
Studienabschlussarbeiten
Fakultät für Mathematik, Informatik

und Statistik

Kölbl, Laura:

Deep Convolution Neural Networks for Image Analysis

Masterarbeit, Sommersemester 2017

Fakultät für Mathematik, Informatik und Statistik

Ludwig-Maximilians-Universität München

https://doi.org/10.5282/ubm/epub.41012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universität München: Elektronischen Publikationen

https://core.ac.uk/display/216478104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deep Convolution Neural

Networks for Image Analysis

Master’s thesis

Ludwig-Maximilians-University Munich

Institute of Statistics

Author: Laura Kölbl

Supervisor: Prof. Dr. Volker Schmid

Submission date: 19.06.2017

Table of contents

Deep Convolution Neural Networks for Image Analysis 1

1 Understanding Deep Convolutional Neural Networks 3

1.1 Architecture of Convolutional Neural Networks 3

1.1.1 Convolutional Layers . 4

1.1.2 Activation Function . 6

1.1.3 Pooling Layer . 8

1.1.4 Fully Connected Layer 9

1.1.5 Linear Classifier . 9

1.2 Understanding the Training of Convolutional Neural Networks . 11

1.2.1 Weights and Biases . 11

1.2.2 Objective Function . 12

1.2.3 The Gradient Descend Algorithm 14

1.2.4 The Backpropagation Algorithm 16

1.2.5 The Vanishing Gradient Problem 19

1.2.6 Batch Normalization . 20

2 Training Deep Convolutional Neural Networks 22

2.1 Training, Test and Validation set 22

2.2 Preprocessing the Data . 23

2.3 Initialization Strategies . 24

2.4 Gradient Descent Optimization Algorithms 26

2.4.1 Momentum . 27

2.4.2 Adagrad . 28

2.4.3 RMSProp . 29

2.4.4 Adadelta . 30

2.4.5 Adam . 30

2.5 Batch Size . 31

Table of contents

2.6 Overfitting and Regularization 31

2.6.1 Early Stopping . 32

2.6.2 Data Set Augmentation 32

2.6.3 L1 and L2 Regularization 32

2.6.4 Dropout . 33

3 DCNNs: The VGG, Inception and ResNet Architecture 35

3.1 The VGG Network . 35

3.2 Inception Network: Inception-v3 38

3.3 Deep Residual Network: ResNet 44

4 Implementation in R Using the MXNet Deep Learning Library 48

4.1 The MXNet Deep Learning Library 48

4.2 Parallelization and Hardware 48

4.3 The Pretrained Models: VGG-19, Inception-v3 and ResNet-152 . 49

4.4 Finetuning the VGG, the Inception and the ResNet on Varying

Amounts of Places2 Image Data 49

4.4.1 The Places2 Data Set . 50

4.4.2 Training Settings and Results for the VGG, Inception

and ResNet on the Places Data 51

4.4.3 Summary of the Test Results 55

4.5 Training the VGG, the Inception and the ResNet on Medical

Data . 58

4.5.1 The Breast Cancer Data Set 59

4.5.2 Results for the Medical Data 60

5 Conclusion 62

6 Electronic Appendix 65

Abstract

This master’s thesis is about deep convolutional neural networks (DCNNs)

and their application on classification tasks. It is particularly concerned with

the fields of supervised learning and feedforward networks.

At first, the architecture and the mechanisms behind DCNNs are explained

from scratch. Next, the work gives an overview over different methodological

approaches that are crucial for the training of neural networks in practice and

also a description of the VGG, Inception and ResNet architecture.

Further, results from the finetuning of pretrained VGG-19, Inception-v3 and

ResNet-152 networks on small data sets are presented.

With three classes of the Places2 data set, it was investigated how the test

accuracy changes with respect to the three models and different data sizes (20

to 1000 images per class). The results showed the best test accuracies and

smallest training times for the Inception-v3 network. They also indicate that

250 images per class can be enough to acquire a very competent model (e.g.

97.8 percent test accuracy for the Inception-v3).

Applying finetuning to a medical data set on the other hand did not yield a

network that can discriminate between benign and malignant breast cancer

cases. The data set encompassed 29 benign and 30 malignant mammography

images.

Deep Convolution Neural

Networks for Image Analysis

Deep convolutional neural networks (DCNNs) are a part of machine learning,

where machines learn to detect patterns solely from data.

They can handle a wide range of applications. With regard to the classifica-

tion of images, DCNNs are utilized for instance for facial recognition tasks

[Sun2014], the determination of art epochs [Hentschel2016], and also medical

applications like breast cancer classification [Lévy2016].

Challenges for the image recognition tasks are different sizes and viewpoints,

but also background clutter and varying illumination. Nevertheless have state-

of-the-art networks already reached and even surpassend human performance

[He2015b].

These results are possible also because there are large-scale data sets like the

ImageNet [Russakovsky2015] and Places [Zhou2016], which provide millions

of labeled images. But not for all tasks are large amounts of labeled data at

hand. This is why the application of convolutional neural networks on small

data sets will be investigated in this work.

This master’s thesis is about deep convolution neural networks, especially

about their application on image analysis. It is confined to supervised lear-

ning and feedforward neural networks.

The aim of the first part of this work is to enable the reader to understand how

neural networks work in theory and give an understanding of current methods

for their use in practice.

1

Table of contents

The first chapter will cover the architecture of convolutional neural networks

and how they work. In chapter two it is explained how to train a CNN and

which parameters can be set. Chapter three contains the ideas and the archi-

tectures behind the VGG, the Inception and the ResNet.

In the second part, deep neural networks are implemented in R using the MX-

Net deep learning library (chapter four). Pretrained VGG-19, Inception-v3 and

ResNet-152 networks are used to finetune small subsets of the Places2 data

and a medical data set.

The three networks were applied at first to the Places2 data set. They were

finetuned using different amouts of training data to investigate the impact on

the test accuracies and the training time.

The same pretrained networks were then used to finetune a medical data set,

trying to obtain a network that is able to distinguish between benign and ma-

lignant breast cancer cases.

In the last chapter, the results of the implementation are summarized and

possible future extensions of the present work are proposed.

2

1 Understanding Deep

Convolutional Neural Networks

1.1 Architecture of Convolutional Neural

Networks

For a deeper understanding of the ideas and workings behind convolutional

neural networks, one must first comprehend their architecture.

A neural network consists of different layers. A convolutional neural network is

a network that consists of at least one convolutional layer. Such a very simple

CNN can be seen in figure 1.1.

Fig. 1.1: Convolutional neural network with one convolutional layer, source:
Karpathy 2017

The more of those convolutional layers, the deeper is the network.

3

1 Understanding Deep Convolutional Neural Networks

Next to convolutional layers there are also pooling layers and fully connec-

ted layers. Additionally, after every convolutional layer there is an activation

function. And at the very end of the network a linear classifier computes the

network output [Guo2015].

1.1.1 Convolutional Layers

The idea behind convolutional neural networks is partly lent from biology,

from the way neurons work in living creatures: our neurons are firing when

the input of their receptive field exceeds a certain threshold. While there are

many input signals, there is only one output signal.

In CNNs that are used for image classification, the initial input is an image,

represented by pixels. Behind the input layer there is a hidden layer called con-

volutional layer, consisting of so-called neurons. They are represented by the

circles in figure 1.1. The neurons, like their biological analogy, can maintain

many inputs and transform them into one output.

Figure 1.2 shows this for an input layer of 8x8 and a kernel of size 3x3: the

activations of the neurons are computed with a kernel. The kernel (in this case

a 3x3 matrix) is also called convolution matrix, filter or feature detector. This

matrix glides over the input matrix, calculating the dot product for each pixel

value of the input. This computation involves the surrounding pixels, an area

called the local receptive field (here 3x3). By including nearby pixels convolu-

tional neural networks can also use information about proximity.

The output matrix is called convolved feature, activation map or feature map

(s. figure 1.3).

The width of the feature map is the amount of kernels that have been used.

Every kernel identifies specific structures, e.g. edges. The more kernels you

have, the more structures can be discovered.

The stride determines the “jumps“ the kernel makes while sliding over the

input matrix. If the stride is one, the filter is only moved one pixel.

But every picture also has borders. To make it possible to apply the kernel

4

1 Understanding Deep Convolutional Neural Networks

Fig. 1.2: Visualisation of a convolutional layer; the kernel matrix glides over
the input matrix, computing the values of the feature map, source:
adapted from Guo et al. 2015

to the border pixels one can add padding, for example zero-padding. When

using zero-padding the input matrix is filled with zeros where the image

would have ended. If there was no padding the output matrix would be smal-

ler than the input matrix after the convolution [Goodfellow2016] [Guo2015]

[Karpathy2017][Neubert2016].

Fig. 1.3: Visualisation of a convolved feature, source: Dettmers 2015

5

1 Understanding Deep Convolutional Neural Networks

1.1.2 Activation Function

The output of the convolutional layer is the input to the activation function.

This input is normally linear, because it so far has been only being exposed to

linear transformations. The activation function adds some non-linearity to it.

This happens at every neuron in the layer.

Common activation functions are the sigmoid function, the tanh function and

the ReLU function (s. table 1.1).

sigmoid function
1

1 + e−x

tanh function
2

1 + e−2x − 1

ReLU function f(x) =

{

0, x < 0

x, x ≥ 0

Table 1.1: examples of common activation functions

The sigmoid function has range [0, 1] (s. figure 1.4a). Values that are fed to

the sigmoid function are “squeezed“ to fit in this range. For very large values

this means that they take the value one, and for very small values it means

that they take the value zero. The interpretation is pretty intuitive since we

can read the zeros as a neuron not firing, and the ones as a neuron firing with

maximum frequency.

The biggest problem about the sigmoid function is that the gradients can be

miniaturized. Especially neurons saturating at zero or one cause very small

gradients, which leads to a damped or dead signal. This is also called the

6

1 Understanding Deep Convolutional Neural Networks

(a) sigmoid function (b) tanh function

Fig. 1.4: The sigmoid and the tanh activation function, source: Karpathy 2017

“vanishing gradient problem“ and is explained more precisely in section 1.2.5.

The tanh function results into values in the interval [-1,1]. It behaves very

similar to the sigmoid function, thus being also subjected to the possibility of

vanishing gradients. But the advantage of the tanh function over the sigmoid

function is that it is zero-centered (s. figure 1.4b).

Lately, the most commonly used activation function is the ReLU function:

f(x) =

0, x < 0

x, x ≥ 0

(1.1)

Compared to the sigmoid or tanh function the ReLU function was found

to be learning faster, and reaching better training accuracies earlier in trai-

ning [Krizhevsky2012]. Moreover, ReLU functions are not saturating like the

sigmoid- and tanh function and they do not involve as much mathematic ope-

rations as f.e. exponentials .

A visualization of the ReLU can be found in figure 1.5.

On the downside, ReLU units can ”die”. If a large gradient passes a ReLU

neuron, the weights may change in a manner that causes that neuron to never

activate again. But this problem can be addressed by using adequately small

learning rates.

7

1 Understanding Deep Convolutional Neural Networks

Fig. 1.5: The ReLU (l.) and the PReLU activation function, source: Karpathy
2017

Another option to address the dying of ReLU units are variations of the ReLU

function like Leaky ReLUs and PReLUs (s. figure 1.5). With these altered func-

tions negative values are not turned to zero, but turned into a small negative

slope:

f(x) =

ax, x < 0

x, x ≥ 0

(1.2)

In case of the Leaky ReLU, a is some small fixed constant. In Parametric

ReLUs (PReLU) a is a parameter learned from the data. The thereby added

computational cost is negligible.

