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Abstract. It is demonstrated that the statistical mechanical
partition function can be used to construct various differ-
ent forms of phase space distributions. This indicates that
its structure is not restricted to the Gibbs–Boltzmann fac-
tor prescription which is based on counting statistics. With
the widely used replacement of the Boltzmann factor by a
generalised Lorentzian (also known as the q-deformed ex-
ponential function, where κ = 1/|q − 1|, with κ,q ∈ R) both
the kappa-Bose and kappa-Fermi partition functions are ob-
tained in quite a straightforward way, from which the con-
ventional Bose and Fermi distributions follow for κ→∞.
For κ 6= ∞ these are subject to the restrictions that they can
be used only at temperatures far from zero. They thus, as
shown earlier, have little value for quantum physics. This
is reasonable, because physical κ systems imply strong cor-
relations which are absent at zero temperature where apart
from stochastics all dynamical interactions are frozen. In
the classical large temperature limit one obtains physically
reasonable κ distributions which depend on energy respec-
tively momentum as well as on chemical potential. Looking
for other functional dependencies, we examine Bessel func-
tions whether they can be used for obtaining valid distribu-
tions. Again and for the same reason, no Fermi and Bose
distributions exist in the low temperature limit. However, a
classical Bessel–Boltzmann distribution can be constructed
which is a Bessel-modified Lorentzian distribution. Whether
it makes any physical sense remains an open question. This
is not investigated here. The choice of Bessel functions is
motivated solely by their convergence properties and not by
reference to any physical demands. This result suggests that
the Gibbs–Boltzmann partition function is fundamental not
only to Gibbs–Boltzmann but also to a large class of gener-

alised Lorentzian distributions as well as to the correspond-
ing nonextensive statistical mechanics.

Keywords. Space plasma physics (general or miscella-
neous)

1 Introduction

Since its introduction by Vasyliunas (1968)1, the so-called
kappa-distribution function fκ(x)∝ [1+x/κ]−(κ+r) has ex-
perienced increasing attention and application in space
plasma problems.2 The kappa distribution turned out to fit
not only the geotail low-energy electron distribution suffi-
ciently well but also the fluxes of energetic ions in the tail
(cf., e.g., Christon et al., 1988) which demonstrates that the
kappa distribution applies successfully to physical problems
even though its physical origin was not entirely clarified. It
has also been used in several formal contexts including q-
or κ generalisations (cf., e.g., Lenzi et al., 1999; Treumann

1Vasyliunas (1968) acknowledges that in applying the kappa dis-
tribution as an apparently useful fit to the observed energy depen-
dence of low-energy electron fluxes in the geomagnetic-tail plasma
sheet he followed a suggestion of its functional form by Stanislaw
Olbert.

2For a recent compilation and in-depth discussion of the vari-
ous aspects and applications of the kappa distribution the reader is
referred to the extended presentations contained in Livadiotis and
McComas (2009, 2013) as well as to the almost complete list of
papers referenced therein. This list gives a historical record of the
work done on and application of the kappa distribution as well as
its relation to the celebrated Tsallis nonextensive thermostatistics
(Tsallis, 1988; Tsallis et al., 1998; Gell-Mann and Tsallis, 2004).
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and Baumjohann, 2014a; Treumann and Baumjohann, 2015)
of various mathematical functions and functional transforms
(see also the reference lists of papers cited in footnote 2). As
for an example, even modified Feynman path integrals have
been defined based on generalised Lorentzians (Treumann,
1998).

In principle, the kappa distribution is a probability dis-
tribution function which, mathematically, is identical to the
generalised Lorentzian q-deformed exponential (cf., e.g., Li-
vadiotis and McComas, 2009). The parameter q ∈ R had been
introduced first by Renyi (1955, 1970) as power of a q-
generalised logarithmic Boltzmann entropy that found wide
application in the theory of deterministic chaos and the re-
lated thermodynamics (cf., e.g., Beck and Schlögl, 1997).
Tsallis (1988) referred to it in postulating his non-extensive,
conveniently simple version of entropy which became the
basis of the celebrated Tsallis-nonextensive thermostatistics
(cf. also Tsallis et al., 1998, for some rectifications of his ear-
lier work).

