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Lower quantiles for complete lattices

Georg Schollmeyer

Abstract

In this technical report a notion of (lower) quantiles for data or random
variables with values in a complete lattice is developed. We list a number
of desirable properties a reasonable notion of quantiles should have and
analyze for different proposals of quantiles, which of these properties they
fulfill. It turns out that one of the constructions has acceptable properties
and can thus be used for analyzing lattice-valued data.

Keywords: lower quantile, complete lattice, level function, representation invari-
ance, data depth

1 Introduction

In this technical report we develop a generalization of the known concept of uni-
variate (lower) quantiles to the case of a data set or a random variable with values
in a complete lattice L. Such random variables will be called L-valued random
variables in the sequel.

For the case of multivariate data in Rd, there already exists a broad literature
(cf., e.g., [Mosler, 2013]) generalizing the concept of a quantile and especially the
median as a measure of location to the multivariate situation. One basic tool for
establishing such generalizations is the notion of data depth. A depth-function
measures how deep a certain data point lies w.r.t. a data cloud or w.r.t. a proba-
bility distribution. The most popular depth-function is Tukey’s half-space depth
(Tukey [1975]). Other proposals are for example simplicial depth ([Liu et al.,
1990]), Oja depth ([Oja, 1983]), zonoid depth [Koshevoy and Mosler, 1997] or Lp

depth ([Zuo and Serfling, 2000]), to name just a few. A more recent proposal for
data depth is the Monge-Kantorovich depth ([Chernozhukov et al., 2017]) based
on the Monge-Kantorovich theory of measure transportation.
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However, the above treatments1 of data depth are basically devoted to the
Euclidean d - space as a linear space and put focus on affine invariance2 as a desi-
rable property3. This property seems natural especially if one has a geometrical
understanding of Rd (cf. also [Chaudhuri, 1996]). However, in some situations
of application like for example in multidimensional poverty/inequality analysis
(cf., e.g., Alkire et al. [2015]) or in the analysis of multidimensional psychological
latent constructs like for example “autoritarism” (cf., e.g., Duckitt et al. [2010]),
a geometrical understanding is not suggesting itself. An order theoretic under-
pinning looking at the point-wise ordering, where for example a person could be
termed as less poor than another person if she is less poor w.r.t. all considered
dimensions of poverty, seems to be more natural in such cases.

For real-valued random variables one common definition of an α-quantile of a
random variable X is the following: A value q with the property P(X ≤ q) ≥ α
and P(X ≥ q) ≥ 1− α is called an α-quantile of X. Analogously, for a data set
(x1, . . . , xn) a value q is called an α-quantile if it is an α-quantile for a random
variable X that has the same distribution as the empirical distribution of the
sample (x1, . . . , xn). This would translate into: q is an α-quantile for the data
set (x1, . . . , xn) iff there are at least ⌈α · n⌉ data points that are greater than
or equal to q and there are at least ⌈(1 − α) · n⌉ values lower than or equal
to q. Especially a 0.5-quantile (also called median) is every value between the
⌊n+1

2
⌋-th and the ⌈n+1

2
⌉-th value of the ordered data. So generally, α-quantiles

are not unique. Sometimes, this non-uniqueness is avoided by taking for example
the average of the ⌊n+1

2
⌋-th and the ⌈n+1

2
⌉-th value of the ordered data for the

0.5-quantile, but this implicitly uses the addition and multiplication in R and not
only the order structure in R. If only the order structure of the data represented
by real numbers has meaning, then this way to proceed is somehow arbitrary
(but not necessarily unreasonable). Furthermore, if not all values in R have a
meaning in the sense that only values in a proper subset M ⊂ R are possible

data-values, than not every value q in
[
x[⌊n+1

2
⌋], x[⌈n+1

2
⌉]

]
is a member of M and

so it is reasonable to consider only values q ∈ M as quantiles. Another way to
cope with the non-uniqueness of quantiles is an asymmetric definition of a lower
(and an upper) quantile:

1For a treatment within the lattice-valued case, which has actually a very similar starting
point like that of the present paper, see Cardin [2012].

2Affine invariance means that the depth-function is invariant under a simultaneous affine
transformation of both the considered data point and the data cloud/probability distribution,
cf., [Mosler, 2013, p. 3].

