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Abstract
Dairy cows mobilize large amounts of body fat during early lactation to overcome negative

energy balance which typically arises in this period. As an adaptation process, adipose tis-

sues of cows undergo extensive remodeling during late pregnancy and early lactation. The

objective of the present study was to characterize this remodeling to get a better under-

standing of adaptation processes in adipose tissues, affected by changing metabolic condi-

tions including lipid mobilization and refilling as a function of energy status. This was done

by determining adipocyte size in histological sections of subcutaneous and retroperitoneal

adipose tissue biopsy samples collected from German Holstein cows at 42 days prepartum,

and 1, 21, and 100 days postpartum. Characterization of cell size changes was extended

by the analysis of DNA, triacylglycerol, and protein content per gram tissue, and β-actin pro-

tein expression in the same samples. In both adipose tissue depots cell size was becoming

smaller during the course of the study, suggesting a decrease in cellular triacylglycerol con-

tent. Results of DNA, triacylglycerol, and protein content, and β-actin protein expression

could only partially explain the observed differences in cell size. The retroperitoneal adipose

tissue exhibited a greater extent of time-related differences in cell size, DNA, and protein

content, suggesting greater dynamics and metabolic flexibility for this abdominal depot

compared to the investigated subcutaneous depot.

Introduction
Energy metabolism of dairy cows is continuously subjected to adjustments driven by the vary-
ing energy status of the lactation cycle. Consequently, this adaptation process substantially af-
fects the metabolism of adipose tissue as the main organ for energy storage [1–3]. Late
lactation and the dry period are characterized by the dominance of an anabolic status allowing
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storage of triacylglycerols (TAG) in the adipose tissues [4,5]. In contrast, early lactation is a pe-
riod of catabolism associated with an intensive lipid mobilization. The reason for this is a nega-
tive energy balance which arises in high-yielding dairy cows due to the mismatch between high
energy demand for lactation and decreased feed intake. This results in well-defined physiologi-
cal and metabolic processes to maintain sufficient energy flow towards life sustaining processes
and milk synthesis [4,5]. This cycle of lipid storage and lipid mobilization, which is a typical
metabolic phenomenon in dairy cows, necessarily induces extensive adipose tissue remodeling
[6,7].

Within the lactation cycle, the early postpartum period is of special importance in terms of
adipose tissue metabolism, as this time period is often affected by pathophysiological events
[8,9]. Well-known signs of the ongoing lipid mobilization are the increase of the blood non-es-
terified fatty acids (NEFA) concentration and the decrease of body condition score (BCS),
body weight and back fat thickness [10,11]. Furthermore, the decrease of adipose depot weight
[12] and the decrease of adipocyte size [13–15] has been reported as indicators of TAG unload-
ing from adipocytes. A strong relationship between adipocyte size and BCS and body weight
was demonstrated [16], and associations between the changes in size, volume and number of
adipocytes were described [13]. These led to the conclusion that the decrease and increase of
adipose mass during the lactation cycle is controlled mainly by changes in the size of the adipo-
cytes [13,16]. Another area of interest concerning adipose tissue metabolism is how differently
subcutaneous and abdominal adipose depots contribute to the overall lipid metabolism. In this
respect, the retroperitoneal adipose depot, as one of the abdominal depots, was found to under-
go a more pronounced weight loss during early lactation [12]. This was accompanied by a
more significant decrease in adipocyte size [15], associated with a potentially more intensive li-
polysis due to greater activation of hormone-sensitive lipase [17], compared to the subcutane-
ous depot. Based on these findings, the retroperitoneal adipose depot was discussed to be
preferentially mobilized in times of a negative energy balance, compared with the subcutaneous
depot [12,15,17].

