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1. Introduction

We have recently heard rumors that researchers are again studying paramodulation [Wos87] in the context of
strategy for its control. In part to facilitate such rescarch, and in par to provide test problems for evaluating
other approaches to equality-oriented reasoning, we offer in this article a set of benchmark problems in which
equality plays the dominant role. The test problems are taken from group theory, ring theory, Robbins algebra,
combinatory logic, and other arcas. For each problem, we include appropriate clauscs and comment as to its
status with regard to provability by an unaided automated reasoning program,

2. Group Theory

A group is a nonempty set G in which multiplication is associative such that a two-sided identity e exists
whose product with x is x and for which the two-sided inverse of x exists. To study group theory, one can use
the following clauses; throughout the remainder of this paper, we use the notation of William McCune’s pro-
gram OTTER [McCunec90, McCune91a], where ** 1 "' means or and ** - ** means not.

EQ(prod(e,x),x). EQ(prod(x,inv(x)),e).
EQ(prod(x,e),x). E(_ {prod(prod(x,y),z),prod(x,prod(y,z))).
EQ(prod(inv(x),x),¢). EQ(x,x).

The last clause (for reflexivity) is included, for its presence is required when paramodulation is used. When
attempling to prove that some set of equalities is an axiom system for group theory, except for the clause for
reflexivity, one simply negates the given clauses.

Problem GT1, simple. If the square of every x is the identity, the group is commutative.

EQ(prod(x x).¢).
Problem GT2, moderate. Prove that the following equality (taken from Meredith [Meredith68) is a single
axiom for groups in which the square of every x is the identity. In particular, using the single axiom, derive the
axioms for groups (given earlier) and the axiom that asserts that the square of every clement is the identity.

EQ(f(I(f(x,y),2),£(x,2)).y).
Problem GT3, moderate. Prove that [[x,y],y] = e when the cube of every x is ¢, where (x,y] is the product of x,
y, the inverse of x, and the inverse of y.

EQ(prod(x,prod(x,x)),¢). EQ(com(x,y),prod(x,prod(y,prod(inv(x),inv(y))))).

H\Prbblem GT4, moderate. Prove that the following equality axiomatizes groun theory, The corresponding
~ theorem, proved by William McCune using OTTER [McCune91b], is a new contribution to the literature,

EQ(f(x,g(f(y,f(f(f(2,8(2)).8(f(u,y))),))u).

Problem GT5, moderate. Prove that the following equality axiomatizes commutative group theory; this new
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single axiom was found by William McCune using OTTER [McCune91b).
EQI(f(f(x,y),2),g(f(x,2))),y). '

ﬂ' Problem GT6, never proved in a single run, Prove that the following equality axiomatizes commutative group
theory; the result was verified by Ken Kunen [private correspondence] using OTTER as an assistant,

EQ(f(g(f(g(fg(f(x1,x2)),f(x2,x 1))),f(g(£(2,y)),[(2.g(F(E(v,g(x)). 2NN X)).

Problem GT7, hard. Prove that the Fibonacci group given by the following equalities is the cyclic group of
order 29, where, for example, a(x) means the product of a and x and al(x) means the product of the inverse of a
and x. Instead, one can take the axioms for groups and add equalities that assert that, for scven elements, the
product of the first two is the third, ..., and the product of the seventh and the first is the sccond.

EQ(a(b(x)),c(x)). EQ(e(e1(x)),x).
EQ(b(c(x)),d(x)). EQ(f(f1(x)),x).
EQ(c(d(x)),e(x)). EQ(g(g1(x))x).
EQ(d(e(x)),{(x)). EQ(al(a(x)),x).
EQ(e(f(x)).&(x)). EQ(b1(b(x)).x).
EQ(f(g(x)),a(x)). EQ(c1(c(x)),x).
EQ(g(a(x)),b(x)). EQ(d1(d(x))x).
EQ(a(al(x)) x). EQ(el(e(x)),x).
EQ(b(b1(x)),x). EQ(f1(f(x)),x).
EQ(c(c1(x)),x). EQ(g1(g(x)).x).
EQ(d(d1(x)),x).