The advancement from Leaky ReLUs is still ambiguous. In the case of PRe-

LUs, He and al. [2015b] claim to have achieved a 1.2 percent improvement in

the error rate with PReLUs compared to ReLUs [He2015b] [VanDoorn2014]

[Karpathy2017].

1.1.3 Pooling Layer

With a pooling layer the dimensions of the feature maps and the number of

parameters can be reduced. The aim is to keep important information, while

less crucial information shall be tossed. Pooling therefore reduces the data and

speeds up the computation.

In max pooling layers for example only the neurons with the highest activation

within the filter area are retained. In figure 1.6 max pooling is visualized for

a 2x2 pooling filter and stride 2. The former [4x4] matrix is here reduced to a

8

1 Understanding Deep Convolutional Neural Networks

smaller [2x2] matrix.

Fig. 1.6: Max pooling, source: Karpathy 2017

There is another pooling operation called average pooling, where the pooling

filter computes the average of the filter area instead of the maximum.

When the pooling filter has the same size as the input layer, the pooling

operation is called global pooling. If for example global max pooling would be

applied to the matrix in figure 1.6, the output would be 8 [Goodfellow2016]

[Guo2015].

1.1.4 Fully Connected Layer

In a fully connected layer each neuron is connected to every neuron in the

previous layer, and each connection has its own weight. Therefore using these

layers entails a lot of parameters. Fully connected layers are found at the very

end of the network and enable high-level reasoning [Guo2015] [Neubert2016].

1.1.5 Linear Classifier

After the last fully connected layer, there is a classifier that computes the out-

put values for each class. In case of image classification, these values are the

probabilities for each class. The predicted image class is usually simply the one

9

1 Understanding Deep Convolutional Neural Networks

with the highest computed probability.

A standard classifier is the softmax classifier. The softmax models a joint pro-

bability distribution, therefore the probabilities computed by the softmax add

up to one. This means if the probability for one class goes up, the probability

for another has to go down [Tang2013].

10

1 Understanding Deep Convolutional Neural Networks

1.2 Understanding the Training of Convolutional

Neural Networks

With the knowledge about the architecture of neural networks in mind, in this

section it will be explained how the training of CNNs for image analysis works.

As mentioned, the focus of this thesis lies on feedforward networks and su-

pervised learning. Here is a short description.

Supervised learning means the network is provided with the true labels for

the images during learning. In contrast, unsupervised learning would mean

the network does not know the true class of an image whilst learning and is

trained to disclose a hidden pattern [Ghahramani2004].

Feedforward networks are networks where the information is only passed for-

ward through the network. It is never passed back to a previous layer. Network

that allow the back passing of information in the network, causing cycles, are

called recurrent neural networks (RNNs) and are very helpful for example when

it comes to tasks that involve spoken or written language [Lipton2015].

When our task is image classification, we want a network that, when we pro-

vide it with image data, can predict the correct label for these images. For a

network to be able to do so it first needs to be trained using already labeled

data.

The aim of the training is to find the best values for the network parameters,

which are called weights and biases [LeCun2015].

1.2.1 Weights and Biases

Weights and biases are the parameters that are modified during the training

process.

In order to teach the network the right values for the parameters, we feed pic-

tures, for example of birds and other animals, to the network, as well as the

11

1 Understanding Deep Convolutional Neural Networks

correct labels. The machine computes the scores for each image based on its

current parameters. These scores represent the likelihood for each class. They

might actually indicate a picture is an image of a snake: due to the provided

label the network knows its error, and can modify the parameters into ones

that would rather lead to an output score that would indicate ”bird”. So in

order to reduce the error, the weights and biases get adjusted.

The error between the scores that are computed based on the current para-

meter values and the ”true“ scores can be measured by the objective function

[LeCun2015].

1.2.2 Objective Function

The objective function measures the distance between the predicted value and

the true value. Objective function is the more general term, objective functions

that are minimized are called cost functions.

An example for a cost function is the quadratic cost function, mean squared

error (MSE):

C(w, b) ≡ 1

2n

∑

x

||y − a||2 (1.3)

where w stands for the weights, b for the bias and n is the total number of

training inputs. With y being the desired output, this cost function becomes

small when the computed output of the network (a) is nearly equal to it. The-

refore the aim is to minimize the MSE function.

The MSE function is used more commonly in context of regression tasks rather

than classification tasks, but it is mentioned because it is very intuitive. For

classification it is more usual to use the cross entropy cost function.

The definition of the cross-entropy between a true distribution p and an esti-

mated distribution q is:

12

1 Understanding Deep Convolutional Neural Networks

H(p, q) = −
∑

x

p(x) · log q(x) (1.4)

In the classification context, the ”true”probability distribution assigns full pro-

bability on the true class, and zero probability on the false classes. Therefore,

for our classification problem the mean cross-entropy cost can be written as

C = − 1

n

∑

x

[y · ln(a) + (1− y) · ln(1− a)], (1.5)

with n being the total number of training inputs and the sum being over all

training inputs x. Again the output of the network is denoted by a and the

respective desired output by y. The cross-entropy only outputs positive values

since a only takes values between [0, 1]. The output will get closer to zero the

better the prediction is.

For classification tasks, the cross-entropy further reduces to

C = −ln(aLy) (1.6)

because the desired output for the false classes is zero. In this equation aLy is

the probability the network predicts for the true class. For high probabilities

the cost will be small, whereas for small probabilities the cost will be larger.

This is more or less the same as minimizing the negative log likelihood of the

true class (log loss).

For a more thorough understanding, here a small example.

Table 1.2 shows probabilities that have been computed by a network and the

respective desired outputs (the ground truth).

At a first glance, you can see that both networks have the same classification

error (0.5). Both networks misclassify in the second line. Still, the first network

calculates a smaller probability (0.1) for the true class than the second network

(0.3).

For the cross-entropy function we would compute

13

1 Understanding Deep Convolutional Neural Networks

network network output desired output true or false
network 1 0.2 0.2 0.6 0 0 1 true

0.1 0.1 0.8 0 1 0 false
network 2 0.2 0.2 0.6 0 0 1 true

0.3 0.3 0.4 0 1 0 false

Table 1.2: exemplary network output probabilities and their respective desired
outputs for two images fed to two different neural networks

−(ln(0.6) · 1 + ln(0.1) · 1) ≈ 2.81 for the first network and

−(ln(0.6) · 1 + ln(0.3) · 1)) ≈ 1.71 for the second network.

Therefore in this example the first network is worse at predicting than the

second one, because it has a higher cost value than the second network.

The cross-entropy is used primarily for training. The performance of the net-

work is still measured by the classification accuracy on the test data set

[Nielsen2015] [Karpathy2017].

1.2.3 The Gradient Descend Algorithm

The minimization of the objective function is performed using an algorithm

called gradient descent. The negative gradient can show the direction of the

steepest descend (and the steepness) to minimize the objective function.

For illustration purposes the objective function is often described as a moun-

tain scenery: ”the objective function, averaged over all the training examples,

can be seen as a kind of hilly landscape in the high-dimensional space of weight

values. The negative gradient vector indicates the direction of steepest descent

in this landscape, taking it closer to a minimum, where the output error is low

on average”[Lecun2015, pp.436f.].

Ideally you want to reach the global minimum of the objective function, and

not fall into a local minimum. The weights and biases are variables of the

objective function. The gradient vector is a vector which has the partial deri-

14

1 Understanding Deep Convolutional Neural Networks

vatives to a function for each variable of the function as entries. The gradient

vector for a function with m weights therefore would be denoted by

g = ▽C ≡ (
δC

δw1

, ..,
δC

δwm

)T (1.7)

This gradient vector is then used for the weight updates. The new weight value

θt+1 is calculated by:

θt+1 = θt − ηgt (1.8)

The weight change △gt+1 = η · gt is subtracted from the old weight value

θt. This minus sign is due to the fact that we need the negative gradient to

”descend”(as opposed to ascend which would require the positive gradient).

The learning rate η determines the length of the steps that are made with

each parameter update. A learning rate that is too small can really slow down

learning, because you only take small steps down the hill. But with a learning

rate that is too high it is possible that you take to large steps and kind of jump

over the valleys.

In practice it is very common to use stochastic gradient descent (SGD). When

using SGD, the gradients are not calculated for the whole training set before

updating the weights. Instead the average gradient is calculated for a small

”mini-batch”(a sample) of the input data. The weights are then updated ba-

sed on this average gradient, which serves as a noisy estimate of the average

gradient over the full training set. When the parameters have been updated

based on a mini-batch, an iteration has been completed. A round (or epoch)

is completed when all the training inputs have been used for the SGD. So the

number of rounds indicates how often the whole training set has been fed to a

network [Nielsen2015] [LeCun2015].

15

1 Understanding Deep Convolutional Neural Networks

1.2.4 The Backpropagation Algorithm

Backpropagation is an algorithm that can be used to compute the gradients of

the objective function with respect to the weights and biases. The backpropa-

gation algorithm is composed of the propagation forward through the network,

the computation of the network error and then afterwards, the backwards pro-

pagation.

Propagation forward through the network

At first the input that is fed to the network is propagated forward through

the network, layer for layer. The input z to each layer l is computed by:

zlj =
∑

k

wl
jk · al−1

k + blj (1.9)

where al−1
k is the activation of the prior layer, wl

jk are the weights for the cur-

rent layer and blj is the bias of the neuron. The index j stands for the j-th

neuron in the current layer and k for the k-th neuron in the previous layer (s.

figure 1.7).

Fig. 1.7: Forward propagation, source: adapted from Nielsen 2015

As an example, for the computation of the input of the red coloured neuron

(layer 2) you would multiplicate the green weights with the respective grey ac-

16

1 Understanding Deep Convolutional Neural Networks

tivations, take the sum and then add the neuron-specific bias to it (the figure

does not show the bias).

The output activation for a neuron is computed by applying the activation

function to the input. Consequently, for the output activations of a layer we

apply this function to all the inputs to the layer:

al = σ(wl · al−1 + bl) (1.10)

where w is the weight vector of layer l, al−1 is a vector containing the activa-

tions of the prior layer and b is the bias vector for the layer. The activation

function is represented by the sigma.

The initial weights for a network that is trained from scratch are randomly

chosen. For the first layer the activations are the input vector composed of

the pixel values of the training images. For later layers the activations are the

output of the preceding layer.

Computation of the network error

When finally the output of the last layer has been computed, it is compa-

red with the desired output using the cost function. Thereby the cost function

quantifies the error. This error is now used as the starting value for the back-

propagation back through the network.

Propagation backwards through the network

With the propagation through the network we got error values that tell us

how far off our network is from the desired output. But our interest lies in

knowing for each weight how much a change can affect the total error.

For this purpose partial derivatives δC
δw

and δC
δb

are computed that quantify

for each weight and bias how much the error increases or decreases if the re-

17

1 Understanding Deep Convolutional Neural Networks

spective weight slightly changes.

In order to explain the reasoning behind the backpropagation algorithm, we

look at the last layer of the network in figure 1.8.

Fig. 1.8: The last few layers of a CNN; o1 and o2 are the output neurons of
the last layer, source: adapted from Nielsen 2015

During the propagation forwards through the network, we calculated the input

to the last layer L and then applied the activation function σ to compute the

output to the layer. This output was then used to calculate the error using the

cost function C.

We can understand this propagation as a nested function E(σ(Z(wx))) where

Z is the function used for the calculation of the input. Therefore we can apply

the chain rule and calculate δC

δwL
2
4
by:

δC

δwL
24

=
δC

δoutL2
· δout

L
2

δinL
2

· δin
L

δwL
24

(1.11)

where inL
2 is the input and outL2 is the output of the second neuron (o2) in the

last layer.

