators from sets of assignments satisfying sub-
formulas to a set of assignments satisfying the complex formula. See §7, and in particular fn. 18, for
more details. I shall not be concerned with modal operators and other expressions that belong solely
to intensional languages.
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extension of Dog in a given domain is the set of dogs in the domain, and the inten-
sion is a function picking out in each possible world in a given range of possible
worlds the set of dogs there.® Intensions provide us with the modal profile of
an expression, but have been argued to be still too coarse-grained to account for
synonymy. All necessarily true sentences, for instance, have the same intension.
And so a more fine-grained notion is required. Hyperintensions serve to account
for synonymy and can be construed in different ways. We can follow Tichy’s ren-
dering of Fregean senses in Transparent Intensional Logic and identify hyperinten-
sions with constructions: each expression will encode the procedure by which its
extension is to be computed in each possible world; see (Tichy, 1988; Duzi, 2010,
2012). Other options include identifying hyperintensions with structured inten-
sions (Carnap, 1947; Cresswell, 1975) or algorithms (Moschovakis, 2006).

Now, extensions, as the most coarse-grained type of semantic value, are com-
monly perceived as lying at the bottom of the induced scale. I would like to
propose that: a) we can think of forms of expressions as constituting a level of
meaning lying below extensions (as “sub-extensions”), and that b) permutation
invariance can guide us to a definition of form through the adequacy condition
we have formulated in the very first section. The two parts of the proposal will be
dealt with in conjunction, supporting each other.

Let us then turn to forms, elaborating on the adequacy condition stated in the
first section. The form of an expression will be defined based on its extension.
Note that the extension of an expression can be derived from its intension by ap-
plying the intension to a distinguished actual world. The intension can normally
be derived from the hyperintension by “forgetting” the extra structure. Indeed,
the different levels of meaning mentioned here are linearly ordered in terms of
granularity.

For greater generality, let us assume that while the language is interpreted, the
domain is not settled. This means that we can consider the extension of an expres-
sion in different domains, but as the language is interpreted, the extension of the
expression is determined by the domain. Recall our notation: for any expression
a, extp(a) is the extension of an expression « in a domain D.

Forms will be invariant under permutations, as are Tarskian logical notions.
However, instead of looking at permutations on a given domain, we shall widen
our perspective to include bijections in general—allowing for variable domains.

Note that Tarski’s characterization of logical notions assumes one given domain

There are reasons to keep models mathematically pure—consisting of only mathematical objects—
in which case the extension of Dog in a domain will be a set of mathematical objects used as a surrogate
for a set of dogs. I will leave these issues aside.
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(indeed, a geometric space). However, contemporary model-theoretic semantics
employs models with different domains for greater generality. And so, the map-
pings relevant to invariance conditions should take this into account. Thus, Sher’s
criterion for logicality is that of invariance under isomorphisms of structures, in-
duced by bijections between underlying domains (see (Sher, 1991, pp. 49ff)). The
move from permutations to bijections is a natural one, and is accepted in the
literature on logical terms, and so Tarski’s permutation invariance and Sher’s iso-
morphism invariance are normally grouped together as the Tarski-Sher criterion
for logicality. For us, this move allows for a domain-independent notion of form:
the form of an expression will depend on the domain in which it is interpreted,
and yet two expressions can have the same form over different domains.

Something like the “isomorphism type” of the extension of an expression would
do the job of form. An “isomorphism type” of a structure can be defined by ab-
straction, as in Levy (1979, p. 49), who in turn generalizes Cantor’s method of
abstraction in the definition of ordinal type. Levy states an abstraction principle
as a temporary assumption, and later on gives an explicit set-theoretic definition
satisfying the assumption. We follow a similar method, using the adequacy con-
dition presented in the prelude. We thus state a condition on forms that has the
structure of an abstraction principle, i.e., we give an identity criterion for forms
on the basis an equivalence relation interpreted as “having the same form”. At
this point we shall discuss forms for primitive expressions only. To reiterate:

Adequacy Condition (form) Lett and t’ be primitive expressions in a given lan-
guage L, and let D and D’ be domains. We say that formp(t) = formp:(t’) if and
only if there is a bijection f : D — D’ such that f(extp(t)) = extp(t).1°

First, we note that forms, presented thus, are more coarse-grained than exten-
sions: if extp(t) = extp(t’) then formp(t) = formp(t’), but not necessarily vice
versa. The level of meaning of form will be associated with logic—with logical
languages and logical contexts—as will be made clear in what follows.