3An axiomatic approach to data depth can be found in Liu et al. [1990] and Zuo and Serfling
[2000], who propose four properties that could generally be considered desirable for a statistical
depth function: a) affine invariance, b) maximality at the center, c) linear monotonicity relative
to the deepest point and d) vanishing at infinity.
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Definition 1. Let X be a real-valued random variable with distribution function
FX . A value q ∈ R is lower α-quantile for α ∈ Im(FX) if it satisfies one of the
following equivalent conditions:

1. q is a minimal element (w.r.t. the ordering in R) in F−1
X (α).

2. q is a minimal element in F−1
X (↑ α).

3. q is the smallest element in F−1
X (α).

4. q is the smallest element in F−1
X (↑ α).

Here, ↑ a := {b | b ≥ a} (and similarly ↓ a := {b | b ≤ a}). Analogously, q is
an upper α-quantile if it is a lower (1− α)-quantile w.r.t. the dual order (R,≥).
For a data set (x1, . . . , xn) a value q is a lower (upper) α-quantile if it is a lower
(upper) α-quantile for a random variable X with the same distribution as the
empirical distribution of the data.

The statement of the different equivalent conditions in the above definition
is mentioned to indicate that for generalizing the notion of a quantile, there are
many thinkable ways. introduced because for a generalization of the concept of
lower quantiles for L-valued random variables the different conditions lead to dif-
ferent generalizations of lower quantiles. In the next sections, we will try to find
a reasonable generalization for the notion of a quantile for lattice-valued data or
random variables.

The paper is structured as follows: In Section 2 we firstly list some desi-
rable properties a reasonable generalization of a quantile concept should have
and formalize a notion of representation invariance which is one of these desi-
rable properties. In Section 3 we give some simple proposals of candidates for
quantiles (called prequantiles) that satisfy at least a subset of the desired pro-
perties. In Section 4 we further modify one of the more promising prequantile
constructions from Section 3 to finally satisfy all but one of the listed desirable
properties. (Only a “richness”-desire of quantiles cannot be guaranteed to be
fulfilled.) In Section 5 we define and briefly analyze a qualitative and a quantita-
tive “measuring-mapping” based on the developed quantile construction, which
can be seen as the order theoretic counterpart to depth-contours and depth-
functions, respectively, that are known from classical multivariate data depth.
Finally Section 6 concludes by briefly indicating possible areas of application.

2 Basic conceptualizations

Before developing different possible generalizations of the concept of quantiles
to lattice-valued data or random variables, we list different conditions that a
reasonable generalization of a lower quantile should satisfy:
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i) It should be independent of the concrete representation of the underlying
lattice and the random variable (representation invariance).

ii) It should be non-arbitrary. (This is only an informal statement that is ex-
emplified shortly in the sequel.)

iii) It should be defined for every arbitrary random variable with values in a given
lattice. In particular, it should not be restricted to empirical distributions.

If we think of generalized lower quantiles as a descriptive tool for summarizing a
data set, then the structure of lower quantiles should be not too complex and at
least not more complex than the raw data itself. Thus, especially the following
further properties would be desirable:

iv) For a given level α, there should be maximal one corresponding lower quan-
tile.

v) Lower quantiles for different levels should be comparable.

vi) Lower quantiles should be minimal in the sense that for a quantile q with
level α there should be no other element q′ ≤ q with the same level α.

vii) If possible, the system of quantiles should be “rich enough” to allow for a
fine-graded data analysis. (This is of course also only an informal statemnt.)

For L-valued random variables, events of the form {ω ∈ Ω | X(ω) ≤ q} need not
to be measurable, so for generalized quantiles we use the inner measure m∗ of the
image measure m of X, here. Concretely, in the sequel, we will work with what
we will call a belief structure4 in the sequel:

Definition 2. A belief structure is a quadrupel (L,m,F , Bm) where L = (L,≤)
is a complete lattice, F is a σ-algebra on L , m : F −→ [0, 1] is a probability
measure on the measurable space (L,F) and Bm : L −→ [0, 1] : x 7→ m∗(↓ x) =
m∗({y ∈ L | y ≤ x}) is the associated belief function associated to m, where
m∗ : 2L −→ [0, 1] : A 7→ sup

B∈F ,B⊆A
m(B) is the inner measure associated to m.

Remark 1. Note that for a belief structure (L,m,F , Bm), the inner measure
m∗ is continuous from above and supermodular, see [Denneberg, 1994, p. 22].
Furthermore, the continuity from above and the supermodularity also translate
to the belief function Bm.

