
Benchmark Problems in Which Equality Plays the Major Role*

E. Lusk and L. Was

Mathematics and Computer Science Division ANL/CP---7 4903
Argonne National Laboratory

Argonne, IL 60439-4801 DE92 013058
lusk@mcs.ani.gov (708) 972-7852

1. Introduction

We have recently heard rumors that researchers are again studying paramodulation [Wos87] in the context of
strategy for its control. In part m facilitate such research, and in part to provide test problems for evaluating
other approaches to equality-oriented reasoning, we offer in this article a set of Ixmchmarkproblems in which
equality plays the dominant role. The test problems are taken from group theory, ring theory, Robbins algebra,
combinatory logic, and other areas. For each problem, we include appropriate clauses and comment as to its
status with regard to provability by an unaided automated reasoning progrmn.

2,, Group Theory
A group is a nonempty set G in which multiplication is associative such that a two-sided identity e exists

whose product with x is x and for which the two-sided inverse of x exists. To study group theory, one can use
the following clauses; throughout the remainder of this paper, we use the notation of Willi_-unMcCune's pro-
gram OTTER [McCune90, McCune91a], where" I " means or and " - " means not.

EQ(prod(e,x),x). EQ(prod(x,inv(x)),e).
EQ(prod(x,e),x). EQ(prod(prod(x,y),z),prod(x,prod(y,z))).
EQ(prod(inv(x),x),e). EQ(x,x).

The fast clause (for reflexivity) is included, for its presence is required when paramodulation is ur__.d.When
attempting to prove that some _t of equalities is an axiom system for group theory, except for the clause for
reflexivity, one simply negates the given clauses.

Problem GT1, simple. If the square of every,x is the identity, the group is commutative.

EQ(prod(x,x),e).

Problem GT2, moderate. Prove that the following equality (taken from Meredith [Meredith68] is a single
axiom for groups in which the square of every x is the identity. In particular, using the single axiom, derive the
axioms for groups (given earlier) and the axiom that asserts that the square of everyelement is the identity.

EQ(f(f(f(x,y),z),f(x,z)),y).

Problem GT3, moderate. Prove that [[x,y],y] = e when the cube of every x is e, where {x,y] ksthe product of x,
y, the inverseof x, and the inverse of y.

EQ(prod(x,prod(x,x)),e). EQ(com(x,y),prod(x,prod(y,prod(inv(x),inv(y))))).

,Problem GT4, moderate. Prove that the following equality axiomatizes group theory. The corresponding
theorem, proved by William McCune using OTTER [McCune91b], is a new contribution to the literature.

EQ(f(x,g(f(y,f(f(f(z,g(z)),g(f(u,y))),x)))),u).

Problem GT5, moderate. Prove that the following equality axiomatizes commutative group theory; this new
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single axiom was found by William McCune using OTTER [McCune91b].

EQ(f(f(f(x,y),z),g(f(x,z))),y).

Problem GT6, never proved in a single run. Prove that the following equality axiomatizes commutative group
theory; lhe result was verified by Ken Kunen [private correspondence] using OTTER as an assistmlt.

EQ(f(g(f(g(f(g(f(x 1,x2)),f(x2,x 1))), f(g(f(z,y)),f(z,g(f(f(v,g(x)),g(y))))))),x),v).

Problem GT7, h,'u'd. Prove that the Fibonacci group given by the following equalities is the cyclic group of
order 29, where, for example, a(x) means the product of a and x and al (x) means the product of tile inverse of a
and x. Instead, one can take the axioms for groups and add equalities that assert that, for seven elements, the
product of the first two is the third ..... and the product of the seventh and the first is the second.

EQ(a(b(x)),c(x)). EQ(e(e 1(x)),x).
EQ(b(c(x)),d(x)). EQ(f(fl (x)),x).
EQ(c (d(x)),e(x)). EQ(g (g 1(x)),x).
EQ(d(e(x)),f(x)). EQ(al(a(x)),x).
EQ(e(f(x)),g(x)). EQ(bl(b(x)),x).

EQ(f(g(x)),a(x)). EQ(c l(c(x)),x).
EQ(g(a(x)),b(x)). EQ(dl(d(x)),x).
EQ(a(al (x)).x). EQ(e 1(e(x)),x).
EQ(b(b 1(x)),x). EQ(fI (f(x)),x).
EQ(c(c I (x)),x). EQ(g 1(g(x)),x).
EQ(d(d 1(x)),x).

3. Ring Theory
A ring R is a nonempty s_t in which addition and multiplication are definM such that under addition the

set is a group and such that mu, tiplication is associative and multiplication distributes over addition. The fol-
lowing clauses capture the properties of a ring.

