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Abstract: We study risk-minimization for a large class of insurance contracts. Given that the
individual progress in time of visiting an insurance policy’s states follows an F-doubly stochastic
Markov chain, we describe different state-dependent types of insurance benefits. These cover single
payments at maturity, annuity-type payments and payments at the time of a transition. Based on
the intensity of the F-doubly stochastic Markov chain, we provide the Galtchouk-Kunita-Watanabe
decomposition for a general insurance contract and specify risk-minimizing strategies in a Brownian
financial market setting. The results are further illustrated explicitly within an affine structure for
the intensity.
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1. Introduction

The management of an insurance portfolio’s risk is one of the core challenges in actuarial science.
While the classic form of risk mitigation is based on reinsurance contracts, in some cases it is also
possible to hedge claim payments by appropriately trading in different assets. This particularly applies
if the assets are correlated to the insurance contract’s benefits or their (conditional) probability of
occurrence. Practical examples in this direction are unit-linked life insurance products, where benefits
depend on the performance of the assets, or unemployment insurance products, where the occurrence
of a claim payment may depend to some extend on economic and financial conditions of the markets.
Moreover, there is an ongoing discussion about the introduction of so called longevity bonds which
would establish the possibility for life insurance companies and pension funds to hedge parts of their
longevity risk, see [1,2] or [3]. Due to their unsystematic risk part, most insurance claims are not
hedgeable completely through a self-financing trading strategy which particularly means that a hybrid
market, consisting among others of financial and insurance markets, is incomplete. A reasonable
method for optimally choosing an investment strategy is then important to cover at least parts of
the risk.

In the present paper we choose the risk-minimization approach and determine hedging strategies
in the sense of this criterion for insurance contracts in a very general setting. This quadratic
hedging approach bases on the results in [4] for European type payments and to [5] for payment
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processes. In most cases, the risk-minimizing strategies can be derived from the well known
Galtchouk-Kunita-Watanabe (GKW-) decomposition, see [6] or [7].

Similar to the works of [5,8] or [9–11], we describe an insured person’s progress of sojourning
different states of an insurance policy as a right continuous stochastic process with finite state space
K = {1, ..., N}, 1 being a.s. the initial state. More specifically, we adopt the class of F-doubly stochastic
Markov chains as introduced in [12], see Appendix A and the comments therein. This family of
processes has several properties which make them very suitable for applications in credit risk and
insurance market modeling. Being a sub-class of F-conditional Markov chains, they extend the classic
notion of Markov chains by including a reference filtration Fwhich in our case represents additional
market information. In this way we are able to take in consideration the influence of external risk factors
and economic and financial conditions on transition probabilities of an insured person’s progress.
In particular, F-doubly stochastic Markov chains behave like time inhomogeneous Markov chains, if
we know all the information concerning the underlying risk factors. This corresponds to the intuition
that the transition probabilities would be completely specified, if we would dispose of full knowledge
on the underlying economic and financial situation.

Another important feature is that, if we specify the information as given by the filtration
G := FX ∨F, where FX is the natural filtration of the F-doubly stochastic Markov chain X, then
we have that predictable representation theorems and the so-called hypothesis (H) 1, or immersion
property, hold. These properties play a fundamental role in order to compute the optimal strategy for
insurance contracts according to the risk-minimization method.

Furthermore, F-doubly stochastic Markov chains may admit matrix-valued stochastic intensity
processes. This allows to investigate more flexible models compared to the results e.g., in Møller [5]
where a (classical) Markov chain with deterministic intensity matrix function is considered. One
further advantage is that F-doubly stochastic Markov chains with intensity are fully characterized by
some martingale properties, which can be used for the estimation of the underlying intensity processes,
see Biagini et al. [13].

Well known examples of F-doubly stochastic Markov chains are reduced form or intensity based
models in the case that hypothesis (H) is satisfied. Here, the state space consists of two states with the
second state being absorbing such that there can only occur one transition in time. There exist many
works on quadratic hedging for these models particularly in the context of credit risk or life insurance
theory, see e.g., [1,2,14–19] or [20]. In particular, the present paper extends these works to a multi-state
framework where several subsequent transitions, driven by F-adapted stochastic intensity processes,
are considered. This general setting allows to investigate a larger class of insurance contracts, e.g.,
income protection insurance contracts with the states “healthy”, “sick” and “deceased”, and to include
the influence of market conditions and external risk factors on the insured person’s progress.

Given an F-doubly stochastic Markov chain, we propose a general insurance contract, defined by
three different types of insurance benefits: state-dependent payments at maturity, state-dependent
annuity-type payments, and (transition-dependent) payments at the time of a transition from one state
to another. This definition covers a large set of currently adopted insurance policies. In particular,
we illustrate the definitions for pure endowment, term insurance, general life annuity and payment
protection insurance contracts. Similar to the results in [21], who applied F-doubly stochastic Markov
chains in the context of hedging rating-sensitive financial claims, we obtain the GKW-decomposition
for the payment process of general insurance contracts with respect to a particular F-martingale.
In this context, we generalize and complement the proofs in [21] in order to adapt the results for the
risk-minimization approach which is not investigated there.

Given that the reference information F is generated by an N-dimensional Brownian motion W,
we then introduce a financial market model, driven by W. In this setting we infer risk-minimizing

1 For the definition and further comments on hypothesis (H), see Proposition A.4 and the text below.



Risks 2016, 4, 23 3 of 26

hedging strategies for insurance contracts with deterministic payment structure with respect to the
assets on the financial market. Similarly to the work in [2] we then assume a general affine structure
for the intensity of the underlying F-doubly stochastic Markov chain and obtain explicit formulas
for the strategies and their residual risk processes. We apply these results in the specific example of
an income protection insurance, where we assume that the intensities follow a (multi-dimensional)
Ornstein-Uhlenbeck process. We discuss the resulting expected cumulative payment, which may be
considered as a fair premium in the interpretation of [22,23], as a function of the time horizon, the
payment amounts and the underlying interest rates.

The paper is organized as follows. In Section 2 we introduce the notion of general insurance
contracts and discuss several examples. In Section 3 we prove our main results for the risk
minimization of this kind of contracts in full generality. The risk minimizing strategies are then
further illustrated within a general affine specification for the intensities and in a numerical example
in an Ornstein-Uhlenbeck framework. We conclude the paper with Appendixs A and B, where we
summarize important results and concepts of risk-minimization and F-doubly stochastic Markov
chains for the reader’s convenience.

2. General Insurance Contracts

We now introduce the notion of general insurance contracts and provide some well known
examples of actuarial practice.

In the same notation as in Appendix A, let (Ω,G,G,P) be a filtered probability space with
G = FX ∨F for some F-doubly stochastic Markov chain X with state space K = {1, ..., N}. We assume
P(X0 = 1) = 1. The following definition of general insurance contracts is based on the definitions for
payment processes on rating sensitive claims as given e.g., in [21] or [20]. The definition also covers
the concepts of insurance contracts as given in [5] or [9].

Definition 1. A general insurance contract is given by the quadruple (X; A; Y; Z), where X = (Xt)t∈[0,T]
is an F-doubly stochastic Markov chain, A = (A1

t , ..., AN
t )t∈[0,T] is an F-adapted, N-dimensional process of

finite variation, Y = (Y1, ..., YN) is an FT-measurable, N-dimensional random vector, and Z = (Zt)t∈[0,T]

with Zt =
[

Zj,k
t

]
j,k∈K

is an F-adapted, N × N-dimensional process with zeros on the diagonal.

The different elements of a general insurance product’s quadruple are interpreted as follows. The
process X is the insured person’s progress in time of sojourning in the states j ∈ K, considered by the
insurance policy. The N-dimensional process A characterizes the cumulative state-dependent payment
streams which are continuously paid up to maturity. For example, one can take At = Ct − Pt, t ∈ [0, T]
with Ct = (C1

t , ...CN
t )ᵀ representing the cumulative state-dependent claim payments (e.g., annuities)

and Pt = (P1
t , ..., PN

t ) the cumulative state-dependent insurance premiums up to maturity. Both
processes, P and C are then taken to be F-adapted, càdlàg and increasing. The vector Y characterizes
state-dependent “extra” claim payments at maturity T and the process Z the “immediate” claim
payments at the transition times from one state to another.

For every general insurance contract (X; A; Y; Z) the cumulative payment process D = (Dt)t∈[0,T]
is given by

Dt : = YᵀHT1{t=T} +
∫
[0,t] Hᵀ

s dAs +
∫
]0,t](Z

ᵀ
s Hs−)ᵀdHs

= ∑N
j=1

(
Y jH j

T1{t=T} +
∫
[0,t] H j

s dAj
s + ∑N

k=1
k 6=j

∫
]0,t] Zj,k

s dN jk
s

)
(1)

with H j
t , j ∈ K, as defined in Equation (A7) and counting processes N jk

t from Equation (A8). Note that
D is of finite variation. We now provide some well known examples of insurance contracts.

Example 1. A pure endowment is an insurance contract which guarantees to the insured person some fixed
payment if she is alive at maturity. For the sake of simplicity, we only consider the payment to be equal to 1.
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We set K = {1, 2} with 1 being the state “alive” and 2 the absorbing state “deceased”. A pure endowment
contract is then given as the quadruple (X; 0; (1, 0)ᵀ; 0) or (X;−P; (0, 1)ᵀ; 0) if premium payments are
considered, respectively.

Example 2. A term insurance is an insurance contract which guarantees the heirs of an insured person some
fixed payment at the time of decease. For the sake of simplicity, we only consider the payment to be equal to 1.

Again, we set K = {1, 2} with 1 being the state “alive” and 2 the absorbing state “deceased”. Then a term
insurance contract is given as the quadruple (X; 0; 0; Z) or (X;−P; 0; Z) if premium payments are considered,

respectively, with Z :=

(
0 1
0 0

)
.