4The choice of the name belief structure is due to the similarity to the notion of a belief
function in the Dempster Shafer theory of evidence, cf., Shafer [1976]. Compared to classi-
cal Dempster Shafer theory which deals with the power set as the underlying lattice, we are
here concerned with arbitrary lattices, for generalizations of the Dempster Shafer approach to
lattices, see e.g., [Grabisch, 2009, Zhou, 2013].
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Now, for given α ∈ Im(Bm) there need not to exist a minimal element in
B−1

m (α) at all.5 Furthermore, often there is more than one minimal element in
B−1

m (α). If one wishes to overcome this non-uniqueness issue, one could choose
one element among all minimal elements in B−1

m (α). One could choose arbitrarily
the “first element that comes across”, but this would be arbitrary and also gene-
rally not representation invariant because such a choice is possibly dependent on
the exact representation of the underlying lattice. If one does the “choice”6 only
with the help of the lattice operations and the belief structure than one could
expect that the choice is representation invariant. To make this more precise, we
state the following definition:

Definition 3. A mapping f : 2L −→ 2L is called representation invariant if for
every order-automorphism Φ on L and for every A ∈ 2L we have

f(A) = Φ̃(f(Φ−1(A))

where Φ̃ : 2L −→ 2L : A 7→ {Φ(a) | a ∈ A} is the set-valued version of Φ. Analo-
gously, a mapping f : 2L −→ L is called representation invariant if the associated
mapping f̃ : 2L −→ 2L : A 7→ {f(A)} is representation invariant.

Furthermore, a mapping f : P(L) −→ 2L, where P(L) is the space of all
probability measures on an arbitrary measurable space (L, E), is called represen-
tation invariant if for every order-automorphism Φ on L and for every m ∈ P(L)
we have

f(m) = Φ̃(f(m ◦ Φ̃)).

Note that for m : F −→ [0, 1], by abuse of notation with (m ◦ Φ̃) we mean the
mapping (m ◦ Φ̃) : Φ−1(F) −→ [0, 1] : A 7→ m(Φ̃(A)) with restricted domain
Φ−1(F).

Analogously, a mapping f : P(L) −→ L is called representation invariant
if the associated mapping f̃ : P(L) −→ 2L : A 7→ {f(A)} is representation
invariant.

With this definition, we can show that the
∧
-operation, the

∨
-operation and

the mapping that chooses all elements in the preimage B−1
m (S) for some fixed set

5For real-valued random variables there always exists exactly one such minimal element,
namely

∧
B−1

m (α), because the underlying probability measurem and thus alsom∗ is continuous
from above (see, e.g., [Denneberg, 1994, p. 22]) and

∧
B−1

m (α) can be obtained as the infimum
∞∧

n=1
qi of a decreasing sequence (qn)n∈N in B−1

m (α) and thus we have Bm(
∧

B−1
m (α)) = m∗(↓

∧
B−1

m (α)) = m∗(↓
∞∧

n=1
qi) = m∗(

∞⋂
n=1

↓ qn) = lim
n→∞

m∗(↓ qn) = α.

6Actually, due to reasons of symmetry, a true choice from the B−1
m (α) is not possible without

violating the non-arbitrariness demand.
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S ⊆ [0, 1] are representation invariant:

Lemma 1. Let (L,m,F , Bm) be a belief structure and let S ⊆ [0, 1]. The
mappings

f :2L −→ 2L : A 7→ {
∧

A},
f ′ :2L −→ 2L : A 7→ {

∨
A},

g :P(L) −→ 2L : m 7→ B−1
m (S)

are representation invariant. Furthermore, for f1 : P(L) −→ 2L and f2 : 2
L −→

2L the composition f2◦f1 is representation invariant if f2 and f1 are representation
invariant.

Proof: For every order-automorphism Φ on L and for every A in 2L we have
f(A) = {∧A} = Φ̃(Φ−1(

∧
A)) = Φ̃({∧Φ−1(A)}) = Φ̃(f(Φ−1(A)). Analogously one

proofs that f ′ is representation invariant.
For m ∈ P(L) and S ⊆ [0, 1] we have

g(m) = B−1
m (S)

= {x ∈ L | Bm(x) ∈ S}
= {Φ(y) | y ∈ L,m∗(↓ Φ(y)) ∈ S}
= {Φ(y) | y ∈ L,m∗(Φ̃(↓ y)) ∈ S}
= {Φ(y) | y ∈ L, (m∗ ◦ Φ̃)(↓ y) ∈ S}
∗
= {Φ(y) | y ∈ L, (m ◦ Φ̃)∗(↓ y) ∈ S}
= Φ̃(g(m ◦ Φ̃)).