By the above adequacy condition, all individual constants have the same form
over any given domain, and moreover—over all domains of the same size. For two
monadic predicates to have the same form, both their extension and their anti-
extension (the complement of their extension in the domain) must be of the same
cardinality. The predicates Even and Odd by their standard interpretation over
the domain of the natural numbers have the same form, which in turn is distinct

10Recall that we extend a bijection f between two domains to a function between the set-theoretic
hierarchies built over those domains by recursion in the natural way.
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from the form of the predicate Greater than 2 over the natural numbers. The lat-
ter, however, has the same form as Different from 7,9 and 12 over the natural num-
bers. With relations, we need more than cardinality to determine form—we need
something along the lines of “isomorphism type”: the predicates >’ (Greater than)
and ‘<’ (Lesser than) have distinct forms over the natural numbers (though over
the integers they do have equal forms). Equal form is possible only over domains
of the same size. This is a consequence of building on the Tarski-Sher approach:

only domains of the same size can have bijections between them.!!

The adequacy condition captures the essence of what we shall refer to as “form”.
But it would be good to have an explicit definition—if only to show that the ad-
equacy condition is consistent, and to have a workable mathematical concept at
hand. I provide here an explicit, set-theoretic definition, based on the cardinality
of the domain. I therefore assume, using the axiom of choice, that every set is
equinumerous with an initial ordinal. We define cardinal numbers to be initial
ordinals, and use |D| to designate the cardinality of D for a set D. The following
definition seems to capture the idea of “isomorphism type” relevant to our needs

on the backdrop of ZFC.

Definition 1 (form) Let t be a primitive expression in a given language L, then:

formp(t) ={f(extp(t)): f € ID|P, fis a bijection}

By this definition, the form of an expression is the set of all images of its exten-
sion mapped to the cardinality of the domain. The form of individual constants
is simply the cardinality of the domain: if extp(t) € D then every member of |D|
is reached by some bijection from D, and formp(t) = |D|. The form of a monadic
predicate relative to D is a set of subsets of |[D|, and the form of a monadic quan-
tifier (taken as a second level predicate) relative to D is a set of sets of subsets of
|D]. Note that the form of the universal and existential quantifiers is a singleton.
We shall discuss this feature in §5.

The explicit definition of form satisfies the adequacy condition: defined ex-
plicitly, we still have that formp(t) = formp/(t’) if and only if there is a bijection
f : D — D’ such that f(extp(t)) = extp/(t’). From now on Definition 1 will be as-
sumed throughout, but much of what follows does not refer to the added detail

11'We shall set aside the issue of whether this is a welcome consequence. I do not rule out modifica-
tions to the adequacy condition that relieve this dependency on the cardinality of the domain (along
the lines of proposed modifications to the Tarski-Sher criterion proposed in the literature (Feferman,
1999; Bonnay, 2008)).
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there, and will be consistent with any definition of form satisfying the adequacy

condition.

We shall see later that when focusing on logical languages, all that will matter
for meaning is the size of the domain, so Tarski’s remarks fit in neatly. As a pre-
cursory explanation, we can make an analogy with the higher levels of meaning. I
remarked that in extensional contexts, we consider only one world at a time, “for-
getting” the array of possible worlds required for intensional contexts. In formal
settings, alluding to the new notion of form, even the domain is redundant: all
that matters is its size. We shall see that the languages concerned only with form
are those conventionally regarded as purely logical. Note, for instance, that the
identity predicate has the same form in all domains of the same size. For such
languages, a domain-size and interpretation function suffice for determining the
truth values of all sentences.

We note that the notion of form defined here accords with Tarski’s definition
of logicality. Forms are invariant under permutations in the sense that when per-
muting the domain, while the extension of a term might shift, its form will remain
the same. More generally, the adequacy condition entails that forms are invariant
under isomorphisms. Moreover, by the explicit definition we have given, forms
are Tarskian logical notions over cardinality domains. Thus, the level of form
makes fewer distinctions than that of extension, the form of an expression disre-
gards the identity of particular objects forming the extension—it only concerns
the structure of the extension—and so as an aspect of the meaning of an expres-
sion, it can be said to be truly formal and general along the lines of (Tarski, 1936,
1986) and (Sher, 1996).

Both forms and Tarskian logical notions are introduced through an invariance
condition, each characterized by the way it is situated in a different comparison
class: that of types of meaning and that of geometrical notions. There are two
main differences between forms and Tarskian logical notions. One is technical,
that we have just mentioned: the present definition of form allows for variable
domains, and the forms themselves are constructed over a cardinality domain
rather than a given geometric space.

There is also a conceptual difference between forms and Tarskian logical no-
tions, which concerns the relevant item’s role in semantics. In the Tarski-Sher
tradition, an invariance condition is used to distinguish a particular kind of
extensions—the so-called “formal” ones: those are the logical notions, and they
are denoted by the logical vocabulary. Here we use an invariance condition to

define a distinct level of meaning, as derived from extensions: each extension de-
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termines a form, and both levels relate to one and the same linguistic expression.
We thus have two different semantic relations at play. We say that an expres-
sion denotes its extension. Additionally, we can say that an expression embodies a
form. We take logic to be concerned with this very coarse-grained level of mean-
ing, abstracting from the particularities of extensions or meaning that is more
fine-grained—remaining with only the rough features pertaining to form.