When we want to calculate this derivative for weights earlier in the network,

naturally one has also to take into account that each neuron alters the output

of many output neurons. But for a general understanding this should be suffi-

cient.

18

1 Understanding Deep Convolutional Neural Networks

Further, the error δlj of neuron j in layer l is defined as:

δlj ≡
δC

δzlj
(1.12)

Therefore for the error for the output neuron o2, we would calculate:

δo2 =
δC

δoutL2
· δout

L
2

δinL
2

(1.13)

Now when we compare equation 1.11 and 1.13, we can see that:

δC

δwL
24

= δo2 · outL−1
4 (1.14)

because δinL

δwL
24

= aL−1
4 = outL−1

4 .

Equation 2.15 also holds true in general:

δC

δwl
jk

= δlj · outl−1
k (1.15)

In equation 1.15, you can nicely see that a small activation in a neuron (the

output of a neuron equivalents its activation) leads to small gradients for the

respective weights [Mazur2015] [Nielsen2015].

1.2.5 The Vanishing Gradient Problem

A problem with the gradient descent algorithm in combination with backpro-

pagation are vanishing gradients.

The name vanishing gradients describes the phenomenon that during backpro-

pagation, the gradients are decreasing, causing small gradients for early layers.

The result is that the neurons in these layers are learning more slowly than

the ones in later layers of the network.

The vanishing gradient problem is very common with the sigmoid function, so

we’ll take it as an example here. The backpropagation algorithm uses deriva-

tives to find the proper weights for the network. The derivative of the sigmoid

function takes a value between (0, 1/4] (s. figure 1.9). The more layers a net-

19

1 Understanding Deep Convolutional Neural Networks

Fig. 1.9: The derivative of the sigmoid function, source: Nielsen 2015

work has, the more often this derivative is multiplied during the computation

of the gradient δC
δw

(because of the chain rule).

High weights can somewhat lessen the vanishing of the gradients, but only to

a small extent. When the number of layers is high, at some point even large

weights ultimately will fail to make up for the many multiplications of the

derivatives across the layers.

The problem can be addressed by using the ReLU function, because the gra-

dient is zero for inputs that are ≤ 0, and 1 for positive input values.

A similar problem that can occur are exploding gradients, which is the opposi-

te of the vanishing gradient problem. Too large gradients in earlier layers can

be caused by high weight values. Exploding gradients are less of an issue for

feedforward neural networks than for recurrent DNNs, but they can happen if

the learning rate is set too high [Nielsen2015].

1.2.6 Batch Normalization

Batch Normalization (BN) is a method that aims at accelerating the training

of deep networks by reducing internal covariate shift.

Internal covariate shift describes the phenomenon that the distributions of the

inputs to the layers continuously change during training. When the network

adapts the weights and biases for a layer, this changes the input for the next

20

1 Understanding Deep Convolutional Neural Networks

layer, and so forth.

This property of neural networks is also the reason why a small change in an

early layer can result in a large change in later layers.

Batch normalization tries to diminish internal covariate shift with a normaliza-

tion step. This step ensures that each layer input has zero mean and variance

one.

The normalization equation for the input x of layer l can be depicted as:

x̂(l) =
x(l) − E[x(l)]
√

V ar[x(l)]
(1.16)

where the mean E[x(l)] and the variance V ar[x(l)] are computed from the mini-

batch. The normalized value x̂ is then scaled and shifted by two learnable

parameters γ and β:

y(l) = γ(l)x̂(l) + β(l) (1.17)

With Batch Normalization, the gradients are less sensitive to the scale of the

parameters and their initialization. It is possible to use higher learning ra-

tes and still reach convergence. It also helps with vanishing and exploding

gradients and escaping poor local minimas. Batch Normalization even has a

regularization effect [Ioffe2015].

21

2 Training Deep Convolutional

Neural Networks

2.1 Training, Test and Validation set

The data is usually split into a training, validation and test data set.

The training data set is the data that the network is being trained on. The

network will change weights and biases to best fit this training data set. Du-

ring training, the network will regularly output the training accuracy. This is

the classification accuracy1 you obtain if you would apply the model on the

training data set.

This training data set is fed to the network for a certain number of rounds.

In general the training accuracy will tend to grow with each round until it

stagnates at some value.

But our actual aim is not to have a really good accuracy on our training set

but for our network to have the best possible accuracy on the test set (test

accuracy).

The test accuracy is a measure of the performance of a network. The test

set consists of images that have neither been used for the training nor for the

validation of the network. Therefore it indicates how well the network can ge-

neralize to unknown data. The ultimate aim is to receive a network with a

high ability to generalize over data.

But the model with the best training accuracy is not consequently the one with

1The classification accuracy is easily computed by just dividing the number of incorrectly
classified pictures by the total number of pictures.

22

2 Training Deep Convolutional Neural Networks

the best test accuracy. At some point in the training the network can adjust

too much to the training data set. This is called overfitting. To prevent it from

happening, one can provide the network with a validation data set during the

training.

The validation data set can be used for the model selection. It enables to

check the capability of the network to generalize to new image data with every

round. Thus a high validation accuracy is more important than a high training

accuracy [Witten2000] [Buduma2017] [Goodfellow2016].

2.2 Preprocessing the Data

Before being fed to the CNN, the images are usually preprocessed.

The most common form of preprocession is the subtraction of the mean. This

means subtracting the mean image from each image. This can be done by

calculating the arithmetic mean of each pixel and subtracting this mean va-

lue from the respective pixels. For example, the mean across the first pixels

of every picture in the training data set is subtracted from each first pixel.

Subtracting the mean centers the input to zero.

The mean image of the training data set is also used for preprocessing the

validation and test data set. This means that the mean image of the training

data set is subtracted from the validation and test images, not the mean image

of the validation or test data.

Another form of preprocessing is normalization. In addition to subtracting the

mean image and thereby centering the images to zero, you also divide each

pixel by the standard deviation. For image input data this division is not ab-

solutely necessary, because pixel scales are usually roughly equal from the start

[Karpathy2017].

23

2 Training Deep Convolutional Neural Networks

2.3 Initialization Strategies

The initialization of the weights is pretty important for the training of the

network. Decent initial weights can make the network converge faster, bad in-

itialization can even cause the network not to converge at all.

A really bad idea would be to initialize the weight to be all zero, because when

all the weights take the same value, every neuron will compute the same out-

put and consequently also the same gradients later during backpropagation.

This leads to the same parameter updates for all the weights. Therefore some

sort of asymmetry is key for the initialization of the weights.

If the initial weights in a network are too small, then the signal shrinks as it

passes through each layer and the network learns really slowly. But the weights

should also not be too large, because this can cause large gradients which can

prevent the network from converging.

A pretty basic strategy for initialization is to simply draw the weights from

gaussian or uniform distributions using small values, e.g. N(0, 0.01) or U(-0.07,

0.07). Because a good initialization is key for fast learning and the convergence

of very deep models, scientists have been working out somewhat more sophi-

sticated ways of initializing weights.

We will discuss the Xavier Initializer, and the MSRA2 PReLU. Both of these

initializers use the fan-in and the fan-out as parameters.

The fan-in of a neuron is the number of inputs to a neuron. The fan-in matters

insofar that the more inputs a neuron has, the more variance will its output

have. So the fan-in is a reasonable choice to scale the weights of a neuron by.

The fan-out is the number of outputs of a neuron. It is used to scale the va-

riance during backpropagation. When the fan-in is the number of input units

of the current layer, the fan-out can also be described as the number of input

units to the following layer. This is why in the following the fan-in is denoted

by nl and the fan-out by nl+1, where l stands for the regarded layer.

2Microsoft Research Asia

24

2 Training Deep Convolutional Neural Networks

The Xavier initializer is named after Xavier Glorot and was proposed in

the paper “Understanding the difficulty of training deep feedforward neural

networks”[Glorot2010]. The aim was to keep the variance of the gradients the

same through the layers and during backpropagation. This leads us to two

conditions:

∀l, nlV ar(wj) = 1 and (2.1)

∀l, nl+1V ar(wj) = 1 (2.2)

These conditions can not always be met at the same time so the compromise

would be to choose:

V ar(Wi) =
2

nl + nl+1

(2.3)

as the variance of the weights. It is the mean between the fan-in and the fan-

out.

Still a normalization factor has to be introduced because else the variance of

the back-propagated gradient is decreasing with each layer. The normalization

factor is 3. After multiplicating this factor with equation 2.3 and taking the

square root to get the standard deviation we get the Xavier initializer:

W ∼ U [−
√
6√

nl + nl+1

,

√
6√

nl + nl+1

] (2.4)

The weight values can also be sampled from a gaussian distribution:

N(0,
2

nl + nl+1

) (2.5)

It is also possible to just choose to adjust for the fan-in. Then you solely make

sure the variance is the same when you are forwarding through the network

(but not during backpropagation). The variance would be V ar(Wi) = 1
nj

in

that case.

25

2 Training Deep Convolutional Neural Networks

The Xavier initialization was invented for linear activation functions like tanh

and sigmoid.

Since then the ReLU activation function has come up and proved to be a

preferable option. But the ReLU activation function is not a linear function.

Still the Xavier initializer inspired an initialization method especially designed

for ReLU/PReLU activations.

It is called MSRA PReLU and was proposed by He et al. [He2015b].

The adapted condition that fits also to ReLU and PReLU activations can be

formulated as:
1

2
(1 + a2)nlV ar(wj) = 1, ∀l (2.6)

where a stands for the small negative slope from the PReLU activation func-

tion. The PReLU function is depicted as:

f(x) =

ax, x < 0

x, x ≥ 0

(2.7)

If you set the parameter a to zero in equation 2.6, you get the equation for the

ReLU activation function (this holds also true for equation 2.7). Setting a=1

yields the equation for the linear case, s. equation 2.1.

He et al. also showed that it is not necessary to fulfil both conditions in equation

2.1 and 2.2. A decent scaling of either the backward or the forward signal

suffices to also fit the other criteria.

The bottom line is, for ReLU they advise using a gaussian distribution with

zero-mean and a standard deviation of
√

2
n̂j

[He2015b].

2.4 Gradient Descent Optimization Algorithms

Optimization in deep learning is somewhat different to pure optimization, be-

cause it is an indirect optimization. In particular, we optimize the loss function

though we are actually interested in optimizing f.e. the validation accuracy

26

2 Training Deep Convolutional Neural Networks

[Nielsen2015].

Next to a pure SGD optimization there is also the possibility to use SGD with

Momentum, Adagrad, RMSProp, Adadelta or the Adam optimization algo-

rithm. With exception of the Momentum, these algorithms provide adaptive

learning rates.

It is very important that the learning rate is appropriately chosen. It is usually

sensible to choose a higher learning rate at the beginning of the training than

at later iterations. With adaptive learning rates it is no longer necessary to

manually adapt the learning rate during training, and the learning rates are

set individually for each parameter [Ruder2016].

But at first, the momentum will be explained.

2.4.1 Momentum

Momentum is a method whose aim is to accelerate SGD learning by choosing

the step size depending on the previous gradients’ information.

When the previous gradients were consistently pointing into the same directi-

on, the steps are chosen bigger, thus increasing the velocity. On the other hand,

when the gradients’ signs frequently change along a dimension, the steps are

chosen smaller. The Momentum is especially advantageous in long narrow val-

leys (figure 2.1).

A parameter update with Momentum is defined as:

△ θt = ρ△ θt−1 − ηgt (2.8)

where ρ is the Momentum parameter, a constant that induces a slow decay

of the previous parameter updates △θt−1. The second term −ηgt is the usual

SGD parameter update with learning rate η and the gradient at time step t

gt.