Studying the changes of indicative components of adipose tissues and relating these to
changes of adipocyte size would help further improve our understanding of the dynamic pro-
cess of adipose tissue remodeling. Therefore, the present study aimed to describe adipocyte size
(detected as cell area in histological sections) and composition (DNA, TAG, β-actin and total
protein content) of adipose tissues at 4 distinctive time points in the course of the periparturi-
ent period: 42 days (d) prepartum, and 1 d, 21 d, and 100 d postpartum. These measurements
were conducted on consecutively collected biopsy samples from the same animals, allowing the
description of dynamic changes proceeding during the periparturient period within the adipose
depots of individual animals. Both subcutaneous (SCAT) and retroperitoneal adipose tissues
(RPAT) were studied to gain more information on depot-selective characteristics of adipose
tissue cellularity and remodeling. Results of the present study provide a deeper insight to the
structural aspects of adipose tissue plasticity in response to the dynamic changes of energy ho-
meostasis throughout the periparturient period in dairy cows.

Materials and Methods

Animals, Feeding and Sampling
Twenty German Holstein cows were used for tissue sampling. The study was conducted at the
Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loef-
fler-Institute, Braunschweig, Germany), and was approved by the Lower Saxony State Office
for Consumer Protection and Food Safety (LAVES; Oldenburg, Germany) in agreement with
the German Animal Welfare Act (permit number: 33.9-42502-04-11/0444). All surgery was
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performed under local anesthesia, and all efforts were made to avoid suffering of the animals
during the study.

Cows were in their second, third, or fourth lactation, and were selected for this study to
achieve homogeneity in body weight, BCS, and milk yield of previous lactation, in order to at-
tenuate possible effects of different condition and merit. All animals were kept in a freestall
housing system, were clinically healthy, and were dried off 8 weeks before the expected date of
parturition. Cows were fed ad libitum and had free access to water. Diets were formulated as a
grass-silage and corn-silage based total mixed ration according to the recommendations of the
Society of Nutrition Physiology (Frankfurt amMain, Germany) for transition cows. The study
period started when cows reached 42 d prepartum and ended at 100 d postpartum. Body condi-
tion score of the cows was registered according to the 5-point scale 42 d prepartum and 1 d, 21
d, and 100 d postpartum.

Adipose tissue biopsy samples were collected from all 20 cows from the SCAT and the
RPAT depot 42 d before the expected time of parturition (retrospectively 41.8 ± 1.1 d,
mean ± SEM) as well as 1 d, 21 d, and 100 d postpartum, according to [17,18]. After prepara-
tion of the surgical field and local anesthesia induced with procaine (Procaine 2%; Selectavet
Dr. Otto Fischer GmbH, Weyarn-Holzolling, Germany; without epinephrine), samples from
adipose tissues were collected under antiseptic conditions. Firstly, a 3–4 cm skin incision was
made in the region of the tail head on alternating sides (right and left) to obtain SCAT. Imme-
diately thereafter, a 3–5 cm skin incision was made to collect the RPAT sample, in the angle be-
tween the lumbar transversal processes and the iliac bone. Muscles were dissected until
reaching the peritoneum, and biopsy samples were taken directly from the adipose depot local-
ized above the peritoneum. Biopsies of RPAT were obtained each time alternating from the left
and right flank. Skin incisions were closed with horizontal interrupted mattress suture pattern
(Filovet; Wirtschaftsgenossenschaft Deutscher Tierärzte, Garbsen, Germany). After removal,
tissue samples were trimmed of connective and vascular tissue and rinsed thoroughly in ice-
cold physiological saline solution to reduce blood contamination. About 500 mg of each tissue
sample was immediately embedded in Tissue Tek (Sakura Finetek Europe, Alphen aan den
Rijn, The Netherlands) and snap frozen for later histological preparation. The rest of the tissues
were collected in plastic tubes and snap frozen in liquid nitrogen for composition analysis. All
samples were stored at -80°C until further processing.