The equality ∗ is valid because for arbitrary A ∈ 2L we have

(m ◦ Φ̃)∗(A) = sup
B∈Φ−1(F),

B⊆A

(m ◦ Φ̃)(B)

= sup
B∈Φ−1(F),

B⊆A

m(Φ̃(B))

= sup
B∈F,

B⊆Φ̃(A)

m(B)

= m∗(Φ̃(A)) = (m∗ ◦ Φ̃)(A).
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Finally, for representation invariant maps f1 : P(L) −→ 2L and f2 : 2
L −→ 2L we have

(f2 ◦ f1)(m) = f2(f1(m))

= Φ̃(f2(Φ
−1(f1(m))))

= Φ̃(f2(Φ
−1(Φ̃(f1(m ◦ Φ̃))

= Φ̃(f2(f1(m ◦ Φ̃)))
= Φ̃((f2 ◦ f1)(m ◦ Φ̃)),

which shows that in this case f2 ◦ f1 is representation invariant, too.

With this result it is possible to choose a set of candidates for a quantile of
given level α for example as B−1

m (α) (or alternatively as the set minB−1
m (α) of

minimal elements in B−1
m (α)) if this set is not empty. But if one wants only

one quantile for a given level α, the choice of one element of the set B−1
m (α) (or

minB−1
m (α)) can still be arbitrary to some extent. For example if one chooses

that q ∈ B−1
m (α) with the smallest value m∗(↑ q) then (if there is only one such

element q, which is generally not the case) the choice is unique and representation
invariant, but this choice seems somehow arbitrary: If the quantile q is intended
to be understood as some kind of ”representative” element under which a pro-
portion α of all the probability mass lies and that q ’represents’ this fraction of
probability mass then there is no reason to choose that element for which addi-
tionally there lies the least probability mass above.

Another way to overcome the non-uniqueness issue is to not choose among
the elements in B−1

m (α) but to ’aggregate’ all elements as q =
∨
B−1

m (α) or q̃ =∧
B−1

m (α) to obtain a unique element q or q̃ but with the problem that q and q̃ are
generally not elements of Bm(α) anymore, so with this construction one ’looses
the α-level’, but if one declares Bm(q) (or Bm(q̃)) as the new, “corrected” level
β, then one has still unique elements q for some β ∈ Im(Bm). Since for q we still
have q ∈ B−1

m (↑ α) the proposal q still holds the original level α in a conservative
sense and we therefore start the analysis of further properties with the proposal
q. (But as it will turn out later, the proposal q̃ seems to be more natural, note
also that for real-valued random variables the proposal q̃ (and not the proposal q)
corresponds to the above definition of lower quantiles for this special situation.)
In the sequel, we will call the level α we started with the prelevel and we will call
the final level β the actual level or shortly the level.

3 Construction of prequantiles

Definition 4. Let (L,m,F , Bm) be a belief structure. Every element q ∈ L
with Bm(q) = α is called a (lower) α-prequantile. A (lower) prequantile q that is
minimal in B−1

m (α) is called a (lower) α-quantile.
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Remark 2. In the sequel, for simplicity, we will call lower (pre)quantiles simply
(pre)quantiles.

Now we can investigate the properties of different proposals for the con-
struction of prequantiles. Later, we will derive quantiles from this prequantiles
that particularly satisfy all properties i) − vi) at least for lattices that are line-
arly order co-Lindelöf. We say here that a complete lattice L is linearly order
co-Lindelöf if for every chain T in L there exists a countable subcain S ⊆ T
with

∧
S =

∧
T . Generally, it seems that one cannot guarantee property vii)

“richness”, the richness of the final system of quantiles is very dependent on the
data situation for our construction.

Construction A

Let (L,m,F , Bm) be a belief structure. For α ∈ Im(Bm) define β(α) := Bm(
∨
B−1

m (α))
and

qβ(α) :=
∨

B−1
m (α)

as a prequantile with level β. This simple construction leads to a (representation
invariant) set

