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Abstract

Background The ensemble method random forests has become a popular classification
tool in bioinformatics and related fields. The out-of-bag error is an error estimation tech-
nique which is often used to evaluate the accuracy of a random forest as well as for selecting
appropriate values for tuning parameters, such as the number of candidate predictors that are
randomly drawn for a split, referred to as mtry. However, for binary classification problems
with metric predictors it was shown that the out-of-bag error overestimates the true predic-
tion error. Based on simulated and real data this paper aims to identify settings for which the
overestimation is likely. Moreover, the overestimation was shown to depend on the parameter
mtry. Therefore, it is questionable if the out-of-bag error can be used in classification tasks
for selecting tuning parameters like mtry.
Results The simulation-based and real-data based studies with metric predictor variables
show that the overestimation is largest in balanced settings and in settings with few observa-
tions, a large number of predictor variables, small correlations between predictors and weak
effects. There was hardly any impact of the overestimation on tuning parameter selection.
Conclusions Although the prediction performance of random forests was not substantially
affected when using the out-of-bag error for tuning parameter selection in the present studies,
one cannot be sure that this applies to all future data. For settings with metric predictor
variables it is therefore recommended to always use stratified subsampling for both tuning
parameter selection and error estimation in random forests. This yielded less biased estimates
of the true prediction error.

Keywords: Random forests, OOB error, Out-of-bag, Parameter tuning, Error estimation.
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1 Introduction

Random forests (RF) (Breiman; 2001) have become a popular classification tool in bioinformatics

and related fields. They have shown excellent performance also in very complex data settings.

Each tree in a RF is constructed based on a random sample of the observations, usually a bootstrap

sample or a subsample of the original data. The observations that are not part of the bootstrap

sample or subsample, respectively, are referred to as out-of-bag (OOB) observations. The OOB

observations can be used for example for estimating the prediction error of RF, yielding the so-

called OOB error. The OOB error is often used for assessing the prediction performance of RF.

An advantage of the OOB error is that the complete original sample can be used for constructing

the RF classifier. In contrast to cross-validation and related data splitting procedures, in which

a subset of the samples are left out for RF construction, the OOB procedure enables using all

information that is available in the data for classifier construction. This yields RF classifiers that

have a higher accuracy than those obtained from cross-validation and related procedures. Another

advantage of using the OOB error is its computational speed. In contrast to cross-validation or

other data splitting approaches, only one RF has to be constructed, while for k-fold cross-validation

k RF have to be constructed (Bylander; 2002; Zhang et al.; 2010). The use of the OOB error

saves memory and computation time, especially when dealing with large data dimensions, where

constructing a single RF might last several days or even weeks. These reasons might explain the

frequent use of the OOB error for error estimation and tuning parameter selection in RF.

The OOB error is often claimed to be an unbiased estimator for the true error rate (Breiman;

2001; Goldstein et al.; 2011; Zhang et al.; 2010). However, for two-class classification problems

it was reported that the OOB error overestimates the true prediction error (Bylander; 2002;

Mitchell; 2011). The bias can be very substantial, as shown in these papers, and is also present

when using classical cross-validation procedures for error estimation. It was thus recommended to

use the OOB error only as an upper bound for the true prediction error (Mitchell; 2011). However,

Mitchell (2011) considered only settings with completely balanced samples, sample sizes below 60

and two response classes, limiting the generality of the results.

Besides the fact that trees in RF are constructed on a random sample of the data, there is a

second component which differs between standard classification and regression trees and the trees

in RF. In the trees of a RF, not all variables but only a subset of the variables are considered

for each split. This subset is randomly drawn from all candidate predictors at each split. The

size of this subset is usually referred to as mtry. In practical applications, the most common

approach for choosing appropriate values for mtry is to select the value over a grid of plausible

values which yields the smallest OOB error (Oliveira et al.; 2012; Hassane et al.; 2008; Nicodemus

et al.; 2010). Also in works on RF methodology, the OOB error has frequently been used to choose

an appropriate value for mtry (Nicodemus and Malley; 2009; Kim et al.; 2006). In principle, other

procedures like (repeated) cross-validation may be applied for selecting an optimal value for mtry,

but the OOB error is usually the first choice for parameter tuning. This is due to the fact that,

unlike many other approaches such as cross-validation, the whole data can be used to construct the

RF and much computational effort is saved since only one RF has to be built for each candidate

mtry value. Implementations exist that use the OOB error to select an appropriate value for mtry.

In the statistical software R (R Core Team; 2013), for example, the function tuneRF (from the

package randomForest; Liaw and Wiener; 2002) automatically searches over a grid of mtry values

and selects the value for mtry for which the OOB error is smallest. However, the bias in the OOB
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error has recently been shown to depend on the parameter mtry (Mitchell; 2011). This finding

suggests that the mtry value minimizing the OOB error might possibly not minimize the true

prediction error and thus may be suboptimal, making the OOB error based tuning approaches

questionable. To date there are no studies investigating the reliability of the OOB error for tuning

parameters like mtry in RF.

The contribution of this paper is three-fold: (i) the bias and its dependence on mtry in settings

with metric predictor variables are quantitatively assessed through studies with different numbers

of observations, predictors and response classes which helps to identify so-called “high-risk set-

tings”, (ii) the reasons for this bias and its dependence on mtry are studied in detail, and based

on these findings, the use of alternatives, such as stratified sampling, are investigated, and (iii)

the consequences of the bias for tuning parameter selection are explored.

This paper is structured as follows: In Section 2, simulation-based and real-data based studies

are described after briefly introducing the RF method. The description includes an outline of

the simulated data and real data, the considered settings and several different error estimation

techniques that will be used. The results of the studies are subsequently reported in Section 3,

and finally the findings are discussed and recommendations are given.

2 Methods

In this section, the RF method and the simulation-based and real data-based studies are described.

Simulated data is used to study the behavior of the OOB error in simple settings, in which for

example all predictors are uncorrelated. This shall give an insight into the mechanisms which lead

to the bias in the OOB error. Based on these results, settings are identified, in which a bias in the

OOB error is likely. To assess the extent of the bias in these settings in practice, complex data

from the real world is used.

2.1 Random forests and its out-of-bag error

RF is an ensemble of classification or regression trees that was introduced by Breiman (2001). One

of the two random components in RF concerns the choice of variables used for splitting. For each

split in a tree, the best splitting variable from a random sample of mtry predictors is selected.

If mtry is chosen too small, it might be that none of the variables contained in the subset is

relevant and that irrelevant variables are often selected for a split. The resulting trees have poor

predictive ability. If the subset contains a large number of predictors, in contrast, it is likely that

the same variables, namely those with the largest effect, are often selected for a split, and that

variables with smaller effects have hardly any chance of being selected. Therefore, mtry should

be considered a tuning parameter.

The other random component in RF concerns the choice of training observations for a tree.

Each tree in RF is built from a random sample of the data. This is usually a bootstrap sample

or a subsample of size 0.632n. Therefore not all observations are used to construct a specific

tree. The observations that are not used to construct a tree are denoted by out-of-bag (OOB)

observations. In a RF, each tree is built from a different sample of the original data, so each

observation is “out-of-bag” for some of the trees. The prediction for an observation can then be

obtained by using only those trees for which the observation was not used for the construction.

A classification for each observation is obtained in this way and the error rate can be estimated
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from these predictions. The resulting error rate is referred to as OOB error. This procedure

was originally introduced by Breiman (1996b) and it has become an established method for error

estimation in RF.