Formal relations between the Tsallis statistical mechan-
ics of non-extensive entropies and the kappa distribution do
indeed exist. This is not surprising, because the parameter
κ = 1/|q − 1| can almost trivially be related to the parame-
ter q that appears in the non-extensive thermostatistics. This
relation was implicitly used in a note investigating superdif-
fusion near the magnetopause (Treumann, 1997, see the ap-
pendix of that note) when referring to Lévy-flight statistics in
the form proposed by Shlesinger et al. (1987)3, though not re-
ferring to Tsallis’ non-extensive statistics such that the coin-
cidence was somehow accidental. It was independently elab-
orated by Milovanov and Zelenyi (2000), Leubner (2002)
and others in various contexts.4 It should, however, be noted
that the correct relation of the kappa distribution to the phys-
ical temperature in the plasma was first given on thermody-
namic reasons in Livadiotis and McComas (2009) and also
confirmed from a rigorous calculation of the particular case
of the time-asymptotic (stationary) electron distribution re-
sulting in the interaction of electrons with Langmuir waves
(Yoon et al., 2012).

A heuristic generalisation of statistical mechanics to gen-
eral entropies has been proposed more recently (Treumann
and Baumjohann, 2014b) based on the fundamental Gibbs
prescription of relating any entropy to the differential phase-
space element d0. With the entropy being a functional of
the energy that theory states that it is possible to derive a
general expression for the probability of occupation of phys-
ical states. This requires knowledge of the inverse entropy
functional which in most cases will be difficult to construct.
In the particular case of the generalised Lorentzian it was
shown there that the inverse functional can indeed be ob-
tained. It turns out that in this case it is identical to what in

3Its most recent exposition is found in Zaburdaev et al. (2015).
4For the complete lists of references see again Livadiotis and

McComas (2009, 2013) and Livadiotis (2015).

Tsallis’ nonextensive statistical mechanics is called “escort
distribution” (Beck and Schlögl, 1997; Gell-Mann and Tsal-
lis, 2004). It not only led to the reproduction of the kappa
distribution as a physically accessible distribution function
but also to make it consistent with statistical mechanics.
This generalisation was made possible because of the fa-
miliar additional prescription used in the definition of the
generalised Lorentzian (or κ-modified exponential) that in
the limit κ→∞ the statistical mechanics should reproduce
Gibbs’ statistical mechanics. This is a severe additional con-
straint that might not be satisfied nor necessary in any other
choice of the functional which replaces the exponential or
the generalised Lorentzian. Any physical constraints are not
expected to merge the Gibbs–Boltzmann case except in the
absence of all correlations and complete stochasticity. Rather
they are the requirement of reproducing the thermodynamic
relations in the stationary state (as done by Livadiotis and
McComas, 2009, for the kappa distribution) – if only it ex-
ists.

It is interesting that the kappa distribution understood as a
probability distribution also reproduces distributions that are
obtained when analysing intermittency5 in the data of chaotic
processes. In these cases it sometimes properly maps the tails
of the probability distributions allowing for the determination
of the power index κ . The physical reason for its occurrence
can indeed be found in the deterministic chaos underlying
the occurrence of intermittency. That, nevertheless, it can be
related to Gibbs’ statistics lets one ask whether one could go
one step deeper in its foundations. It is known that no count-
ing statistics exists which could reproduce the generalised
Lorentzian statistical mechanics. What, however, if we ask
for the Gibbsian partition function? To what extent does the
Gibbsian partition function reproduce κ distributions as dis-
tributions of physical states?

In the following we start from the general Gibbs–
Boltzmann partition function as the accepted physical basis
of statistical mechanics. We then transform it into a kappa
partition function and proceed to the derivation of the equa-
tion of state and the physical distribution of occupation of
states. In doing so we follow the prescription of statistical
mechanics in deriving the physical distribution function. The
idea is thus very simple. However, this process is physically
motivated and provides some additional physical insight.