QA := {qβ(α) | α ∈ Im(Bm)}

of prequantiles. But the set QA generally does not satisfy properties iv) − vi).
To see this, look at Figure 1. This figure shows a simple complete lattice given
by its Hasse graph. The probability measure m is indicated by the numbers
that are written at the elements. The probability for one element of the lattice
is proportional to the given numbers. To make the graphs more readable, we
have omitted values that are one. Additionally, we also indicated with a label
q, which elements are quantiles. A multiple of the actual level is given in the
index at the label q and a multiple of the prelevel is given in brackets. The
constants we multiplied all the numbers is simply the smallest integer such that
one has only integers and no fraction in the figure. This has only been made to
make the figure better readable. Here, for example for α = 2/8 and α = 3/8
we have B−1

m (2/8) = {a, b} and B−1
m (3/8) = {c, d} and thus the prequantiles

e and f induced by the prelevels α = 2/8 and α = 3/8 are two incomparable
prequantiles of the same level β = 5/8. This shows that properties iv) and v) are
not satisfied. Furthermore, the greatest element ⊤ is a 1-prequantile that is not
minimal because the element g is also a 1-prequantile that is lower than ⊤.
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b

b

b

b

b

b

b

q5 ( α = 2 )

q1 ( α = 1 )

q5 ( α = 3 )

q8 ( α = 5 )

q8 ( α = 8 )

0

a b

c

d
e

f

g

b

b

Figure 1: Construction of lower quantiles A.
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Construction A’

Let (L,m,F , Bm) be a belief structure. For α ∈ Im(Bm) define β(α) := Bm(
∨{q |

q minimal in B−1
m (α))} and

qβ(α) :=
∨

{q | q minimal in B−1
m (α)}

as a prequantile with level β and

QA′ := {qβ(α) | α ∈ Im(Bm)}
as the set of all corresponding prequantiles. This construction seems to over-
come the non-minimality disadvantage of construction A (at least for lattices
that are linearly order co-Lindelöf) but it still has the same other disadvantages
of construction A, namely in not satisfying property iv) uniqueness and v) com-
parability, which can also be seen in Figure 1. Here, the only difference between
construction A and A′ is that for the construction A′ the top element is not a
prequantile in QA′ .

Construction B

This construction looks at the order structure of the underlying lattice L as
obtained as the intersection of linear orders. We consider the set

lin(L) := {(L,R) | R ⊇ ≤ & R linear order on L}
of all linear orders that extend the order ≤ of the given lattice L = (L,≤).
Then, for α ∈ Im(Bm) and (L,R) ∈ lin(L) look at the induced belief structure
((L,R),m,F , BR

m) where BR
m(x) = m∗({y | yRx}). Take qRα as the minimal

element (w.r.t. R) in the set (BR
m)

−1(↑ α) (Assume that there exists one such
minimal element and note that there is always at most one such element because
R is a linear order.) Finally define β(α) := Bm(

∨{qRα | (L,R) ∈ lin(L)}) and as
a β-prequantile the element

qβ(α) :=
∨

{qRα | (L,R) ∈ lin(L)}

. If such a construction is possible for every α ∈ Im(Bm), the obtained set

QB := {qβ(α) | α ∈ Im(Bm)}
satisfies the properties i)− iii). If we restrict the focus on empirical7 belief struc-
tures, then also property vi) seems to be fulfilled. If the empirical belief structure

7With an empirical belief structure we mean a belief structure where the underlying proba-
bility measure m is an empirical measure induced by a data sample.
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b

b

b

b

b

b

q4 ( α = 2 )

q1 ( α = 1 )

q5 ( α = 6 )

q7 ( α = 3; 4; 5; 7 )

b

b

0

0

2

a b

c

de

f

Figure 2: Construction of lower quantiles B.

is furthermore non-degenerate (meaning that the data sample inducing the pro-
bability measure m does not does not have ties), then also properties iv) and v)
seem to be satisfied.

Remark 3. The assumption that the empirical belief structure is non-degenerate
is actually needed as one can see in Figure 2. The prequantiles q4 and q5 are in
fact incomparable. Note that this problem can be circumvented if one replaces
every element with mass k/n by a chain of k elements with mass 1/n respectively.

Construction C

In the Construction B the supremum in the expression qβ(α) :=
∨{qRα | (L,R) ∈

lin(L)} is the supremum in L. If one takes into account that the supremum of a
set can be represented as the infimum of the upper bounds of this set, then there
is a possibility to modify construction B a little bit by considering the infimum of
all elements that are greater than or equal to every qRα , but not w.r.t. the order
≤ but w.r.t. the order R. Then one gets

qβ(α) =
∧

{q | ∀(L,R) ∈ lin(L) : qRαRq}. (1)

Furthermore we have the equivalence

qRαRq ⇐⇒ BR
m(q) ≥ α ⇐⇒ q ∈

(
BR

m

)−1
(↑ α)

and because of

Bm(q) ≥ α ⇐⇒ ∀R ∈ lin(L) : BR
m(q) ≥ α

11



the above Construction is equivalent to the more simple definition

qβ(α) :=
∧

{q | q ∈ B−1
m (↑ α)} (2)

with β(α) := Bm(
∧{q | q ∈ B−1

m (↑ α)}). Thus, construction C leading to the set

QC := {qα(β) | α ∈ Im(Bm)}

of prequantiles can be motivated by two different views on the relation ≤: Fir-
stly, the relation ≤ can be understood as induced by all its linear extensions and
secondly, the relation ≤ can be understood as the primitive notion, and for both
understandings, the naturally arising constructions (1) and (2) lead to the same
result. Note also that for this construction B−1

m (α) needs not to have minimal
elements.