2.2 Simulation-based studies

The overestimation of the OOB error in different data settings with metric predictor variables was

systematically investigated by means of simulation studies. Settings were considered with

• different associations between the predictors and the response. Either none of the predictors

were associated with the response (the corresponding studies termed null case) or some of

them were associated (power case);

• different numbers of predictors, p ∈ {10, 100, 1000};

• different numbers of response classes, k ∈ {2, 4}. The studies are termed binary if k = 2 and

multiclass if k = 4;

• different response class ratios. An equal number of observations of each response class was

used (balanced settings) for k ∈ {2, 4}. For k = 2 two additional settings with unequal

response class sizes were simulated (binary unbalanced and binary extremely unbalanced). In

the first setting (binary unbalanced), the smaller class comprised 30% of the observations. In

the second setting (binary extremely unbalanced), the smaller class comprised approximately

17% (ratio 1:5) of the observations.

• different numbers of observations, n ∈ {nsmall, 100, 1000}, with nsmall = 20 for binary

balanced studies, nsmall = 30 for binary unbalanced studies, nsmall = 60 for binary extremely

unbalanced studies and nsmall = 40 for multiclass balanced studies.

Since one of the aims was to investigate the bias in dependence on mtry, several RFs with dif-

ferent mtry values were constructed for each setting. The grid of considered mtry values was

{1, 2, 3, . . . , 10} for p = 10, {1, 10, 20, 30, . . . , 100} for p = 100 and {1, 5, 10, 50, 100, 200, 300, . . .,

1000} for p = 1000. Note that for mtry = 1 there is no selection of an optimal predictor variable

for a split, while for mtry = p the RF method coincides with the bagging procedure which selects

the best predictor variable from all available predictors (Breiman; 1996a). The number of trees,

usually referred to ntree, should be chosen very large, especially if the data comprises a large

number of predictors. It is usually chosen as a compromise between accuracy and computational

speed. The OOB error stabilized at around 250 trees in convergence studies of Goldstein et al.

(2010), and they concluded that 1000 trees might be sufficiently large for their genome-wide data

set. Also in the studies of Dı́az-Uriarte and De Andres (2006) the results for RF with 1000 trees

were almost the same as those for RF with 40000 trees, and in the high-dimensional settings of

Genuer et al. (2008) RF with 500 trees and 1000 trees yielded very similar OOB errors. In accor-

dance with these findings the number of trees was set to 1000 in all studies of this paper (including

at most ∼ 7000 predictors). Each setting was repeated 500 times to obtain stable results.

Only metric predictor variables were considered in the studies. In the null case study, the pre-

dictors X1, . . . , Xp were independent and identically distributed (i.i.d.), each following a standard

normal distribution (see Tables 1 and 2). In the power case study, both predictors associated with

the response and predictors not associated with the response were considered. The predictors not
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associated with the response followed a standard normal distribution. The distribution of pre-

dictors with association was different for the different response classes. The predictor values for

observations from class 1 were always drawn from a standard normal distribution. The predictor

values for observations from class 2 (or classes 2, 3, and 4 in settings with k = 4 response classes)

were drawn from a normal distribution with variance 1 and a mean different from zero. Tables 1

and 2 give an overview over the distribution of predictors in the response classes for settings with

k = 2 and k = 4 response classes, respectively. Let us consider the setting with p = 10 and k = 4

as an example (Table 2). The first two predictors X1 and X2 are associated with the response,

while the other predictors X3, . . . , X10 are not. Accordingly, X3, . . . , X10 always follow a standard

normal distribution, while the distribution of X1 and X2 depends on whether the observation

comes from class 1 or a different class. If the observation comes from class 1 the distribution of

X1 and X2 is N(0, 1), and if it comes from class r ∈ {2, 3, 4} the variables Xj , j = 1, 2 follow a

normal distribution N(µrj , 1) with µrj drawn independently from N(0.4, 1). Randomly drawing

the mean separately for X1 and X2 and for each repetition of the study makes sure that predictors

with different effect strengths are considered.

Study No. predictors Predictors Class 1 Class 2
N(µ1, 1) N(µ2, 1)

Null case p ∈ {10, 100, 1000} X1, . . . , Xp µ1 = 0 µ2 = 0
Power case p = 10 X1 µ1 = 0 µ2 ∼ N(0.75, 1)

X2 µ1 = 0 µ2 ∼ N(0.75, 1)
X3, . . . , X10 µ1 = 0 µ2 = 0

p = 100 X1 µ1 = 0 µ2 ∼ N(0.75, 1)
.
..

.

..
.
..

X10 µ1 = 0 µ2 ∼ N(0.75, 1)
X11, . . . , X100 µ1 = 0 µ2 = 0

p = 1000 X1 µ1 = 0 µ2 ∼ N(0.1, 1)
...

...
...

X50 µ1 = 0 µ2 ∼ N(0.1, 1)
X51, . . . , X1000 µ1 = 0 µ2 = 0

Table 1: Distribution of predictors in class 1 and class 2 of the simulated data setting with k = 2
response classes.

Study No. predictors Predictors Class 1 Class 2 Class 3 Class 4
N(µ1, 1) N(µ2, 1) N(µ3, 1) N(µ4, 1)

Null case p ∈ {10, 100, 1000} X1, . . . , Xp µ1 = 0 µ2 = 0 µ3 = 0 µ4 = 0
Power case p = 10 X1 µ1 = 0 µ2 ∼ N(0.4, 1) µ3 ∼ N(0.4, 1) µ4 ∼ N(0.4, 1)

X2 µ1 = 0 µ2 ∼ N(0.4, 1) µ3 ∼ N(0.4, 1) µ4 ∼ N(0.4, 1)
X3, . . . , X10 µ1 = 0 µ2 = 0 µ3 = 0 µ4 = 0

p = 100 X1 µ1 = 0 µ2 ∼ N(0.4, 1) µ3 ∼ N(0.4, 1) µ4 ∼ N(0.4, 1)
...

...
...

...
...

X10 µ1 = 0 µ2 ∼ N(0.4, 1) µ3 ∼ N(0.4, 1) µ4 ∼ N(0.4, 1)
X11, . . . , X100 µ1 = 0 µ2 = 0 µ3 = 0 µ4 = 0

p = 1000 X1 µ1 = 0 µ2 ∼ N(0.4, 1) µ3 ∼ N(0.4, 1) µ4 ∼ N(0.4, 1)
...

...
...

...
...

X50 µ1 = 0 µ2 ∼ N(0.4, 1) µ3 ∼ N(0.4, 1) µ4 ∼ N(0.4, 1)
X51, . . . , X1000 µ1 = 0 µ2 = 0 µ3 = 0 µ4 = 0

Table 2: Distribution of predictors in class 1, class 2, class 3 and class 4 of the simulated data
setting with k = 4 response classes.

Despite considering metric predictors with different effects strength, the settings are simplistic

because all predictors are uncorrelated. Although assuming no correlations between any of the

predictors is not realistic, such settings are important to understand the mechanisms which lead
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to a bias in the OOB error. The OOB error in more complex settings that include correlated

predictors will be explored by means of real data.

2.3 Real data-based studies

Based on the results from simulated data, real data sets were to be considered in which the

overestimation of the OOB error is expected to be most pronounced. As will be seen later,

the OOB error is likely to occur in data settings with huge numbers of predictors, p, and small

numbers of observations, n. Such settings are typically prevalent with genomic data. Therefore

high-dimensional genomic data from the real world are considered for further investigations.

New data for evaluation can easily be generated in simulated data. In contrast to that, in

real data applications, the original data has to be split up in order to obtain an independent test

data set used for evaluation. Thus, six genomic datasets were selected that are large enough to

randomly split the data into a training and a test set (Table 3). These datasets were often used

by various authors for classification purposes (Dı́az-Uriarte and De Andres; 2006; Dettling and

Bühlmann; 2003; Tan and Gilbert; 2003) and are briefly described in the following. Note that

no pre-selection of data sets based on the results obtained for this data was performed, and the

results of all six datasets which were analyzed are reported (Boulesteix; 2015).