What is offered here can be viewed as a modification of Sher’s semantic con-
ception of form, one which puts her ideas in a new light. As mentioned earlier,
Sher views forms as features of the world. Logical terms, for Sher, are formal in
the sense that they denote formal features of the world:

These terms denote properties that are formal and general roughly in
the sense of being structural or mathematical and applying to objects

(extensions of predicates) in general (Sher, 1996, p. 668).

Sher defines logical terms as invariant under isomorphisms. As mentioned
earlier, Sher employs a more comprehensive class of transformations than Tarski
(isomorphisms rather than permutations—allowing for varying domains), but on
each domain the value given to a logical term (its extension) is a logical notion in
Tarski’s sense.

Here I have adopted Sher’s general approach to form as a nonlinguistic entity
capable of serving as a semantic value, but I have modified the idea that forms
are the subclass of extensions that are denoted by logical terms. Here, forms con-
stitute their own level of meaning—a separate type of semantic value—so that all
expressions are assigned a form which they embody. Logical terms will be char-
acterized later as embodying a special kind of form.

We have removed permutation invariance from the geometric comparison
class to that of levels of meaning. The mode of comparison has been modified,
as we do not use invariance under various kinds of transformations on a base
space to distinguish levels of meaning.!? Still, as we shall see in §6, we use iden-
tity criteria as conceived in the previous section to fit forms into the new scale.
First, however, we should say how logicality fits into this picture.

5 Logicality

Now we turn to the definition of logical terms, which will be based on the new no-
tion of form. This definition will be in use when we characterize formal languages

12Technically, we could opt for defining extensions, intensions and hyperintensions through invari-
ance under transformations, but the result would be, it seems to me, unnatural and unenlightening.



18

and formal contexts in §6.

It should be noted that the aim here is not to argue for a criterion for logical-
ity, but rather to set a connection between logicality and levels of meaning. The
definition of logical terms below is equivalent to the definition of logical terms as
denoting extensions that are invariant under isomorphisms, and is in accord with
the Tarski-Sher approach to logicality. This criterion, as widely accepted as it is,
has received criticism for both overgenerating (McCarthy, 1981; Feferman, 1999;
Bonnay, 2008) and for undergenerating (Dutilh Novaes, 2014; Woods, 2014). Yet,
the definition of form as “isomorphism type” can be viewed as a starting point
open to modification. Indeed, some of the alternative accounts for logicality that
have been proposed in the literature might still fit in the picture we have here, as
long as relevant adjustments are applied to the definition of form.

Now, we shall define logical terms to be formal terms, terms whose meaning at
the lower level is exhausted by their form: their form determines their extension
in every domain. Given our explicit definition of form, we can define logical terms
to have a singleton form—and so their extension can be retrieved from their form.
In addition we require that the form of a logical term is as stable as can be—that
it does not vary across domains of the same size.

Definition 3 (logical term) A primitive expression ¢ is a logical term if the follow-

ing conditions hold:
1. |formp(t)| =1 for every domain D.

2. If there is a bijection between two domains D and D’, then formp(t) =
formp(t).

First, let us consider some examples. Take the monadic predicate ‘< 2’ (Less
than 2) over the domain IN of the natural numbers. exipn(< 2) = {0,1} and so
formp(< 2) = {A C Ry : |A| = 2} (the form of ‘< 2’ is the set of all subsets of g
with two elements). So |formp(< 2)| =N and so ‘< 2’ is not a logical term. On the
other hand, consider the existential quantifier. Treated, as is customary, as a sec-
ond level predicate, we have for any domain D, extp(d) ={AC D : A #0}. And so,
applying the definition of form, we obtain formp(3) = {{A C |D|: A # 0}}, which
is indeed a singleton (the images of the extension under all bijections are equal),
and thus the existential quantifier satisfies the first condition in the definition of
logicality. The second condition holds as well: the form of the existential quanti-
fier does not vary between domains of the same size, so the existential quantifier
is a logical term.

More generally, from this definition follow the following facts:
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Proposition 1 Let t be a logical term. Then:

1. for every primitive expression t’ and every domain D, if formp(t) = formp(t’)
then extp(t) = extp(t’).

2. A primitive expression t is a logical term iff the extension of t is invariant un-
der isomorphisms (i.e., for every bijection f between two domains D and D’,

flextn(t)) = extp(1)).

The first fact is a reiteration of the idea that the extension of a logical term is
determined by its form. The second fact shows that in the case of logical terms,
invariance is projected up to the level of extension. Note that the first condition
in Definition 3 is equivalent to invariance under permutations of the extension
of the term, and that the further, independent, condition forces uniformity in the
interpretation of the term across equinumeroud domains, and strengthens the
first condition to invariance under isomorphisms.