Example 3. A general annuity as defined in [2] is an insurance contract which guarantees the insured person
anF-progressively measurable, non-negative continuous rate payment (ct)t∈[0,T] as long as she is alive. The state
space is again K = {1, 2} with 1 being the state “alive” and 2 the absorbing state “deceased”. Then a general

annuity contract is given as the quadruple (X;
(∫

]0,t] csds, 0
)ᵀ

t∈[0,T]
; 0; 0) or (X;

(∫
]0,t] csds, 0

)ᵀ
t∈[0,T]

−P; 0; 0)

if premium payments are considered, respectively.

Example 4. A payment protection insurance (PPI) is an insurance contract which is usually offered as an
add-on product to some payment obligations, e.g., a loan. In the case of an insured event, the insurance company
takes over the respective instalments of the payment obligation for the insured person or her heirs. Generally,
the insured events are “disability”, “unemployment” and “decease”. Hence, the state space for PPI products is
given as K = {1, 2, 3, 4} with “2” being the state “disabled”, “3” the state “unemployed”, “4” the absorbing
state “deceased” and “1” the state where no insured event is present.

Then a PPI contract is given as the quadruple (X; (0, C2
t , C3

t , C4
t )

ᵀ
t∈[0,T]; (0, Y, Y, Y)ᵀ; 0) or

(X; (0, C2
t , C3

t , C4
t )

ᵀ
t∈[0,T] − P; (0, Y, Y, Y)ᵀ; 0) if premium payments are considered, respectively.

As the underlying payment obligation usually stipulates fixed instalments c1, ..., cK at some given payment
dates 0 < T1 < ... < TK = T, the processes Ci

t, i = 2, 3, 4, are generally given as Ci
t = ∑K

j=1 cj1{Tj≤t}.
Moreover, some payment obligations also contain a so-called balloon rate B at the end of the contract, which

has to be paid on top of the usual instalment. If there exists a balloon rate and it is insured, then we set Y = B, if
there exists no balloon rate or it is not insured, then we set Y = 0.

Remark 1.

(1) The extra claim payment could also be included in the continuous claim payments. For the reader’s
convenience, however, we explicitly separate continuous and extra claim payments.

(2) The main concepts of premium payment are

- a single premium P, where the complete price for the insurance contract is paid at its beginning. In

this case, the vector P would be given as P =
(

P1{t≥0}, P1{t≥0}, ..., P1{t≥0}
)ᵀ

t∈[0,T]
.

- periodically paid premiums. Here, the insurance price is paid according to periodically paid premiums
pi at a priori specified dates 0 = T0 < T1 < ... < TL ≤ T. Moreover, some insurance policies
consider premium freedoms which allow the insured person to intermit premium payments while
sojourning (some) insured states. In this case, we have for each vector entry Pi, i ∈ {1, ..., N}, of P

Pi
t =

{
∑L

j=1 pj1{Tj≤t}
0

depending on whether state i is guarantees premium freedom or not.
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3. Risk-Minimization for General Insurance Contracts

Aim of this paper is to provide the risk minimizing strategy for a general insurance contract by
applying the approach presented in Appendix B. Risk minimization provides hedging strategies which
perfectly replicate the claim. Since the market is incomplete, these strategies may not be self-financing
and a readjustment (or cost) is needed to achieve perfect replication. According to this method we
choose then the optimal strategy, i.e., the strategy with minimal cost.

For this sake, we first consider a general setting and then focus on a deterministic payment
structure and an underlying market which is driven by some N-dimensional Brownian motion.
These results are then further specified within a general affine setting for the different entries of the
matrix-valued intensity.

3.1. Martingale Decomposition for Payment Processes of General Insurance Claims

We consider the payment process D in Equation (1). Let S0 denote the market’s discounting factor,
which will be further specified in Section 3.2. If

∫
]0,T]

1
S0

u
d|D|u < ∞, we get by Equation (B1) that the

discounted cumulative payment stream D̂ = (D̂t)t∈[0,T] is given as

D̂t = YᵀHT
S0

T
1{t=T} +

∫
[0,t]

1
S0

s
Hᵀ

s dAs +
∫
]0,t]

1
S0

s
(Zᵀ

s Hs−)ᵀdHs

= ∑N
j=1

(
Y j H j

T
S0

T
1{t=T} +

∫
[0,t]

1
S0

s
H j

sdAj
s + ∑N

k=1
k 6=j

∫
]0,t]

1
S0

s
Zj,k

s dN jk
s

)
(2)

We further assume the underlying F-doubly stochastic Markov chain X to admit an intensity
ΨΨΨ =

(
[ψ

j,k
t ]j,k∈K

)
t∈[0,T], as introduced in Definition A.5.

Assumption 2. For every general insurance contract (X; A; Y; Z), let

E



(

Y j

S0
T

)2

 < ∞ , j ∈ K (3)

sup
s∈[0,T]

E

[(∫

[0,s]

1
S0

u
dAj

u

)2
]
< ∞ , j ∈ K (4)

E

[∫

]0,T]

(∫

[0,u]

1
S0

v
dAj

v

)2
|ψXu ,j|du

]
< ∞ , j ∈ K (5)

E



∫

]0,T]

(
Zj,k

u

S0
u

)2

ψj,k(u)du


 < ∞ , j, k ∈ K, j 6= k (6)

E



(∫

]0,T]

Zj,k
u

S0
u

ψj,k(u)du

)2

 < ∞ , j, k ∈ K, j 6= k (7)

where H j
t , t ∈ [0, T] is defined in Equation (A7).

Note that Equations (3), (4), (6) and (7) ensure that the discounted payment stream D̂ generated
by the general insurance contract (X; A; Y; Z) is square integrable.

We remark that the following Lemma is given similarly in [21] (Theorem 16.38) under the
assumption the local martingale M, defined in Equation (A9), is square integrable and the processes A
and Z are bounded. Here, we generalize their proof to the case where A and Z satisfy the conditions
of Assumption 2.
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For notational convenience, we introduce the process G = (Gt)t∈[0,T] =
(
G1

t , ..., GN
t
)ᵀ with

Gj
t :=

[
ZtΨΨΨ

ᵀ
t
]

j,j =
N

∑
k=1
k 6=j

Zj,k
t ψj,k(t) , j ∈ K, t ∈ [0, T] (8)

Lemma 3. Let (X; A; Y; Z) be a general insurance contract, satisfying Assumption 2, then

E
[

D̂T − D̂t

∣∣∣ Gt

]
= ∑N

j=1E

[
Y j H j

T
S0

T
+
∫
]t,T]

1
S0

u
H j

udAj
u + ∑N

k=1
k 6=j

∫
]t,T]

Zj,k
u

S0
u

dN jk
u

∣∣∣∣ Gt

]

= ∑N
i=1 Hi

t ∑N
j=1E

[
Y j pi,j(t,T)

S0
T

+
∫
]t,T]

1
S0

u
pi,j(t, u)dAj

u + ∑N
k=1
k 6=j

∫
]t,T]

Zj,k
u

S0
u

pi,j(t, u)ψj,k(u)du
∣∣∣∣Ft

]

= E

[
P(t,T)Y

S0
T

+
∫
]t,T]

P(t,u)
S0

u
dAu +

∫
]t,T]

P(t,u)
S0

u
Gudu

∣∣∣∣Ft

]ᵀ
Ht

(9)

where the conditional transition probability process P = P(s, t) =
[
pi,j(s, t)

]
i,j∈K, 0 ≤ s ≤ t ≤ T is defined

in Definition A.1.

Proof. We proove the theorem by investigating the different conditional expectations separately.
First note that because Y is taken to be FT-measurable and S0 to be F-adapted, by Equation (A3)

we get for every j ∈ K

E

[
Y j H j

T
S0

T

∣∣∣ Gt

]
= E

[
Y j

S0
T

N

∑
i=1

Hi
tE
[

H j
T | G̃t

] ∣∣∣ Gt

]
= E

[
Y j

S0
T

N

∑
i=1

Hi
t pi,j(t, T)

∣∣∣ Gt

]

=
N

∑
i=1

Hi
tE

[
Y j

S0
T

pi,j(t, T)
∣∣∣Ft

]

where G̃t := FT ∨ FX
t .

Next, by Equation (A10) of Theorem A.7, we get for j, k ∈ K, j 6= k that

∫

]t,T]

Zj,k
u

S0
u

dN j,k
u =

∫

]t,T]

Zj,k
u

S0
u

dMj,k
u +

∫

]t,T]

Zj,k
u

S0
u

H j
uψj,k(u)du

Note that because of Equations (A15) and (6), the integral-process with respect to Mjk is a square
integrable G-martingale. Hence, for every j, k ∈ K, j 6= k, we have

E

[∫

]t,T]

Zjk
u

S0
u

dN jk
u

∣∣∣ Gt

]
= E

[∫

]t,T]

Zjk
u

S0
u

H j
uψj,k(u)du

∣∣∣ Gt

]

=
∫

]t,T]
E

[
Zjk

u

S0
u

H j
uψj,k(u)

∣∣∣ Gt

]
du

=
∫

]t,T]
E

[
E

[
Zjk

u

S0
u

H j
uψj,k(u)

∣∣∣ G̃t

] ∣∣∣ Gt

]
du

=
∫

]t,T]
E

[
Zjk

u

S0
u

ψj,k(u)

(
N

∑
i=1

Hi
t pi,j(t, u)

) ∣∣∣ Gt

]
du

=
N

∑
i=1

Hi
t

∫

]t,T]
E

[
Zjk

u

S0
u

pi,j(t, u)ψj,k(u)
∣∣∣Ft

]
du

=
N

∑
i=1

Hi
tE

[∫

]t,T]

Zjk
u

S0
u

pi,j(t, u)ψj,k(u)du
∣∣∣Ft

]
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by the conditional version of Fubini’s theorem, the definition of F-doubly stochastic Markov chains
and hypothesis (H).