Histomorphometric Analysis of Adipose Tissues
Histological sections of SCAT and RPAT samples obtained from 13 out of the 20 cows were
prepared using a Leica Jung CM3000 cryostat at -30°C. In case of all 4 time points the samples
of the same 13 cows were used. The samples of the remaining 7 cows were not suitable for his-
tomorphometric evaluation due to technical reasons. Tissue samples embedded in Tissue Tek
were cut into 10 μm sections. Six non-adjacent sections of each sample were mounted onto
glass slides (Superfrost, Gerhard Menzel GmbH, Braunschweig, Germany). Sections were fixat-
ed in 4% formaldehyde for 10 min and then hematoxylin-eosin stained. Meyer’s Hemalaun so-
lution (AppliChem GmbH, Darmstadt, Germany) was applied for 5 min, and 0.25% eosin
solution (Sigma-Aldrich, St. Louis, MO, USA) was applied for 2 min to the sections. After de-
hydration in ethanol and clearing in xylol, sections were covered with a cover slip attached
with Depex (Serva Electrophoresis GmbH, Heidelberg, Germany). Tissue sections were visual-
ized using an Olympus IX70 microscope and digitally captured using a Leica DFC 290 camera.
Exemplary pictures of hematoxylin-eosin stained tissue slides are shown in S1 Fig. For each
sample, cell area (in μm2) of 164 ± 13 (mean ± SEM) cells was measured in ImageJ 1.48. Cross-
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sectional area of cell was assessed by histomorphometry and was referred to as ‘cell size’
throughout the manuscript.

Composition Analysis of Adipose Tissues
To gain additional information on changes of adipose tissue composition in the course of the
periparturient period, DNA, TAG, and total protein content, and β-actin protein expression
was quantified in the SCAT and RPAT samples of all 20 cows.

DNA Content. To isolate DNA from the samples, 100 mg of tissue was homogenized in 1
ml of DNAzol reagent (Invitrogen, Life Technologies GmbH Darmstadt, Germany) using an
Eppendorf pestle. Homogenates were incubated at 60°C for 5 min with continuous shaking at
350 rpm and briefly ultrasonicated to ensure complete cell lysis. Centrifugation at 10,000 g for
10 min at 4°C was performed in order to remove insoluble tissue fragments. DNA in the super-
natant was precipitated, washed and then resuspended in 8 mMNaOH solution according to
the manufacturer’s protocol. Finally, measured DNA concentrations were corrected for wet
weight of the tissue sample and results were expressed as μg DNA per g tissue.

Triacylglycerol Content. Triacylglycerol content of tissue samples was measured using a
colorimetric kit (BioVision Inc, Milpitas, CA, USA). To prepare homogenates, approximately
500 mg tissue was ground in liquid nitrogen. From this tissue powder, a representative aliquot
of 50 mg was weighed and mixed with 1 ml 5% Nonidet P40 detergent solution (Fluka Feinche-
mikalien GmbH, Neu-Ulm, Germany). This mixture was further homogenized with a Fas-
tPrep-24 tissue homogenizer (MPI Biomedicals, Santa Ana, CA, USA) and incubated at 99°C
for 5 min with continuous shaking at 300 rpm. Afterwards, samples were centrifuged at 10,000
g for 2 min and the sediment was discarded. Incubation and centrifugation were repeated to
maximize lipid extraction yield. Triacylglycerol concentration in the lipid extract was measured
according to the manufacturer’s protocol with a spectrophotometer. The measurement was
based on the enzymatic hydrolysis of TAG and the colorimetric detection of the released glyc-
erol after oxidation. Finally, measured TAG concentrations were corrected for tissue wet
weight and results were expressed as mmol TAG per g tissue.