The logicality of a term can be viewed as lower level rigidity. A term is a
rigid designator if it has the same extension in all worlds (in which it denotes).
For rigid terms, we can say that their intensions are completely determined by
their extension. Analogously, a term is logical if and only if its extension in any
given domain is determined by its form. Rigidity and logicality are independent
properties: a term can be rigid but not logical and vice versa.!® But rigidity and
logicality are parallel on this approach. Normally, the higher level of meaning
determines the lower ones, but not vice versa. In the special cases of rigidity and
logicality, the higher level of meaning is also determined by the lower level, as it
happens to be just as coarse-grained.

Consequently, in both rigidity and logicality we can find a simplicity of mean-
ing, which allows a certain parsimony in the semantics: in both cases, going up
a level does not add any richness to the meaning of the term. Mount Everest is a

13The independence of logicality and rigidity would of course depend on our construal of possible
world models and their relation to the domains alluded to here. To account for rigidity, we need to
re-inflate the semantic apparatus. Recall that we have suggested considering extensions as derived
from intensions applied to a distinguished actual world in each possible world model. Now note that
rigidity will thus be relative to a possible world model, while logicality takes into account all models.
However we re-inflate the semantics, if there are at least two distinct domains from which we draw
extensions, we can provide examples for logical non-rigid expressions: a logical term defined over
those domains whose extension is not empty will not be rigid. If, for instance, we treat the universal
quantifier as a second-level predicate and take its extension in a domain D to be {D}, its extension
will differ in possible worlds with different domains, and so despite being logical, it will not be rigid.
An example for a non-logical rigid expression would be an individual constant that denotes the same
object in each possible world—no individual constant is logical, even if it is rigid.
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rigid designator, and as such, its modal profile in a set of possible worlds is degen-
erate: its extension in alternative possible worlds is always the same object, Mount
Everest. Likewise with a logical term such as the existential quantifier, its “exten-
sional profile” is degenerate: in each domain, the extension of a logical term is
completely determined by its form. This analogy serves as a further step in situ-
ating form at a lower level of meaning. In the next section, I characterize the level
of form using Barcan Marcus’s principles of explicit and implicit extensionality,

where logicality plays a further role.

6 Principles of Explicit and Implicit Extensionality

Barcan Marcus offered two perspectives on extensionality, expressed by principles
of explicit extensionality and implicit extensionality. The aim of this section is to see
how the new semantic notion of form fares with respect to Barcan Marcus’s prin-
ciples. The principles are used for characterizing where in the scale of the levels
of meaning an interpreted language lies. Principles of explicit extensionality look
at how coarse-grained the meanings assigned are at each level, and principles of
implicit extensionality consider for each level of meaning the linguistic contexts in
which equi-meaning expressions can be substituted salva veritate. Let us discuss
these in turn.

Barcan Marcus explains that

Our notion of intensionality does not divide languages into mutually
exclusive classes, but rather orders them loosely as strongly or weakly
intensional. A language is explicitly intensional to the degree to which
it does not equate the identity relation with some weaker form of
equivalence (Marcus, 1961, p. 304).

How should we read this quote? ‘a = b’ can be said to hold with respect to a
certain level of meaning, but perhaps not with respect to another. Note that the
equality sign should be typed appropriately according to the expressions flank-
ing it (whether these are singular terms, predicates, etc.) Normally, we only use
identity as a relation between objects. By allowing predicates or other expres-
sions to flank an equality sign we are able to state how coarse-grained we take
meanings to be. Consider, for example, Creature with a heart and Creature with a
kidney for a and b respectively. The extensions of these expressions might be the
same, while their intensions differ, and so the equality holds in extensional lan-

guages, but not in intensional languages. In an extensional language, all possible
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distinctions appear at the level of extension (recall the quote from Lindenbaum
and Tarski), and the relevant equivalence relation is that of having the same ex-
tension. Analogously with intensional and hyperintensional languages. Having
the same extension is a weaker relation than having the same intension (the latter
entails the former)—and thus extensional languages “equate the identity relation

with some weaker form of equivalence”.

The reader is invited to study the details of Barcan Marcus’s formal formula-
tions (laid out in a type-theoretic framework, see also (Marcus, 1960)). Here we
shall take the core idea and employ it with respect to the newly constructed level

of form in our model-theoretic framework.

We observe that principles of explicit extensionality are in fact identity criteria
for meanings of linguistic expressions. In a “formal” language in the relevant
sense, two expressions can be equated on the basis of having the same form. Now,
on the present account, two primitive expressions have the same form in some
domain D if and only if one is the result of the permutation of the domain applied
to the other: formp(t) = formp(t’) if and only if m(extp(t)) = extp(t’) for some
permutation 7w on D (this is a special case of the adequacy condition in §4). Thus
the equivalence relation relevant to form in a given domain D is “m(extp(t)) =
extp(t’) for some permutation 7t,” i.e. =/, as defined in §3. For equality in form
over all domains we require the condition to hold for ¢ and ¢’ over all domains.