Lemma 2. The set QC of quantiles from construction C satisfies the properties
i)− iii) and property v).

Proof: Property i) is valid because of Lemma 1. Property ii) is satisfied in
the sense that only the property of being in B−1

m (α) and the infimum operation in
L is used. For α ≤ α′ we have {q | q ∈ B−1

m (↑ α)} ⊇ {q | q ∈ B−1
m (↑ α′)} and thus∧{q | q ∈ B−1

m (↑ α)} ≤ ∧{q | q ∈ B−1
m (↑ α′)}, so qβ(α) ≤ qβ(α′) (and also β(α) ≤ β(α′)).

This shows that property v) is satisfied.

Remark 4. The quantiles in QC need not to satisfy properties iv) and vi): In
Figure 3 for α = 2/4 and α = 3/4 one gets the different prequantiles c and b with
the same level 2/4. Furthermore, the prequantile c is not minimal, because the
prequantile b (with the same level 2/4) is lower than c.

4 Derivation of quantiles from prequantiles

To finally construct quantiles that additionally satisfy properties iv) and vi) we
use a result that is known to the author by Stefan E. Schmidt (personal commu-
nication, c.f. also Kwuida and Schmidt [2011]):
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b

q2 ( α = 3 )

q1 ( α = 1 )

q4 ( α = 4 )

0

b b

b

b

b

b

b

0

0

0

q2 ( α = 2 )a b

c

d
e

f

Figure 3: Construction of lower quantiles C.

Theorem 1. Let f : L −→ M be an isotone mapping from a complete lattice L
into a partially ordered, quasi cancellative monoid M.8

1. If f is supermodular9 then Kf := {x ∈ L | x is minimal in f−1(f(x))} is a
kernel system10 on L.

2. If f is submodular11 then Hf := {x ∈ L | x is maximal in f−1(f(x))} is a
closure system12 on L.

Proof: We show only the first part. The second part is analogously provable.
Denote with ⊥ the smallest element of the lattice L. Then firstly ⊥ ∈ Kf since x ≥ ⊥
for all x ∈ L. Let now I be an arbitrary (non-empty) index set and xi ∈ Kf for all
i ∈ I. If z :=

∨
i∈I

xi is not minimal in f−1(f(z)) then we would have some y < z with

f(y) = f(z) and some xi with xi � y and thus xi ∧ y < xi.

8A monoid M = (M,+, e) consists of a set M that is equipped with an operation + :
M ×M −→ M that is associative and has a neutral element e. A partially ordered monoid is
a monoid (M,+, e) that is additionally equipped with an ordering ≤ on M that is compatible
with the operation + in the sense that we have x ≤ y =⇒ x+ z ≤ y+ z & z + x ≤ z + y for all
x, y, z ∈ M . A partially orderd monid is called quasi cancellative if we have x+ z ≤ y + z =⇒
x ≤ y and z + x ≤ z + y =⇒ x ≤ y for all x, y, z ∈ M .

9A mapping f : L −→ L is called supermodular if f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y) for all
x, y ∈ L.

10A kernel system on a lattice L is a subset of L that contains the smallest element ⊥ and
that is furthermore closed under arbitrary suprema.

11A mapping f : L −→ L is called submodular if f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) for all
x, y ∈ L.

12A closure system on a lattice L is a subset of L that contains the greatest element ⊤ and
that is furthermore closed under arbitrary infima.
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With the supermodularity of f and xi ∨ y ≤ z we get

f(xi) + f(z) = f(xi) + f(y)

≤ f(xi ∧ y) + f(xi ∨ y)

≤ f(xi ∧ y) + f(z)

which shows f(xi) ≤ f(xi ∧ y) and thus f(xi) = f(xi ∧ y), which is a contradiction to

the minimality of xi in f−1(f(xi)).