EQ(sum(0,x),x). EQ(x,x).
EQ(sum(x,0),x). EQ(sum(x,y),sum(y,x))

EQ(sum (minus(x),x),0). EQ(prod(prod(x,y),z),prod(x,prod(y,z))).
EQ(sum(x,minus(x)),0). EQ(prod(x,sum(y,z)),sum(prod(x,y),prod(x,z))).
EQ(sum(sum(x,y),z),sum(x,sum(y,z))). EQ(prod(sum(y,z),x),sum(prod(y,x),prod(z,x))).

Problem RTI, moderate. Prove I/mt Boolean rings (rings in which the square of every x is x) are commutative.

EQ(prod(x,x),x).

Problem RT2, hard. Prove that rings in which the cube of every x is x ,are commutative.

EQ(prod(prod(x,x),x),x).

Problem RT3, hard. Prove that rings in which the fourth power ofx is x are commutative.

EQ(prod(prod(prod(x,x),x),x),x),

Problem RT4, never proved in a single run unaided. Prove that rings in which the fifth power of x is x m'e com-
mutative.

EQ(prod (prod (prod(prod(x ,x),x),x),x),x).

4. Robbins Algebra
A Robbins algebra is a nonempty set _tisfying the following three axioms, expressed in clause notation,

in which tlm function o can be interpreted as plus and the function n as negation.

EQ(o(x,y),o(y,x)). EQ(n(o(n(o(x,y)),n(o(x,n(y))))),x).
EQ(o(o(x,y) ¢),o(x,o(y,z))). EQ(x,x).
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A Boolean algebra is a nonempty _t S with two operations, plus and times, and a 0 and a 1. Each operation is
commutative, and each distributes over the other. The 1 is a multiplicative identity, and the 0 is an additive
identity. In addition, for every x, the negation ofx exists with x plus its negation equal to 1 and x times its nega-
tion equal to 0. An alternative axiomatiz_tion of Boolean algebra consists of (R1), (R2), and Huntington's
axiom (H3) [Huntington33].

(H3) EQ(o(n(o(n(x),y)),n(o(n(x),n(y)))),x).

Whether Robbins implies Boolean is still an open question. What is known is that fl_eaddition to the three Rob-
bins axioms of any one of a number of properties era Boolean algebra suffices to yield Boolean.

Problem RA1, simple. Prove that, if the following axiom is adjoined to the axioms for a Robbins algebra, the

resulting algebra is Boolean. We recommend trying to prove Huntington's axiom (I-t3).

EQ(o(x,0),x).

Problem RA2, moderate. Prove that t addition of the following equality to Robbins yields Bcx_lean.

EQ(o(x,x),x).

Problem RA3, hard. Prove that, where c is a constant, the addition of the following extuality to Robbins yields
Boolean.

EQ(o(c,c),c).

Problem RA4, never proved in a single run unaide_l. Where c and d are constants, the addition of the following
equality to Robbins yields Bool_|n.

EQ(o(c,d),d).

Problenn RA5, never proved in a single run unaicled. Where c and d are constants, the addition of the following
equality to Robbins yields Boolean.

EQ(n(o(c,d)),n(d)).

5. Combinatory Logic
Barendregt [Barendregt81] defines combinatx_ry logic as an equational system .satisfying the combinators

Sanct K with ((Sx)y)z = (xz)(yz) and (Kx)y = x. Rather than studying this logic in its exatirety, one finds challeng-
ing test problems by replacing one or both c_fS and K by one or more combinators and focusing on questions

concerning the possible presence of the strong tixed point property. The set consisting of the combinators under
study is called a basis, and the _t of combinators generated by a basis is callexl a fragment. Where A is a given
fragment with basis B, the strong fixed point property holds for A if and only if there exists a combinator y such
that, for ali combinators x, yx = x(yx), where y is expressed purely in terms of elements of B. The problems we
oiler focus on various sub,ts of the following combinators.

EQ(a(a(a(B,x),y),z),a(x,a(y,z))). EQ(a(M,x),a(x,x)).
EQ(a(a(a(C,x),y),z),a(a(x,z),y)). EQ(a(a(a(N,x),y),z),a(a(a(x,z),y),z)).

EQ(a(a(a(tl,x),y),z),a(a(a(x,y),z),y)). EQ(a(a(a(S,x),y),z),a(a(x,z),a(y,z))).
EQ(a(I,x),x). EQ(a(a(W,x),y),a(a(x,y),y)).

For each of the following problems, the object is to use the given combinators and no others and prove that the
strong fixed point property holds by finding an appropriate object.