Total Protein Content. Total protein concentration was determined based on the Bradford
method. To extract proteins, the same tissue powder was used as for the TAG content measure-
ment. One hundred milligram of this powder was homogenized in a lysis buffer [50 mMHEPES
(Carl Roth GmbH, Karlsruhe, Germany), 4 mM ethylene glycol-bis(2-aminoethylether)-N,N,N’,
N’-tetraacetic acid (Sigma-Aldrich), 10 mM EDTA (Sigma-Aldrich), 0.1% Triton X-100 (Sigma-
Aldrich), 100 mM β-glycerol phosphate (Sigma-Aldrich), 15 mM sodium pyrophosphate
(Sigma-Aldrich), 5 mM sodium orthovanadate (Sigma-Aldrich), 2.5 mM sodium fluoride
(Sigma-Aldrich) and a protease inhibitor cocktail (CompleteMini, Roche Diagnostics GmbH,
Mannheim, Germany)] with a FastPrep-24 tissue homogenizer (MPI Biomedicals). Protein ex-
tracts were centrifuged at 10,000 g for 5 min at 4°C. Protein concentration was measured in the
corresponding fraction by using Bradford reagent (Serva Electrophoresis GmbH) according to
the manufacturer’s protocol. Finally, measured protein concentrations were corrected for wet
weight of the sample and results were expressed as mg total protein per g tissue.

β-Actin Protein Expression. Protein extracts prepared for protein content measurement
were used to quantify β-actin expression by Western blotting. Samples were diluted to 0.5 mg
total protein per ml in loading buffer [50 mM Tris-HCl (Sigma-Aldrich), 10% glycerol (Sigma-
Aldrich), 2% SDS (Serva Electrophoresis GmbH), 0.1% bromophenol blue (Sigma-Aldrich),
2% mercaptoethanol (Sigma-Aldrich); final concentrations] and heated at 95°C for 5 min.
Twenty microliter of the diluted samples were separated by SDS-PAGE on 8.1% hand casted
gels and transferred to nitrocellulose membranes by using a Trans-Blot Turbo Transfer System
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(Bio-Rad Laboratories GmbH, München, Germany). Membranes were blocked in a PBS-based
solution containing 5% fat-free milk powder (Carl Roth GmbH) and 0.1% Tween 20 (Sigma-
Aldrich) for 1 h at room temperature. Blocked membranes were incubated for 1 h at room tem-
perature with a mouse monoclonal anti-β-actin antibody (catalog number A5441, dilution
1:10,000, Sigma-Aldrich). Afterwards, membranes were incubated with a peroxidase conjugate
anti-mouse secondary antibody (catalog number A2304, dilution 1:50,000, Sigma-Aldrich) at
room temperature for 1 hour. Immunodetection was performed by incubating the membranes
with LumiGlo reagent (Cell Signaling Technology, Danvers, MA) and chemiluminescence was
detected by a ChemiDoc XRS+ system (Bio-Rad Laboratories GmbH). Exemplary pictures of
membranes are shown in S2 Fig. Bands were quantified by densitometry using Image Lab 4.0
software (Bio-Rad Laboratories GmbH). Finally, membranes were Indian ink stained (Pelikan
PBS, Peine, Germany) to control equal loading.

Statistical Analysis
Cell size data were analyzed for relative (%) frequency distribution, with classification of cells
as small (under 3,500 μm2), medium (3,500–7,500 μm2), big (7,500–11,500 μm2), or large (over
11,500 μm2). The distribution pattern between time points were analyzed both in SCAT and in
RPAT by a one-way ANOVA with a Tukey’s multiple comparison test. Cell size and tissue
composition data were tested for normal distribution by the Shapiro-Wilk test. The median of
the measured cell size values within each sample was registered and assigned to the corre-
sponding sample as a single ‘cell size’ value. Cell size, DNA content, TAG content, total protein
content, and β-actin protein expression of SCAT and RPAT samples were analyzed by a two-
way ANOVA for factors ‘time related to parturition’ and ‘tissue depot’ with a Tukey’s multiple
comparison test. Level of statistical significance was set at P< 0.05. Statistical tests were per-
formed in GraphPad Prism 6.0.