A clear example of sub-extensional languages that are only sensitive to form
is that of the so-called “purely logical” languages. Those are languages that have
only a logical vocabulary, and do not make use of a signature. For the current pur-
pose we can make use of the definition of logicality from §5, from which it follows
that the logical vocabulary of a language consists of a selection of isomorphism-
invariant terms. Of course, the purely logical version of standard first order logic
is included. Again, criteria for logicality are up for debate, but are not the main
concern of this paper: I focus rather on the relation between logicality and form,
and the notion of form here is perfectly in line with one, widely accepted, notion
of logicality. Now, if all the terms in a language are invariant under isomorphism:s,
whether an equality holds can be determined solely on the basis of the form of the
expressions occurring in it. Such a language is formal by the principles of explicit
extensionality (extended to the level of form).

Note, as remarked earlier, that assignments of truth values to sentences in
purely logical languages depend only on the size of the domain and are inde-
pendent of what particular elements it contains. That is, for each purely logical
formula ¢ and models M = (D,I) and M’ = (D’,I’) such that D and D’ have the
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same cardinality, M | ¢ if and only if M” | ¢. In such contexts, therefore, we
can refer to a very thin notion of model, consisting only of a cardinality and an
interpretation function. As here we are interested in interpreted languages, the
interpretation function is assumed at the outset, and we simply refer to the truth
value of a formula in a given domain-size. As a simple example, ¢ = dxJy(x = p)
is true in domain-size 2, but not in domain-size 1.

What other sub-extensional languages do we have? Recall the identity crite-
ria for various kinds of geometrical notions we have seen in the previous section.
Those were more fine-grained than the identity criterion for logical notions, and
indeed, geometrical languages are not “formal”. A language for each one of the
geometrical disciplines might make any distinction the corresponding identity
criterion would allow. However, since the identity criteria of geometrical and
perhaps other disciplines are still more coarse-grained than identification by ex-
tension (their notions are invariant under certain permutations of the domain),
the appropriate languages can still be thought of as “sub-extensional.”

From a structuralist viewpoint of mathematics, it would appear that in general,
languages suitable for mathematics should be sub-extensional, and even formal.
Mathematical theories on a structuralist approach are concerned with structures,
and the notion of structure is akin to our notion of form. Indeed, that may be true
if the notions involved are invariant under a non-trivial class of permutations.
A counterexample would be a mathematical language that includes individual
constants. For example, if we include in a language for arithmetic 0 and 1 as in-
dividual constants, the result will not be sub-extensional.!* But numbers can be
construed as sets of sets denoted by second-level predicates.!> Much will depend
on the way the relevant notions are construed: whether as elements of the domain
or as higher-order entities. If all notions are construed as invariant under iso-
morphisms, the relevant language is not only sub-extensional—it is, in particular,
formal.

Before moving on, we note that even below the level of form, we can define
the level of semantic category that is even coarser in the distinctions it makes.!®
The semantic categories of a language are defined by the type of object referred

to by an expression in the category, and are normally assumed to be in correspon-

14 Another example is that of i and —i. i and —i share many properties, and in particular they have
the same form, but they shouldn’t be equated. This issue touches on the so-called identity problem in
structuralism in mathematics, see e.g. (Button, 2006).

15Gee Sher’s discussion in (Sher, 1996, p. 677) and in (Sher, 2013, §4).

160ne exception is the degenerate case where two expressions are of different categories both have
an empty extension and therefore the same form.
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dence with the syntactic categories. For example, in a first order language we
have the semantic categories: individual constant, n-ary relation, connective and

quantifier.

Principles of implicit extensionality tell us when expressions can be substituted
salva veritate in a given language or a language fragment (a set of contexts). Again,
we look at various equivalence relations between expressions: having the same
extension, having the same intension, etc. The more extensional a language is,
the weaker the equivalence it requires for substitution of expressions without
loss of truth. We thus say that extensional contexts (or extensional languages)
allow substitution of extensionally equal expressions, while intensional contexts
(or languages) exhibit failures of such substitution. Further, taking intensions to
be functions from possible worlds to extensions, intensional contexts will be such
that intensionally equal expressions can be substituted salva veritate: such are, e.g.,
contexts of possibility and necessity. However, such substitution arguably fails
for contexts of belief, which are considered to be hyperintensional contexts. Hy-
perintensions are defined in fine-grained manner so that expressions with equal
hyperintensions could be intersubstitutable in such contexts.

Now we can ask what would be the formal contexts, those where the truth
value of sentences is determined purely by the form of its constituent expres-
sions. Those would be very stringent contexts, since uniform substitution (substi-
tuting everywhere the same expression for the same expression) is not required
(cf. Barcan Marcus’s quote above)—that is, our test allows substituting equi-form

expressions for others in just some of their occurrences.