Finally, for every j ∈ K and for fixed t ∈ [0, T] we define Ãj
u :=

∫
]t,u]

1
S0

v
dAj

v, u ∈ [t, T]. By
Proposition A.9 we get

E

[∫

]t,T]
H j

u
1

S0
u

dAj
u | Gt

]
= E

[∫

]t,T]
H j

udÃj
u | Gt

]

= E

[
Ãj

T H j
T − Ãj

tH j
t −

∫

]t,T]
Ãj

u−dH j
u | Gt

]

= E

[
Ãj

T H j
T −

∫

]t,T]
Ãj

u−dH j
u | Gt

]
= I1 − I2

with

I1 := E[Ãj
T H j

T | Gt], I2 := E

[∫

]t,T]
Ãj

u−dH j
u | Gt

]

Since ÃT is FT-measurable, it follows by the hypothesis (H) that

I1 = E
[

Ãj
TE
[

H j
T | G̃t

]
| Gt

]
=

K

∑
i=1

Hi
tE
[

Ãj
T pi,j(t, v) | Ft

]

Again by the conditional version of Fubini’s theorem, hypothesis (H) and with the Kolmogorov
forward Equation (A6) it follows that

I2 = E

[∫

]t,T]
Ãj

u−dH j
u

∣∣∣ Gt

]
= E

[∫

]t,T]
Ãj

u−dMj
u +

∫

]t,T]
Ãj

u−ψXu ,j(u)du
∣∣∣ Gt

]

= E

[∫

]t,T]
Ãj

u−
K

∑
k=1

Hk
uψk,j(u)du

∣∣∣ Gt

]
=
∫

]t,T]
E

[
Ãj

u−
K

∑
k=1

Hk
uψk,j(u)

∣∣∣ Gt

]
du

=
∫

]t,T]
E

[
Ãj

u−
K

∑
k=1

E
[

Hk
u | G̃t

]
ψk,j(u)

∣∣∣ Gt

]
du

=
K

∑
i=1

Hi
t

∫

]t,T]
E

[
Ãj

u−

(
K

∑
k=1

pi,k(t, u)ψk,j(u)

) ∣∣∣Ft

]
du

=
K

∑
i=1

Hi
tE

[∫

]t,T]
Ãj

u−

(
K

∑
k=1

pi,k(t, u)ψk,j(u)

)
du
∣∣∣Ft

]

=
K

∑
i=1

Hi
tE

[∫

]t,T]
Ãj

u−dpi,j(t, u)
∣∣∣Ft

]

Hence, by integration by parts and since p(t, ·) is continuous, we get

I1 − I2 =
K

∑
i=1

Hi
tE

[
ÃT pi,j(t, T)−

∫

]t,T]
Ãj

u−dpi,j(t, u) | Ft

]

=
K

∑
i=1

Hi
tE

[
Ãt pi,j(t, t) +

∫

]t,T]
pi,j(t, u)dÃj

u | Ft

]

=
K

∑
i=1

Hi
tE

[∫

]t,T]
pi,j(t, u)dAj

u | Ft

]

This completes the proof.
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Now we are ready to provide the Galtchouk-Kunita-Watanabe decomposition for payment
processes of general insurance contracts.

Theorem 4. Let (X, A, Y, Z) be a general insurance contract, satisfying Assumption 2, with discounted
payment process D̂, defined in Equation (2). Then the GKW-decomposition of the square-integrable discounted
value process ÛD = (ÛD

t )t∈[0,T] with ÛD
t = E

[
D̂T | Gt

]
is given as

ÛD
t = ÛD

0 +
∫

]0,t]
αααᵀudmu +

∫

]0,t]
βββᵀudMu (10)

where M is given by Equation (A9), m = (mt)t∈[0,T] is a square-integrable F-martingale, given by

mt := E

[
P(0, T)Y

S0
T

+
∫

[0,T]

P(0, u)
S0

u
dAu +

∫

]0,T]

P(0, u)
S0

u
Gudu

∣∣∣Ft

]
(11)

and ααα, βββ are G-predictable RN-valued processes defined by

αααt = Lt− = Qᵀ(0, t)Ht− , βββt =
F(t−, T) + ZᵀHt−

S0
t

(12)

with Ht = (H1
t , ..., HN

t ), t ∈ [0, T], defined by Equation (A7), Q(0, t), t ∈ [0, T], defined in Equation (A11),
F(t, T), t ∈ [0, T], defined by

F(t, T) := S0
tE

[
P(t, T)Y

S0
T

+
∫

]t,T]

P(t, u)
S0

u
dAu +

∫

]t,T]

P(t, u)
S0

u
Gudu

∣∣∣Ft

]
(13)

and ÛD
0 = E[D̂T ] = mᵀ

0H0.

Proof. The statement and the proof of this theorem can be found in [21] (Theorem 16.62). The authors
there, however, prove Decomposition 10 only for t ∈ [0, T). Because the integrals on the r.h.s. are not
all continuous, it is a priori not clear if the decomposition also holds for ÛD

T . Here we refer to [24]
(Theorem 4.2.3) for an extension of the proof of [21] to the case t = T.

3.2. Risk Minimization for General Insurance Contracts with Deterministic Payment Structure

In this section we focus on a more specific setting, where we specify the underlying financial
market and derive risk-minimizing hedging strategies for insurance contracts with deterministic
payment structures.

We start by specifying the underlying market. First of all, we assume the reference filtration
F = FW to be the augmented filtration, generated by some N-dimensional Brownian motion W. For
computational reasons, particularly in the affine setting of the next section, we set the dimension N of
the Brownian motion equal to the number of states under consideration.

Consider then a financial market consisting of (d+ 1) traded assets S = (S0
t , ..., Sd

t )
ᵀ
t∈[0,T], assumed

to be F-adapted, non-negative stochastic processes. Let Ŝ = (Ŝ1
t , ..., Ŝd

t )
ᵀ
t∈[0,T] denote the Rd-valued

stochastic process of the primary assets S1, ..., Sd, discounted with the asset S0, i.e., Ŝi
t = Si

t/S0
t ,

i = 1, ..., d. Here S0 is taken to be continuous with S0
t > 0 for all t ∈ [0, T] and shall generally represent

the value of a self-financing portfolio on the primary assets. In the sequel, we assume Ŝ to be a local
(F,P)-martingale, which particularly implies that the market model is arbitrage-free.

Remark 2. The requirement that Ŝ is a local martingale may appear restrictive. However it is always satisfied if
we choose S0 to be the numéraire portfolio defined in [25], since we assume the underlying financial market to
contain only continuous asset price processes.
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We could also start with a general situation where the discounted asset price processes are given by
semimartingales. In this case one has to assume some technical conditions to guarantee the existence of the
optimal strategy, see [26,27].

Here we prefer to avoid technical complications since our aim is to compute explicitly the risk-minimizing
strategy when it exists.

By the representation theorem with respect to Brownian motion it follows that there exists a
measurable map σ̃σσ : [0, T]×RN → Rd×N , such that

Ŝt = Ŝ0 +
∫

]0,t]
σ̃σσ(s, Ss)dWs

Assumption 5. We assume that σ̃σσ(t, St) is a.s. left-invertible, i.e., that for almost every (ω, t) ∈ Ω× [0, T]
there exists an FW-adapted N × d-valued matrix ΓΓΓt(ω) such that ΓΓΓtσ̃σσ(t, St) = IN . This particularly
implies N ≥ d.

From now on we focus on discount factors and insurance contracts with deterministic
payment structure.

Assumption 6.

(1) Y is a deterministic vector in RN .
(2) The payment A = (At)t∈[0,T] is of the form At =

∫ t
0 ννν(s)ds for some bounded deterministic function

ννν : [0, T]→ RN .
(3) Z : [0, T]→ RN×N is a bounded deterministic matrix-valued function.
(4) S0 : [0, T]→ R is a deterministic continuous function.

(5) For every j, k ∈ K, j 6= k, C := supu∈[0,T] E

[(
ψ

j,k
u

)2
]
< ∞.

Assumption 6 particularly implies that the integrability conditions of Assumption 2 hold.
Note also that the insurance contracts, given in Examples 1, 2 and 4 all satisfy (1), (2) and (3)
of Assumption 6. The assumption on S0 being deterministic is applied very frequently in the literature,
e.g if P is assumed to be some risk-neutral probability measure and S0

t = ert for some constant r > 0.

Remark 3. Here we assume constant interest rates for the sake of simplicity, since the focus of this paper is
primarily to evaluate the role of a multi-state progression of the insured person on the risk-minimizing strategy.
The following computations can be easily extended to the case of stochastic interest rates if S0 is assumed to be
independent of X. In more general models, the investigation of dependency structures will become inevitable.
This goes beyond the scope of the paper and is left to further research.

Due to the representation theorem with respect to Brownian motion, for every u ∈ [0, T] and
every i, j ∈ K, there exists some ξξξ i,j(u, ·) ∈ L2(W) such that

E
[
pi,j(0, u) | Ft

]
= E

[
pi,j(0, u)

]
+
∫

]0,t]
1]0,u](s)ξξξ

i,j(u, s)dWs (14)

Similarly, because of Assumption 6 (5), for every u ∈ [0, T] and every i, j, k ∈ K, j 6= k, there exists
some θθθi,j,k(u, ·) ∈ L2(W) such that

E
[

pi,j(0, u)ψj,k
u | Ft

]
= E

[
pi,j(0, u)ψj,k

u

]
+
∫

]0,t]
1]0,u](s)θθθ

i,j,k(u, s)dWs (15)



Risks 2016, 4, 23 10 of 26

Theorem 7. Given Assumptions 5 and 6, the unique risk-minimizing hedging strategy ξξξ = (ξξξt)t∈[0,T],
characterized in Theorem B.5 for a general insurance claim (X; A; Y; Z), satisfying Assumption 6, is given as

ξξξt =
N

∑
i=1

Li
t

N

∑
j=1

∫

]0,t]

(Y j
T

S0
T

ξξξ i,j(T, t) +
∫

[t,T]

1
S0

u
ξξξ i,j(u, t)νj

udu +
N

∑
k=1
k 6=j

∫

[t,T]

Zj,k
u

S0
u

θθθi,j,k(u, t)du
)

ΓΓΓt (16)

ξ0
t = ÛD

t − D̂t − ξξξᵀt Ŝt (17)

where Γt is the left-inverse of the volatility matrix σ̃(t, St) and ÛD = (ÛD
t )t∈[0,T] is the discounted value

process of the cumulative payment process D.