2 Formulation

The grand partition function ZG that results from Gibbsian
counting statistics can be written in the canonical form

ZG(µ,V,T )=
∏

p

{∑
n

[
expβ(µ− εp)

]n}
, (1)

5As for a typical example of intermittence in solar wind mag-
netic turbulence see, for instance, Brown et al. (2015).
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where n= 0,1,2, . . . is the occupation number of states (cf.,
e.g., Kittel and Kroemer, 1980; Huang, 1987), and εp =
ε(p), µ are the respective energy as function of momen-
tum p and chemical potential, the latter being a function of
density. β is the inverse kinetic temperature, with the latter
taken in energy units. The summation refers to all n. Clearly
the sum of all occupations is the total particle number N . It
is stressed that this expression holds under the assumption
that the basic process that underlies its derivation is purely
stochastical. It is based on throwing coins and counting the
statistical outcome of how they become distributed over the
available number of boxes in phase space. Any correlations
are excluded. With respect to different statistics, for instance,
Bayesian statistics which satisfies certain conditions, is ex-
cluded. This stochasticity is responsible for the presence of
the exponential function, i.e. a Gaussian probability distribu-
tion.

We now violate, on this advanced level, the stochastic as-
sumption. We assume that the structure of the partition func-
tion will remain intact if we replace the exponential with
another function that in some limit reproduces the exponen-
tial. Such a function is, as for an example, the κ-generalised
Lorentzian which has been used in several of the above-cited
publications (and references therein).

The above version of the partition function can also be
written in another form,

Z ′G(µ,V,T )=
∏

p

{∑
n

exp
[
nβ(µ− εp)

]}
, (2)

which we indicate by a prime. On the Gibbsian level the
two versions are identical because raising an exponential to
power n is the same as multiplying its argument by n.

Now we violate the assumption of pure stochasticity
by introducing the Lorentzian replacing exp(ax)→ (1−
ax/κ)−(κ+r), where 0< κ ∈ R is some free parameter, and
0< r is a fixed number that has to be adjusted to satisfy-
ing the thermodynamic relations. Determination of r , for the
classical case, has been done in several places (e.g., Yoon
et al., 2012; Livadiotis and McComas, 2013; Treumann and
Baumjohann, 2014b). Then we obtain two new versions of
the partition function

Zκ(µ,V,T )=
∏

p

{∑
n

[
1−β(µ− εp)/κ

]−n(κ+r)} (3)

and

Z ′κ(µ,V,T )=
∏

p

{∑
n

[
1− nβ(µ− εp)/κ

]−(κ+r)}
. (4)

There is a big difference between these two versions in the
position of the occupation number n. In the second form it
is located inside the argument of the Lorentzian. This in-
hibits any further analytical treatment by summing the par-
tition function up except in the case of a Fermi system which
we therefore treat first.

3 Fermi partition function analysis

In a Fermi system we can only have two occupations n= 0
and n= 1. With this restriction we find for either of the above
versions

ZF
κ (µ,V,T )=

∏
p

{
1+

[
1−β(µ− εp)/κ

]−(κ+r)}
. (5)

Incidentally, the same exact result is obtained from the sec-
ond form of the partition function in this case. Thus there is
no difference in a Fermi system between the effect of the cor-
relations introduced by changing from the Gibbs exponential
to the generalised Lorentzian.

From the partition function one obtains the ideal gas equa-
tion of state as

PV

T
= logZF

κ =

∑
p

log
{

1+
[
1−β(µ−εp)/κ

]−(κ+r)}
. (6)

More interesting is the average occupation number 〈np〉
F
κ of

states which is prescribed by the partition function. It follows
from the negative derivative of the logarithm of the partition
function

〈np〉
F
κ =−

1
β

∂

∂εp
logZF

κ . (7)

A simple calculation then yields that the Fermi-kappa distri-
bution becomes

〈np〉
F
κ =

1+ r/κ
[1−β(µ− εp)/κ]

{
1+

[
1−β(µ− εp)/κ

]κ+r}−1
. (8)

This is the distribution we have obtained earlier in Treumann
and Baumjohann (2014b) and already before. Notably it is
not the distribution which one would obtain by simply re-
placing the exponential function in the common Fermi dis-
tribution by the corresponding generalised Lorentzian.