Corollary 1. Let (L,F ,m,Bm) be a belief structure. The set

Q := {x ∈ L | x is minimal in B−1
m (Bm(x))}

is a kernel system.

Definition 5. If for a mapping f : L −→ M the system Kf := {x ∈ L |
x is minimal in f−1(f(x))} is a kernel system, then the corresponding kernel ope-
rator kf : L −→ L is defined as

kf (x) =
∨

y∈Kf ,y≤x

y.

Analogously if Hf := {x ∈ L | x is maximal in f−1(f(x))} is a closure system,
then we denote with hf the corresponding closure operator defined by

hf (x) =
∧

y∈Hf ,y≥x

y.

Remark 5. Note that generally f−1(f(x)) needs not to have minimal elements
at all.

Lemma 3. Let (L,F ,m,Bm) be a belief structure on a lattice L. Then if furt-
hermore L is linearly order co-Lindelöf (meaning that for every chain T in L there
exists a countable subchain S ⊆ T with

∧
S =

∧
T ) we have

∀x ∈ L : Bm(kBm(x)) = Bm(x)

and thus all Bm
−1(Bm(x)) have minimal elements.

Proof: For x ∈ L let c := Bm(x) and M = {y ∈ L | Bm(y) = c}. We show that all

chains in M have a lower bound in M and thus because of Zorn’s lemma every a ∈ M

lies above a minimal element of M . Then from x ∈ M it follows Bm(kBm(x)) = Bm(x).

To show that all chains in M have a lower bound in M take some arbitrary chain

C ⊆ M . Then the lower bound
∧
C is in M because there is a countable subchain
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S = {s1 ≥ s2 ≥ . . .} ⊆ C with
∧
S =

∧
C and because the inner measure m∗ is con-

tinuous from above we have Bm(
∧
C) = Bm(

∧
S) = m∗

(
↓

∞∧
i=1

si

)
= m∗

( ∞⋂
i=1

↓ si

)
=

lim
n→∞

m∗ (↓ si) = c.

The next example shows that one generally cannot drop the co-Lindelöf as-
sumption:

Example 1. L = (2[0,1],⊆) is not linearly order co-Lindelöf: Take the set of
all co-countable subsets of [0, 1] and choose a maximal chain T of this set (this
is possible because of Zorn’s lemma). Then

∧
T = ∅ because if there was an

element x ∈ ∧
T , the chain T ∪ {∧T\{x}} would be a strict superchain of T

which is in contradiction with the maximality of T . For a countable subchain
S ⊆ T we have (

∧
S)c =

∨{sc | s ∈ S} which is a countable union of countable
sets, thus countable. Therefore

∧
S must be uncountable and thus nonempty.

This shows that there does not exist a countable subchain S with
∧
S =

∧
T .

Furthermore, there exists a probability measure m on L such that for example
B−1

m (1) has no minimal elements: First define for A ∈ 2L the set SA :=
⋃{B ∈

A | #B = 1} of all singletons of A. Then definem : {A ∈ 2L | SA ∈ B([0, 1])} −→
[0, 1] : A 7→ λ(SA), where λ is the Lebesgue measure and B[(0, 1)] is the Borel
σ-algebra on [0, 1].

It is clear that every set T ∈ B−1
m (1) has uncountable many singletons and

for an arbitrary singleton t ∈ T we have T\{t} ∈ B−1
m (1) which means that there

cannot be minimal elements in B−1
m (1).

Lemma 4. Let f : P(L) −→ L be a representation invariant map. Then the
mapping

fk : Pn(L) −→ L : m 7→ kBm(f(m)) =
∨

{a | a ∈ KBm , a ≤ f(m)}
is a representation invariant, lower quantile-valued mapping.

Proof: Let m ∈ P(L) be given. First we mention that KBm◦Φ̃ = Φ−1(KBm). With

the representation invariance of f we get

Φ(fk(m ◦ Φ̃)) = Φ
(∨

{x | x ∈ KBm◦Φ̃ , x ≤ f(m ◦ Φ̃)}
)

= Φ
(∨

{x | x ∈ Φ−1(KBm), x ≤ Φ−1(f(m))}
)

=
∨

{Φ(x) | x ∈ Φ−1(KBm), x ≤ Φ−1(f(m))}

=
∨

{x | x ∈ KBm , x ≤ f(m)}
= fk(m).