Problem CL1, simple. The set consists orB, M, and W.

Problem CL2, hard. The set consists of B and W.

Problem CL3, hard, The set consists of B and N.

Problem CL4, hard. The set consists of B and II.
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Problem CL5, h_d. The set consists of B, C, I, and S.

To complement the preceding test problems and for those who enjoy the study of open questions, we offer two
open que_;tions. Does the _t consisting of B and M alone permit the construction of an object that proves that
the strong fixed point property holds? I_x_s the set consisting of B and S alone Ix_rmit the construction of an
object that proves that the strong fixed point property holds'?

6. Many-Valued Sententiai Calculus
The axioms are the following, where the constant 7"can be interpretc.d as "true" and the functions i and n

as implication ,and negation, respectively.

EQ(i(T,x),x). EQ(i(i(x,y),y),i(i(y,x),x)).
EQ(i(i(x,y),i(i(y,z),i(x,z))),T). EQ(i(i(n(x),n (y)),i(y,x)),T).

Problem MV 1, simple. Prove that each of the following two equalities hold in many-valued sentential calculus.

EQ(i(n(n(x)),x),T). EQ(i(x,n(n(x))),T).

Problem MV2, mexterate. Prove that the following holes in the calculus.

EQ(i(i(x,y),i(i(z,x),i(z,y))),T).

Problem MV3, moderate. Prove that the following holds irt the calculus.

EQ(i(i(x,y),i(n(y),n(x))),T).

Problem MV4, hard. Prove that the following holds in the calculus.

EQ(i(i(i(x,y),i(y,x)),i(y,x)),T).

7. Nonunit Problems
With the intention of spurring rest.arch focusing on paramodulation in which nonunit clauses occur, we

offer the following problems.

Problem NUI, moderate. The problem asks one tc)prove the followino identity in m_×lular lattices in which a 0
and 1 exist, where ^ is meet, v is join, and " is complement.

((A v E)'v ((A ^ B)" ^ B)) ^ ((A v B)'v ((A ^ B)" ^ A)) = (A v B)"

The following clauses can be us_, the first 18 of which capture the properties of a modular lattice.

EQ(meet(0,x),0). EQ(meet(meet(x,y),z),m ect(x,m eet(y,z))).
EQ(rneet(x,0),0), EQ(join(join(x,y),z),join(x,join(y,z))).
EQ(join(0,x),x). EQ(meet(x join(x,y)),x).
EQ(join(x,0),x). EQ(join(x,meet(x,y)),x).
EQ(meet(l ,x),x). -EQ(meet(x,z),x) I EQ(meet(z,join(x,y)),join(x,meet(y,z))).

EQ(meet(x,l),x). EQ(x,x).
.'-.Q0oin(l,x), 1). EQ0oin( r2,meet(a,b)), 1),
EQ(join(x, 1), 1). EQ(meet(r2,meet(a,b)),0).
EQ(meet(x,x),x). EQ(join(r I join(a,b)), 1).
EQ(join(x,x )x). EQ(meet(r I join(a,b)),0 ).

EQ(meet(x,y),meet(y,x)). EQ0oin(r I ,meet(a,r2)),b2).
EQ(join(x,y)join(y,x)). EQ(join(rl,m_t(b,r2)),a2).

-EQ(meet(a2,b2),r 1).
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Problem NU2, moderate. Prove that subgroups of index 2 are nomaal, using the clauses given earlier to study

group theory. O(x) means that x is in the subgroup, j(x,y) is an element of the subgroup that exists if x and y are
not in the subgroup (for giving the definition of index 2).

O(e). O(x) i O(y) I EQ(prod(x,j(x,y)),y).
-O(x) I O(inv(x)). O(b).
-O(x) I -O(y) I O(prod(x,y)). -O(prod(a,prod(b,g(a)))).
O(x) lO(y) IO(i(x,y)).

Problem NU3, hard. In set theory, prove that if two ordered pairs are equal, then they are equal component-
wise. In the following clauses, op(x,y) means the ordered pair, up(x,y) means the unordered pair, IN is set
membership, and sing is the singleton set consisting of x.

EQ(x,x). -IN(x,up(y,z)) I EQ(x,y) I EQ(x,z).
IN(x,sing(x)). EQ(op(x,y),up(sing(x),up(x,y))).

-IN(x,sing(y)) I EQ(x,y). EQ(op(ml,rl),op(m2,r2)).
IN(x,up(x,y)). -EQ(m 1,m2) I -EQ(rl ,r2).
IN(y,up(x,y)). EQ(op(x,y),up(sing(x),up(x,y))).
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