For κ→∞ the last expression becomes the ordinary
Fermi distribution. This can be easily checked. However, for
finite κ <∞ it has no zero temperature limit. At T = 0 no
states can be occupied. This is very satisfactory because at
zero temperature there is no mechanism that could generate
any correlations. Hence, the above Fermi-kappa distribution
has a meaning only at a finite temperature. In all cases the
chemical potential is negative, µ < 0. On the other hand, at
fixed κ and high temperature one simply recovers the ordi-
nary kappa distribution. We may note that here we are deal-
ing with the ideal gas. In non-ideal gases one would add
the external or internal potential fields to the energy which
causes a shift in the energy scale and would lead to addi-
tional effects which are not included here. One may note that
external potentials and therefore energy shifts may cause ob-
servable effects.
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4 Bosonic distribution

For the Boson distribution we refer to the function Zκ which
can be summed up over n. The result is trivially given by

ZB
κ (µ,V,T )=

∏
p

{
1−

[
1−β(µ− εp)/κ

]−(κ+r)}−1
. (9)

Accordingly the bosonic ideal gas equation of state is found
as

PV

T
= logZB

κ =−

∑
p

log
{

1−
[
1−β(µ− εp)/κ

]−(κ+r)} (10)

and the average bosonic occupation number of Bose distri-
bution becomes

〈np〉
B
κ =

1+ r/κ
1−β(µ− εp)/κ

{
1−

[
1−β(µ− εp)/κ

]κ+r}−1
. (11)

The symmetries between the Bose-kappa and Fermi-kappa
cases are striking. Again, the Bose-kappa distribution has no
zero temperature limit. Like the Fermi-kappa distribution it
exists only at sufficiently high or simply finite temperatures.
Its high energy limit is the ordinary kappa distribution with
negative chemical potential µ < 0 – one may note that for
large εp the negative signs in the denominator cancel.

5 Classical limit

For high-temperature high-energy classical gases both distri-
butions above become a reasonable classical limit known as
the kappa distribution. In such classical cases the chemical
potential becomes negative. Then the complete classical dis-
tribution that is in accord with the partition function assumes
the form

〈np〉κ =
(

1+
r

κ

)[
1+β

(
|µ| + εp

)
/κ
]−(κ+r+1)

. (12)

This occupation number is still subject to normalisation to
the total particle densityN =N /V and adjustment of the in-
dex r to thermodynamics. We noted that this has been done in
different ways (Livadiotis and McComas, 2009, 2013; Yoon
et al., 2012; Treumann and Baumjohann, 2014b) yielding
r + 1= 5

2 . Normalisation requires integration over the phase
space volume.

We note in passing that the relativistic equivalent of the
above kappa distribution should become

〈
nγ
〉
κ
=

(
1+

ρ

κ

){
1+βr

[
|µr | + γ (p)

]
/κ
}−(κ+ρ+1)

, (13)

where γ (p)=
√

1+p2/m2c2 is the relativistic energy fac-
tor, and βr =mc2/T , µr = µ/mc2 are the normalised in-
verse temperature and chemical potential, respectively. The
relativistic exponent ρ differs from its non-relativistic coun-
terpart r . It must be adjusted by satisfying the relativistic

thermodynamic relations (cf., e.g., Treumann and Baumjo-
hann, 2014b).

It is interesting that the chemical potential cannot be ex-
tracted from this expression. This makes its use as a physical
distribution more difficult and requires use of approximation
methods to eliminate µ. This must be done by standard pro-
cedures referring to the density as a known quantity (cf., e.g.,
Huang, 1987). In space-plasma applications the kappa distri-
bution is used as a probability, and it is assumed that µ= 0
which implies that the particles under consideration behave
like massless Bosons.

The straightforward calculations by Yoon et al. (2012) in
highly diluted high-temperature plasmas seem to confirm this
assumption at least in the interaction of electrons with Lang-
muir waves, the case investigated there. Yoon et al. (2012)
included spontaneous and induced emission, scattering and
absorption of Langmuir waves when determining the shape
of the electron distribution function in final stationary equi-
librium. These processes seem not to generate any chemical
potential at a given particle number and density.