This proves the representation invariance of fk. The fact that fk(m) is a lower quantile

follows from Corollary 1.
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5 Quantitative and qualitative data analysis

From now on we focus on the set QC of construction C and recall that the set of
quantiles obtained by construction C and the application of the kernel operator
kBm of Section 4 is given as

Q := {kBm

(∧
B−1

m (↑ α)
)
| α ∈ Im(Bm)}.

Define furthermore the lower order-completion of Q as Q = {∧M | M ⊆ Q}.
The elements of Q are called quasi-quantiles, here. Note that Q is still a chain.
With this set of quantiles or quasi-quantiles one can do descriptive data analysis
for lattice-valued data. Since we have not only the quantile system, but also the
underlying belief structure, we can introduce both a qualitative and a quantitative
“measurement mapping” for data analysis:

Definition 6. Let (L,m,F , Bm) be a belief structure. The mapping

Φm : L −→ L : x 7→
∧

{q ∈ Q | q ≥ x}

is called the quantile mapping. It maps every element x to the smallest quasi-
quantile q ∈ Q that is still greater than or equal to x. Note that Φ(x) does not
need to be a quantile, but at least it is an infimum of quantiles, i.e., a quasi-
quantile. The quantile mapping can be used for qualitative data analysis in the
sense that every x is mapped to that quasi-quantile q that is in some sense that
representative element of the easier to understand chain Q that is closest to x
and still lies above x.

The mapping
λm : L −→ [0, 1] : x 7→ Bm(Φm(x))

is called the level function. The level function can be understood as a quantitative
“measurement” mapping that quantifies for a given x ∈ L, how high the smallest
quasi-quantile q representing x (in the sense of still lying above x) is in terms of
the amount of probability mass lying below q.

Theorem 2. Let (L,F ,m,Bm) be a belief structure and let X be a L-valued
random variable that is distributed according to the image measure m. If L is
linearly order Lindelöf (meaning that for every chain T in L there exists a coun-
table subchain S ⊆ T with

∨
S =

∨
T ) and if every quasiquantile is measurable

(meaning that ∀q ∈ Q : ↓ q ∈ F) then the level function λm has the following
pivot property:

∀z ∈ L : m({x ∈ L | λm(x) ≤ λm(z)}) = λm(z).
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Proof: Define α := λm(z) and w :=
∨
T with T := {Φm(x) | λm(x) ≤ α}. Then,

because all quasiquantiles are measurable and because w =
∨
S for some countable

subchain S ⊆ T , we have λm(w) ≤ α because m is continuous from below. Because
Φm(z) ∈ T we actually have λm(w) = α. Now, we proof that

λm(x) ≤ α ⇐⇒ x ≤ w :

if: From x ≤ w it immediately follows λm(x) ≤ λm(w) = α.
only if: Let λm(x) ≤ α. Then Φ(x) ∈ T and thus x ≤ Φ(x) ≤ w. Finally note that
w =

∨
T =

∨
S is also measurable and we have

α = λm(w) = m(↓ w) = m({x ∈ L | λm(x) ≤ α}).

6 Conclusion

In this paper, we introduced a notion of quantiles for data sets or random variables
with values in a complete lattice. We showed that acceptable properties for
an asymmetric notion of lower quantiles can be reached. The next step would
be to apply this notion of lower quantiles. Actually, there is a broad range of
applications thinkable, here, because one only needs the structure of a complete
lattice. The presentation of the theoretical results in this paper was of course
very technical and the paper is mainly only devoted to showing that a very simple
idea of lower quantiles actually works in some acceptable way. To give a short
example of application, and to come back to the the introduction that mentioned
multivariate quantile concepts in Euclidean d-space, consider the complete lattice
of all convex sets in Rd, ordered by set inclusion. Then, if one identifies points in
x ∈ Rd with singletons {x}, the quantile notion developed herein, especially the
level function turns out to be essentially a monotone transformation of Tukey’s
half-space depth, with the nice additional feature of having the pivot property
defined in Theorem 2. Additionally, since one works in the space of all convex
sets of Rd one cannot only deal with points as singletons, but one can also deal
with convex set-valued data or random variables.

Interesting areas of applications are all sorts of application, where one has
the structure of a complete lattice, but not much more structure like that of
Euclidean d-space. One natural example is the case of ranking data, where one
has a data set of (maybe only partial ) orderings on a basic set C and the space
of all orderings on C, treated as relations (i.e., subsets of C × C) is naturally
equipped with the set inclusion as an underlying ordering. Compared to this, in
classical statistics one usually firstly has to introduce some metric in the space
(which may seem a little bit unnatural) to do a quantitative data analysis based
on methods for data in a metric space.
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