3. Ring Theory

A ring R is a nonempty sct in which addition and multiplication are defined such that under addition the
sct is a group and such that mu.tiplication is associative and multiplication distributes over addition. The fol-
lowing clauses capture the propertics of a ring.
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) EQ(sum(0,x),x). EQ(x,x).
EQ(sum(x,0),x). EQ(sum(x,y),sum(y,x))
EQ(sum(minus(x),x),0). EQ(prod(prod(x,y),z),prod(x,prod(y,z))).
EQ(sum(x,minus(x)},0). EQ(prod(x,sum(y,z)),sum(prod(x,y),prod(x,z))).
EQ(sum(sum(x,y),z),sum(x,sum(y,z))). EQ(prod(sum(y,z),x),sum{prod(y,x),prod(z,x))).

Problem RT1, moderate. Prove that Boolean rings (rings in which the squarc of every x is £) are commutative,
EQ(prod(x,x),x).

Problem RT2, hard. Prove that rings in which the cube of every x is x are commutative,
FQ(prod(prod(x,x),x),x).

Problem RT3, hard. Prove that rings in which the fourth power of x is x are commutative.
EQ(prod(prod(prod(x,x),x).x),x).

Problem RT4, never proved in a single run unaided. Prove that rings in which the fifth power of x is x are com-
mutative,

EQ(prod(prod(prod(prod(x,x),x),x),x),x).

4. Robbins Algebra

A Robbins algebra is a nonempty set satisfying the following three axioms, expressed in clause notation,
in which tne function o can be interpreted as plus and the function 2 as negation,

EQ(o(x,y),0(yX)). EQ(n(o(n(o(x,y)),n(0(x,n(y))))).x).
EQ(o(o(x,y)z),0(x,0(y,2))). EQ(x,x).
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A Boolean algebra is a nonempty sct S with two operations, plus and times, and a O and a 1. Each operation is
commutative, and each distributes over the other. The 1 is a multiplicative identity, and the O is an additive
identity. In addition, for every x, the negation of x exists with x plus its negation equal to 1 and x times its nega-
tion cqual to 0. An alternative axiomatization of Boolean algebra consists of (R1), (R2), and Huntington's
axiom (H3) [Huntington33].

(H3) EQ(o(n(o(n(x),y)),n{o(n(x),n(y)))).x).

Whether Robbins implics Boolean is still an open question. What is known is that the addition to the three Rob-
bins axioms of any one of a numt.cr of propertics of a Boolean algebra suffices to yicld Boolcan.

Problem RA1, simple. Prove that, if the following axiom is adjoined to the axioms for a Robbins algebra, the
resulting algebra is Boolcan, We recommend trying to prove Huntington’s axiom (H3).
EQ(o(x,0),x).
Problem RA2, maderate. Prove that t addition of the following equality to Robbins yields Boolean.
EQ(o(x.,x),%).
Problem RA3, hard. Prove that, where ¢ is a constant, the addition of the following equality to Robbins yiclds
Boolean,
EQ(o(c.c).c).
Problem RA4, never proved in a single run unaided. Where ¢ and d are constants, the addition of the following
cquality to Robbins yiclds Boolean.
EQ(o(c,d).d).
Problem RAS, never proved in a single run unaided. Where ¢ and d arc constants, the addition of the following
cquality to Robbins yiclds Boolean.

EQ(n(o(c,d)),n(d)).

5. Combinatory Logic

Barendregt [Barendregt81] defines combinatory logic as an cquational system satisfying the combinators
S and K with ((Sx)y)z = (x2)(yz) and (Kx)y = x. Rather than studying this logic in its entircty, one finds challeng-
ing test problems by replacing one or both of § and K by one or more combinators and focusing on questions
concerning the possible presence of the strong fixed point property. The sct consisting of the comibinators under
study is called a basis, and the set of combinators generated by a basis is called a fragment. Where A is a given
fragment with basis B, the strong fixed point property holds for A if and only if there exists a combinator y such
that, for all combinators x, yx = x(yx), where y is expressed purely in terms of elements of B. The problems we
offer focus on various subsets of the following combinators.

EQ(a(a(a(B,x),y),2),a(x,a(y,2))). EQ(a(M,x)a(x,x)).
EQ(a(a(a(C,x),y),z),aalx,7).y)). EQ(a(a(a(N,x),y),2)alala(x,2),y),2)).
EQ(a(a(a(H,x),y),z).ala(a(x,y),2),y)). EQ(a(a(a(S,x),y).z).ala(x,z),a(y,»))).
EQ(a(I,x),x). EQ(a(a(W,x),y).a(a(x,y).y)).

For cach of the following problems, the object is to usc the given combinators and no athers and prove that the
strong fixed point nroperty holds by finding an appropriate object.