Proof. Because of Assumption 6, the i-th component mi of the martingale m in Equation (11) is given as

mi
t =

N

∑
j=1

(
Y j

T
S0

T
E
[

pi,j(0, T) | Ft

]
+
∫

[0,T]

1
S0

u
E
[

pi,j(0, u) | Ft

]
ν

j
udu

+
N

∑
k=1
k 6=j

∫

]0,T]

Zj,k
u

S0
u
E
[

pi,j(0, u)ψj,k
u | Ft

]
du
)

=
N

∑
j=1

(Y j
T

S0
T
E
[

pi,j(0, T)
]
+
∫

[0,T]

1
S0

u
E
[

pi,j(0, u)
]

ν
j
udu +

N

∑
k=1
k 6=j

∫

]0,T]

Zj,k
u

S0
u
E
[

pi,j(0, u)ψj,k
u

]
du
)

+
N

∑
j=1

(Y j
T

S0
T

∫

]0,t]
ξξξ i,j(T, s)dWs +

∫

[0,T]

1
S0

u

∫

]0,t]
1]0,u](s)ξξξ

i,j(u, s)dWsν
j
udu

+
N

∑
k=1
k 6=j

∫

]0,T]

Zj,k
u

S0
u

∫

]0,t]
1]0,u](s)θθθ

i,j,k(u, s)dWsdu
)

By Assumption 6, Fubini’s theorem and the Itô isometry it then follows for every i, j ∈ K that

E

[∫

]0,T]

∫

]0,T]

(
1

S0
u
1]0,u](s)‖ξξξ i,j(u, s)‖νj

u

)2
duds

]
≤ K2

1

∫

]0,T]
E

[∫

]0,T]
‖ξξξ i,j(u, s)‖2ds

]
du

= K2
1

∫

]0,T]
E

[(∫

]0,T]
ξξξ i,j(u, s)dWs

)2
]

du

= K2
1

∫

]0,T]
E
[(
E
[
pi,j(0, u) | FT

]
−E

[
pi,j(0, u)

])2
]

du

≤ K2
1T < ∞

for some constant K1 > 0.
Due to Assumption 6 (5), we similarly have for every i, j, k ∈ K, j 6= k that

E



∫

]0,T]

∫

]0,T]

(
Zj,k

u

S0
u
1]0,u](s)‖θθθi,j,k(u, s)‖

)2

duds


 ≤ K2

2

∫

]0,T]
E

[∫

]0,T]
‖θθθi,j,k(u, s)‖2ds

]
du

= K2
2

∫

]0,T]
E

[(∫

]0,T]
θθθi,j,k(u, s)dWs

)2
]

du

= K2
2

∫

]0,T]
E

[(
E
[

pi,j(0, u)ψj,k
u | FT

]
−E

[
pi,j(0, u)

])2
]

du

≤ K2
2

∫

]0,T]
E
[
(ψ

j,k
u )2

]
du

≤ K2
2CT < ∞



Risks 2016, 4, 23 11 of 26

for some constant K2 > 0.
Therefore, we can apply the stochastic version of Fubini’s theorem, see [28], and obtain

mi
t =

N

∑
j=1

(Y j
T

S0
T
E
[
pi,j(0, T)

]
+
∫

[0,T]

1
S0

u
E
[
pi,j(0, u)

]
ν

j
udu +

N

∑
k=1
k 6=j

∫

]0,T]

Zj,k
u

S0
u
E
[

pi,j(0, u)ψj,k
u

]
du
)

+
N

∑
j=1

∫

]0,t]

(Y j
T

S0
T

ξξξ i,j(T, s) +
∫

[s,T]

1
S0

u
ξξξ i,j(u, s)νj

udu +
N

∑
k=1
k 6=j

∫

[s,T]

Zj,k
u

S0
u

θθθi,j,k(u, s)du
)

dWs

This finally implies

dmi
t =

N

∑
j=1

(Y j
T

S0
T

ξξξ i,j(T, t) +
∫

[t,T]

1
S0

u
ξξξ i,j(u, t)νj

udu +
N

∑
k=1
k 6=j

∫

[t,T]

Zj,k
u

S0
u

θθθi,j,k(u, t)du
)

ΓΓΓtdŜt

The result then follows immediately with Theorem A.7 and the results of Theorem B.5.

3.3. Risk Minimization for General Insurance Contracts with Deterministic Payment Structure under an Affine
Specification for the Intensities

In the same setting as in Section 3.2, we now specify the risk-minimizing hedging strategies,
computed in Theorem 7 within a general affine setting for the intensities. In addition to Assumption 2
we also consider

Assumption 8.

(1) For every 0 ≤ t ≤ u ≤ T and every j, k ∈ K, j 6= k, we assume the entries pj,k(t, u) of the transition
matrix P(t, u) are of the form

pj,k(t, u) = 1− e−
∫ u

t ψ
j,k
v dv (18)

where ψj,k are the respective entries of the intensity matrix ΨΨΨ.

(2) For every u ∈ [0, T] and every j, k ∈ K, j 6= k, ψ
j,k
u is of the form

ψ
j,k
u = (bj,k)ᵀµµµu + cj,k (19)

where bj,k ∈ RN , cj,k ∈ R and µµµ = (µµµt)t∈[0,T] an RN-valued affine process as specified e.g., in [29]
(Section 3 and Appendix A) or [30]. Here, µµµ is a Markov process with respect to FW , given as the strong
solution to the SDE

dµµµt = δδδ(t, µµµt)dt + σσσ(t, µµµt)dWt (20)

where for t ∈ [0, T], x ∈ RN and i, j ∈ {1, ..., N}

δδδ(t, x) = d0(t) + (d1(t))ᵀx (21)

[σσσ(t, x)σσσ(t, x)ᵀ]i,j = [V0(t)]i,j + (V1(t))ᵀi,jx (22)

with coefficient functions d0, d1, V0 and V1, taking values in RN ,RN×N ,RN×N and RN×N×N , respectively.
(3) The process µµµ is such that

C := sup
u∈[0,T]

E[‖µµµu‖2] < ∞ (23)
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This particularly implies that for every j, k ∈ K, j 6= k, we have

sup
u∈[0,T]

E[(ψ
j,k
u )2] < ∞ (24)

With these assumptions and under some technical conditions, presented in [30], we obtain for
every 0 ≤ t ≤ u ≤ T and every i, j ∈ K with i 6= j that

E
[
pi,j(t, u) | Ft

]
= E[1− e−

∫ u
t ψ

i,j
v dv | Ft] = 1− eα

i,j
u (t)+(βββ

i,j
u (t))ᵀµµµt (25)

E [pi,i(t, u) | Ft] = E[1−∑N
j=1
j 6=i

pi,j(t, u) | Ft] = 1−∑N
j=1
j 6=i
E[1− e−

∫ u
t ψ

i,j
v dv | Ft]

= 2− N + ∑N
j=1
j 6=i

eα
i,j
u (t)+(βββ

i,j
u (t))ᵀµµµt

(26)

Similarly, we obtain for every 0 ≤ t ≤ u ≤ T and every i, j, k ∈ K with i 6= j, j 6= k

E
[

pi,j(t, u)ψj,k
u | Ft

]
= E

[
(1− e−

∫ u
t ψ

i,j
u du)ψ

j,k
u | Ft

]
= E

[
ψ

j,k
u | Ft

]
−E

[
e−
∫ u

t ψ
i,j
u duψ

j,k
u | Ft

]

= eα̃u(t)+(β̃ββu(t))
ᵀµµµt(α̃

j,k
u (t) + (β̃ββ

j,k
u (t))ᵀµµµt)

−eα
i,j
u (t)+(βββ

i,j
u (t))ᵀµµµt(α̂

j,k
u (t) + (β̂ββ

j,k
u (t))ᵀµµµt)

(27)

E
[

pj,j(t, u)ψj,k
u | Ft

]
= (2− N)E

[
ψ

j,k
u | Ft

]
+ ∑N

l=1
l 6=j
E

[
e−
∫ u

t ψ
j,l
u duψ

j,k
u | Ft

]

= (2− N)eα̃u(t)+(β̃ββu(t))
ᵀµµµt(α̃

j,k
u (t) + (β̃ββ

j,k
u (t))ᵀµµµt)

+∑N
l=1
l 6=j

eα
j,l
u (t)+(βββ

j,l
u (t))ᵀµµµt(α̂

j,k
u (t) + (β̂ββ

j,k
u (t))ᵀµµµt)

(28)

For every 0 ≤ t ≤ u ≤ T and every combination of i, j, k, l ∈ K, considered in Equations (25)–(28),
the functions α

i,j
u , βββi,j

u solve the ODEs

dβββi,j
u

dt
(t) = bi,j − d1(t)ᵀβββi,j

u (t)− 1
2
(βββi,j

u (t))ᵀV1(t)βββi,j
u (t) (29)

dα
i,j
u

dt
(t) = ci,j − d0(t)ᵀβββi,j

u (t)− 1
2
(βββi,j

u (t))ᵀV0(t)βββi,j
u (t) (30)

with terminal conditions α
i,j
u (u) = 0 and βββi,j

u (u) = 0, whereas the functions α̃u, β̃ββu solve the ODEs

dβ̃ββu
dt

(t) = −d1(t)ᵀβ̃ββu(t)−
1
2
(β̃ββu(t))

ᵀV1(t)β̃ββu(t) (31)

dα̃u

dt
(t) = −d0(t)ᵀβ̃ββu(t)−

1
2
(β̃ββu(t))

ᵀV0(t)β̃ββu(t) (32)

with terminal conditions α̃u(u) = 0 and β̃ββu(u) = 0.