Dataset No. response No. pre- Considered mtry values Size of ori-
classes, k dictors, p ginal data

Colon Cancer 2 2000 {1, 10, 100, 500, 1000, 2000} 62
Breast Cancer 3 4869 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 4869} 95
Breast Cancer 2 4869 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 4869} 77
Prostate Cancer 2 6033 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 5000, 6033} 102
Embryonal Tumor 2 7129 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7129} 60
Leukemia 2 7129 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7129} 72

Table 3: Overview over high-dimensional genomic datasets.

2.3.1 Data

The first considered data is the Colon Cancer data of Alon et al. (1999). The expression levels of

40 tumor and 22 normal colon tissues for 6500 human genes were measured. The considered data

set contains the expression of the 2000 genes with highest minimal intensity across the 62 tissues

measured using the Affymetrix technology.

Two versions of the Breast Cancer data of van’t Veer et al. (2002) were considered. The first

version of this data was previously analyzed by Dı́az-Uriarte and De Andres (2006) and contains

k = 3 response classes: 33 patients developed distant metastases within 5 years, 44 remained

disease-free for over 5 years and 18 patients had BRCA1 germline mutations. Missing data was

imputed by using 5-nearest neighbor imputation. Further details on transformations of the original

data are given in the supplement to the paper of Dı́az-Uriarte and De Andres (2006). The second

version which is considered in this paper is a subset of the dataset provided by Dı́az-Uriarte and

De Andres (2006). This subset does not contain the 18 patients with BRCA1 germline mutations.

A differentiation is thus only made between the patients that developed distant metastases within

5 years (n = 33) and patients that remained disease-free for over 5 years (n = 44), that is the

number of response classes is k = 2.

The fourth considered data set is the Prostate Cancer data of Singh et al. (2002). From 1995

to 1997 samples of prostate tumors and adjacent non-tumor prostate tissue were collected from
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patients undergoing radical prostatectomy at the Brigham and Women’s Hospital. High-quality

expression profiles were obtained from 50 non-tumor prostate samples and 52 tumor specimens.

The oligonucleotide microarrays contained probes for approximately 12600 genes.

The Embryonal Tumor data of Pomeroy et al. (2002) includes 60 patients with embryonal

tumors of the central nervous system from whom biopsies were obtained before receiving treatment.

The data was used to differentiate between patients who are alive after treatment (n = 21) and

those who succumbed to their disease (n = 39) (dataset C in Pomeroy et al.; 2002). RNA was

extracted from frozen specimens and was analyzed with oligonucleotide microarrays containing

7129 probes from 6817 genes.

The Leukemia data (Golub et al.; 1999) consists of 47 patients with acute lymphoblastic

leukemia (ALL) and 25 patients with acute myeloid leukemia (AML). The considered dataset

comprises both, training samples and test samples from Golub et al. (1999). The samples were

assayed using Affymetrix Hgu6800 chips and data on the expression of 7129 genes are available.

The Colon Cancer data, the Prostate Cancer data and both Breast Cancer data sets were ob-

tained from the website http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html.

The Embryonal Tumor data is available at http://portals.broadinstitute.org/cgi-bin/

cancer/datasets.cgi, and the Leukemia data was retrieved from the Bioconductor package

golubEsets.

2.3.2 Settings

Different settings were investigated which were created by modifying the original real data sets.

The aims together with the modifications are outlined in the following:

Aim 1: To quantitatively assess the overestimation in the OOB error and its consequences for se-

lecting an optimal value for mtry on real world datasets. For this purpose, the original data

was used without making any modifications to the data. This study is referred to as “Real

data study”.

Aim 2: To investigate the behavior of the OOB error on datasets with realistic data structures but

without any associations between the predictors and the response. To create a data set

with realistic data structures, the matrix containing the values of the predictor variables of

the real data sets was used and the response values of the original datasets were randomly

permuted to break any associations between the predictors and the response. The studies

with the permuted response are termed “Real data null case study with correlations”, where

the term correlation refers to the correlations between the predictor variables. Note that the

datasets obtained in this way only differ to the original data in that none of the predictors is

associated with the response, while in the original data some of the predictors are possibly

associated.

Aim 3: To investigate the effect of correlations on the bias in the OOB error in realistic data settings.

For this purpose, each predictor variable was permuted separately to create independence

between them. This also breaks possible associations between the predictors and the re-

sponse. This setting is called “Real data null case study without correlations”. Note that,

in order to assess the effect of correlations, the results for this study cannot be compared

to the results for the real data study (described above) because in the real data study some

of the predictors are possibly associated with the response, while in the real data null case
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study without correlations this is not the case. This makes it impossible to decide whether

differences are due to the correlations between predictors or are due to the fact that some of

the predictors are associated in one study but not in the other. However, the results of the

real data null case study without correlations can be compared to those of the real data null

case study with correlations, in which there are correlations between predictors but none of

the predictors is associated with the response.

Only a part of the observations was used to construct the RF (training set) while the other part

was used for assessing the performance of the RF (test set). The number of trees was always set to

1000. For the datasets with k = 2 response classes, the training set consists of n = 20 observations

that were randomly drawn, and for the Breast Cancer data (i.e. the only dataset with k = 3), the

training set consists of n = 30 observations. In contrast to the simulation studies, the response

class ratio in the training set was not fixed. However, a minimum of 8 observations were required

from each response class to prevent that there are too few observations from a response class.

With only n = 20 observations, this means that the response class distribution is nearly balanced

and that only slight class imbalances can occur in the considered settings. Note that we chose

to use only 20 and 30 observations, respectively, to train RF since these are settings in which a

bias in the OOB error is most likely, as will be shown in the rest of this paper. Although modern

studies include far more observations, such small sample sizes are still encountered in practice

(Floares et al.; 2016).

For all settings RF with different mtry values were constructed. The grid of mtry values was

{1, 10, 100, 500, 1000, 2000, . . . , p}, with p denoting the total number of predictors. Table 3 shows

the grids for the considered datasets. Each setting was repeated 1000 times.

2.4 Alternative strategies for error estimation

The following strategies for error estimation were considered as possible alternatives to the OOB

error:

• Test error: This error rate was computed for observations that are not part of the set of n

observations that were used to construct a RF. Since these observations are usually referred

to as test observations, the resulting error rate is referred to as test error. In the simulation

studies, data for 10000 additional observations (test observations) was generated in order to

estimate the prediction error of the RF. The response class distributions were the same in

the two samples of size 10000 and n. In the real data studies, the n observations that were

used to construct the RF (n = 20 for k = 2, n = 30 for k = 3) were randomly sampled from

all available observations, while making sure that at least 8 observations from each response

class were sampled. In order to have the same response class distribution in the two sets,

as test set the largest subset of the remaining observations was used in which the response

class distribution equals that in the sample of n observations.

• Stratified OOB error: In this paper, the OOB error was also computed for a RF which is

based on a stratified sampling scheme. This strategy was also investigated in the studies of

Mitchell (2011). In this stratified sampling scheme, trees were grown on subsamples of size

b0.632nc, in which the response class distribution of the original data of n observations is

preserved in each subsample. The OOB error was computed based on the OOB observations

as usual. In this paper, it is referred to as the stratified OOB error. Note that, in contrast
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to the test error, the (stratified) OOB error uses the n observations for both constructing

the RF and estimating its prediction error.

• Cross-validation (CV) error: In contrast to the OOB error, CV is a strategy for estimating

the error rate of an arbitrary classification method and is not specific to RF. To estimate

the CV error of a RF, the data of size n was partitioned into l sets of equal size. Each of

the l sets was used for computing the error rate of a RF, while the other l − 1 sets were

used for creating the RF. The CV error was computed as the average of the l error rates.