Results and Discussion
Late pregnancy and early lactation in dairy cows involves extensive changes in adipose tissue
metabolism, being under neuroendocrine control and resulting in structural remodeling.
Therefore, sampling times were chosen to give a representative overview of the periparturient
period: 42 d prepartum was chosen to reflect metabolic status in the dry period with a positive
energy balance, at 1 d postpartum lipid mobilization has already begun typically reflected by
high plasma NEFA concentrations, at 21 d postpartum lipid mobilization still lasts due to on-
going negative energy balance, and at 100 d postpartum cows usually just have reached positive
energy balance again [4,5,19]. In the current study these changes were supported by the BCS of
the cows recorded on the sampling days (Table 1).

Table 1. Body condition score (BCS) of dairy cows corresponding to biopsy samplings.

Day1 -42 +1 +21 +100

BCS2 3.29a ± 0.12 3.09 ± 0.12 2.89b ± 0.11 3.05 ± 0.12

Body condition score was significantly affected by the time related to parturition (P < 0.01, ANOVA with repeated measures).
1Related to parturition
2Mean ± SEM (n = 20)
a,bP = 0.001 (Tukey’s post-test)

doi:10.1371/journal.pone.0127208.t001
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Histomorphometric Analysis
Adipocytes had a smaller cell size at the end of the trial compared to the beginning (P< 0.001)
as shown in Fig 1A. However, the pattern of the differences was not the same in SCAT and
RPAT, shown by a significant interaction (P< 0.01) between time course and tissue depot. In
fact, SCAT cells were found to become gradually smaller at the 4 studied time points, whereas
RPAT cells were the largest at 1 d postpartum, and were thereafter smaller at 21 d and 100 d
postpartum (Fig 1A). These time- and tissue-related differences were also reflected in the fre-
quency distribution pattern of the cell size at different time points (Fig 1B for SCAT and Fig 1C
for RPAT). Small cells occurred more frequently at 100 d postpartum (P< 0.001 in RPAT),
while the highest number of large cells was observed at 42 d prepartum in SCAT and at 1 d
postpartum in RPAT (P< 0.001 in RPAT).

The overall decrease in adipose cell size was in agreement with the change from anabolism
to catabolism in adipose tissue metabolism of periparturient cows [4,6,7,20,21], and with the
findings of Smith and McNamara and Akter et al. [13,15] describing a decrease in adipocyte
size during early lactation. The size of adipocytes is mainly determined by their TAG content,
and the quantitative changes of the latter are under the control of the net balance of lipogenesis
and lipolysis [13,22]. Accordingly, cell size changes shown in Fig 1A indicated a continuous
TAG unloading from SCAT cells. In the case of RPAT it was suggested that lipogenesis still
dominated in the period between 42 d prepartum and 1 d postpartum, followed by a more in-
tensive TAG unloading in the postpartum period than in SCAT. The assumption that the ex-
tent of fat accretion and fat mobilization was greater in RPAT than in SCAT is in fact keeping
up with previous work by Locher et al., suggesting greater metabolic flexibility for RPAT
[17,23]. Furthermore, the size of adipocytes are known to have a strong relationship with the
size of the fat mass stored in adipose depots, as demonstrated by Waltner et al. [16]. In this re-
spect, cell size differences between 42 d prepartum and 1 d postpartum suggested that the
RPAT depot gained more weight during the last 6 weeks of pregnancy than the SCAT (see
Fig 1A). Subsequently during early lactation, the more pronounced retroperitoneal adipocyte
size decrease suggested that the RPAT depot underwent a more intensive weight loss than the
SCAT depot. This is consistent with previous work registering a more pronounced weight loss
of the RPAT depot than in the SCAT depot in cows during the first 105 d of lactation [12].