The momentum hyperparameter is often chosen as 0.5, 0.9 or 0.99. A higher

momentum value means to allow more influence of the previous gradients on

the current weight update. The momentum value can be raised with the pro-

27

2 Training Deep Convolutional Neural Networks

Fig. 2.1: SGD with Momentum, the red lines show the effect of Momentum,
opposed to pure SGD optimization (black), source: Goodfellow et al.
2016

gression of training [Zeiler2012] [Goodfellow2016].

2.4.2 Adagrad

The Adagrad method was introduced by Duchi and Hazan [2011].

When using an Adagrad algorithm, a different learning rate is set for each

parameter at every step of the neural net. For more frequent parameters, the

learning rate is set lower than for those which are less frequent. The idea be-

hind this is that the less frequent parameters are changed less often and the

higher learning rate would balance this.

For a regular SGD optimizer the update of the parameter θ at time step t is:

θt+1 = θt − η · gt (2.9)

where the learning rate η is the same for every parameter.

But with Adagrad we have a different learning rate for every parameter.

There is an initial vector θ with entries for each parameter. This initial vector

is adapted by:

28

2 Training Deep Convolutional Neural Networks

θt+1 = θt −
η√

Gt + ǫ
⊙ gt (2.10)

with η being the learning rate and Gt containing the accumulation of the past

squared gradients with respect to all parameters θ; the current gradient is de-

noted by gt and ǫ is a small value introduced to avoid divisions through zero.

At the start, Gt is zero, because there is not any history of previous gradi-

ents. With progress in training this value is steadily increasing, for this value

encompasses the sum of squares of all the past gradients. This causes the de-

nominator
√
Gt + ǫ to steadily increase with each iteration, therefore the new

value for θ is decreasing with each weight update.

With the use of Adagrad it is no longer required to adapt the learning rate

manually. Still a global learning rate needs to be set. But the downside of the

Adagrad algorithm is that it, with progressing training, reduces the learning

rate more and more, because all past gradients are used and the sum of squared

gradients is therefore growing steadily. At some point the network then is

incapable of further learning [Duchi2011] [Ruder2016].

2.4.3 RMSProp

The RMSProp algorithm is an adaption of the Adagrad algorithm that aspires

to solve the problem of the ever-decreasing learning rate.

Instead of accumulating the previous squared gradients, the method uses the

exponentially decaying average of the squared gradients (s. equation 2.11).

With the decay, they achieve to diminish the influence of less recent gradients

[Ruder2016].

E(g2)t = ρE(g2)t−1 + (1− ρ)g2t (2.11)

ρ is the decay rate.

The formula for the parameter updates is defined as:

θt+1 = θt −
η

√

E(g2) + ǫ
⊙ gt (2.12)

29

2 Training Deep Convolutional Neural Networks

2.4.4 Adadelta

Adadelta is also an adjusted version of the Adagrad optimizer. Next to solving

the problem with the decreasing learning rate, this method as well obviates

the need to set a global learning rate. It was presented by Matthew Zeiler

[Zeiler2012].

Similar to the RMSProp the Adadelta algorithm uses the exponentially deca-

ying average of the squared gradients, E(g2)t (equation 2.11). But it also uses

the exponentially decaying average of the squared parameter updates:

E(△θ2)t = γE(△θ2)t−1 + (1− γ)△ θ2t (2.13)

Since E(△θ2)t is unknown, it is approximated by E(△θ2)t−1, making the Ada-

delta update rule:

θt+1 = θt −
√

E(△θ2)t−1 + ǫ
√

E(g2)t + ǫ
(2.14)

2.4.5 Adam

The Adam optimizer (Adaptive Moment Estimation) made its first appearance

in a paper submitted by Kingma and Ba [Kingma2015]. It uses the exponen-

tially decaying average of the previous gradients mt and the exponentially

decaying average of the previous squared gradients vt:

mt = β1mt−1 + (1− β1)gt (2.15)

vt = β2vt−1 + (1− β2)g
2
t (2.16)

The β values determine the decay rate.

The computed values for mt and vt serve as estimates for the first (the mean)

and the second moment (the uncentered variance) of the gradients. Since mt

and vt are initialized with zeros, they show a bias towards zero, particularly

at the beginning of training.

30

2 Training Deep Convolutional Neural Networks

To compensate for this bias, they introduce bias-corrected values m̂t and v̂t:

m̂t =
mt

1− βt
1

(2.17)

v̂t =
vt

1− βt
2

(2.18)

These are used for the Adam update rule:

θt+1 = θt −
η√

v̂t + ǫ
m̂t (2.19)

As default values the authors recommend using 0.9 for β1, 0.999 for β2, and

10−8 for ǫ [Ruder2016].

2.5 Batch Size

The batch size determines with how many images the average gradient for

the SGD is calculated. With a higher batch size the training is faster, as long

as you have the computational capacity for the parallel computation of all

these inputs. A higher batch size gives a better estimate of the gradient of the

training set. But with small batch sizes one can add some noise to the network,

which can be helpful to escape local minima [Goodfellow2016].

2.6 Overfitting and Regularization

Overfitting means that the network is adjusting too much to the training data

set. At some point the network does not learn features anymore that are gene-

rally distinctive for the classes, but that are specific for the training data set.

Such overfitting of the network is a true hazard, because it hurts the ability of

the network to generalize to another data set.

The problem often arises when there is only a small amount of training samp-

les compared with a very deep network which has a lot of parameters. Thus

increasing the amount of training data or reducing the size of the network are

two possible ways of reducing overfitting in such cases.

31

2 Training Deep Convolutional Neural Networks

But there are further approaches that can help to prevent overfitting without

having to resort to one of these. They are called regularization strategies.

Regularization strategies strive for the improvement of the performance of a

network on new data like the test data set, even if this means increased trai-

ning errors. Four common strategies are early stopping, data set augmentation,

L1/L2 regularization and dropout [Goodfellow2016] [Nielsen2015].

2.6.1 Early Stopping

Stopping the training early when the validation accuracy does not rise any-

more, even if the train accuracy is still increasing, can prevent overfitting. It

is advisable though to still watch the validation accuracy for several rounds

before stopping the training, because the validation accuracy may not increase

for a couple of rounds but then rise again [Goodfellow2016].

2.6.2 Data Set Augmentation

Another strategy is the augmentation of the data set. If the training data is

scarce, one can expand their training data set by adding some altered images.

This means for example mirroring or rotating some of the input images, or

changing the size. The aim is to artificially create varieties that are found in

reality but may not be represented by the data set [Goodfellow2016].

2.6.3 L1 and L2 Regularization

L1 and L2 regularization target overfitting by penalizing high weight values,

which are typical for overfitted models.

When applying L1 or L2 regularization, an extra term is added to the cost func-

tion, which is called regularization term. This regularization term includes the

weight values, and therefore the weight values are included in the calculation

32

2 Training Deep Convolutional Neural Networks

of the cost function. This means smaller weight values will lead to smaller error

values et vice versa.

The regularization term for the L1 regularization is defined as:

λ

2n

∑

w

|w| (2.20)

It is composed of the absolute values of all the network weights, and a scaling

factor λ
2n
. λ is known as the regularization parameter (λ > 0) and n is the size

of the training set.

This regularization strategy can be interpreted as a compromise between small

weights and the minimization of the cost function. A small λ means to favor

the minimization of the cost function, and a large λ means to favor finding

small weights.

The regularization term only includes the weights, not the biases.

The L2 regularization is also called weight decay. It is very similar to the L1,

but it uses the sum of squares of the network weights:

λ

2n

∑

w

w2 (2.21)

The difference between L1 and L2 regularization is that the L1 shrinks the

weights by a constant amount whereas with L2 regularization the weights

shrink by an amount proportional to w. The benefit of the L1 regularization

is that it pushes weights for obsolete features to zero, performing a feature

selection that makes the training less vulnerable to noisy inputs. But in prac-

tice, L2 regularization usually promises better performance [McCaffrey2015]

[Buduma2017] [Goodfellow2016].

2.6.4 Dropout

Dropout is also a regularization strategy. The general idea for dropout is dedu-

ced partly from genes, because genes try to improve the fitness of an individual

as independently of other genes as possible. Genetics are doing a good job ma-

33

2 Training Deep Convolutional Neural Networks

king genes robust to any combination with other genes by mixing them up at

random with each new generation. Similar to that, with dropout one can add

noise to a network to make it more robust. In a network with dropout, a spe-

cified amount of neurons will die at random at each layer which has dropout

added to it [Srivastava2014].

34

3 DCNNs: The VGG, Inception

and ResNet Architecture

3.1 The VGG Network

The VGG is a deep neural network Karen Simonyan and Andrew Zisserman

introduced in their paper ”Very deep convolutional networks for large-scale

image recognition”[Simonyan2015]. They wanted to investigate the impact of

the network depth on the accuracy on large-scale image datasets and found

that increasing the depth of a network would significantly enhance the accu-

racy. They used more, but very small (3x3) convolution filters.

So why does the network use stacks of 3x3 convolutional layers? The argumen-

tation is that a stack of two 3x3 convolutional layers would have an effective

receptive field of 5x5, and a stack of three 3x3 convolutional layers would have

a receptive field of 7x7, because there is no pooling layer in between (s. figure

3.1). This reduces the number of parameters. A 7x7 convolutional layer f.e.

results into 72 ·C2 = 49f 2 parameters while a stack of three 3x3 convolutional

layers produces 3(32 · C2) = 27f 2 parameters (f represents the number of fil-

ters). Also, three ReLU activations can be used instead of just one when using

three 3x3 convolutional layers, adding non-linearity to the network.

The network architecture of the deepest VGG of the paper, VGG-19 is visua-

lized in figure 3.2.

The input data is fed to two 3x3 convolutional layers. These first two convolu-

35

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.1: Stacks of 3x3 convolutional layers, source: Szegedy et al. 2015b

tional layers consist of 64 filters1. Subsequently there is a max-pooling layer.

After this pooling operation there is another stack of two 3x3 convolutional

layers, this time 128 filters deep, again followed by a max-pooling layer. Her-

eafter come three stacks which each consist of four 3x3 convolutional layers

and end with a max-pooling operation. The first stack is composed of convolu-

tional layers with each 256 filters, the second and third stack of convolutional

layers with each 512 filters.

After the stacks of convolutional layers there are three fully connected layers.

The first and second layer both have a filter size of 4096, and additionally they

are also equipped with dropout (dropout ratio 0.5). For the last fully connec-

ted layer the number of filters is the number of classes (1000 in figure 3.2).

The spatial padding of the convolutional layers is set to one pixel because the

size of the convolutional layers is 3x3. Each hidden layer is followed by a ReLU

activation function, and the max-pooling layers used for spacial pooling are

each of size 2x2, with stride 2.

The spatial size of the input gets smaller throughout the network because of

the convolutional and pooling layers, but the number of filters is increased,

increasing the depth of the network.

The VGG is basically a very deep network while keeping convolutional and

1The number of filters is called channels in the VGG paper. The term channel is also used
for the colourization, with 1 channel being greyscale and 3 channels being a RGB picture.
So different to the paper it is called number of filters here.

36

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.2: The VGG-19 architecture; the convolutional layers are coloured red,
the ReLU-activations are tinted grey, the pooling layers green and
the fully-connected layers blue; source: own illustration

pooling layers small. But still, a lot of parameters need to be computed: the

parameters of the VGG-19 add up to 144 million parameters.

As input Simonyan and Zisserman used 224x224 RGB images. For preproces-

sing, they subtracted the mean RGB value from each pixel. The authors achie-

ved a 7.0 percent top-5 error rate with one VGG-19 network and an error rate

of 6.8 with two combined networks on the ILSVRC-2012 data [Simonyan2015].