Ten-fold cross-validation was used in all studies (i.e., l = 10). While the test and OOB error

(stratified and unstratified) estimation strategies use all of the n observations to construct

the RF, in cross-validation the n observations are split into a training and a test set and

only the n(l − 1)/l training observations are used to construct a RF. This means that the

CV error is computed from l models that are fit based on only a subset of the data. Thus,

the CV error slightly overestimates the true prediction error that would be obtained for a

model that was fit based on all n observations (Kohavi; 1995).

• Stratified cross-validation (CV) error: For computing the stratified CV error the data of

size n was randomly split into l = 10 sets in a way, that within each set the distribution of

response classes is the same as in the original data. The error estimation was then done in

exactly the same way as was described for the CV error.

Since the test error is an accurate estimate for the generalization error, it is treated as a “gold

standard” in this paper against which the OOB and CV errors (stratified and unstratified) are

compared. In simulation studies, one should therefore prefer estimating the error rate by means

of an additional large independent test sample. In real data settings, in contrast, the number of

observations is limited and is usually not sufficient to enable splitting the data into a training set

and a large test set. Moreover, sample sizes are rather small and it is often desired to use all

available information for building a model which has high predictive ability. Thus, in real data

applications it is rarely the case that there is a large test set available from which the error rate

can be computed, and different approaches to estimating the error rate, such as cross-validation

procedures, have to be applied.

2.5 Random forest implementation and computational issues

Several implementations of the original RF version (Breiman; 2001) are available for different

softwares (see Boulesteix et al.; 2012, for an overview). However, it was shown that split selec-

tion is biased in the original RF version (Kim and Loh; 2001; Strobl et al.; 2007; Nicodemus;

2011; Boulesteix et al.; 2012a). Certain types of predictors, such as predictors that offer many

possible cutpoints, are preferentially selected for a split. For example, categorical variables with

many categories are preferentially selected over metric variables or categorical variables with fewer

categories. The RF version of Hothorn et al. (2006) implements an unbiased split selection that

is based on conditional inference tests. In contrast to the original version, the selection of the

variable for splitting and the selection of the cutpoint are performed in two different steps. In the

first step, each variable is globally tested for its association with the response, yielding a p-value

for each variable. The variable with the smallest p-value is selected for splitting. The optimal

cutpoint within the variable is then chosen based on a special two-sample-test for all possible

binary split points within the variable. This procedure avoids a preferential selection of variables
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that offer many cutpoints (Strobl et al.; 2007). Although this version implements an unbiased

split selection, the original version of Breiman is far more often used in practice and there is an

ongoing development of even faster implementations of this version (see Wright and Ziegler; 2017,

and references therein). In the context of computing time, the RF implementation of Breiman by

far outperforms the (unbiased) RF implementation of Hothorn et al. Due to its frequent use in

practice and its technical advantages the original RF version of Breiman and its implementation

in the statistical software R (Liaw and Wiener; 2002) was used for all the studies. For some sim-

ulation settings, however, the RF version of Hothorn et al. implemented in the R package party

(Hothorn et al.; 2012) was also used to make sure that the results do not depend on the choice of

the RF version.

Note that the studies shown in this paper include only metric predictor variables. The inclusion

of only metric predictor variables avoids affecting results by the biased split selection in the

classical RF implementation. Moreover, subsampling (i.e., sampling from the original data without

replacement) was used instead of bootstrapping in order to avoid possible biases induced by the

bootstrap (Strobl et al.; 2007). As was suggested subsamples of size b0.632nc were used, where n

denotes the number of observations (Strobl et al.; 2007). No pruning was applied and trees were

always grown to full size.

3 Results

Figures 1 - 5 show the estimated error rates over a grid of mtry values for the five different error

estimates (test error, OOB error, stratified OOB error, CV error, stratified CV error). In the

following the bias in the OOB error is quantified based on these results. Further the sources of the

bias and the dependence of this bias on RF parameters and data characteristics are investigated,

and finally the consequences of using the OOB error for tuning mtry are assessed.

3.1 Quantitative assessment of the bias

For the binary null case study (balanced) the true error rate for new observations is 0.5, given that

new observations come from both response classes equally often. Figure 1 shows the estimated

error rates for the binary null case study (balanced). The test error approximates 0.5 very well in

all balanced settings and for all considered mtry values. For small sample sizes (n = 20), the OOB

error is larger than the test error which is considered to be a good estimate of the true prediction

error. For larger sample sizes (n = 100), the difference between the test error and the OOB error is

smaller but still present. Finally, if the sample size is increased to n = 1000, the OOB error seems

to approximate the test error well. When comparing the results for different parameter settings,

it can be seen that the overestimation does not only depend on the number of observations but

also on the number of predictors, or rather the ratio of the number of observations and predictors.

In settings with both, large predictor numbers and small sample sizes (here n = 20, p = 1000), the

overestimation is most extreme. Depending on the chosen value for mtry, the difference between

the OOB error and the test error lies between 10% and 30% in this setting. In contrast to

that, there is no overestimation in settings with large sample sizes and small predictor numbers

(n = 1000, p = 10). Exactly the same results are obtained for the CV error. This suggests that

CV is not a reasonable alternative to the OOB error and, moreover, that there is a common source

of the overestimation. In contrast to the OOB error and the CV error, the stratified OOB error
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Figure 1: Error rate estimates for the binary null case study (balanced). Shown are different error
rate estimates for the setting with two response classes of equal size and without any predictors
with effect. The error rate was estimated through the test error, the OOB error, the stratified
OOB error, the CV error, and the stratified CV error for settings with different sample sizes, n,
and numbers of predictors, p. The mean error rate over 500 repetitions was obtained for a range
of mtry values.

and the stratified CV error approximate the test error very well and are a reasonable alternative

to the unstratified sampling procedures in the considered study.

Comparable results were obtained for the binary power case study (balanced). However, the

difference between the OOB error (CV error) and the test error is smaller than in the study

without any associations. In particular, there is only a small overestimation for large mtry values.

Moreover, in contrast to the binary null case study (balanced), there is no overestimation in the

settings with a moderate sample size of n = 100. Similar results were also obtained for balanced

settings with four response classes (Figures A1 and A2). This shows that the overestimation also

occurs in settings with more than two response classes.

The findings of the binary null case study (balanced) and the binary power case study (balanced)

do not transfer to the settings with unbalanced response classes. In the binary null case study

(unbalanced), the OOB error and the CV error are far closer to the test error (Figure 3). For

the study with more extreme class imbalance (ratio 1:5) there are hardly any differences between

the error rates estimated by the different strategies (Figure A3). Overall, this suggests a good

performance of these two error estimation techniques in unbalanced data settings. The fact that

the prediction error is much lower than 0.5 in the unbalanced data settings is not surprising. If

for example all observations are classified into the larger class, one achieves an error rate which
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Figure 2: Error rate estimates for the binary power case study (balanced). Shown are different error
rate estimates for the setting with two response classes of equal size and with both predictors with
effect and without effect. The error rate was estimated through the test error, the OOB error, the
stratified OOB error, the CV error, and the stratified CV error for settings with different sample
sizes, n, and numbers of predictors, p. The mean error rate over 500 repetitions was obtained for
a range of mtry values.

equals the proportion of the smaller class. With 30% observations belonging to the smaller class,

the proportion of misclassified observations in a null case study could therefore be expected to be

about 30%. These expectations are in line with the test error in Figure 3.

Some differences between the stratified OOB error and the test error can be observed in some

of the power case settings (right column of Figure 2, right upper plot in Figure 4). In some

balanced settings, the stratified OOB error is larger than the test error especially for mtry values

close to one. However, in general such small mtry values are not recommended because, in the

presence of many variables without any effect, small mtry values prevent the selection of relevant

variables yielding RF that have poor performance (Genuer et al.; 2008; Boulesteix et al.; 2012).