The functions α̃k,l
u , β̃ββ

k,l
u , α̂k,l

u and β̂ββ
k,l
u , k, l ∈ K, corresponding to α̃u and β̃ββu or to α

i,j
u and βββi,j

u for
i, j ∈ K as considered in Equations (25)–(28), then solve the ODEs

dβ̃ββ
k,l
u

dt
(t) = −d1(t)ᵀβ̃ββ

k,l
u (t)− (β̃ββu(t))

ᵀV1(t)β̃ββ
k,l
u (t) (33)

dα̃k,l
u

dt
(t) = −d0(t)ᵀβ̃ββ

k,l
u (t)− (β̃ββu(t))

ᵀV0(t)β̃ββ
k,l
u (t) (34)
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with terminal conditions α̃k,l
u (u) = ck,l , β̃ββ

k,l
u (u) = bk,l and

dβ̂ββ
k,l
u

dt
(t) = −d1(t)ᵀβ̂ββ

k,l
u (t)− (βββi,j

u (t))ᵀV1(t)β̂ββ
k,l
u (t) (35)

dα̂k,l
u

dt
(t) = −d0(t)ᵀβ̂ββ

k,l
u (t)− (βββi,j

u (t))ᵀV0(t)β̂ββ
k,l
u (t) (36)

with terminal conditions α̂k,l
u (u) = ck,l , β̂ββ

k,l
u (u) = bk,l .

Note that with these specifications, we obtain by Equation (20) that for every 0 ≤ t < u ≤ T and
every i, j ∈ K, i 6= j

E
[
pi,j(0, u) | Ft

]
= 1− e−

∫ t
0 ψ

i,j
v dvE

[
e−
∫ u

t ψ
i,j
v dv | Ft

]
= 1− e−

∫ t
0 ψ

i,j
v dveα

i,j
u (t)+(βββ

i,j
u (t))ᵀµµµt

=1− eα
i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0 −

∫ t

0
e−
∫ s

0 ψ
i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)dWs

and

E [pi,i(0, u) | Ft] = 1−
N

∑
j=1
j 6=i

E[1− e−
∫ u

t ψ
i,j
v dv | Ft] = 2− N +

N

∑
j=1
j 6=i

e−
∫ t

0 ψ
i,j
v dveα

i,j
u (t)+(βββ

i,j
u (t))ᵀµµµt

=2− N +
N

∑
j=1
j 6=i

(
eα

i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0 +

∫ t

0
e−
∫ s

0 ψ
i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)dWs

)

Moreover, as every martingale with respect to the Brownian filtration FW is continuous, we have
for 0 ≤ u ≤ t ≤ T that

E
[
pi,j(0, u) | Ft

]
= pi,j(0, u) = lim

w↗u
E
[
pi,j(0, u) | Fw

]

= lim
w↗u

(
1− eα

i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0 −

∫ w

0
e−
∫ s

0 ψ
i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)dWs

)

=1− eα
i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0 −

∫ u

0
e−
∫ s

0 ψ
i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)dWs

and

E [pi,i(0, u) | Ft] = pi,i(0, u) = lim
w↗u

E [pi,i(0, u) | Fw]

=2− N +
N

∑
j=1
j 6=i

(
eα

i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0 +

∫ u

0
e−
∫ s

0 ψ
i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)dWs

)

Hence, for arbitrary u, t ∈ [0, T], we obtain

E
[
pi,j(0, u) | Ft

]
= ci,j

1 (u) +
∫ t

0
ϑ

i,j
1 (s, u)1[0,u](s)dWs (37)

E [pi,i(0, u) | Ft] = ci
2(u) +

∫ t

0
ϑi

2(s, u)1[0,u](s)dWs (38)



Risks 2016, 4, 23 14 of 26

where for u, s ∈ [0, T] and every i, j ∈ K, i 6= j

ci,j
1 (u) := 1− eα

i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0

ϑ
i,j
1 (s, u) := −e−

∫ s
0 ψ

i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)

ci
2(u) := 2− N +

N

∑
j=1
j 6=i

eα
i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0

ϑi
2(s, u) :=

N

∑
j=1
j 6=i

e−
∫ s

0 ψ
i,j
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβββi,j
u (s)

Similarly we get for 0 ≤ t < u ≤ T and every i, j, k ∈ K with i 6= j, j 6= k that

E
[

pi,j(0, u)ψj,k
u | Ft

]
= E

[
ψ

j,k
u | Ft

]
− e−

∫ t
0 ψ

i,j
v dvE

[
e−
∫ u

t ψ
i,j
v dvψ

j,k
u | Ft

]

= eα̃u(t)+(β̃ββu(t))
ᵀµµµt(α̃

j,k
u (t) + (β̃ββ

j,k
u (t))ᵀµµµt)− e−

∫ t
0 ψ

i,j
v dveα

i,j
u (t)+(βββ

i,j
u (t))ᵀµµµt(α̂

j,k
u (t) + (β̂ββ

j,k
u (t))ᵀµµµt)

= eα̃u(0)+(β̃ββu(0))
ᵀµµµ0(α̃

j,k
u (0) + (β̃ββ

j,k
u (0))ᵀµµµ0)− eα

i,j
u (0)+(βββ

i,j
u (0))ᵀµµµ0(α̂

j,k
u (0) + (β̂ββ

j,k
u (0))ᵀµµµ0)

+
∫ t

0

{
eα̃u(s)+(β̃ββu(s))

ᵀµµµs(σσσ(s, µµµs))
ᵀ((α̃j,k

u (s) + (β̃ββ
j,k
u (s))ᵀµµµs)β̃ββu(s) + β̃ββ

j,k
u (s)

)

+ e−
∫ s

0 ψ
j,k
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(α̂

j,k
u (s) + (β̂ββ

j,k
u (s))ᵀµµµs)(σσσ(s, µµµs))

ᵀβββi,j
u (s)

+ e−
∫ s

0 ψ
j,k
v dveα

i,j
u (s)+(βββ

i,j
u (s))ᵀµµµs(σσσ(s, µµµs))

ᵀβ̂ββ
j,k
u (s)

}
dWs

and

E
[

pj,j(0, u)ψj,k
u | Ft

]
= (2− N)E

[
ψ

j,k
u | Ft

]
+

N

∑
l=1
l 6=j

e−
∫ t

0 ψ
j,l
v dvE

[
e−
∫ u

t ψ
j,l
v dvψ

j,k
u | Ft

]

= (2− N)eα̃u(0)+(β̃ββu(0))
ᵀµµµ0 (α̃

j,k
u (0) + (β̃ββ

j,k
u (0))ᵀµµµ0) +

N

∑
l=1
l 6=j

eα
j,l
u (0)+(βββj,l

u (0))ᵀµµµ0 (α̂
j,k
u (0) + (β̂ββ

j,k
u (0))ᵀµµµ0)

+
∫ t

0
(2− N)

{
eα̃u(s)+(β̃ββu(s))

ᵀµµµs (σσσ(s, µµµs))
ᵀ((α̃j,k

u (s) + (β̃ββ
j,k
u (s))ᵀµµµs)β̃ββu(s) + β̃ββ

j,k
u (s)

)

+
N

∑
l=1
l 6=j

e−
∫ s

0 ψ
j,l
v dveα

j,l
u (s)+(βββj,l

u (s))ᵀµµµs (α̂
j,k
u (s) + (β̂ββ

j,k
u (s))ᵀµµµs)(σσσ(s, µµµs))

ᵀβββj,l
u (s)

+ e−
∫ s

0 ψ
j,l
v dveα

j,l
u (s)+(βββj,l

u (s))ᵀµµµs (σσσ(s, µµµs))
ᵀβ̂ββ

j,k
u (s)

)}
dWs

Note that by Jensen’s inequality and Assumption 8 (4), we get for every 0 ≤ t < u ≤ T and every
i, j, k ∈ K with j 6= k that

E[E[pi,j(0, u)ψj,k
u | Ft]

2] ≤ E[E[pi,j(0, u)2(ψ
j,k
u )2 | Ft]] ≤ E[(ψj,k

u )2] ≤ C

Finally, with the same limit-arguments as above, we obtain for arbitrary u, t ∈ [0, T] and every
i, j, k ∈ K with i 6= j, j 6= k that

E
[

pi,j(0, u)ψj,k
u | Ft

]
= c3(u) +

∫ t

0
ϑ

i,j,k
3 (s, u)1[0,u](s)dWs (39)

E
[

pj,j(0, u)ψj,k
u | Ft

]
= c4(u) +

∫ t

0
ϑ

j,k
4 (s, u)1[0,u](s)dWs (40)
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where for u, s ∈ [0, T], i, j, k ∈ K with i 6= j, j 6= k

c3(u) := eα̃u(0)+(β̃ββu(0))
ᵀµµµ0 (α̃

j,k
u (0) + (β̃ββ

j,k
u (0))ᵀµµµ0)− eα

i,j
u (0)+(βββi,j

u (0))ᵀµµµ0 (α̂
j,k
u (0) + (β̂ββ

j,k
u (0))ᵀµµµ0)

ϑ
i,j,k
3 (u, s) :=

{
eα̃u(s)+(β̃ββu(s))

ᵀµµµs (σσσ(s, µµµs))
ᵀ((α̃j,k

u (s) + (β̃ββ
j,k
u (s))ᵀµµµs)β̃ββu(s) + β̃ββ

j,k
u (s)

)

+ e−
∫ s

0 ψ
j,k
v dveα

i,j
u (s)+(βββi,j

u (s))ᵀµµµs (σσσ(s, µµµs))
ᵀ
(
(α̂

j,k
u (s) + (β̂ββ

j,k
u (s))ᵀµµµs)βββ

i,j
u (s) + β̂ββ

j,k
u (s)

)}

c4(u) := (2− N)eα̃u(0)+(β̃ββu(0))
ᵀµµµ0 (α̃

j,k
u (0) + (β̃ββ

j,k
u (0))ᵀµµµ0)

+
N

∑
l=1
l 6=j

eα
j,l
u (0)+(βββj,l

u (0))ᵀµµµ0 (α̂
j,k
u (0) + (β̂ββ

j,k
u (0))ᵀµµµ0)

ϑ
j,k
4 (u, s) :=

{
(2− N)eα̃u(s)+(β̃ββu(s))

ᵀµµµs (σσσ(s, µµµs))
ᵀ
(
(α̃

j,k
u (s) + (β̃ββ

j,k
u (s))ᵀµµµs)β̃ββu(s) + β̃ββ

j,k
u (s)

)