37

3 DCNNs: The VGG, Inception and ResNet Architecture

3.2 Inception Network: Inception-v3

While increasing the depth of a network by simply adding layers and using

high filter numbers is a pretty forthright way of trying to increase the perfor-

mance of a network, the downside is a larger number of parameters and an

increased risk of overfitting, as well as a higher computational cost.

With the introduction of the Inception Module, Szegedy et al. had a somewhat

different approach. Instead of a throughoutly sequential structure, part of the

network works in parallel. The Inception Module was introduced alongside the

GoogLeNet architecture by Szegedy et al. in their paper ”Going deeper with

convolutions”[Szegedy2015a].

The authors have put much thought into the computational part of deep lear-

ning. The basic idea is to combine advantages of both sparsity and dense

computation.

The sparsity is connected to the idea of analyzing the correlations between

units and to cluster units with high correlation into groups. Sparse data struc-

tures2 can ”break the symmetry and improve learning”[Szegedy et al. 2015,

p.3], they are however prone to inefficient computing. Full connections on the

other hand allow more efficient dense computation.

These considerations lead to the invention of the Inception Module.

The Inception Module

A graphic representation of the Inception Module can be found in figure 3.3.

Instead of having either one convolutional layer or a pooling layer, convolutio-

nal and pooling layers are working parallely. Since this would lead to too many

outputs, by adding 1x1 convolutional layers before the 3x3 and 5x5 layers the

authors achieved a dimensionality reduction regarding the feature maps (not

spatially!). These 1x1 layers are also followed by a ReLU unit.

The optimal layered network topology can be found out by using correlation

statistics. Neurons are clustered according to the correlation statistics of pre-

2sparse matrices are matrices with most of its elements being zero. A dense matrix is a
matrix where most of the elements are not zero

38

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.3: Inception Module, source: Szegedy et al. 2015a

ceding layer activations. Neurons with highly correlated outputs are clustered.

1x1 convolutions cover very local clusters, whereas 3x3 and 5x5 convolutions

can cover more spread-out clusters. This is why in the early layers of the CNN

smaller convolutions are used, whilst in the later layers, where the high-level

reasoning takes place, 3x3 and 5x5 are more common. The results are conca-

tenated, including pooling.

This original Inception Module was used for the GoogLeNet [Szegedy2015a].

In the paper “Rethinking the Inception Architecture for Computer Vision“ the

authors introduced two new networks, the Inception-v2 and v3 [Szegedy2015b].

The Inception-v2 is just a stripped down version of the v3, so the remarks will

be limited to the v3 here.

The Inception-v3 network adds some new ideas to the original GoogLeNet. A

main element is the factorization of convolutions with large filter size.

For one thing, the authors factorized large convolutions into smaller convoluti-

ons. They replaced the 5x5 convolutional kernels of the Inception module with

two 3x3 kernels to reduce the parameters, like in the VGG-network (figure 3.4).

39

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.4: Inception Module: factorization into smaller convolutions. This Incep-

tion module has two 3x3 convolutions instead of a 5x5 convolution

(compared to the original Inception module). Source: adapted from

Szegedy et al. 2015b

The authors also experimented with other types of spatial factorization. They

found that a factorization of a nxn layer in a nx1 followed by a 1xn layer can

also have a remarkable beneficial effect on the computational cost (s. figure

3.5).

Fig. 3.5: Visualisation of the effect of successive asymmetric convolutions: 3x1

and 1x3, source: Szegedy et al. 2015b

So they exchanged each of the 3x3 layers in the Inception Module in figure 3.4,

with a 3x1 and a 1x3 layer. The resulting Inception Module can be viewed in

figure 3.6. But these asymmetric convolutions did not work too well in early

layers, so they proceeded to use them on medium grid-sizes.

40

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.6: Inception Module: factorization into asymmetric convolutions, source:

adapted from Szegedy et al. 2015b

Another version of the Inception Module is one with expanded filter bank out-

puts (figure 3.7).

This Inception Module is used late in the network, when the feature map is

already very small (8x8). The aim is to increase the number of filters. It is

designed to obtain high-dimensional representations.

Fig. 3.7: Inception Module with expanded filter bank outputs, source: adapted

from Szegedy et al. 2015b

All three of these Inception modules are used in the Inception network archi-

41

3 DCNNs: The VGG, Inception and ResNet Architecture

tecture, shown in table 3.1. The lower layers of the Inception network are kept

traditionally, sequences of convolutional layers followed by max pooling (like

in the VGG architecture).

type patch size/stride or remarks input size
conv 3x3/2 299x299x3
conv 3x3/1 149x149x32

conv padded 3x3/1 147x147x64
pool 3x3/2 147x147x64
conv 3x3/1 73x73x64
conv 3x3/2 71x71x80
conv 3x3/1 35x35x192

3x Inception as in figure 3.4 35x35x288
5x Inception as in figure 3.6 17x17x768
2x Inception as in figure 3.7 8x8x1280

pool 8x8 8x8x2048
linear logits 1x1x2048
softmax classifier 1x1x1000

Table 3.1: The Inception network architecture, source: adapted from Szegedy
2015b

Additionally, Szegedy et al. equipped their Inception-v3 network with Batch

Normalization, batch-normalized auxiliary classifiers and label smoothing re-

gularization.

Auxiliary classifiers

The Inception networks are really deep. To nevertheless embrace the advan-

tages of more shallow networks like larger gradient signals and regularization,

auxiliary classifiers are added to intermediate layers (s. figure 3.8).

The loss outputs of these classifiers are weighted by a factor of 0.3 and then

added to the total loss. The auxiliary classifier outputs are only used for trai-

ning, not during inference to new data.

The auxiliary classifiers were already a part of the GoogLeNet architecture,

but in the Inception-v3 they also added Batch Normalization to the auxiliary

softmax functions.

42

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.8: Auxiliary classifiers as a part of the GoogLeNet architecture; the soft-
max layers are coloured yellow. (the convolutional layers are blue,
pooling layers red, local response normalization and concat layers
green, and softmax layers yellow); source: Szegedy et al. 2015a

Label smoothing regularization

Also, the Inception-v3 is using label smoothing regularization (LSR). When

training a model with the cross-entropy, it is trying to maximize the log-

likelihood of the true training labels. In other words, it tries to push the pre-

dicted probability of the true label closer to one. Szegedy et al. argue that

this is not ideal when the aim is to obtain a model that is generalizable to

new data. Still of course the predicted probability of the true label should be

higher than the probabilities of the false labels, but the intention is to lessen

the difference to make the model more adaptable.

The authors report a 4.2 top-5 error rate with a single model and 3.58 with a

multi-model approach using the ILSVRC 2012 classification benchmark with

the Inception-v3 architecture [Szegedy2015b].

43

3 DCNNs: The VGG, Inception and ResNet Architecture

3.3 Deep Residual Network: ResNet

The ResNet is a really deep neural network, presented by Microsoft Research

Asia [He2015a]. They acknowledged the fact that vivid stacking of more and

more convolutional layers does not continuously lead to better performance.

At first the accuracy increases with the depth of the network, but at some

point it even starts to degrade. So they invented a residual learning framework

to tackle this degradation problem.

A residual network is made of building blocks, visualized in figure 3.9:

Fig. 3.9: ResNet building block, source: He et al. 2015a

The input x is fed to a stack of convolutional layers, as typical. But in addi-

tion to this, a shortcut is implemented. Shortcut connections are connections

between layers that skip one layer or more. In residual networks, this shortcut

connection is an identity function. Therefore the output of this shortcut is

equal to its input.

The output of the identity function (x) is then added to F(x), which is the

output of the weight layers: F (x) + x. When we define H(x) as the desired

output, traditionally we would fit F(x):= H(x). But with the residual building

block, we perform residual mapping F(x):= H(x) - x. This induces a reference

to the layer inputs.

In a regular CNN, later layers are just fed abstract information broken down

from the previous layers. In a ResNet the input information is preserved and

fed over and over again into the numerous layers of the ResNet (s. figure 3.10).

44

3 DCNNs: The VGG, Inception and ResNet Architecture

With the use of residual building blocks, one can address the degradation

Fig. 3.10: Comparison between a regular CNN and ResNet, source: Bolte 2016

problem. He et al. (2015a) have tested a plain 18-layer and a 34-layer convo-

lutional neural network against two residual networks with the same depths.

The architectures can be viewed in figure 3.11.

Table 3.2 shows the Top-1 error for the two networks.

You can clearly see that the 34-layer plain CNN performs worse than the 18-

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 3.2: Top-1 error on the ImageNet validation set for the ResNet and the
plain network architecture, source: He et al. 2015a

layer plain CNN. The ResNet architecture on the other hand achieved better

results for the 34-layer network than for the 18-layer network, and altogether

a better result than the plain network.

45

3 DCNNs: The VGG, Inception and ResNet Architecture

Beyond that, using the residual building blocks does not even cause any addi-

tional computational complexity or parameters.

The deepest ResNet presented in the paper has 152 layers. With the ResNet

the authors won the ILSVRC 2015 with an error rate of 3.58 percent. The

single-model results in the paper show a 4.49 top-5 error on the ImageNet

validation set [He2015a].

46

3 DCNNs: The VGG, Inception and ResNet Architecture

Fig. 3.11: ResNet vs. plain architecture, source: He et al. 2015a

47

4 Implementation in R Using the

MXNet Deep Learning Library

4.1 The MXNet Deep Learning Library

When you delve into deep learning, there are a lot of deep learning libraries

you can choose from. Apart from MXNet there are also for example the Thea-

no, Torch, and Caffe library.

The choice of the right deep learning library depends on your needs and what

programming language you would like to use. Since these libraries are conti-

nuously developing, the features they provide advance with time.

MXNet currently supports not only Python but also the programming lan-

guages R, Scala, Julia, C++, Matlab, Javascript and Perl. Also it is conside-

red a very fast deep learning library which supports distributed computing.

The open-source library MXNet was and is developed by the DMLC group

[DMLC2016] [Chen2015a].

4.2 Parallelization and Hardware

MXNet was compiled with OpenBLAS [Xianyi2016] for parallelization in this

project. Even faster learning can be achieved with the Intel Math Kernel Libra-

ry for Deep Neural Networks (MKL-DNN), but it did not work for Inception

and ResNet architectures at the time. For the training a server with 2 Intel

Xeon CPUs was used, each with 14 cores and hyperthreaded.

48

4 Implementation in R Using the MXNet Deep Learning Library

4.3 The Pretrained Models: VGG-19,

Inception-v3 and ResNet-152

Training DCNNs is costly both in terms of time and computational resources.

Luckily enough one does not always have to train his network from scratch.

Several deep learning libraries have their own model zoos, where there are

already pretrained models available.

Even if you have a dataset that is somewhat different from the dataset the

pretrained network was trained on, using pretrained weights can save a lot of

training time. In order to finetune a network that has been trained on other

data, one has to remove the last layer of the network and replace it with a

new one that has the number of classes of the new data as the number of

hidden layers. In some way, using pretrained weights is a very smart form of

initialization.

Finetuning shows a great improvement over training from scratch for scarce

data [Hentschel2016] [Oquab2014].

For the following researches three pretrained models from the MXNet mo-

del zoo were used [DMLC2016]. All of them were trained on the ImageNet

[Russakovsky2015] data set and achieve the same classification accuracies as in

their respective papers. The networks are the VGG-19 network [Simonyan2015],

the Inception-v3 network with Batch Normalization [Szegedy2015b] and the

ResNet-152 [He2015a].

4.4 Finetuning the VGG, the Inception and the

ResNet on Varying Amounts of Places2

Image Data

Training deep networks on a larger scale is not a sprint, it is a long run and

can take up to weeks. But also for smaller data sizes the question is not only

49

4 Implementation in R Using the MXNet Deep Learning Library

how good a DCNN can classify images, but also how fast it can get that good.