We can consider again mathematical contexts. And again, much will depend
on the way those are construed. As an initial candidate, let us look at mathemati-
cal contexts where expressions are flanked with “the number of” or, indeed, “the
form of”, understood in the relevant manner. So, for example, in the mathemat-
ical sentence ‘|{x : Ax}| > |{x : Bx}|" where straight parentheses indicate cardinal-
ity, A and B are substitutable with any other respective equi-form predicates salva
veritate. These specific cases may form formal contexts, but other set-theoretic no-
tions may not. If the language includes a predicate A that is not invariant under
isomorphisms, ‘{x : Ax} C {x: Bx}’ is not a formal context: A cannot be substituted

with every equi-form expression salva veritate.

Here, again, we can appeal to the purely logical languages. If all the terms
in a language are logical, and so are invariant under isomorphisms, terms having
the same form have the same extension (as was shown by Proposition 1 in the

previous section) and are thus substitutable salva veritate.
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Nonetheless, we may still wish to consider a fragment of a non-purely logical
language as providing formal contexts, so that nonlogical terms can be consid-
ered for substitution. With some limitations on the sentences acting as contexts,
we can obtain a precise identification of the formal contexts, using the theorem
from McGee stated below. The formal contexts are formulas of L., (a first or-
der language allowing for any infinite disjunction and existential quantification
over infinite sets of variables) where all but the substituted expression are logical
terms. In such sentences, equi-form terms can be substituted salva veritate.

More specifically, Lo, is defined thus:!”

* The predicates of the language are {P; : i < n} for some natural #, each P, is of
arity k; for some non-zero natural number k;.

* The atomic formulas are expressions of the form P;X, where P, is a predicate
and X a variable sequence of P;’s arity, and of the form x = y where x and y
are variables.

Complex formulas:
* if @ is a formula, —¢ is a formula.
» If @ is a set of formulas, its disjunction \/ @ is a formula.
* If ¢ is a formula and U a set of variables, (3U)g is a formula.

* Conjunction and universal quantification are non-primitive, and are defined

in the usual way.

Satisfaction is defined standardly. Given a domain D, an interpretation R =
(Ry,..,R,) in D of the predicates Py, ..., P,, resp., a formula ¢ of L, and an
assignment o to the free variables of ¢ in D, (D,R) | ¢[c] is defined by induction
as usual. An operation Qp is a function from interpretations R = (Ry,...,R,) to
truth values. ¢ is said to define Qp over D if for any R = (R, ..., R,)), Qp(R) = T iff

(D,R) E o.

Theorem 2 (McGee, 1996). Qp is invariant under arbitrary permutations of the
domain D if and only if Qp is definable in L.

We shall modify some parameters in the definitions in order to obtain the de-
sired formal contexts. As we are dealing with an interpreted language, we shall
fix an interpretation R, = (R},...R}). So, for all i < n, extp(P;) = R’;. Next, we

17We define Lo a bit differently from McGee, and instead follow (Feferman, 2010).
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shall consider formulas where only one nonlogical predicate occurs (identity is
considered logical).

Proposition 3 Let @(P;) be a formula of L., which, perhaps, contains the predicate
P; for some i < n and no other nonlogical predicate. Then for every domam D and every

j < n such that P; and P; are of the same arity and such that formp(P;) = formp(P))
(and so in particular are of the same arity), (D,R,) E @(P)) if and only if (D,R,) E
P(Fp).

Proof. Let Qp be the operation described by @(P;). formp(P;) = formp(P;), so
there is a permutation 7t of the domain such that Tc(R*) R* Qp is invariant un-
der permutations by McGee’s theorem, and so (D, R,) E ¢( ) iff (D, (R,)) E ¢(P,),
where 7(R,) is the interpretation induced by permuting the domain D as under-
lying R,. Since P; is the only nonlogical predicate in ¢(P;), for any interpretation
R =(Ry,...,R,) such that Rj=7n(R;), (D, R)E ¢(P %) if and only if (D, 7t(R,)) F @(P;),
and specifically (D,R,) E (p( %) if and only if (D 7(R,)) E ¢(P:), and from invari-
ance, (D,R,) E ¢(P. )1fand0nly1f(DR)}:(p( ). O

The result, in other words, is that in L, contexts containing one nonlogical
predicate, predicates with equal form are intersubstitutable salva veritate. In fact,
we should restrict the relevant contexts to contain only one occurrence of a non-
logical predicate, if we are to allow, as Barcan Marcus does, for substitution that
is not uniform. Now, there may be other contexts in which equi-form predicates
are intersubstitutable salva veritate—this will, in part, depend on the richness of
the language (the more impoverished the language, the less substitutions we can
make, and so we potentially have more formal contexts). However, since all per-
mutation invariant operations are definable in L, the fragment we specified is
the most comprehensive one we can specify without restrictions on the richness
of the language. The result can be generalized to other types of expressions given

appropriate modification of the language and of McGee’s theorem.