+
N

∑
l=1
l 6=j

e−
∫ s

0 ψ
j,l
v dveα

j,l
u (s)+(βββj,l

u (s))ᵀµµµs (σσσ(s, µµµs))
ᵀ
(
(α̂

j,k
u (s) + (β̂ββ

j,k
u (s))ᵀµµµs)βββ

j,l
u (s) + β̂ββ

j,k
u (s)

)}

We can now apply these results to compute explicitly the risk minimizing strategy as given
in Theorem 4 and more specifically by Theorem 7 in the Brownian setting in consideration. From
Equations (37)–(40) it follows immediately that the processes ξ i,j(u, ·) and θi,j,k(u, ·), i, j, k ∈ K, j 6= k,
of Equations (14) and (15) are given as

ξ i,j(u, t) = ϑ
i,j
1 (u, t) , ξ i,i(u, t) = ϑi

2(u, t)

θi,j,k(u, t) = ϑ
i,j,k
3 (u, t) , θ j,j,k(u, t) = ϑ

j,k
4 (u, t)

Moreover, with Equations (25)–(28) the i-th component Fi(t, T), i ∈ K, of F(t, T) in Equation (13)
is given as

Fi(t, T) = S0(t)
S0(T)YiE

[
pi,i(t, T) | Ft

]
+ ∑N

j=1
j 6=i

S0(t)
S0(T)Y jE

[
pi,j(t, T) | Ft

]

+
∫ T

t
S0(t)
S0(u)E

[
pi,i(t, u) | Ft

]
νi(u)du + ∑N

j=1
j 6=i

∫ T
t

S0(t)
S0(u)E

[
pi,j(t, u) | Ft

]
νj(u)du

+∑N
k=1
k 6=i

∫ T
t

S0(t)
S0(u) Zi,k(u)E

[
pi,i(t, u)ψi,k(u) | Ft

]
du

+∑N
j=1
j 6=i

∑N
k=1
k 6=j

∫ T
t

S0(t)
S0(u) Zj,k(u)E

[
pi,j(t, u)ψj,k(u) | Ft

]
du

= S0(t)
S0(T)Yi

(
2− N + ∑N

j=1
j 6=i

eαi,j(t,T)+βββi,j(t,T)·µµµt

)
+ ∑N

j=1
j 6=i

S0(t)
S0(T)Y j(1− eαi,j(t,T)+βββi,j(t,T)·µµµt )

+
∫ T

t
S0(t)
S0(u)

(
2− N + ∑N

j=1
j 6=i

eαi,j(t,u)+βββi,j(t,u)·µµµt

)
νi(u)du

+∑N
j=1
j 6=i

∫ T
t

S0(t)
S0(u)

(
1− eα

i,j
t (u)+βββ

i,j
t (u)·µµµu

)
νj(u)du

+∑N
k=1
k 6=i

∫ T
t

S0(t)
S0(u) Zi,k(u)

{
(2− N)eα̃(t,u)+β̃ββ(t,u)·µµµt (α̃i,k(t, u) + β̃ββ

i,k
(t, u) ·µµµt)

+∑N
l=1
l 6=i

eαi,l(t,u)+βββi,l(t,u)·µµµt (α̂i,k(t, u) + β̂ββ
i,k
(t, u) ·µµµt)

}
du

+∑N
j=1
j 6=i

∑N
k=1
k 6=j

∫ T
t

S0(t)
S0(u) Zj,k(u)

{
eα̃(t,u)+β̃ββ(t,u)·µµµt (α̃j,k(t, u) + β̃ββ

j,k
(t, u) ·µµµt)

−eαi,j(t,u)+βββi,j(t,u)·µµµt (α̂j,k(t, u) + β̂ββ
j,k
(t, u) ·µµµt)

}
du

(41)

and can hence be expressed explicitly in terms of µµµ.
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3.4. Application: The Expected Cumulative Payment in an Ornstein-Uhlenbeck Framework

In this section, we illustrate in a specific example how the expected (discounted) cumulative
payment E[D̂T ] from Lemma 3 can be calculated by using the explicit expression of the components
Fi(t, T) from the previous section and the connection established through Equation (9). In the following,
we regard a specific insurance product, namely an income protection insurance, and for simplicity
we assume that the corresponding process X of the insured person can only take the three states
K = {1 = healthy, 2 = sick/unfit for work, 3 = death}, where state 3 is absorbing. The corresponding
transitions are illustrated in Figure 1.
Version May 27, 2016 submitted to Risks 18 of 28

1 2 3

Figure 1. Possible transitions for an insured person’s process in an income protection insurance with
the three states K = {1 = healthy, 2 = sick/unfit for work, 3 = death} with absorbing state 3.

In the following, we assume a specific form for the Markov process µµµ from (19), namely a simple,
3-dimensional Ornstein-Uhlenbeck (OU) process with corresponding SDE

dµµµt = a µµµtdt + σσσdWt , µµµ0 = ξξξ ∈ R3 .

Note that for the OU process it is well-known that condition (23) for the expectation is fulfilled. A
major drawback, though, of choosing this process for the intensity is the undesirable feature that
it can become negative with positive probability. However, [31] provide calibrated parameters for
which the probability of negative values for µµµ turns out to be negligible. For this reason, we choose
similar parameter values and set

a = (0.07, 0.11, 0.09)ᵀ , σσσ =




0.0003 0 0
0 0.0007 0
0 0 0.0005


 and ξξξ = (0.1, 0.1, 0.1)ᵀ .

Hence, equations (21) and (22) simplify and yield to

δδδ(t, x) = (d1)ᵀx

[σσσ(t, x)σσσ(t, x)ᵀ]i,j = [V0]i,j ,

with

d1 =




a1 0 0
0 a2 0
0 0 a3


 and V0 =




σσσ2
11 0 0
0 σσσ2

22 0
0 0 σσσ2

33


 .

As a consequence of these assumptions, the ODEs (29)-(36) substantially simplify and can be explicitly
solved, see e.g. [32]. For example, for every 0 ≤ t ≤ u ≤ T and every choice of (i, j) ∈ I , the ODEs
(29) and (30) now are given by

dβββi,j
u

dt
(t) = bi,j − d1βββi,j

u (t) ,

dα
i,j
u

dt
(t) = ci,j − 1

2
(βββi,j

u (t))ᵀV0βββi,j
u (t) ,

with terminal conditions α
i,j
u (u) = 0 and βββi,j

u (u) = 0. For the k-th components of βββi,j
u (t), i.e. (k)β

i,j
u (t),

one obtains the explicit solutions

(k)β
i,j
u (t) =

bi,j
k

d1
kk

(
1− exp(d1

kk(u− t)
)

, k ∈ {1, 2, 3} ,

Figure 1. Possible transitions for an insured person’s process in an income protection insurance with
the three states K = {1 = healthy, 2 = sick/unfit for work, 3 = death} with absorbing state 3.

Hence, for bj,k ∈ R3, cj,k ∈ R from Equation (19) we set bj,k = 000 and cj,k = 0 for
(j, k) /∈ I := {(1, 2), (2, 1), (1, 3), (2, 3)}.

In the following, we assume a specific form for the Markov process µµµ from Equation (19), namely
a simple, 3-dimensional Ornstein-Uhlenbeck (OU) process with corresponding SDE

dµµµt = a µµµtdt + σσσdWt , µµµ0 = ξξξ ∈ R3

Note that for the OU process it is well-known that Condition (23) for the expectation is fulfilled.
A major drawback, though, of choosing this process for the intensity is the undesirable feature that it
can become negative with positive probability. However, [31] provide calibrated parameters for which
the probability of negative values for µµµ turns out to be negligible. For this reason, we choose similar
parameter values and set

a = (0.07, 0.11, 0.09)ᵀ , σσσ =




0.0003 0 0
0 0.0007 0
0 0 0.0005


 and ξξξ = (0.1, 0.1, 0.1)ᵀ

Hence, Equations (21) and (22) simplify and yield to

δδδ(t, x) = (d1)ᵀx

[σσσ(t, x)σσσ(t, x)ᵀ]i,j = [V0]i,j

with

d1 =




a1 0 0
0 a2 0
0 0 a3


 and V0 =




σσσ2
11 0 0
0 σσσ2

22 0
0 0 σσσ2

33




As a consequence of these assumptions, the ODEs Equations (29)–(36) substantially simplify and
can be explicitly solved, see e.g., [32]. For example, for every 0 ≤ t ≤ u ≤ T and every choice of
(i, j) ∈ I , the ODEs Equations (29) and (30) now are given by

dβββi,j
u

dt
(t) = bi,j − d1βββi,j

u (t)

dα
i,j
u

dt
(t) = ci,j − 1

2
(βββi,j

u (t))ᵀV0βββi,j
u (t)
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with terminal conditions α
i,j
u (u) = 0 and βββi,j

u (u) = 0. For the k-th components of βββi,j
u (t), i.e., (k)βi,j

u (t),
one obtains the explicit solutions

(k)β
i,j
u (t) =

bi,j
k

d1
kk

(
1− exp(d1

kk(u− t)
)

, k ∈ {1, 2, 3}

and

α
i,j
u (t) =− ci,j(u− t) +

1
2

3

∑
k=1

σ2
k (b

i,j
k )2

(d1
kk)

2

[
(u− t)− 2

d1
kk

(
1− exp(d1

kk(u− t)
)

+
1

2d1
kk

(
1− exp(2d1

kk(u− t)
)]

Similarly, the ODEs of the remaining Equations (31)–(36) can be derived.
Next, we need to specify all remaining parameters, i.e., bj,k, cj,k for (j, k) ∈ I , the components A,

Y, Z of the quadruple (X; A; Y; Z) and the discounting factor S0. For simplicity, we set S0 = e−rt with a
constant interest rate r and choose

b1,2 = b2,1 =




3
3
3


 , b1,3 =




1
1
1


 , b2,3 =




2
2
2


 , c1,2 = c2,1 = 1 , c1,3 = 0.1 , c2,3 = 0.2

We have chosen the components of bj,k to be equal in order to emphasize the general dependence
of the process ψ

j,k
t in Equation (19) on µµµt and not on the specific linear combination.