A negative chemical potential which is expected in the
classical case should cause trapping and thus retarding the
electrons, and also accumulating them around the trapping
potential, i.e. the chemical potential. This is obviously not
the case – at least in the weakly turbulent regime investi-
gated by Yoon et al. (2012)! Scattering of electrons by ab-
sorbing wave momentum and energy pushes the electrons in-
stead into the extended tail of the kappa distribution. It thus
overcompensates for the chemical potential that might have
been produced by the retardation effect related to the spon-
taneous emission. Hence, in this particular case one encoun-
ters that statistical mechanics acts self-compensating for the
chemical potential while generating the power law tail on the
distribution. Since entropy is increased hereby, the process
of generation of the tail seems favourable for the interaction.
One might conclude that the kappa distribution and its re-
lated statistical mechanics strictly apply to conditions only
when the chemical potential is suppressed. Such conditions
seem, however, to be realised quite frequently.

We note that this effect had already been observed earlier
in a model where electrons were put into a heat bath of ra-
diation photons (Hasegawa et al., 1985). Clearly the photon
distribution has zero chemical potential. Similarly, the Lang-
muir photon distribution has zero chemical potential.

These observations as well as the results of the rigorous
calculations of Hasegawa et al. (1985) and Yoon et al. (2012)
are important. They suggest that in any Fermi-like process
that leads to formation of energetic tails on the particle dis-
tribution, the chemical potential will be vanishingly small.

This observation also explains why the particle spectra
measured by Vasyliunas (1968) and Christon et al. (1988)
all obeyed almost perfect kappa distributions. And any cos-
mic ray spectra that extend over many orders of magnitude
are probably simple power laws for the same reason: they
result from scattering while themselves contributing to the

Ann. Geophys., 34, 557–564, 2016 www.ann-geophys.net/34/557/2016/
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photon spectrum by spontaneous emission and attribution of
a tiny fraction of energy in photons only that is insufficient to
produce a sufficiently strong negative chemical potential that
could suppress their runaway into the energetic tail. Tail gen-
eration is obviously entropically favoured over both heating
and radiation in all those cases.

In contrast, charged particle interaction with solitons, cavi-
tons, holes, shocks indeed traps the low energy part of the
population while it accelerates the passing energetic popu-
lation into a tail. The soliton potential thus acts as a partial
chemical potential in this case, while the passing distribution
ignores it by overcoming and picking up energy which goes
into tail formation. This separation of the distribution is ob-
viously entropically favourable. Inspection of the split distri-
bution function should provide information about the nature
of these processes, the equivalent chemical potential and its
relation to the density of trapped particles.

6 Preliminary discussion

There is no known counting statistics in cases where the sys-
tem is not stochastic but respects some internal correlations.
It is not clear how such cases should be treated even then
when the correlations have been specified from the very be-
ginning. The application of Bayesian statistics could possi-
bly offer a route to such systems. Statistical mechanics, how-
ever, seems not to have had any needs so far in non-stochastic
states on the microscopic level. These are usually treated by
numerical simulations or kinetic theory where the evolution
of the one-particle distribution function is followed in time.
This is clearly the right physical approach to non-stationary
systems in evolution. Statistical mechanics just deal with the
stationary state of a system.

That the introduction of correlations via the replacement of
the exponential by the Lorentzian on the level of the partition
function nevertheless reproduces the correct kappa statistics
as derived intuitively from assumptions that have nothing in
common with stochasticity, suggests that the structure of the
partition function is more general than purely stochastic. It is
just the sum over all occupations in the probabilities of states
– quite a general notion. One may thus ask whether or not
other functions exist with the physical meaning that they in-
clude correlations when used in the partition function. The
requirement on them implies that they should behave cor-
rectly at large energies, i.e. converge for εp→∞. Moreover,
in this limit they should possibly turn over to become gaus-
sians. In the following we try such a case.

7 Gibbsian-Bessel partition functions

A particular function which seems to offer itself is the mod-
ified Bessel function of the first kind Iν(z)= e−iνπ/2Jν(iz).