In addition, it requires a big enough data set to successfully train a network.

Since labeled images in vast amounts are not always at hand, it is also reaso-

nable to ask, how much data is really necessary.

Therefore the aim is to:

A) Compare the speed and the classification accuracy on the test set of the

VGG-19, Inception-v3 and ResNet-152

B) Compare the classification accuracy between different data amounts (vary-

ing between 20 and 1000 pictures per class)

The basic idea is to finetune the three chosen DCNNs on data sets of varying

sizes, and then to compare the test accuracy and the training times.

Since the pretrained models were trained using the ImageNet data set, different

data is needed for the finetuning.

4.4.1 The Places2 Data Set

The Places2 Places365-Standart data set encompasses 1.6 million RGB train

images from 365 scene categories [Zhou2016].

For the task the small (256x256) train images were downloaded and resized to

a size of 224x224. The training was done only with a part of the data set. For

the research three categories were chosen: cockpit, waterfall and staircase (s.

figure 4.1).

It was at first planned to use the category sauna instead of waterfall, but the

sauna image folder turned out to be infiltrated by a lot of images that showed

something else (f.e. a church).

The categories themselves were chosen because they are pretty clearly defined.

50

4 Implementation in R Using the MXNet Deep Learning Library

(a) cockpit (b) waterfall

(c) staircase (d) staircase

Fig. 4.1: Images of the three classes: cockpit, waterfall and staircase, source:
Zhou et al. 2016

4.4.2 Training Settings and Results for the VGG, Inception

and ResNet on the Places Data

The three DCNNs VGG-19, Inception v-3 and ResNet-152 were trained on

1000, 500, 250, 100, 50 and 20 images per class. Since there are three clas-

ses (cockpit, waterfall and staircase) this means a network trained with 1000

images per class was trained on 3000 images total.

The training was conducted with the same sample of the training data for eve-

ry network. As an example, for 20 images per class this means that the same

60 images were used to train the VGG, the ResNet and the Inception network.

The evaluation and test set was exactly the same for every network and with

any of the data sizes for comparability. The batch sizes were customized to the

51

4 Implementation in R Using the MXNet Deep Learning Library

respective size of the training data set (50, 50, 30, 30, 15 and 10).

For the validation and hence the model choice an evaluation set with 100 pic-

tures per class was used. Especially with the lower training data sets (f.e. 20 or

50 images per class) it would even be unrealistic to have such a high amount

of validation data. This is the reason why the time for the calculation of the

validation accuracy is excluded in the training times.

The test data set encompasses 300 images per class, adding up to 900 images

to test the networks on.

As a preprocessing step, the subtraction of the mean image was performed.

During the training of the Inception, the Adam optimization algorithm was

used to set the learning rate. Initially the plan had been to train all three

networks with this optimizer, but as it did not work very well with the ResNet

and the VGG network, the learning rate was set manually for the training of

these networks.

The learning rate value for VGG and ResNet was set to 0.0011 and the mo-

mentum to 0.5. Later in training the learning rate was adjusted to 0.0007.

Results for the VGG-19 Network

At first the results for the VGG-19 network will be presented. They are sum-

marized in table 4.1.

For both 1000 and 500 images per class, the VGG-19 network acquired a test

accuracy of about 96 percent. The training with 1000 images lasted nearly 37

hours (11 rounds). With 500 images per class, the training took roughly 18

hours training time and 11 rounds as well. Training with 250 images per class

resulted in a 93 percent test accuracy in nearly 16 hours.

With 100 and 50 images per class, the training accuracy obtained about 89

percent. The training times for 50 and 100 images per class are very similar

1If your network outputs NA values instead of training accuracies, it is likely that your
learning rate is set too high. Even a value of 0.07 or 0.01 might already cause this to
happen.

52

4 Implementation in R Using the MXNet Deep Learning Library

images per class test accuracy training time rounds
1000 96.1 36.7h 11
500 95.8 17.7h 11
250 92.9 15.8h 19
100 89.3 4.3h 15
50 89 4.9h 34
20 83.3 1.1h 21

Table 4.1: The test accuracy, training times and number of rounds for the
VGG-19 network, listed after the training images per class (3 clas-
ses); the times equate the training times until the best validation
accuracy was achieved (the time needed for the computation of the
evaluation accuracies is excluded)

(4.3 and 4.9 hours) while the training with 50 images per class took about

twice as many rounds (34) as the training with 100 images.

For 20 images per class, the VGG network accomplished a test accuracy of 83

percent in a good hour training time.

The results for the VGG-19 network show that the test accuracy is clearly

deteriorating with sinking data input. But one can also see that for the training

with 1000 and 500 images per class there is barely a difference in the resulting

test accuracy. This was also observed for 50 and 100 images per class.

The difference in the test accuracy of the VGG network trained with 1000 as

opposed to 20 images per class amounts to 12.8 percent.

Results for the Inception-v3 Network

Varying amounts of data were also fed to the Inception-v3 network. Table 4.2

shows the results.

When feeding 1000 images per class to the Inception network, a test accuracy

of almost 99 percent could be achieved. The training took nearly 20 hours. For

500 images per class, the network still got a test accuracy of 98 percent in 2.8

hours of training time. And training with 250 images per class for two hours

yielded yet 97.8 percent test accuracy.

The Inception network trained with 100 images obtained a test accuracy re-

sult of 96.2 in 2.4 hours training time. With 50 images the test accuracy fell

53

4 Implementation in R Using the MXNet Deep Learning Library

images per class test accuracy training time rounds
1000 98.8 19.8 h 18
500 98 2.8h 5
250 97.8 2.0h 7
100 96.2 2.4 h 23
50 94.9 27.2 m 7
20 90.7 24.0min 20

Table 4.2: The test accuracy, training times and number of rounds for the
Inception-v3 network, listed after the training images per class (3
classes); the times equate the training times until the best validation
accuracy was achieved (the time needed for the computation of the
evaluation accuracies is excluded)

to about 95 percent, with about 27 minutes of training.

Cutting the images per class down to 20 images caused a perceptible drop in

the test accuracy. Barely 91 percent of the test data set were classified correct-

ly.

Comparably to the VGG, the Inception network also shows that the test ac-

curacy drops continuously with smaller data sets. For 1000 images per class,

the network only has an error rate of 1.2 percent. The result for 500 images

per class, a 2 percent error rate, is also very promising. Even for 250 images

per class the error rate does not exceed 2.2 percent.

Results for the ResNet-152

The outcome for the ResNet-152 architecture is depicted in table 4.3. Again,

data ranging from 20 to 1000 pictures per class was fed to the network. For the

1000 images per class, the ResNet obtained 97.4 percent test accuracy in nearly

26 hours of training time. With 500 images per class, it could still achieve a

test accuracy of nearly 97 percent (in approx. 19 hours’ time). Training with

250 images per class for 16 hours accomplished a test accuracy of 96.4 percent.

With 100 pictures per class, the training accuracy dropped to about 92 percent.

For 50 images per class, a test accuracy value of 91 percent could be obtained

in approximately 3 hours of training time. With 20 images per class, the test

accuracy dropped to barely 87 percent.

54

4 Implementation in R Using the MXNet Deep Learning Library

images per class test accuracy training time rounds
1000 97.4 25.7h 6
500 96.9 18.8h 9
250 96.4 16.2h 15
100 91.9 11.2h 30
50 91.2 2.8h 14
20 86.7 5.9h 80

Table 4.3: The test accuracy, training times and number of rounds for the
ResNet-152, listed after the training images per class (3 classes); the
times equate the training times until the best validation accuracy
was achieved (the time needed for the computation of the evaluation
accuracies is excluded)

Similar to the other two networks the results for the ResNet exhibit that the

test accuracy values are constantly sinking with the reduction of the training

data set.

The test accuracies for 1000, 500 and 250 images per class only have a small

difference in their accuracies (0.5 percent) considering the quite huge difference

in the amount of images involved in the training. On the other hand, there is

a perceptible drop in the test accuracy when the data drops from 250 to 100

and from 50 to 20 images per class.

4.4.3 Summary of the Test Results

The test accuracies for the three networks, the VGG-19, ResNet-152 and

Inception-v3 architecture, are summarized in table 4.4.

The Inception network accomplished the best results for the test accuracies

for every data amount. The outcome accuracies for the VGG-19 network we-

re generally noticeably smaller compared to the other networks. The ResNet

yielded better results than the VGG network, but was inferior to the Inception

network.

With choosing a well-architectured network, one can make up for a smaller

dataset. For example, the Inception network achieved better results for 100

images per class than the VGG network did for 500 images. Also with 50

images per class the Inception network succeeded in having a higher test ac-

55

4 Implementation in R Using the MXNet Deep Learning Library

images per class VGG ResNet Inception
1000 96.1 97.4 98.8
500 95.8 96.9 98
250 92.9 96.4 97.8
100 89.3 91.9 96.2
50 89 91.2 94.9
20 83.3 86.7 90.7

Table 4.4: A summary of the test accuracies for the VGG-19, ResNet-152 and
Inception-v3. They are listed after the training images per class (3
classes)

curacy than both VGG and ResNet had for 100 images per class.

The drop in the test accuracy between 1000 and 20 images per class is also

smaller for the Inception than for the other two networks. When reducing the

data amount to 20 images the test accuracy for the Inception-v3 decreases by

8.1 percent. The ResNet suffers a loss of 10.7 percent, and the VGG loses 12.8

percent.

What is also revealed is that a drop in the training data hurts the test ac-

curacies more if the data is already scarce. A drop from 50 to 20 images per

class has a considerably higher impact than a drop from 1000 to 500 images

per class. This suggests that the marginal benefit of additional image data is

diminishing with increased data sets.

In table 4.5, the training times for a single round are depicted for 1000, 500

and 100 images per class.

images per class VGG ResNet Inception
1000 3.3h 4.3h 1.1h
500 1.6h 2.1h 33.1min
100 17.1min 22.4min 6min

Table 4.5: Training times per round for the VGG-19, Resnet-152 and
Inception-v3. They are listed for 1000, 500 and 100 images per class
(3 classes)

The training times demonstrate that the Inception module was the fastest of

the three. The ResNet needed more time to complete a round than the VGG,

56

4 Implementation in R Using the MXNet Deep Learning Library

which is not really surprising since it has a depth of 152 layers compared to

the 19 layers of the VGG-19. But a faster completion of a round does not

necessarily mean the total training time until the network converges is also

smaller.

This is why it is also interesting to look at the total training times. The training

times until convergence for the three networks are shown in table 4.6.

images per class VGG ResNet Inception
1000 36.7 25.7h 19.8h
500 17.7h 18.8h 2.8h
250 15.8 16.2h 2.0h
100 4.3h 11.2h 2.4h
50 4.9h 2.8h 27.2min
20 1.1h 5.9h 24.0min

Table 4.6: A summary of the training times for the VGG-19, ResNet-152 and
Inception-v3. They are listed after the training images per class (3
classes). The times equate the training times until the best valida-
tion accuracy was achieved (the time needed for the computation
of the evaluation accuracies is excluded).

The Inception is again in the first place, with smaller total training times than

the other two networks. For the ResNet and VGG network the picture is less

plain. Sometimes the ResNet converges faster, and sometimes the VGG.

Test accuracies and training times both indicate that the Inception-v3 net-

work architecture is the overall best choice. Second place is the ResNet, which

has better test accuracy results than the VGG. In some cases the VGG may

converge faster, but because of the better test accuracy results of the ResNet

it is reasonable to favor the residual network architecture.