Problem CL1, simple. The sct consists of B, M, and W.
Problem CLZ, hard. The set consists of B and W.
Problem CL3, hard, The set consists of B and N.

Problem CL4, hard. The sct consists of B and M.
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Problem CLS, hard. The sewconsists of B, C, [, and S.

To complement the preceding test problems and for those who enjoy the study of open questions, we offer two
open questions. Does the set consisting of B and M alone permit the construction of an object that proves that
the strong fixed point property holds? Does the set consisting of B and § alone permit the construction of an
object that proves that the strong fixed point property holds?

6. Many-Valued Sentential Calculus

The axioms are the following, where the constant T can be interpreted as *“true’” and the functions i and n
as implication and negation, respectively.

EQ(i(T,x),x). EQQi(i(x,y),),i(i(y,x),x)).
EQUG(y)i(iCy,2),i(x,2)),T). EQ(ii(n(x),n(y)),i(y,x)).T).

Problem MV 1, simple. Prove that cach of the following two equalitics hold in many-valued sentential calculus.
EQ(i(n(n(x))x),T). EQ(i(x.,n(n(x))),T).
Problem MV?2, moderate. Prove that the following holas in the calculus,
EQ(i(i(x,),i(i(z,x),i(z,y))),T).
Problem MV 3, moderate, Prove that the following holds in the calculus.
EQU(i(x,y).i(n(y),n(x)).T).
Problem MV4, hard. Prove that the following holds in the calculus.
EQQ(i(i(x,y),i(y x)),i(y.x)),T).

7. Nonunit Problems

With the intention of spurring rescarch focusing on paramodulation in which nonunit clauses occur, we
offer the following problems.

Problem NU 1, moderate, The problem asks onc to prove the followin,, identity in modular lattices in which a 0
and 1 exist, where A is meet, v is join, and “ is complement.

((AVEB)' v((ANB)Y AB)A((AvB) v((ANB) " A)) = (AvBY
The following clauses can be used, the first 18 of which capture the properties of a modular lattice.

EQ(meet(0,x),0). EQ(mect{meet(x,y),z),meet(x,meet(y,z))).

EQ(meet(x,0),0), EQ(join(join(x,y),z),join(x,join(y,z))).

EQ(join(0,x),x). EQfmeet(x join(x,y)),x).

EQ(join(x,0),x). EQ(Qjoin(x,mcet(x,y)),x).

EQ(meet(1,x),x). -EQ(mect(x,z),x) | EQ(meet(z,join(x,y)),join(x,mcel(y,z))).

EQ(meet(x,1),x). EQ(x,x).

~Q(join(1,x),1). EQ(join(r2,meet(a,h)),1).

EQ(join(x,1),1). EQ(meet(r2,meet(a,b)),0).

EQ(mect(x,x),x). EQ(oin(r1 join(a,b)),1).

EQ(join(x,x)x). EQ(meet(rl join(a,b)),0).

EQ(mcet(x,y),mect(y,x)). EQ(join(r1,meet(a,r2)),b2).

EQ(join(x,y)join(y,x)). EQ(join{r]1,meect(b,r2)),a2).
-EQ(meet(a2,b2),r1).
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Problem NU2, moderate. Prove that subgroups of index 2 are normal, using the clauses given carlier to study

group theory, O(x) means that x is in the subgroup, j(x,y) is an element of the subgroup that exists if x and y arc
notin the subgroup (for giving the definition of index 2),

O(e). O(x) 1 O(y) I EQ(prod(x,j(x.y)).y).
-O(x) 1 O(inv(x)). O(b).
-0(x) | -O(y) | O(prod(x,y)). -O(prod(a,prod(b.g(a)))).
O®x) 1 O(y) I O(i(x.y)).
Problem NU3, hard, In set theory, prove that if two ordered pairs are cqual, then they are equal component-

wise. In the following clauses, op(x,y) mcans the ordered pair, up(x,y) means the unordered pair, IN is set
membership, and sing is the singleton set consisting of x,

EQ(x,x). -IN(x,up(y,2)) | EQ(x,y) | EQ(x,z).
IN(x,sing(x)). EQ(op(x,y),up(sing(x),up(x,y))).
-IN(x,sing(y)) | EQ(x,y). EQ(op(m1,r1),0p(m2,r2)).
IN(x,up(x,y)). -EQ(m1,m2) | -EQ(rl,r2).
IN(y,up(x,y)). EQ(op(x,y),up(sing(x),up(x,y))).
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