7 Forms of Complex Expressions

So far, we have only considered the forms of primitive expressions. We can de-
fine the forms of complex expressions by generalizing the definitions from §4, as
long as their extensions are set-theoretic constructs over the domain. However,
we might wish to consider the case of sentences as well, where the extension is
normally thought to be not a set-theoretic construct over the domain, but a truth
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value. The solution is to consider the set of assignments—sequences of mem-
bers of the domain—that satisfy a formula as its extension, so the extension of a
sentence is either a set of all infinite sequences over the domain (identified with
truth) or the empty set (identified with falsity). The form of a formula is then a
set of sets of sequences over the cardinality of the domain.

We first define the extension of a complex expression. The extension of a com-
plex individual term is, as usual, a member of the domain. For a formula ¢ we
define:

extp(p) ={o: 0 € D? s.t. o satisfies ¢ in D}

In the case of a sentence ¢, the set above either consists of all o € D or is empty.'3

We now extend the range of Definition 1 to apply to all expressions:

Definition 2 (form) Let t be an expression in a language L. Then:

formp(t) = {f(extp(t)): f €|DIP, fis a bijection}

For a sentence ¢, formp(@) = {{o : o € |D|“}} or formp(e) = {0}: all true
sentences have the same form and all false sentences have the same form on any
given domain (and on any domain of the same size in which they have the same
truth value). This result is in line with the characterization of form as more coarse-
grained than extension. As is customary, we view all true sentences as sharing the
same extension, and all false sentences sharing the same extension. On the level
of form we could either keep this distinction, or treat all sentences as having the
same form. Distinguishing between truth and falsity is something we should be
able to do even in logical contexts, which we have characterized as “formal”—and
so the form of a true sentence will be different from that of a false one.

We might now wish to consider extending the definition of logicality from §5
to apply to complex expressions in general, and to sentences in particular. Now,
whether true or false, the form of a sentence is a singleton, and so all sentences
satisfy the first condition in our definition for logicality in §5. Therefore, a sen-
tence is logical if and only if it has constant form over equinumerous domains, as
is required by the second condition in the definition of logicality. Among those

sentences are the logical truths and the logical falsehoods: those sentences that

18We are now able to give the forms of connectives, as promised in f.n. 8. In this setting, the ex-
tension of a connective is an operation on sequences. For example, the extension of conjunction is
the intersection operation on sets of sequences over the domain: extp(A) = {(£1,X,,X3): X1,X),X3 €
P(Dw),ij =31 NXy
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are true (or false, respectively) in every domain and every re-interpretation of
the nonlogical terms. However, other sentences satisfy the definition of logicality
as well. A sentence is logical if its truth value is determined by the size of the
domain, and this includes, in the case of a first-order language with identity, sen-
tences such as ‘xJy(x = y)’. A result that will soon be generalized is that every
sentence in a first-order language composed of purely logical vocabulary will be
logical. But this characterization is not exhaustive: sentences whose truth value
is determined by the size of the domain might nonetheless contain nonlogical vo-
cabulary, as, in particular, logical truths may contain nonlogical vocabulary.

Now, an open formula has more possible extensions than a closed one (namely,
a sentence). Some open formulas are like sentences in that their extension in-
cludes all assignments or none in every domain, such as ‘PxV—-Px” and ‘Px A—Px’.
In such cases the form will obviously be a singleton, and as in the case of sen-
tences, their logicality will then depend on the second condition of having con-
stant form across domains of the same size. Some formulas are satisfied by just
some assignments over a given domain. Their form might not be a singleton in
some domains, as in ‘P(x)’ in domains where some, but not all, elements in the
domain fall under P.

Open formulas are akin to relations. While the extension of a formula consists
of assignments and a relation is a set of tuples of the arity of the relation’s arity,
an open formula which contains n unbound variables defines an operation from
domains to n-ary relations therein. It’s easy to see that the formula is logical if
and only if the operation it defines is invariant under isomorphisms. For example,
‘x =y’ is logical, as it defines the relation of equality in every domain, and thus an
operation which is invariant under isomorphisms.

We can now state the general claim that in a first-order language, every com-
plex expression which is composed of purely logical vocabulary as defined in §5
is logical by our definition—this can be proved by induction for each type of com-
plex expression.'” In particular, if a sentence is composed of purely logical vo-
cabulary, its truth value will be constant across models of the same size.