An integral representation of this function is

Iν(z)=
(z/2)ν

√
π0(ν+ 1

2 )

π∫
0

dθ e±zcosθ sin2νθ, ν >−
1
2
. (14)

It converges for z→ 0. Its asymptotic expansion for z→∞
is Iν(z)∼ ez/

√
z and diverges for positive z. For negative

argument − 1
2π < argz < 3

2π we have Iν(−z)= eiνπ Iν(z),
which converges but may become complex depending on in-
dex ν. Thus there are domains where it satisfies the primary
need on a reasonable function that could possibly replace
the Gibbs–Boltzmann exponential factor with the Gibbs–
Boltzmann–Bessel factor. With this in mind we write

ZGBB(µ,V,T )=
∏

p

{∑
n

[
Iν(z)

]n}
, (15)

where we define z= β(µ− εp) < 0. For the two cases of
Fermi and Bose systems this expression transforms into the
Fermi- and Bose-Bessel partition functions

ZFB(µ,V,T ) =
∏

p

[
1+ Iν(z)

]
(16)

ZBB(µ,V,T ) =
∏

p

[
1− Iν(z)

]−1
. (17)

Correspondingly, the equations of state of an ideal Fermi-
Bessel and Bose-Bessel gas are

PV

T

∣∣∣∣FB
BB

ν

=

∑
p

{
+ log

[
1+ Iν(z)

]
Fermi

− log
[
1− Iν(z)

]
Bose

. (18)

The average Fermi-Bessel and Bose-Bessel occupation num-
bers of states then become

〈np〉
FB
BB =

I ′ν(z)

1± Iν(z)
=

[
νz−1Iν(z)∓ Iν+1(z)

]
1± Iν(z)

. (19)

It is easily checked that this function behaves correctly for
z→ 0 in both cases. The apparent divergence at small z is
compensated by the factor zν in the small argument expan-
sion of Iν(z). This leaves sufficient freedom for choosing the
index ν in order to make the distribution positive. Hence, at
a first glance the Fermi-Bessel and Bose-Bessel distributions
seem reasonably in accord with the physical requirements.

The most interesting case is the behaviour at zero tem-
perature T = 0 or β→∞. We check this for the Fermi-
Bessel distribution. Let us first assume that εp < µ with the
chemical potential µ > 0 as in the ordinary Fermi distribu-
tion. Since in this case z > 0 is positive tending to ∞. This
makes Iν large with the second term in the nominator domi-
nating which yields 〈np〉

FB
∼ ν/z

3
2 −1 negative. Hence there

is no occupation below εp = µ. This holds also for finite
temperatures. Moreover, for εp > µ one has z < 0, and from
the asymptotic expansion 〈np〉

FB
= 0. The above distribution

www.ann-geophys.net/34/557/2016/ Ann. Geophys., 34, 557–564, 2016
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does not exist for T = 0 and makes also little sense at T 6= 0.
Similarly the case T = 0 is excluded for the Bose-Bessel dis-
tribution.

Let us now try the function Kν(z). It is defined by the in-
tegral

Kν(z)=

∞∫
0

dt e−zcosh t coshνt, |argz| ≤
π

2
. (20)

Its asymptotic expansion is Kν(z)∼ e−z/
√

2πz. At z→ 0 it
diverges like z−ζ , where ζ =mod(ν+1). To account for this
divergence, one may multiply it with zζ . One also has

Kν(−z)= e
−iπνKν(z)− iπIν(z), ν 6= 1,2, . . . (21)

We then have

ZG(µ,V,T )=
∏

p

{∑
n

[
zζKν(z)

]n}
(22)

obtaining

ZFB(µ,V,T ) =
∏

p

[
1+ zζKν(z)

]
(23)

ZBB(µ,V,T ) =
∏

p

[
1− zζKν(z)

]−1
(24)

and for the equations of state

PV

T

∣∣∣∣FB
BB

ν

=

∑
p

{
+ log

[
1+ zζKν(z)

]
Fermi

− log
[
1− zζKν(z)

]
Bose

(25)

The average occupation numbers of states becomes in this
case for the Fermi-Bessel and Bose-Bessel distributions

〈np〉
FB
BB =

(ζ + 1)zζ
[
z−1Kν(z)±K

′
ν(z)

]
1± zζKν(z)

=
ζzζ

[
(ν+ 1)z−1Kν(z)∓Kν+1(z)

]
1± zζKν(z)

(26)

Again both for z > 0 and z < 0 at T = 0 there is no occupa-
tion of states! Hence, no correlations can exist at zero tem-
perature. The distributions do not exist at T = 0.