Additional simulation studies with many predictor variables with effect show that if many

predictors are associated with the response, there is a larger difference between the stratified

procedures and the test error (Figure 6; see the Appendix for details on the design). However,

in all considered settings the difference between the stratified procedures and the test error is

(substantially) smaller than that between the unstratified procedures and the test error.

To conclude, based on these results we have identified settings with (i) (nearly) balanced

response classes, (ii) large predictor numbers, (iii) small sample sizes and (iv) a high signal-

to-noise ratio as “high-risk settings” in which a large overestimation in the OOB error can be
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Figure 3: Error rate estimates for the binary null case study (unbalanced). Shown are different error
rate estimates for the setting with two response classes of unequal size (smaller class containing
30% of the observations) and without any predictors with effect. The error rate was estimated
through the test error, the OOB error, the stratified OOB error, the CV error, and the stratified
CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error
rate over 500 repetitions was obtained for a range of mtry values.

expected. By now we have quantified the bias for rather simplistic settings which might not be

realistic. The results for the real world high-dimensional genomic datasets in which (i)–(iv) apply,

are shown in Figure 5. They are in line with the results obtained for the simulation studies: the

OOB error and the CV error substantially overestimate the true prediction error for all datasets.

The difference between the test error and the error estimated by the OOB procedure or CV is

about 5%. CV performs worse than the OOB procedure for the Colon Cancer data, the Prostate

Cancer data and the Leukemia data. This might be related to the fact that the CV error is

computed from models that are fit based on only a subset of the data, yielding only an upper

bound of the prediction error (Kohavi; 1995). Both CV and OOB error are very similar for the

three remaining data sets. The stratified OOB error and the stratified CV error, in contrast, have

a good performance and approximate the test error very well. An overestimation can, however, be

also seen for the stratified CV error and the stratified OOB error for two of the datasets (Colon

Cancer data, Prostate Cancer data). However, it is only marginal.
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Figure 4: Error rate estimates for the binary power case study (unbalanced). Shown are different
error rate estimates for the setting with two response classes of unequal size (smaller class contain-
ing 30% of the observations) and with both predictors with effect and without effect. The error
rate was estimated through the test error, the OOB error, the stratified OOB error, the CV error,
and the stratified CV error for settings with different sample sizes, n, and numbers of predictors,
p. The mean error rate over 500 repetitions was obtained for a range of mtry values.

3.2 Sources of the bias

The main source of the systematic deviation between the OOB error and the test error was already

described in the literature (Mitchell; 2011). In the following, it is described before we explain the

bias and its dependence on specific parameters.

In a nutshell, the bias is attributable to the trees’ sensitivity to class imbalance. It is well

known that classification trees are greatly affected by class imbalance in the sense that trees that

were trained on unbalanced samples preferentially classify new observations into the class from

which most training observations come. This is also relevant to settings in which there is an equal

number of observations from both classes; later it will be shown that for balanced samples the

problem is even more severe than for unbalanced settings.

Let us assume in the following that we have a sample with an equal number of observations

from both response classes. When constructing trees for a RF we randomly draw subsamples

(or bootstrap samples) of observations from the original balanced sample. The subsample may

comprise for example, 63.2% of the observations contained in the original sample. In contrast to

the original sample, the resulting subsamples generally do not include exactly the same number

of observations from each class, that is, the subsamples are often not exactly balanced or may
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Figure 5: Error rate estimates for the real data study. Shown are different error rate estimates
for six real data sets with two or three response classes, respectively, of nearly the same size. The
error rate was estimated through the test error, the OOB error, the stratified OOB error, the
CV error, and the stratified CV error for settings with different sample sizes, n, and numbers of
predictors, p. The mean error rate over 1000 repetitions was obtained for a range of mtry values.
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Figure 6: Error rate estimates for additional simulation studies with many predictors with effect
and n = 20. Shown are different error rate estimates for an additional simulation study with
two response classes of equal size and many predictor variables with effect. The error rate was
estimated through the test error, the OOB error, the stratified OOB error, the CV error, and the
stratified CV error for settings with sample size n = 20 and different numbers of predictors, p.
The mean error rate over 500 repetitions was obtained for a range of mtry values.
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even be extremely unbalanced if much more observations from one class are drawn by chance.

The degree of class imbalance in the subsample is directly dependent on the sample size of the

original sample, n. If n is large the chance for a moderate to extreme class imbalance in the

subsample will be rather small, while for small n, the chance will be large. As an example, Figure

7 shows the degree of class imbalance in subsamples of size 63.2% that are drawn from balanced

samples of sizes n = 1000, n = 100 and n = 20. The distributions showing the frequency of class 1

observations in the subsamples were determined based on the hypergeometric distribution. As can

be seen, there is a high chance of an extreme class imbalance for small samples. For large samples

(n = 1000), in contrast, there is only a small degree of class imbalance. The class imbalance

in the subsamples yields trees that preferentially predict the class most often represented in the

subsample and the more extreme the class imbalance the more extreme the preferential prediction.

Thus, the preferential prediction for a class is more pronounced for smaller samples than for larger

samples.
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Figure 7: Class imbalance in subsamples drawn from a balanced original sample. Distribution
of the frequency of class 1 observations in subsamples of size b0.632nc, randomly drawn from
a balanced sample with a total of n = 1000 (upper), n = 100 (middle), and n = 20 (lower),
observations from classes 1 and 2.

If a prediction shall be obtained for a new observation, all trees in the RF are used to derive

a prediction. Then we expect approximately the same number of trees preferentially predicting

class 1 and trees preferentially predicting class 2. Overall, there is no preferential prediction

for a new observation. In contrast to that, for OOB observations not all trees but only those

trees for which the observation was not part of the subsample, are used to derive the prediction.

If assuming that an observation i comes from class 1, for example, there are more subsamples
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without i that contain more observations from class 2 than subsamples without i that contain

more observations from class 1. Accordingly, more of these trees (i.e., trees for which observation

i is “out-of-bag”) preferentially predict class 2, that is the wrong class. Again, the sample sizes

plays an important role. If it is large, there are not substantially more subsamples without i

that contain more observations from class 2. Then there is hardly any preferential prediction for

the wrong class. In contrast to that, if sample size is small, say n = 10, there are substantially

more subsamples without i that contain more observations from class 2, yielding substantially

more trees preferentially predicting the wrong class. This illustrates that the OOB predictions

are worse than predictions that are obtained from the RF if the observation was not used for the

construction of the RF. This mechanism finally leads to an OOB error that is too pessimistic, that

is, it overestimates the error which is computed for new data.

In line with results from the literature, our studies suggest that a large amount of the overes-

timation can be solved by drawing subsamples in which the class distribution of the original data

set is preserved (Mitchell; 2011). All trees in the RF will then have the same preference for a class,

and this preference depends on the class distribution of the original sample. Thus, all trees in the

RF and the subset of the trees that is used to derive a prediction for an OOB observation have

exactly the same preference for a class which leads to similar test errors and OOB errors. Note

that computing the OOB error from an RF based on stratified subsamples yields the stratified

OOB error introduced in Section 2.4. The results shown in this paper support the findings of

Mitchell (2011) who claims that most of the bias can be eliminated by this alternative OOB error

estimation.

In the following subsections, the reason for the dependence of the overestimation on data

characteristics and RF parameters are investigated.

3.2.1 Role of the number of observations

The role of the sample size has already been described in detail in 3.2. It was motivated that

there is a larger overestimation for smaller sample sizes. In a nutshell, large class imbalance in

subsamples is especially a problem for smaller samples. The class imbalance results in trees that

tend to more often predict the class that is more represented in the corresponding in-bag sample,

or equivalently, that is less often represented in the corresponding OOB sample, leading to higher

OOB errors. The dependence of the overestimation on the sample size is seen in the simulation

results shown in Section 3.1. These show that the bias is almost negligible for n = 1000, while it

is large for n = 20.