57

4 Implementation in R Using the MXNet Deep Learning Library

4.5 Training the VGG, the Inception and the

ResNet on Medical Data

Medical image data is theoretically very suitable for deep learning. Because

medical images are made for the purpose of health care, the data quality is

due to regulations in general very high. But since there are laws protecting the

patients’ privacy, the data is hard to access and therefore available data sets

are scarce [Cho2016].

Using neural networks for medical imaging can reduce diagnosis times and

prohibit relevant information from being overlooked. Its strength is also the

possibility to process large data sets [Amato2013].

A publication of Cho et al. [Cho2016] engaged itself with the issue of the

amount of data needed for the training of medical images. The task for the

network was to distinguish between images of different body areas like the

brain, the chest or the abdomen. The results presented in the publication sug-

gest that a data amount of at least 50, but rather 100 to 200 images is needed,

depending on the body part.

A possible strategy to train medical images even with small data sizes is fi-

netuning. Though medical images are very different to natural images, fine-

tuning medical images with a network that was trained on non-medical data

was found to nevertheless increase the performance compared to training from

scratch [Tajbakhsh2016].

A paper of Lévy and Jain [Lévy2016] relates to the classification of breast can-

cer. They finetuned an AlexNet and a GoogLeNet architecture with a data set

consisting of 1820 mammography images from 997 patients to classify breast

cancer masses. The authors reached a 93.4 percent sensitivity2 with the Goo-

gLeNet and claim to have outperformed radiologists with the network. With

the AlexNet, they still reached an 89 percent sensitivity.

To investigate the performance of the VGG-19, Inception-v3 and the ResNet-

2The sensitivity is an important measure in medical applications because it is especially
important to keep the number of false negatives small

58

4 Implementation in R Using the MXNet Deep Learning Library

152 on medical image data the networks were trained on breast cancer mam-

mographies.

4.5.1 The Breast Cancer Data Set

The medical data set is composed of MRI-mammography images that were

made for the detection of breast cancer [Hoffmann2013]. All of them are cut

out so that the images show the tumor area only (s. figure 4.2). Therefore the

image sizes are varying a lot.

(a) benign (b) malignant

Fig. 4.2: Mammography images of a benign and a malignant case

There are two classes, tumors that turned out malignant and tumors that tur-

ned out benign. The data set is balanced: it encompasses 29 patients with

benign and 30 patients with malignant tumors. A non-balanced data set can

really hurt the network performance [Mazurowski2008].

The images were weighted with the T1 signal. There are five time points. The

first one is the base value, meaning that the contrast agent was not yet injec-

ted. During the time points two to five the concentration of the contrast agent

is first sharply increasing and then decreasing linearly.

A linear regression model was fitted for each voxel, over the time points two

to five.

Both the original and the regression images were used for the training. In the

case of the regression data, the intercept and slope pixel values were added up.

All the images were equipped with a frame of zero values to achieve an image

size of 224x224 for every image.

59

4 Implementation in R Using the MXNet Deep Learning Library

For each case, there are a couple of image acquisitions. To augment the data,

two mammography images were used from each case, but it was made sure

that the same case does not appear in two different sets (f.e. both in training

and test set). Because the pretrained models were trained on RGB images and

the mammography images are greyscale, the greyscale channel was duplicated

to get 3 channels. For preprocessing, the mean image was subtracted.

4.5.2 Results for the Medical Data

The neural networks were trained using learning rates between 0.0004 and

0.0007 and a momentum of 0.5. The Inception network was also trained with

the Adam optimizer, but this did not enhance the outcome.

At first, the images that were received through the regression were used for

the training of the neural networks VGG-19, Inception-v3 and ResNet. Table

4.7 shows the results:

network test accuracy training time rounds
VGG-19 41.7 2.9h 26

Inception v3 58.3 1.2h 34
ResNet-152 50 1.7h 13

Table 4.7: Results of the VGG, Inception and ResNet on the Regression Data
Set

For the VGG, the test accuracy reached a value of 41.7 percent, and for the

Inception network 58.3 percent. The ResNet obtained a test accuracy of 50

percent. The training of the networks took between one to three hours. The

outcomes indicate that none of the networks can truly distinguish malignant

from benign tumors.

The training for the original breast cancer data was conducted with the images

that were made at the third time point. In table 4.8, the results for these images

are listed.

60

4 Implementation in R Using the MXNet Deep Learning Library

network test accuracy training time iterations
VGG-19 54.2 2.8h 25

Inception v3 58.3 13min 6
ResNet-152 62.5 55min 7

Table 4.8: Results of the VGG, Inception and ResNet on the original breast
cancer images

Also for this data the test accuracies are rather small. The VGG accomplis-

hed solely 54 percent, and the Inception and the ResNet got accuracies of 58

and 62.5 percent. The training lasted between 13 minutes and and three hours.

In summary: for both the original and the regression breast cancer data, neit-

her network can differentiate between benign and malignant cases.

61

5 Conclusion

The results show that the data amount that is needed for the training of neural

networks is dependent on the network architecture. The best classification ac-

curacies could be achieved using the Inception-v3 with Batch Normalization.

The ResNet architecture with 152 layers is the second best of the considered

networks. The VGG-19 was last.

This is very similar to the single-model results on large data sets: in their re-

spective papers the authors report top-5 error rates of 7.0 for the VGG , 4.49

for the ResNet and 4.2 for the Inception on ImageNet data [Simonyan2015]

[He2015a] [Szegedy2015b].

There is already an approach by Szegedy et al. to combine the advantage of

both the Inception Module and the residual building blocks, as well as a new

Inception-v4 architecture which is also presented in the paper [Szegedy2016].

The main goal of this thesis was to find out how many images are needed

to successfully train a CNN.

Surely the amount of data needed for the training is to an extent also depen-

dent on the complexity of the classification task and also the quality of the

images. But from the results on this data set the conclusion is that, with fine-

tuning and a decent network, a data amount of 250 images per class already

suffices to train a very able network. Anyway, a 2.2 percent error rate could

be obtained with this size.

Even the training with smaller datasets of 50 to 100 images per class still ob-

tained classification accuracies between 90 and 96 percent, depending on the

network.

62

5 Conclusion

For Finetuning, using adaptive learning rate optimizers is not always advi-

sable. It did enhance the performance of the Inception-v3. But for the VGG

and ResNet on the other hand the test accuracies were clearly better for ma-

nually set learning rates than for the Adam optimizer.

The training with medical data did not yield a network that is able to distin-

guish between malignant and benign cases. The reason for this is inconclusive.

A reasonable hypothesis is the small data size. The results for the non-medical

data suggest that for a training data set consisting of 20 images per class a

training accuracy of 87 to 90 percent is reachable. But for finetuning it does

make a difference how similar the images the network was pretrained on are

to the new dataset [Yosinski2014].

It is also possible that there is no regularly occurring difference between the

malignant and benign tumors, or the neural networks are not able to detect the

pattern. The second case can happen when the network requires more data,

but also when the quality of the data does not suffice.

Future research on this topic could involve investigating the effects of data

augmentation techniques like alternating image sizes, mirroring, and rotating

on the test accuracy for different data sizes.

For deep learning, it is very important that the training data set covers the

variety of the class. The benefit of more pictures is that the network learns

more versions of the depicted. Thus it is very likely that the performance of

the networks could be even further enhanced with additional use of data aug-

mentation techniques.

For the medical images, the image sizes were rather small. An approach would

be to use a model that is more fit to small input data sizes where it is not

necessary to artificially increase their size.

With respect to the medical application in general, it would be interesting to

finetune medical image data on a model pretrained with other medical data

63

5 Conclusion

to draw comparisons to results achieved with pretrained models trained on

non-medical data. But certainly this would require the availability of suitable

medical data sets.

Furthermore there are multi-model approaches where the predictions of several

models are combined by following the majority “vote“, or averaging over the

network outputs [Zhou2002]. Anderson et al. [Anderson2016] used this idea

for improving finetuning by using both a pretrained and a model trained on

the target data in combination in their paper “Beyond fine tuning: A modular

approach to learning on small data“.

At last, it is worth mentioning the work of Yosinski [Yosinski2015] and Zeiler

[Zeiler2013] regarding the visualization of DCNNs, which is letting us under-

stand more thoroughly the way neural networks learn and how they perceive

images.

Since Yann LeCun’s paper about convolutional layers in 1998 [LeCun1998]

and later the stunning results of their use with the AlexNet in the ILSVRC

2010 competition [Krizhevsky2012], a lot of researchers have engaged them-

selves in the enhancement of convolutional neural networks. The results so far

are promising and one can expect some more development in the future of the

scientific field of deep convolutional neural networks.

64

6 Electronic Appendix

This is a short description of the files enclosed with this thesis on two DVDs.

One DVD contains the Places files, and the other the breast2 files.

6.1 RCode

There are two R-Code folders, R-Code breast and R-Code Places.

In the Places folder there are the four R-files. In the ”Places resize“ file is

the code to resize the 356x356 Places data to 224x224. With the code in the

”Places create data“ file these resized images can be turned into a data set

and saved in a CSV file. The ”finetune places“ and ”test places“ files contain

the code needed to finetune networks and test them on the test data set.

The breast2 folder contains four R-files. The code in the ”breast2 images data“

and ”breast2 regression data“ files transforms the breast2 data into 224x224

images by adding a frame of zeros to the images, turns them into a dataset

and creates a CSV file. The ”finetune breast“ and ”test breast“ R-files are for

the finetuning and testing of the breast2 data.

Furthermore, each R-Code folder includes a functions folder with functions

and other code that is called by the mentioned files.

The R-Code depends on the packages mxnet [Chen2015b], EBImage [Pau2010],

oro.nifti [Whitcher2011], data.table [Dowle2017] and gdata [Warnes2015].

65

6 Electronic Appendix

6.2 Data

The data is in two folders called data Places and data breast2.

The data Places folder contains 5000 356x356 Places2 images for each of the

three classes (staircase, waterfall and cockpit). The trainM files folder holds

the mean pixels used for the preprocessing of the Places data sets.

In the breast2 data folder there are the original images as well as the regression

images of the breast2 dataset, including a text file with the class categories for

the files.

For the original images there are three folders. The breast2 images folder con-

tains the full data, whereas in the benign-3 and malignant-3 folders there are

the images for the third time point ordered according to the class.

In the breast2 regression folder, the regression data is ordered after class and

regression output (intercept, slope).

The corresponding CSV files to the breast2 data can be found in the CSV files

folder.

6.3 .params and .json Files

The .params and .json files for the pretrained models are saved in the pretrai-

ned models folder. The network files that achieved the accuracies presented in

this work are in the folders params files Places and params files breast2.

66

References

[Amato2013] Amato, F.; López, A.; Peña-Méndez, E. M.; Vaňhara, P.; Hampl,

A.; Havel, J. (2013): Artificial neural networks in medical diagnosis. J Appl

Biomed Vol. 11, pp. 47–58.

[Anderson2016] Anderson, A.; Shaffer, K.; Yankov, A.; Corley, C.D.; Hodas,

N.O. (2016): Beyond Fine Tuning: A Modular Approach to Learning on

Small Data. arXiv:1611.01714v1.

[Bolte2016] Bolte, B. (2016): Looking at Residual Networks.

http://ben.bolte.cc/blog/2016/resnet.html (accessed 05.03.17).

[Buduma2017] Buduma, N.; Locascio, N. (2017): Fundamentals of Deep Lear-

ning: Designing Next-generation Machine Intelligence Algorithms. O’Reilly

Media.

[Chen2015a] Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao,

T.; Xu, B.; Zhang, C.; Zhang, Z. (2015): MXNet: A Flexible and Effi-

cient Machine Learning Library for Heterogeneous Distributed Systems, ar-

Xiv:1512.01274v1.