8 The classical case

As we have shown, the use of Bessel functions in order to ob-
tain Bessel-Fermi distributions is not successful. What about
the classical case? Does a formal Bessel–Boltzmann distri-
bution exist? The case of the kappa distribution suggests
that this would not be categorically excluded independent
on whether the distribution found has any real application to
physical problems. So, in the following, we check whether a
classical limit exists for Bessel distributions.

The classical case requires that the chemical potential is
negative and thus z=−β(|µ| + εp) is a large negative. This
means that we have to inspect the negative large argument
limits of the Bessel functions and their derivatives.

Let us do this for the modified Bessel function of the first
kind. We expect that for large argument the Bessel-Fermi
distribution should become the classical equivalent of the
Boltzmann distribution similar to the transition from ordi-
nary Fermi to the ordinary Boltzmann distribution. In the
limit of very large |z| � 1, where we want to check its va-
lidity, we must make use of the large negative argument rep-
resentation of Iν(z), which is the asymptotic expansion of
Iν(−χ), with χ = |z|. It yields the following expression

〈np〉χ→∞ '
−νeχ+iπν/χ

√
χ − eχ+iπ(ν+1)/

√
χ

1+ eiπν+χ/
√
χ

. (27)

For large argument χ the second term in the denominator
is much larger than one. Hence, the rest of the denomina-
tor shortens with the corresponding parts in the numerator.
Moreover, the second term in the numerator changes sign.
Thus, in this large argument limit, the result is 〈np〉χ→∞ '
1− ν/χ . The classical limit makes obviously sense. Since
the last calculation is just its extreme asymptotic value, we
obtain

〈np〉
Bessel
class =

ν

1+χ

[
1−

Iν+1(χ)

νIν(χ)

]
, ν 6= 0,1,2. . . (28)

where the argument is χ = β(|µ| + εp). This is a clas-
sical Boltzmann–Bessel distribution which corresponds to
the Boltzmann distribution. Since Iν(χ) > Iν+1(χ), the
Boltzmann–Bessel distribution is finite for all χ ≥ 0. Ac-
tually, in this representation the restriction on ν reduces to
ν > 0.

One realises that the factor in front of the brackets is a sim-
ple Lorentzian distribution. One thus may note that the last
expression can be interpreted as kind of a Bessel-modified
Lorentzian distribution of states.

This suggests various further generalisations. The rela-
tivistic version is obtained by mapping χ(εp) 7−→ χ(γ ) with
εp 7−→ γ (p) and appropriate redefinition and normalisation
of the coefficient β and chemical potential µ. Generalisation
to generalised Lorentzians is achieved by the replacement of
the Lorentzian denominator 1+χ→ (1+χ/κ)(κ+s+1) yield-
ing

〈np〉
Bessel
κ =

ν

(1+χ/κ)1+s+κ

[
1−

Iν+1(χ)

νIν(χ)

]
, (29)

where s ∈ R is some real number that has to be fixed by bring-
ing the distribution in accord with thermodynamics. Clearly,
this is the kappa distribution multiplied by an additional fac-
tor containing the Bessel functions which serves as a correc-
tion on the generalised Lorentzian.
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One could even go further, interpreting the bracket as the
expansion of an exponential. This then yields

〈np〉
Bessel
κ,1 =

ν

(1+χ/κ)1+s+κ
exp

[
−
Iν+1(χ)

νIν(χ)

]
. (30)

Finally, further generalisation can be obtained by absorbing
the Bessel functions into the generalised Lorentzian in the
usual way obtaining

〈np〉
Bessel
κ,2 = ν

{
1+

1
κ

[
χ +

Iν+1(χ)

νIν(χ)

]}−(1+s+κ)
. (31)

This is an ordinary Bessel-modified classical kappa distribu-
tion with the Bessel term playing the role of a correction to
energy χ .

The last form suggests that in kappa distributions the en-
ergy term could be replaced by any real continuous func-
tion F(χ,µ,T ) whose expansion begins with a term linear
in χ . (Starting with a constant term implies different nor-
malisation.) This function may even diverge stronger than
F(χ,µ,T )∼ χ for χ→∞. Strongest, say exponential, di-
vergence implies Fγ (χ,µ,T )∝ expχγ , with positive γ ∈ R
an arbitrary power. Hence, in the interval [χ,Fγ (χ)] between
the linear and the exponential divergence a substantial num-
ber of potential trial functions become available. The limit
κ→∞ cares for convergence with the Boltzmann distribu-
tion, a condition which is artificial and may not be required.
Feasibility depends on whether the distribution is in accord
with thermodynamics.