3.2.2 Role of mtry

Figures 1 and 2 show that, in particular for balanced data, the difference between the OOB error

and the test error may strongly depend on the parameter mtry. The difference is larger for smaller

mtry values. For unbalanced data in contrast, the difference is smaller for smaller mtry values

(Figures 3 and 4). The reasons for this are investigated separately for unbalanced and balanced

settings in the following.

Unbalanced settings: Let us first consider the setting with unbalanced data and no associa-

tions between the predictors and the response (null case study). Although there is no association

between the predictors and the response in truth, some of the predictors may discriminate in-bag
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observations from different classes well by chance. If a large mtry value is used, these predictors

are chosen for a split and the in-bag observations can be separated well. This yields trees that

predict both classes and not only one of the classes (e.g. the most frequent class). In contrast

to that, the well-discriminating predictors are not frequently selected as splitting variables in a

tree if mtry is small. The resulting trees cannot discriminate between in-bag observations from

different classes well and tend to predict the larger class more often. Then the RF, which uses

the majority vote of the trees, predicts the larger class for almost all observations. This can also

be seen by inspecting class predictions that are obtained from RFs with different mtry values in

empirical studies. The inspection of class predictions was done using simulation studies and is

outlined next.

Class predictions were obtained from RFs constructed using 10 observations from class 1 and

20 observations from class 2. The number of predictors, p, was 100. A null case scenario was

simulated in which all predictors X1, . . . , X100 were drawn from a standard normal distribution.

Predictions by the RFs were obtained for n = 10000 test observations, with an equal number of

observations from class 1 and class 2. The proportion of class 1 (minority class) predictions for

the test observations was finally computed. This process was repeated 500 times. Figure 8 shows

the frequency of class 1 predictions over the 500 repetitions for different values of mtry. A clear

trend can be seen that the larger class (class 2 in this simulation study) is more often predicted if

mtry is small. For mtry values close to one, class 2 is almost always predicted.
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Figure 8: The trees’ preference for predicting the larger class in dependence on mtry. Fraction
of class 1 (minority class in training sample) predictions obtained for balanced test samples with
5000 observations, each from class 1 and 2, and p = 100 (null case setting). Predictions were
obtained by RFs with specific mtry (x-axis). RFs were trained on n = 30 observations (10 from
class 1 and 20 from class 2) with p = 100. Results are shown for 500 repetitions.

The OOB error and the test error are almost the same if mtry is very small because most of

the trees in the RF predict the same class. In contrast to that, the trees do not always predict

the same class if mtry is large. For large mtry the phenomenon that for the OOB observations

the trees tend to predict the opposite class becomes relevant again. This explains the finding that
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there is a larger difference between the test error and the OOB error for large mtry than for small

mtry. However, in contrast to balanced settings in which the trees tend to predict the opposite

class for an OOB observation, in unbalanced settings most of the trees have the preference for the

same class, namely the largest class in the original sample. This reduces the risk that the trees

tend to predict the opposite class for an OOB observation. Thus, the difference between the test

error and the OOB error is far smaller in the unbalanced simulation settings than in the balanced

simulation settings and is smallest in settings with very extreme class imbalance (Figure A4).

Also note that, if mtry is set to 1 the prediction of only one class may yield low error rates in

specific settings. These are settings in which most of the observations, for which the predictions

shall be obtained, are from the class that is always predicted by the RF. For example, if the test

data includes 30% of observations from class 1, and the RF always predicts class 2, then the test

error is 30%. The same applies to the OOB error. In the simulated data, for example, the OOB

error is estimated based on observations, in which approx. 70% of the observations come from

class 2 and 30% come from class 1. In the case of small mtry values, the RF very frequently

predicts class 2 (cf. Figure 8), yielding an OOB error close to 30%. This is also the reason why

smaller test and OOB errors were obtained for smaller mtry values than for larger mtry values in

the unbalanced null case scenarios, seen in Figure 3 and A3. The other error estimation strategies

are similarly affected.

Balanced settings: Let us now consider the balanced null case study, in which there is an

equal number of observations from all classes. When drawing samples for tree construction, it is

usually the case that not exactly the same number of observations is drawn from each class. When

drawing subsamples of size 0.632n from n = 20 observations (10 from each response class), for

example, there is a 50% chance of obtaining subsamples with a different number of observations

from each class (cf. Figure 7). When drawing from n = 100 observations, the chance for an

unbalanced subsample is about 84%. The trees grown on unbalanced samples tend to predict

the larger class more often, especially if mtry is small. However, in contrast to the settings with

an unbalanced original data, in the case of a balanced original sample there are approximately

as many trees preferentially predicting class 1 as trees preferentially predicting class 2. In the

absence of any associations between the predictors and the response, a new observation would

then be classified to class 1 by 50% of the trees, while the other 50% of the trees classify the

observation to class 2. This is independent of which value for mtry is chosen. Thus, there is

no preferential prediction by the RF for new observations in balanced data settings. The test

error computed from new observations is therefore not affected by different values for mtry if the

original sample is balanced.

The OOB error, in contrast, is affected by the choice of mtry (cf. Figure 1). When obtaining

predictions for an OOB observation i that comes from, say class 2, not all trees of a RF are used

but only the trees that are constructed based on samples in which the observation was out-of-bag.

Most importantly, even if the original sample is completely balanced, in the samples that do not

contain the observation i, the proportion of observations from class 1 is higher on average than the

proportion of observations from class 2. Thus, by construction, an OOB observation is out-of-bag

for trees that tend to more often predict a class different than the true class the OOB observation

belongs to. As explained before, this leads to the high OOB error rates observed in Figure 1. The

OOB errors even exceed 0.5, which is the error rate of a random prediction in the absence of any

associations between predictors and the response. As was outlined in the previous paragraph, the
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trees’ preference for the larger class in the subsample (i.e., most often the “wrong” class for the

OOB observation) is stronger when small mtry values are used. This explains the finding that the

OOB error is larger for RFs in which a small mtry value is used.

So far we focused on the case in which neither of the predictors are associated with the response.

The mechanism described for the null case study may also play a role for the power case study,

especially if there are only few predictors with effect and if the effects are small. In settings with

only few influential predictors and many noise predictors, very small mtry values lead to trees

that frequently select irrelevant variables for a split. Similar to the null case study, the trees

then preferentially predict the class from which most training observations come. This explains

the finding that in the simulation study (including only few relevant variables with rather small

effects) the bias in the OOB error is larger for smaller mtry values in balanced settings and the

opposite is true for unbalanced settings.

3.2.3 Role of the predictors

The simulation results have shown that the bias in the OOB error also greatly depends on the

total number of predictors. This is again attributable to the trees’ preference for the larger class.

It can be shown that the presence of more predictors leads to a more extreme preference for the

majority class. We repeated the null case studies presented in Section 3.2.2 and Figure 8 for

settings with p = 10 and p = 1000. Figure 9 shows the fraction of class 1 predictions (average of

500 repetitions) for p = 10, p = 100 and p = 1000. It shows that the preference for predicting

class 1 by RF is more pronounced for settings with a larger number of predictors.
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Figure 9: The trees’ preference for predicting the larger class in dependence on mtry and the pre-
dictor number. Fraction of class 1 (minority class in training sample) predictions obtained for bal-
anced test samples with 5000 observations from class 1 and 2, each (null case setting). Predictions
were obtained by RFs with specific mtry from a corresponding grid of mtry values ({1, 2, . . . , 10}
for p = 10, {1, 10, 20, . . . , 100} for p = 100, {1, 100, 200, . . . , 1000} for p = 1000). RFs were trained
on n = 30 observations (10 from class 1 and 20 from class 2) with p ∈ {10, 100, 1000}. The mean
fractions over 500 repetitions are shown.
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Again, depending on the class imbalance in the data used to construct the RF, a preference

for the larger class can be of advantage or disadvantage for the bias in the OOB error. With

unbalanced training data, a preference for the majority class will lead to a smaller bias in the

OOB error; see Section 3.2.2. A larger bias in the OOB error will be obtained in contrast if the

training data is balanced.