There are, of course, logical formulas that contain nonlogical vocabulary, such
as ‘Px vV =Px’. We might like to say that in such formulas, the nonlogical terms
occur “inessentially”. However, whether every logical formula is equivalent to a

19This is a variant of what is known in model theory as the isomorphism property that holds of a
logic if for every sentence ¢ and any models M and M’ that are isomorphic vis-a-vis the nonlogical
vocabulary in @, M [ ¢ if and only if M’ | ¢. This property holds in every logic in which the terms
fixed as logical are invariant under isomorphisms (see (Shapiro, 1998; Sagi, 2014)), so we may also

consider going beyond standard first-order languages.
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formula composed of purely logical terms will depend on features of the language
that we have not specified—in particular, its size and the logical vocabulary that it
contains.?% To sum up, the logical sentences are all those whose truth value is de-
termined by the cardinality of the domain. The logical formulas, more generally,
are those whose extension is invariant under isomorphisms.

It is worth explaining the difference between our notion of logicality as applied
to sentences and open formulas and the Tarskian notions of logical truth and log-
ical falsehood.?! The Tarskian notion of logical truth (or falsehood) requires truth
(or falsehood) in all models. The vocabulary is divided into the logical and the
nonlogical, and the nonlogical vocabulary gets reinterpreted in every model ac-
cording to semantic category, while the logical vocabulary remains fixed.

The class of all models makes an appeal to two distinctions that go beyond
the means we have used to define logicality. First, in the Tarskian definition, the
vocabulary is divided into semantic categories (or types), and for each semantic
category there is a range of possible extensions. The notion of semantic category,
as I have briefly mentioned in §6, is sub-extensional and even more coarse-grained
than that of form. It has no role in our definition of logicality.

Second, in the Tarskian definition, a distinction is made between the role of
the logical vocabulary as the fixed vocabulary and the nonlogical vocabulary as
not fixed: in the former case we do not consider alternative interpretations and in
the latter we do. A model for a language assigns values to all non-fixed primitive
expressions in the language according to their semantic category, while the inter-
pretation of the fixed primitive expressions is fixed by a semantic rule. Here, as
the language is interpreted, no such distinction is made, and all terms are fixed to
the same extent (all have a fixed extension in every domain). We have defined the
logical vocabulary, but it doesn’t get anymore fixed than the nonlogical vocabu-
lary.

The present definition of logicality makes no appeal to models in the above
sense: we do not divide the language into two sets of expressions that are treated
differently, some get fixed while others vary according to semantic category. In-
stead, we take an interpreted language, and we look at the behaviour of extensions
under isomorphisms. Ours is an extension of the Tarski-Sher criterion for logical-
ity, which applies to interpreted expressions. This criterion yields a notion of log-

2050, for instance, if the language is of first-order and includes the truth-functional connectives
and identity, every logical formula is equivalent over equinumerous domains to a formula containing
purely logical vocabulary.

211 appeal to the now accepted notion of logical truth which is derived from, but not identical to the
notion of analytic sentence defined in (Tarski, 1936).
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icality for sentences that is wider than Tarskian logical truth and logical falsehood
combined, as it allows sensitivity to the size of the domain. For the same reason,
the notion of logical sentence might not be a good candidate for the explication of
the philosophical notion of logical truth. Nonetheless, if the recurrent theme of
this paper is that our logic is a logic of cardinality or of number, as repeated in the
quotes from Tarski and Lindenbaum, then here we have another manifestation of
this phenomenon.

8 Concluding remarks

The characterization of logic has many facets, concerning consequence and truth,
linguistic expressions and mathematical notions. The starting point of this paper
is Tarski’s characterization of logical notions. Tarski’s logical notions are gen-
eral in the sense of being invariant under the maximal group of transformations
over a given domain, and are thus more coarse-grained than the geometrical no-
tions Tarski compares them with. Through Sher’s semantic conception of form we
brought logical notions closer to the linguistic realm by devising for them a par-
ticular level of meaning, more coarse-grained than those of extension, intension
and hyperintension.

Whereas in standard accounts logical notions are viewed as the extensions of
logical terms, here we use logical notions as the (semantic) forms of all terms.
Purely logical languages prove to be “sub-extensional” and provide the appro-
priate contexts for the level of form by both of Barcan Marcus’s explicit and im-
plicit principles of extensionality. We have also seen that formal contexts can be
provided by a restricted fragment of L.,.,. The definition of logical terms as those
terms whose forms are singletons (and so their extensions are determined by their
form) that are stable across equinumerous domains is equivalent to the widely ac-
cepted Tarski-Sher criterion of invariance under isomorphism, and at the same
time treats logicality as rigidity at a low level.

In this framework, logical truth and validity can be determined by the logical
vocabulary in the standard way, where the logical terms are those terms whose
interpretations are held fixed. However, we offer a notion of a logical sentence
that is a natural extension of the Tarski-Sher criterion for logicality to complex
expressions. This notion does not rely on a distinction between the fixed and the
non-fixed vocabulary, nor on the division of the language into semantic categories.
The result we obtain is that a logical sentence is a sentence whose truth value
depends only on the cardinality of the domain—a result we should expect if we
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agree with Tarski that “our logic is a logic of number”.
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