The functional form of the partition function as the sum
over probabilities of states obtained from simple counting
of states thus allows for completely different classical dis-
tributions which we have guessed, while it suppresses the
quantum distributions. This suppression is reasonable be-
cause quantum physics relies solely on stochasticity. Quan-
tum chaos is an unresolved concept and is presumably absent
at T = 0.

Whether the classical Bessel–Boltzmann distribution and
its further generalisations obtained have any physical mean-
ing or not, is a completely different question. We just played
with the possibility of a different kind of statistical mechan-
ical distributions of occupation of states arbitrarily choos-
ing Bessel functions for our experiment. Inferring whether
a distribution like this one has physical meaning requires the
derivation of the corresponding entropy and testing the ther-
modynamic relations.

9 Conclusions

We have used the Gibbs–Boltzmann prescription of the par-
tition function in application to different basis factors which
replace the so-called Gibbs–Boltzmann factor, the exponen-
tial function in the definition of probability. The latter re-
sults from the assumption of complete stochasticity in the

processes underlying the interaction of the particles respec-
tively systems involved. Their foundation is Gauss’ error
distribution transformed into energy and momentum space.
Any replacement of the Gibbs–Boltzmann factor by another
more complicated function thus implies that one uses non-
stochastic probabilities which may involve correlations. This
has been discussed at other places. We have shown that such
a replacement works nicely for the generalised Lorentzian
factor used in giving the so-called kappa distribution a phys-
ical fundament. The kappa distribution actually becomes a
generalised Lorentzian distribution. Its derivation from the
generalised partition function results in a slightly different
version than used in its otherwise widely distributed applica-
tions. Bringing it into complete accord with thermodynamics
fixes the free parameter r contained in this distribution to the
value as determined in other places (cf., Livadiotis and Mc-
Comas, 2009; Treumann and Baumjohann, 2014b).

Generalisation of the partition function to the generalised
Lorentzian implies that for large κ the Lorentzian factor
smoothly becomes the Gibbs–Boltzmann factor. We have
tentatively dropped this condition and used, as for another
physically motivated example, the modified Bessel functions
as a replacement for the Gibbs–Boltzmann factor. This yields
another completely different distribution, which we called
Bessel distribution. Similar to the Lorentzian distribution the
two fundamental distributions, the Fermi-Bessel and Bose-
Bessel distributions, have no zero temperature limit. This
demonstrates again and rather clearly that only the stochastic
Gibbs–Boltzmann factor accounts correctly for the zero tem-
perature quantum behaviour. Any other more complicated
and non-stochastic distribution necessarily implies the exis-
tence of correlations on the level of counting statistics, thus
invalidating the distributions on the zero temperature level
where no such correlations are allowed because the dynam-
ics are frozen.

At finite temperatures both distributions might exist. For
one of them we have shown that, in the classical do-
main, it transforms into a reasonable though complicated
Boltzmann–Bessel distribution. Whether it has any physical
meaning or not is, however, unknown,. We do not attempt to
check it here as the demonstration intends nothing more than
to provide an example.

The new classical distribution turns out to belong to the
family of modified Lorentzian distributions of which the
kappa distribution is also a member. It thus seems that the
Gibbsian form of the partition function is fundamental not
only to Gibbs–Boltzmann statistics but also to all kinds of
classical generalised Lorentzians. It obviously includes some
particular class of correlations on the probabilistic micro-
scopic level of states that gives rise to generalised Lorentzian
and nonextensive statistical mechanics.

It would be very interesting in this respect of stepping
down into the Gaussian error analysis trying to infer the
effect of correlations. One possibility of doing this would
be by reference to Bayesian statistics. Bayesian statistics
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imposes extra conditions – hypotheses – which could be
physically motivated. Construction of a different Bayesian–
Gauss–Gibbs–Boltzmann factor should then provide a phys-
ically motivated version of the partition function to be used
by standard methods to infer about the resulting average oc-
cupation numbers of physical states.
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