Correlations between predictors also play a role, as can be seen when comparing the results

of the real data null case studies with and without any correlations, respectively (Figures 10 and

11). We observe that the bias of the OOB error and the CV error is larger if predictors are

uncorrelated. Intuitively, if predictors are correlated, they contain more or less the same (or at

least similar) information. Thus, there is less information contained in correlated predictors than

in uncorrelated predictors. A similar mechanism occurs that has been described for the number

of predictors: the less information that is contained in the data (e.g. due to a small number of

predictors or high correlations), the less extreme the trees’ preference for one of the classes and

the smaller the bias in the OOB error.
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Figure 10: Error rate estimates for the real data null case study with correlations. Shown are
different error rate estimates for studies based on six real data sets with correlated predictors and
two or three response classes, respectively, of nearly the same size. The error rate was estimated
through the test error, the OOB error, the stratified OOB error, the CV error, and the stratified
CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error
rate over 1000 repetitions was obtained for a range of mtry values.
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Figure 11: Error rate estimates for the real data null case study without correlations. Shown are
different error rate estimates for studies based on six real data sets with uncorrelated predictors and
two or three response classes, respectively, of nearly the same size. The error rate was estimated
through the test error, the OOB error, the stratified OOB error, the CV error, and the stratified
CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error
rate over 1000 repetitions was obtained for a range of mtry values.

3.3 Consequences for tuning mtry

The OOB error is frequently used to tune parameters like mtry. From the studies in Section 3.1,

we have seen that the unstratified OOB error and the unstratified CV error often overestimate the

true prediction error. Further, it was seen in some settings that the overestimation depends on

mtry. This was not the case for the unstratified procedures, which were almost unbiased. In the

following, we compare the performance of RF when the mtry value is chosen based on the OOB

error, the stratified OOB error, the CV error and the stratified CV error. The performance was

measured by the error rate which was computed based on the independent test data set. A different

performance between RFs selected based on the stratified and the unstratified error estimation

procedures would suggest that the bias affects tuning parameter selection, or in other words, that

a suboptimal model might be chosen when the OOB error (or unstratified cross-validation) is used

for parameter tuning.

There were no systematic differences between the four methods in the considered simulation

studies and in the real data studies (not shown). However, for the additional simulation studies

with many variables with effect, there are differences in the settings with p = 1000 and n = 20.

Figure 6 (right) shows that a small mtry of 10 yields the RF with the best performance since the
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test error is smallest when using this mtry value. The OOB error, however, steadily decreases

with larger values for mtry, suggesting that large values of mtry, such as 1000, should be used

instead. Figure 12 shows the performance of the resulting RFs for 500 repetitions of the studies.

For the setting with p = 1000 and n = 20 (Figure 12, right) the mean difference in performance

between the OOB error and the stratified OOB error is 1.5%, and the mean difference between

the unstratified CV error and the stratified CV error is 1.9%. The bias in the OOB error thus

impacts tuning parameter selection and leads to the selection of suboptimal classifiers in this case.

However, the impact of the bias is very small and probably of no relevance in practice. For the two

settings with smaller predictor numbers (p = 10, p = 100), there is again no difference between

the four methods (first and second plot in Figure 12).
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Figure 12: The effect of the bias of the OOB error on RF’s performance when used for mtry
selection. Performance of RF classifiers when mtry was selected based on the OOB error, the
stratified OOB error, the unstratified CV error and the stratified CV error for the additional
simulation studies with many variables with effect. The performance of RF was measured using
a large independent test data set.

4 Discussion

Although it was shown that the OOB error may overestimate the true prediction error (Bylander;

2002; Mitchell; 2011), the OOB error is still often used in practice as an estimate of the true

prediction error in classification tasks (e.g., DeVries et al.; 2016; Kim et al.; 2014; Marston et al.;

2014). The overestimation is due to the fact that the OOB observations that are used to derive

predictions from the trees, might not be representative, in the sense that the response class

distribution in the OOB sample might be very different from that of the in-bag sample. A

classification tree that is trained on an in-bag sample in which the majority of the observations, say

90%, come from class 1, will have poor predictive ability for an OOB sample, in which only 10% of

the observations belong to class 1. Due to random variations different response class distributions

in the in-bag and the OOB samples are more likely when the original sample is small. This is the

reason why in all the studies shown in this paper, the overestimation in the OOB error was large in

small samples. This was also seen in the studies of Mitchell (2011) who considered only a few very

specific settings with small sample sizes. The current studies also show that there is hardly any

overestimation in large samples, and that the OOB error can be regarded as a good estimate of

the true prediction error in very large samples. However, it is difficult to foresee in which settings
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the OOB error will be a good estimate of the true prediction error because there are many factors

that affect the bias in the OOB error and there is an interplay between the factors. These factors

are related to both the data and the parameters of RF.

Concerning parameters in RF, mtry was identified as the parameter with the greatest influence

on the bias of the OOB error (Mitchell; 2011). We performed additional studies (not shown) that

suggest that the parameters controlling the size of trees, in contrast, do not depend on the bias of

the OOB error. Depending on the response class distribution in the original sample, larger values

for mtry might increase (unbalanced settings) or decrease (balanced settings) the bias.

The dependency between mtry and the bias in the OOB error might be problematic in the

context of parameter tuning if the OOB error is used for selecting an appropriate value for mtry.

Although there was a clear dependence between the bias and mtry in some of the studies, in only

one of them this has lead to the selection of suboptimal RF classifiers. This can be explained by the

fact that in nearly all studies, it seemed as if the specific choice of mtry was not crucial. There was

a wide range of mtry values that yielded optimal performance, especially for the high-dimensional

genomic data sets with values for mtry larger than 100 yielding very similar performance. However,

one cannot be sure that this applies to all future data sets. Among our studies there was one study

that had a clear performance peak at a specific mtry value. In this setting the tuning parameter

selection based on the stratified OOB error yielded slightly more accurate RF models than that

based on the classical, that is unstratified, OOB error.

With respect to data-dependent factors, the present studies identified the response class dis-

tribution of the original sample, the predictor number, the correlation between predictors as well

as their predictive ability as relevant factors that have an effect on the bias. The studies reported

in the literature consider only settings in which there is an equal number of observations from all

response classes (Mitchell; 2011). The results in this paper show that the effect of mtry on the

bias depends on the response class distribution of the original sample. For completely balanced

samples, we observed a more extreme overestimation of the true error rate for smaller values of

mtry. For unbalanced samples the opposite was true. This again underlines that it is difficult to

assess whether there will be any bias in future real data applications and how severe this bias is

because it depends on several different factors acting together.

Of note, the problem that leads to the overestimation in the error rate is not specific to OOB

estimation in RF, but is relevant to any data splitting procedure, such as cross-validation, ap-

plied to classification methods that are sensitive towards class-imbalance. This was also seen

in the present studies, in which 10-fold cross-validation also yielded too pessimistic error rates.

Therefore, cross-validation and related procedures are no alternatives for preventing the overesti-

mation. Instead stratified procedures, such as stratified cross-validation, have been recommended

to bypass this problem (Witten and Frank; 2005). The use of stratified cross-validation for error

estimation in the context of RF has not been systematically investigated so far. In the present

studies, stratified cross-validation resulted in good approximations of the true prediction error of

RF in the considered settings.