[Cho2016] Cho, J.; Lee, K.; Shin, E.; Choy, G.; Do, S. (2016): How much data

is needed to train a medical image deep learning system to achieve necessary

high accuracy? arXiv:1511.06348v2.

[Dettmers2015] Dettmers, T. (2015): Understanding Convolution in Deep

Learning. http://timdettmers.com/2015/03/26/convolution-deep-learning

(accessed 13.03.17).

67

References

[DMLC2016] DMLC (2016): Flexible and Efficient Library for Deep Learning.

http://mxnet.io, http://mxnet.io/model zoo (accessed 02.06.17).

[Duchi2011] Duchi, J.; Hazan, E.; Singer, Y. (2011): Adaptive Subgradient Me-

thods for Online Learning and Stochastic Optimization. Journal of Machine

Learning Research Vol. 12, pp. 2121-2159.

[Ghahramani2004] Ghahramani, Z. (2004): Unsupervised Learning, in: Bous-

quet, O. et al. (eds): Advanced Lectures on Machine Learning. LNAI 3176.

Springer, pp. 72-112.

[Glorot2010] Glorot, X.; Bengio, Y. (2010): Understanding the difficulty of

training deep feedforward neural networks. Proceedings of Machine Learning

Research Vol. 9 (AISTATS 2010 Proceedings), pp. 249-256.

[Goodfellow2016] Goodfellow, I.; Bengio, Y.; Courville, A. (2016): Deep lear-

ning. MIT press.

[Guo2015] Guo, Y.; Liu, Y.; Oerlemans, A.; Songyang, L.; Wu, S.; Lew, M.S.

(2015): Deep learning for visual understanding: A review. Neurocomputing

Vol. 187, pp. 27-48.

[He2015a] He, K.; Zhang, X.; Ren, S.; Sun, J. (2015): Deep Residual Learning

for Image Recognition. arXiv:1512.03385v1.

[He2015b] He, K.; Zhang, X.; Ren, S.; Sun, J. (2015): Delving Deep into Rec-

tifiers: Surpassing Human-Level Performance on ImageNet Classification.

arXiv:1502.01852v1.

[Hentschel2016] Hentschel, C.; Wiradarma, T.P.; Sack, H. (2016): Fine Tuning

with scarce Training Data - Adapting ImageNet to Art Epoch Classification.

IEEE International Conference on Image Processing (ICIP).

[Hoffmann2013] Hoffmann, S., Shutler, J.D., Lobbes, M.; Burgeth, B.; Meyer-

Bäse, A. (2013): EURASIP J. Adv. Signal Process, 2013: 172.

68

References

[Ioffe2015] Ioffe, S.; Szegedy, C. (2015): Batch Normalization: Accelera-

ting Deep Network Training by Reducing Internal Covariate Shift. ar-

Xiv:1502.03167v3.

[Karpathy2017] Karpathy, A. (2017): CS231n Convolutional Neural Networks

for Visual Recognition. http://cs231n.github.io (accessed 20.03.17).

[Kingma2015] Kingma, D. P.; Ba, J. L. (2015): Adam: a Method for Stochastic

Optimization. International Conference on Learning Representations, San

Diego.

[Krizhevsky2012] Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (2012): Image-

Net Classification with Deep Convolutional Neural Networks. Advances in

Neural Information Processing Systems 25 (NIPS 2012).

[LeCun1998] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998): Gradient-

Based Learning Applied To Document Recognition. Proceedings of the IEEE

Vol. 86, Issue 11, pp. 2278-2324.

[LeCun2015] LeCun, Y.; Bengio, Y.; Hinton, G. (2015): Deep learning. Nature

Review Vol. 521.

[Lévy2016] Lévy, D.; Jain, A. (2016): Breast Mass Classification from

Mammograms using Deep Convolutional Neural Networks. 30th Confe-

rence on Neural Information Processing Systems, Barcelona, Spain. ar-

Xiv:1612.00542v1.

[Lipton2015] Lipton, Z. C.; Berkowitz, J.; Elkan, C. (2015): A Critical Review

of Recurrent Neural Networks for Sequence Learning. arXiv:1506.00019v4.

[Mazur2015] Mazur, M. (2015): A Step by Step Backpropagation Exam-

ple. https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-

example (accessed 21.03.17)

[Mazurowski2008] Mazurowski, M. A.; Habas, P. A.; Zurada, J. M.; Lo, J.Y.;

Baker, J.A., Tourassi, G.D. (2008): Training neural network classifiers for

69

References

medical decision making: the effects of imbalanced datasets on classification

performance. Neural networks Vol. 21, Issues 2-3: pp. 427–436.

[McCaffrey2015] McCaffrey, J. (2015): Test Run - L1 and L2 Regularization

for Machine Learning. MSDN Magazine Blog Vol. 30, Nr.2.

[Neubert2016] Neubert, A.; Fripp, J.; Chandra, S.S.; Engstrom, C.; Crozier,

S. (2016): Automated Intervertebral Disc Segmentation Using Probabilistic

Shape Estimation and Active Shape Models, in: Vrtovec, T. et al. (eds):

Computational Methods and Clinical Applications for Spine Imaging. CSI

2015. Lecture Notes in Computer Science Vol. 9402. Springer, Cham.

[Nielsen2015] Nielsen, M. A. (2015): Neural Networks and Deep Learning, De-

termination Press.

[Oquab2014] Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. (2014): Learning and

Transferring Mid-Level Image Representations using Convolutional Neural

Networks. IEEE Conference on Computer Vision and Pattern Recognition,

Columbus, OH, United States.

[Ruder2016] Ruder, S. (2016): An overview of gradient descent optimization

algorithms. arXiv:1609.04747v1.

[Russakovsky2015] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;

Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-

Fei, L. (2015): ImageNet Large Scale Visual Recognition Challenge. IJCV,

2015.

[Simonyan2015] Simonyan, K.; Zisserman, A. (2015): Very deep convolutional

networks for large-scale image recognition. arXiv:1409.1556v6.

[Srivastava2014] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Sa-

lakhutdinov, R. (2014): Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. Journal of Machine Learning Research 15, pp. 1929-1958.

70

References

[Sun2014] Sun, Y.; Wang, X.; Tang, X. (2014): Deep Learning Face Represen-

tation by Joint Identification-Verification, in: Advances in neural informati-

on processing systems, arXiv:1406.4773v1.

[Szegedy2015a] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Angue-

lov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. (2015): Going deeper with

convolutions. IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 1-9.

[Szegedy2015b] Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z.

(2015): Rethinking the Inception Architecture for Computer Vision. ar-

Xiv:1512.00567.

[Szegedy2016] Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Alemi, A. (2016):

Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning. arXiv:1602.07261v2.

[Tajbakhsh2016] Tajbakhsh, N.; Shin, J. Y.; Gurudu, S. R. (2016): Convolu-

tional Neural Networks for Medical Image Analysis: Full Training or Fine

Tuning? IEEE Transactions on Medical Imaging Vol. 35, Issue 5, pp.1299-

1312.

[Tang2013] Tang, Y. (2013): Deep Learning using Linear Support Vector Ma-

chines. International Conference on Machine Learning 2013: Challenges in

Representation Learning Workshop. Atlanta, Georgia, USA.

[VanDoorn2014] Van Doorn, J. (2014): Analysis of Deep Convolutional Neural

Network Architectures. 21th Twente Student Conference on IT, Enschede,

The Netherlands.

[Witten2000] Witten, I.H.; Eibe, F. (2000): Data Mining: Practical Machine

Learing Tools and Techniques with Java Implementations. San Diego, CA:

Morgan Kaufmann.

[Xianyi2016] Xianyi, Z.; Quian, W.; Saar, W. (dev.) (2016): OpenBLAS. An

optimized BLAS library. http://www.openblas.net (accessed 13.06.17).

71

References

[Yosinski2014] Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. (2014): How

transferable are features in deep neural networks. Advances in Neural Infor-

mation Processing Systems 27 (NIPS 14), pp. 3320-3328.

[Yosinski2015] Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H.

(2015): Understanding Neural Networks Through Deep Visualization. ar-

Xiv:1506.06579v1.

[Zeiler2012] Zeiler, M. D. (2012): Adadelta: an adaptive learning rate method.

arXiv:1212.5701v1.

[Zeiler2013] Zeiler, M. D.; Fergus, R. (2013): Visualizing and Understanding

Convolutional Networks. arXiv:1311.2901v3.

[Zhou2002] Zhou, Z.; Wu, J.; Tang, W. (2002): Ensembling Neural Networks:

Many Could Be Better Than All. Artificial Intelligence Vol.137, No.1-2, pp.

239-263.

[Zhou2016] Zhou, B.; Khosla, A.; Lapedriza, A.; Torralba, A.; Oliva, A.

(2016): Places: An Image Database for Deep Scene Understanding. ar-

Xiv:1610.02055.

R-Packages:

[Chen2015b] Chen, T.; Kou, Q.; He, T. (2015): mxnet: Mxnet. R package

version 0.9.3.

[Dowle2017] Dowle, M.; Srinivasan, Arun (2017): data.table. Extension of ”da-

ta.frame”. R-package version 1.10.4.

[Pau2010] Pau, G.; Fuchs, F.; Sklyar, O.; Boutros M.; Huber, W. (2010). “EBI-

mage - an R package for image processing with applications to cellular phe-

notypes” Bioinformatics, 26(7), pp. 979–981.

[Warnes2015] Warnes, G.R.; Bolker, B.; Gorjanc, G.; Grothendieck, G.; Koro-

sec, Ales; Lumley, T.; MacQueen, D.; Magnusson, A.; Rogers, J. et al. (2015):

72

References

gdata: Various R Programming Tools for Data Manipulation. R package ver-

sion 2.17.0.

[Whitcher2011] Whitcher, B.; Schmid, V.; Thornton, A. (2011): Working with

the DICOM and NIfTI Data Standards in R. Journal of Statistical Software,

44(6), 1-28.

73

Declaration

I declare that I completed this work on my own and that information which

has been directly or indirectly taken from other sources has been noted as

such.

Munich, June 2017

	 Deep Convolution Neural Networks for Image Analysis
	Understanding Deep Convolutional Neural Networks
	Architecture of Convolutional Neural Networks
	Convolutional Layers
	Activation Function
	Pooling Layer
	Fully Connected Layer
	Linear Classifier

	Understanding the Training of Convolutional Neural Networks
	Weights and Biases
	Objective Function
	The Gradient Descend Algorithm
	The Backpropagation Algorithm
	The Vanishing Gradient Problem
	Batch Normalization

	Training Deep Convolutional Neural Networks
	Training, Test and Validation set
	Preprocessing the Data
	Initialization Strategies
	Gradient Descent Optimization Algorithms
	Momentum
	Adagrad
	RMSProp
	Adadelta
	Adam

	Batch Size
	Overfitting and Regularization
	Early Stopping
	Data Set Augmentation
	L1 and L2 Regularization
	Dropout

	DCNNs: The VGG, Inception and ResNet Architecture
	The VGG Network
	Inception Network: Inception-v3
	Deep Residual Network: ResNet

	Implementation in R Using the MXNet Deep Learning Library
	The MXNet Deep Learning Library
	Parallelization and Hardware
	The Pretrained Models: VGG-19, Inception-v3 and ResNet-152
	Finetuning the VGG, the Inception and the ResNet on Varying Amounts of Places2 Image Data
	The Places2 Data Set
	Training Settings and Results for the VGG, Inception and ResNet on the Places Data
	Summary of the Test Results

	Training the VGG, the Inception and the ResNet on Medical Data
	The Breast Cancer Data Set
	Results for the Medical Data

	Conclusion
	Electronic Appendix