Furthermore, similar to Example 2, we set

Z :=




0 0 z
0 0 z
0 0 0


 , Y ≡ 0 , and At = Ct − Pt , t ∈ [0, T]

with Ct and Pt representing the cumulative state-dependent claim payments (e.g., annuities) and
insurance premiums up to maturity, respectively, and z the “immediate” claim payment if the insured
person dies. More precisely, we assume monthly equal insurance premiums and claim payments equal
to 1, if the insured person is in the states 1 (healthy) or 2 (sick/unfit for work), respectively, and which are
paid at the end of each month in a proportional way. Let the payment dates 0 < T1 < T2 < . . . denote
the final day of each month, i.e., Ti =

i
12 , then we set

ννν(t) =




1/∆t
−1/∆t

0




with ∆t = 1/12 and At =
∫ t

0 ννν(s)ds.
Clearly, with these specifications Assumption 6 is fulfilled. Finally, assuming that the insured

persons process X starts in the state 1 (healthy) at t = 0, one obtains Hᵀ
0 = (1, 0, 0). Based on the

explicit result for Fi(0, T) from Equation (41), now we are able to calculate the expected (discounted)
cumulative payment E[D̂T ] from Lemma 3 in t = 0, depending on the claim payment amount z, which
is payed when the insured person dies, and on the constant interest rate r. The corresponding integrals
involved in Equation (41) are approximated using the integrate function in the statistical software
program R ([33]).

Figure 2 illustrates the expected cumulative payment E[D̂T ] as a function of the claim payment
amount z, a time horizon of one year (T = 1) and three different values of the constant interest rate
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r. In Figure 3, the expected cumulative payment E[D̂T ] are displayed against the time horizon T, for
three different values of the claim payment amount z and for a constant interest rate r = 0.1.

0 20 40 60 80 100

0
20

40
60

80
10

0

claim payment amount z

E
[D

T^
]

r = 0.05

r = 0.1

r = 0.2

Figure 2. Expected (discounted) cumulative payments E[D̂T ] as a function of the claim payment
amount z and for three different constant interest rate values r for a time horizon of one year, i.e., T = 1.
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Figure 3. Expected (discounted) cumulative payments E[D̂T ] as a function of the time horizon T
(in years) and three different claim payment amounts z and for a constant interest rate r = 0.1.

4. Conclusions

In this paper, we consider pricing and hedging of general insurance contracts by means of risk
minimization. We model the individual progress in time of visiting an insurance policy’s states by
using F-doubly stochastic Markov chains. In this way we are able to consider a multi-state setting to
describe different types of insurance benefits and to include the influence of market conditions and
external risk factors on the evolution of the insured person among the policy’s states as well as on
the insurance benefits, when they are linked to some financial performance. We explicitly provide
the risk-minimizing strategy for an insurance contract in a Brownian financial market setting and
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specify it within an affine structure for the intensity. The results are illustrated by a numerical example,
which shows how this technical setting can actually be easily implemented.
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Appendix A. F-Doubly Stochastic Markov Chains

In this section we introduce briefly to some basic properties of F-doubly stochastic Markov chains,
which we are going to use in the sequel. Main references are [12,21].

On a probability space (Ω,G,P), let X = (Xt)t∈[0,T] be a right-continuous stochastic process with
state space K := {1, ..., N}. We denote by FX the filtration generated by X, i.e., FX

t = σ(X(u) : u ≤ t)
for all t ∈ [0, T], and consider the filtration G to be the enlargement of FX through some reference
filtration F, i.e., we assume Gt = FX

t ∨Ft for all t ∈ [0, T]. Further, we set G̃t = FX
t ∨FT , t ∈ [0, T] and

assume that all filtrations satisfy the usual conditions of completeness and right-continuity, see [28].

Definition A.1. A process X = (Xt)t∈[0,T] is called an F-doubly stochastic Markov chain with state space K,
if there exists a family of stochastic matrices

P(s, t) = [pj,k(s, t)]j,k∈K, 0 ≤ s ≤ t ≤ T

such that

(1) the matrix P(s, t) is Ft-measurable, and P(s, .) is progressively measurable,
(2) for every j, k ∈ K we have

1{Xs=j}P(Xt = k | G̃s) = 1{Xs=j}pj,k(s, t) (A1)

The process P is called the conditional transition probability process of X.

By Definition A.1 we can see that the class of F-doubly stochastic Markov chains contains Markov
chains, compound Poisson processes with integer-valued jumps, Cox processes as in [34] and processes
of rating migration as in [35]. The adjective “double” refers to the fact that there are two sources of
uncertainty in their definition. We remark that anF-doubly stochastic Markov chain is a different object
than a doubly stochastic Markov chain which is a Markov chain with a doubly stochastic transition
matrix. Furthermore, in [12] it is shown that F-doubly stochastic Markov chains are a subclass of
F-conditional G = FX ∨FMarkov chains. In particular, F-doubly stochastic Markov chains behave
like time inhomogeneous Markov chains conditioned on FT , i.e., if we know all the information
concerning the underlying risk factors.

Definition A.2. We say that a state N ∈ K is an absorbing state, if pN,j(s, t) = 0 for all 0 ≤ s < t ≤ T and
all j ∈ K with j 6= N.

Proposition A.3. Let X be an F-doubly stochastic Markov chain with transition matrices P(s, t), then for
every 0 ≤ s < t < u ≤ T we have

P(s, u) = P(s, t)P(t, u) a.s. (A2)
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Proposition A.4. If X is an F-doubly stochastic Markov chain, then for every bounded, FT-measurable random
variable Y and for each t ∈ [0, T], we have

E[Y | Gt] = E[Y | Ft] (A3)

Property Equation (A3) is well-known in the context of survival analysis and credit risk as
hypothesis (H) or immersion property. According to Proposition A.4, F-martingales remain martingales
with respect to the enlarged filtration G. If we think of a martingale as a process describing a fair game,
this property means that the additional information contained in G does not change the valuation of
processes which are considered fair by taking in account only the information F.

Another property, which makes the class of F-doubly stochastic Markov chains interesting for
applications is that they may admit matrix-valued stochastic intensity processes in the following sense.

Definition A.5. An F-doubly stochastic Markov chain X with state space K is said to have an intensity, if
there exists an F-adapted matrix-valued stochastic process ΨΨΨ = (ΨΨΨt)t∈[0,T] with ΨΨΨt =

[
ψ

j,k
t

]
j,k∈K

such that

(1) ΨΨΨ is integrable, i.e.,
∫

]0,T]
∑
j∈K
|ψj,j

s |ds < ∞ (A4)

(2) ΨΨΨ satisfies the following conditions:

ψ
j,k
t ≥ 0 ∀j, k ∈ K, j 6= k, ψ

j,j
t = −∑k 6=j ψ

j,k
t ∀j ∈ K, t ∈ [0, T] (A5)

P(v, t)− I =
∫
]v,t] ΨΨΨ(u)P(u, t)du ∀v ≤ t (Kolmogorov backward equation)

P(v, t)− I =
∫
]v,t] P(v, u)ΨΨΨ(u)du ∀v ≤ t (Kolmogorov forward equation)

(A6)

A process ΨΨΨ, satisfying the above conditions, is called an intensity of the F-doubly stochastic Markov
chain X.

Theorem A.6. Let (Ψ̃ΨΨt)t∈[0,T] be an F-adapted N × N matrix-valued stochastic process, satisfying the
Conditions (A4) and (A5) of Definition A.5. Then there exists an F-doubly stochastic Markov chain X
with intensity (Ψ̃ΨΨt)t∈[0,T].

For j ∈ K, let

H j
t := 1{Xt=j} , t ∈ [0, T] (A7)

be the indicator function for X, being in state j at time t and denote by Ht = (H1
t , ..., HN

t )ᵀ the
corresponding N-variate vector. Moreover, for j, k ∈ K, j 6= k, let N jk = (N jk

t )t∈[0,T] with

N jk
t :=

∫

]0,t]
H j

u−dHk
u = ∑

0<u≤t
H j

u−4 Hk
u (A8)

define the counting processes of the jumps of X from state j to k up to time t, t ∈ [0, T].
The following theorem provides a martingale characterization of F-doubly stochastic Markov

chains and is the core connection of the theory of F-doubly stochastic Markov chains and the counting
process theory, underlying for example several estimation schemes for intensity processes, see [13].
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Theorem A.7. Let X = (Xt)t∈[0,T] be a stochastic process with state space K and ΨΨΨ = (ΨΨΨt)t∈[0,T] be
a matrix-valued process, satisfying Equations (A4) and (A5) of Definition A.5. The following conditions
are equivalent:

(i) X is an F-doubly stochastic Markov chain.
(ii) The process M = (Mt)t∈[0,T] with

Mt := Ht −
∫

]0,t]
ΨΨΨᵀ

uHudu (A9)

is a G̃-local martingale.

(iii) For j, k ∈ K, j 6= k, the processes Mjk = (Mjk
t )t∈[0,T] with

Mjk
t := N jk

t −
∫

]0,t]
H j

uψ
j,k
u du (A10)

are G̃-local martingales.
(iv) The process L = (Lt)t∈[0,T] with

Lt := Q(0, t)ᵀHt

is a G̃-local martingale. Here Q(0, t) is a unique solution to the random integral equation

dQ(0, t) = −ΨΨΨtQ(0, t)dt, Q(0, 0) = I (A11)

Note that then

Lt = H0 +
∫

]0,t]
Qᵀ(0, u)dMu, t ∈ [0, T] (A12)

Remark A.1.

(1) For every t ∈ [0, T], the matrix Q(0, t) is the unique inverse matrix of P(0, t). More generally, for
0 ≤ s ≤ t ≤ T, we denote by Q(s, t) the unique inverse matrix of P(s, t). The existence and further
properties of the family Q(s, t) is given in [12].

It follows immediately from Equation (A2) that for every 0 ≤ s < t < u ≤ T, we have

P(t, u) = Q(s, t)P(s, u) (A13)

(2) As the processes M, L and Mjk, j, k ∈ K, j 6= k, are G-adapted, they are also G-local martingales.