In benchmarking studies, cross-validation is often applied to compare the performance of dif-

ferent statistical methods. If it is applied in a non-stratified manner, it might happen that the

performance for RF might look worse than it actually is. If RF (or a different method that is

sensitive towards class imbalance) is considered as a competing method in a benchmark study, it

is recommended to use stratified cross-validation to avoid misinterpretations on the performance

of RF or other methods that are similarly affected. Note that this problem is relevant especially
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to settings in which the original data contains (almost) exactly the same number of observations

from the response classes, that is, it is not a problem that is encountered especially in unbalanced

data settings.

In the original RF version of Breiman (2001), the trees are constructed based on bootstrap

samples. In the studies of Mitchell (2011), the use of bootstrap sampling was shown to further

increase the bias. Irrespective of this, bootstrap sampling has been shown to induce a preferential

selection of certain types of predictors for a split (Strobl et al.; 2007). Therefore, the use of

bootstrapping in RF is strictly disapproved to avoid misleading conclusions, and the R package

party, for example, draws subsamples by default for this reason. Accordingly, the results in this

paper are shown for RF that are always constructed based on subsampling – either unstratified

or stratified, the latter leading to the correction addressed above.

The studies shown in this paper are mainly based on the original RF version of Breiman (2001).

Some of the simulation settings were also performed with the RF version based on conditional

inference trees (Hothorn et al.; 2006) implemented in the R package party to assess if there are

any differences (results not shown). The results obtained for this RF version were very similar

suggesting that the conclusions drawn from the studies are not specific to the RF version used.

Moreover, the problem is not specific to the use of the error rate as performance measure. Any

different measure is affected in the same manner. The area under the curve (AUC), for example,

represents the probability that for an observation from the diseased class the probability of being

diseased is higher than for an observation from the class of healthy subjects (Pepe; 2004). It is

often used as an alternative to the error rate for assessing the prediction accuracy in unbalanced

binary classification settings. However, the AUC computed from OOB observations similarly

underestimates the true AUC, and one cannot circumvent the problem of the biased OOB error

by using a performance measure different than the error rate.

Both the stratified OOB error and the error rate computed from stratified cross-validation also

overestimated the true prediction error in some of our studies with metric predictor variables. The

overestimation was larger if many variables were associated with the response and only marginal if

only few variables were associated. Overall, the overestimation through the stratified procedures

was considerably smaller than that obtained through the unstratified procedures, supporting the

use of stratified procedures. Future studies might aim at developing alternative error estimation

strategies that are both unbiased and computationally tractable.

5 Conclusions

To date, very little is known about the bias of the OOB error, and the OOB error is still fre-

quently used for error estimation in classification settings. Simulation-based and real-data based

studies with metric predictor variables show that the overestimation is not restricted to binary

classification settings and that it is largest in settings with

• an equal number of observations from all response classes (i.e., balanced),

• small sample sizes,

• a large number of predictor variables,

• small correlations between predictors and

• weak effects.
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These factors act together which makes it difficult to foresee in which settings the OOB error will

greatly overestimate the true prediction error.

The overestimation encountered in settings with metric predictor variables might depend on the

parameter mtry. This might be a problem when the OOB error is used for selecting an appropriate

value for mtry, a procedure frequently done in practice. Overall, the prediction performance of

RF was not substantially affected when using the OOB error for selecting an appropriate value

for mtry in the studies shown in this paper. However, one cannot be sure that this applies to all

future data.

In line with results reported in the literature (Mitchell; 2011), the use of stratified subsampling

yielded almost unbiased error rates in most settings with metric predictors. It might therefore be a

solution that is easy to apply in order to reduce the bias in the OOB error. This “correction of the

OOB error” consists in using stratified subsampling in place of an unstratified sampling (bootstrap

or subsampling) which is usually used when drawing samples on which trees are constructed. Thus,

it comes at no additional costs and is easy to apply. For any settings that include only metric

predictor variables it is therefore recommended preferring stratified subsampling over unstratified

sampling that is, by default, used in RF. This reduces the risk for misinterpretations regarding

the predictive accuracy of RF, and might avoid choosing a value for mtry that possibly leads to

suboptimal performance when using the OOB error for parameter tuning.
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Appendix

A.1 Results of multiclass power and null case studies

The results of the multiclass null case study and the multiclass power case study are shown in
Figures A1 and A2.
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Figure A1: Shown are different error rate estimates for the setting with four response classes
of equal size and predictors without any effect. The error rate was estimated through the test
error, the OOB error, the stratified OOB error, the CV error, and the stratified CV error for
settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over
500 repetitions was obtained for a range of mtry values.

A.2 Results of binary power and null case studies with ex-
treme class imbalance (ratio 1:5)

The results of the study with binary response and class imbalance ratio 1:5 are shown in Figures
A3 and A4.

A.3 Additional simulation studies: Binary power case study
with many predictors with effect

A study with many predictors with effect was simulated. The predictors not associated with the
response followed a standard normal distribution. The distribution of predictors with association
was different for the two response classes. The predictor values for observations from class 1 were
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Figure A2: Shown are different error rate estimates for the setting with four response classes of
equal size and both predictors with effect and without any effect. The error rate was estimated
through the test error, the OOB error, the stratified OOB error, the CV error, and the stratified
CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error
rate over 500 repetitions was obtained for a range of mtry values.

always drawn from a standard normal distribution. The predictor values for observations from
class 2 were drawn from a normal distribution with variance 1 and a mean that was in turn drawn
from a normal distribution specified in Table A1.

No. predictors Predictors Class 1 Class 2
N(µ1, 1) N(µ2, 1)

p = 10 X1 µ1 = 0 µ2 ∼ N(0, 1)
...

...
...

X8 µ1 = 0 µ2 ∼ N(0, 1)
X9, X10 µ1 = 0 µ2 = 0

p = 100 X1 µ1 = 0 µ2 ∼ N(0, 0.62)
...

...
...

X50 µ1 = 0 µ2 ∼ N(0, 0.62)
X51, . . . , X100 µ1 = 0 µ2 = 0

p = 1000 X1 µ1 = 0 µ2 ∼ N(0, 0.22)
...

...
...

X500 µ1 = 0 µ2 ∼ N(0, 0.22)
X501, . . . , X1000 µ1 = 0 µ2 = 0

Table A1: Distribution of predictors in class 1 and class 2 in the binary power case study with
many predictors with effect.

30



● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

n 
=

 6
0

p = 10

● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

1 10 20 30 40 50 60 70 80 90 10
0

p = 100

● ● ● ● ● ● ● ● ● ● ● ● ●
0.

0
0.

2
0.

4

mtry

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

1 10 50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

p = 1000

● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

n 
=

 1
00

● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

1 10 20 30 40 50 60 70 80 90 10
0

● ● ● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

1 10 50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

n 
=

 1
00

0

mtry

● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

1 10 20 30 40 50 60 70 80 90 10
0

mtry

● ● ● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

mtry

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

1 10 50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

mtry

Binary null case study (extremely unbalanced)

OOB
strat. OOB
CV
strat. CV
Test error

Figure A3: Shown are different error rate estimates for the setting with two extremely unbalanced
response classes (ratio 5:1) and predictors without any effect. The error rate was estimated through
the test error, the OOB error, the stratified OOB error, the CV error, and the stratified CV error
for settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over
500 repetitions was obtained for a range of mtry values.
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Figure A4: Shown are different error rate estimates for the setting with two extremely unbalanced
response classes (ratio 1:5) and both predictors with effect and without any effect. The error rate
was estimated through the test error, the OOB error, the stratified OOB error, the CV error, and
the stratified CV error for settings with different sample sizes, n, and numbers of predictors, p.
The mean error rate over 500 repetitions was obtained for a range of mtry values.
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