Corollary A.8. For every j, k ∈ K, j 6= k, and for every t ∈ [0, T] we have

[Mjk]t = N jk
t (A14)

〈Mjk〉t =
∫

]0,t]
H j

uψj,k(u)du (A15)

Moreover, with Mj
t = H j

t −
∫
]0,t] ∑N

k=1 ψ
k,j
u Hk

udu, j ∈ K, t ∈ [0, T], we have

[Mj]t = ∑0<s≤t(∆H j
s)

2 = ∑N
k=1
k 6=j

(Nkj
t + N jk

t )

〈Mj〉t = ∑N
k=1
k 6=j

∫
]0,t] Hk

uψk,j(u)du−
∫
]0,t] H j

uψj,j(u)du
(A16)
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Proof. Equalities (A14) and (A15) follow directly by the definition of Mjk in Equation (A10).
Moreover, we observe that

(∫
]0,t] ∑k∈K Hk

uψ
k,j
u du

)
t∈[0,T]

is a continuous finite variation process. It

follows that

[Mj]t = ∑
0<s≤t

(∆H j
s)

2 =
N

∑
k=1
k 6=j

(
Nkj

t + N jk
t

)

as ∑0<s≤t(∆H j
s)

2 counts the jumps of X into and out of the state j up to time t. As
(∫

]0,t] H j
uψ

j,k
u du

)
t∈[0,T]

is the compensator of N jk it follows that

〈Mj〉t =
N

∑
k=1
k 6=j

(∫

]0,t]
Hk

uψ
k,j
u du +

∫

]0,t]
H j

uψ
j,k
u du

)

=
N

∑
k=1
k 6=j

∫

]0,t]
Hk

uψ
k,j
u du−

∫

]0,t]
H j

uψ
j,j
u du

where the last equality follows from Equation (A5). This ends the proof.

Proposition A.9. Let X be an F-doubly stochastic Markov chain with intensity and jump times τ0 := 0 and

τk := inf{τk−1 < t ≤ T : Xt 6= Xτk−1} (A17)

Then every jump time τk, k ≥ 1, avoids F-stopping times, i.e., P(τk = $) = 0 for every F-stopping time
$, provided that τk < ∞ a.s..

The following proposition is the crucial result in order to compute the risk-minimizing strategies
for general insurance claims which we provide in Section 3.

Proposition A.10. Let X be an F-doubly stochastic Markov chain. Then the local martingale M, given in
Equation (A9), is orthogonal to every F-local martingale N, in the sense that for each i ∈ K, the product Mi N
is a G-local martingale.

Proof. First note that Mi is a finite variation local martingale. Its sequence (τ̃i
k)k≥0 of jump times with

τ̃i
0 := 0 and

τ̃i
k := inf{t > τ̃i

k−1|Mi
t− 6= Mi

t} , k ≥ 1

is a subsequence of the jump times (τj)j≥0 of X, as given by Equation (A17). As the jump times of
the càdlàg local martingale N are F-stopping times, the processes Mi and N have almost surely no
common jumps due to Proposition A.9.

This implies that for all t ∈ [0, T] we have

[Mi, N]t = M0N0 + ∑
0<s≤t

∆Mi
s∆Ns = 0

and ends the proof.

Remark A.2. It is easily seen that hazard-rate models, as applied frequently in the context of credit risk or life
insurance, are particular examples of F-doubly stochastic Markov chains, provided they satisfy hypothesis (H).
A thorough description of this relation is given in [24].
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Appendix B. Risk-Minimization for Payment Processes

The following survey of risk-minimization for payment processes is borrowed to some extend
from [1], as well as [22]. As in the foregoing sections, we provide the results with respect to a general
numéraire process S0 such that one could also consider e.g., the P-numéraire portfolio as discount
factor, see [25]. The results base on the proofs, given in [4] for the case of European type contingent
claims and in [5,36,37] (Chapter 4) for the case of payment processes.

In the market model, defined in Section 3.2, we would like to find a hedging strategy for a
G-adapted, square integrable payment process D̂ = (D̂t)t∈[0,T], representing the cumulative discounted
payments up to time t, t ∈ [0, T].

Note that if an undiscounted cumulative payment stream D = (Dt)t∈[0,T] is a stochastic process of
finite variation and we have

∫
[0,T]

1
S0

u
d|D|u < ∞ with |D| denoting the absolute variation process of D,

then D̂ is given as

D̂t =
∫

[0,t]

1
S0

u
dDu (B1)

Definition B.1. If
∫
[0,T]

1
S0

u
d|D|u < ∞, then the value process UD = (UD

t )t∈[0,T] of a payment process D is
defined as

UD
t := S0

tE
[

D̂T

∣∣∣Gt

]
= S0

tE

[∫

[0,T]

1
S0

u
dDu

∣∣∣Gt

]
(B2)

Since the market is not necessarily complete, it is in general not possible to find a self-financing
hedging strategy that perfectly replicates the discounted cumulative payment process D̂. In this
context, the idea of risk-minimization is to relax the self-financing assumption, allowing for a wider
class of admissible strategies, and to find an optimal hedging strategy with “minimal risk” within this
class of strategies that perfectly replicate D̂.

For the local martingale S, we denote

L2(S) :=

{
ξξξ = (ξ1

t , ..., ξd)ᵀt∈[0,T]

∣∣∣∣ ξξξ is G-predictable,
(
E

[∫

[0,T]
ξξξᵀs d[S]sξξξs

]) 1
2
< ∞

}
(B3)

It is well known that for every ξξξ ∈ L2(S), the process
(∫

[0,t] ξξξᵀs dŜ
)

t∈[0,T]
is a square

integrable martingale.
In the following we now explain how to find the risk-minimizing strategy and explain in what

sense this strategy is optimal. We begin with some definitions.

Definition B.2. An L2-strategy is a pair ϕϕϕ = (ξξξ, ξ0), such that ξξξ ∈ L2(Ŝ) and ξ0 is a real-valued G-adapted
process, such that the discounted portfolio value process

V̂ϕ
t = ξξξᵀt Ŝt + ξ0

t , t ∈ [0, T]

is right-continuous and square integrable.

For an L2-strategy ϕϕϕ the discounted (cumulative) cost process Ĉϕ is defined as

Ĉϕ
t := V̂ϕ

t −
∫

]0,t]
ξξξᵀs d Ŝs + D̂t, t ∈ [0, T]

describing the accumulated costs of the trading strategy ϕϕϕ during [0, t], including the payments D̂t.
Note that V̂ϕ

t should therefore be interpreted as the discounted value of the portfolio ϕϕϕt held at time t
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after the payments D̂t have been made. In particular, V̂ϕ
t is the discounted value of the portfolio upon

settlement of all liabilities, and a natural condition is then to restrict to 0-admissible strategies, satisfying

V̂ϕ
T = 0 P-a.s.

The risk process of ϕϕϕ is given by the conditional expected value of the squared future costs

Rϕ
t = E[(Ĉϕ

T − Ĉϕ
t )

2 | Gt], t ∈ [0, T] (B4)

and is taken as a measure of the hedger’s remaining risk. We would like to find a trading strategy that
minimizes the risk in the following sense.

Definition B.3. An L2-strategy ϕϕϕ = (ξξξ, ξ0) is called risk-minimizing for the discounted payment process D̂,
if for any L2-strategy ϕ̃ϕϕ = (ξ̃ξξ, ξ̃0) such that V̂ ϕ̃

T = V̂ϕ
T = 0 P-a.s., we have

Rϕ
t ≤ Rϕ̃

t P-a.s., t ∈ [0, T]

i.e., ϕ minimizes pointwise the risk process introduced in Equation (B4).

The key to finding the strategy with minimal risk in our setting is the so-called
Galtchouk-Kunita-Watana decomposition.

Definition B.4. Given a square integrable martingale Û ∈ M2 and the local martingale Ŝ, the
Galtchouk-Kunita-Watanabe decomposition for Û with respect to Ŝ is given as

Ût = Û0 +
∫

]0,t]
(ϑϑϑU

s )
ᵀ dŜs + LU

t , t ∈ [0, T] (B5)

where ϑϑϑU ∈ L2(Ŝ) and LD̂ is a square integrable martingale null at 0 which is strongly orthogonal to the space
I2(Ŝ) of all integral processes

(∫
[0,t] ψψψᵀ

s dŜ
)

t∈[0,T]
with ψψψ ∈ L2(Ŝ).

It is well known that the set I2(Ŝ) is a closed stable subset ofM2
0, the set of all square integrable

martingales, zero at 0.
Due to Jensen’s inequality and the fact that D̂ is square-integrable, the discounted value process

ÛD = UD

S0 is a square-integrable martingale and may be decomposed according to Equation (B5).

Theorem B.5. For every (discounted) square integrable payment stream D̂, there exists a unique 0-admissible
risk-minimizing L2-strategy ϕϕϕ = (ξξξ, ξ0), given by

ξξξt := ξξξD̂
t

ξ0
t := ÛD

t − D̂t − (ξξξD̂
t )

ᵀŜt

with discounted portfolio value process

V̂ϕ
t = E[D̂T | Gt]− D̂t = E[D̂T | G0] +

∫

]0,t]
ξξξᵀs dŜs + LD̂

t − D̂t

discounted optimal cost process
Ĉϕ

t = E[D̂T | G0] + LD̂
t = Cϕ

0 + LD̂
t

and minimal risk process
Rϕ

t = E[(LD̂
T − LD̂

t )
2 | Gt]
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t ∈ [0, T], where ξξξD̂ and LD̂ are given by Equation (B5) for the square integrable martingale ÛD.

Proof. See [26] for the single payoff case or [5,36] for the extension to the case of payment streams.

Note that the approach, described above, relies heavily on the fact that the discounted asset prices
are local martingales under the measure P. In a more general setting, when the vector of discounted
asset is a semimartingale under P, one has to apply the local risk-minimization technique, see [36]
or [37] (Chapter 4). For more information on (local) risk-minimization and other quadratic hedging
approaches we refer to the survey paper of [26].
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