The increased number of small cells registered on 100 d postpartum (shown in Fig 1B and
1C) could be explained by an ongoing depletion of the lipid droplet TAG storage, resulting in
the ongoing shrinkage of the adipocytes. However, this could also be attributed to preadipocyte
differentiation and development of new adipocytes [24–26]. Physiologically, cows are already
back to a positive energy balance at 100 d postpartum [1,25,27], which was also indicated in
the current study by the increase of BCS at 100 d postpartum (shown in Table 1). The assump-
tion that newly differentiated adipocytes accounted for at least some part of the small cells at
100 d postpartum could also be supported by the findings of Häussler et al. [28], observing a
significantly lower percentage of preadipocytes at 100 d postpartum than at 42 d postpartum in
bovine RPAT, indicating that many preadipocytes differentiated in this time span.

Composition Analysis
DNA quantification revealed that the DNA content of RPAT was greater 100 d postpartum
than during early lactation (P< 0.05) as shown in Fig 2A. However, SCAT did not have signifi-
cantly different DNA contents at the observed time points. As the DNA content of a single cell
is known to be relatively constant, it was intended to be used as an indicator of cell number
[29]. The greater DNA content observed at 100 d postpartum in RPAT suggested that one
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gram of tissue contained a higher number of cells. This was in accordance with the greater ex-
tent of cell size decrease registered postpartum in RPAT, compared with SCAT (Fig 1A).

In contrast to our expectations, TAG content per tissue wet weight was not significantly dif-
ferent between the observed time points (Fig 2B). However, there was a remarkable difference
between the depots, as RPAT had a lower TAG content than SCAT (P< 0.001). Despite the
ongoing lipid mobilization reflected by gradually smaller cell size values postpartum, TAG con-
tent remained stable. Apparently, this was in contrast with previous research revealing that
dairy cows can mobilize up to 0.6 kg/day body fat during early lactation [2]. A logical explana-
tion for the lack of change in TAG content might be that TAGs might have had a paramount
proportion compared with all other components in adipose tissue. During lipid mobilization

Fig 1. Cell size in subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) samples of dairy
cows around parturition. (A) The median of the measured cell size values was assigned to each sample,
and plotted to visualize time-related and depot-related variation. Different superscripts indicate P < 0.05.
(B-C)Relative frequency distribution of measured cell size values at 42 days prepartum (d-42), and at 1 day
(d+1), 21 days (d+21), and 100 days (d+100) postpartum in (B) SCAT and in (C) RPAT. *P < 0.05,
**P < 0.01, ***P < 0.001. Means ± SEM, n = 13.

doi:10.1371/journal.pone.0127208.g001

Fig 2. Composition of subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) samples of dairy cows around parturition. (A) DNA content,
(B) triacylglycerol (TAG) content, (C) total protein content, and (D) β-actin protein expression at 42 days prepartum (d-42), and at 1 day (d+1), 21 days (d
+21), and 100 days (d+100) postpartum. Different superscripts indicate P < 0.05. Means ± SEM, n = 20.

doi:10.1371/journal.pone.0127208.g002
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TAG was unloaded from the adipocytes, which resulted in a greater number of smaller cells in
one gram of tissue, as also demonstrated by Smith and McNamara [13]. In spite of this struc-
tural change (i.e. a combination of decrease in cell size and increase in cell density) the overall
TAG content related to a weight unit of one gram could still remain nearly unchanged, accord-
ing to the current results.

Total protein content was lower at all the postpartum time points in SCAT (P< 0.05), and
was lower at d 21 postpartum in RPAT compared to the other time points (P< 0.01) as shown
in Fig 2C. This was in contrast with the assumption that postpartum mobilization, associated
with an unloading of the lipid droplets, necessarily results in a relative increase of the protein
fraction of the adipose tissue. The only sign supporting this assumption was the increased pro-
tein content observed at 100 d postpartum in RPAT, which again suggested a heavier depletion
of lipid stores from RPAT than from SCAT. Furthermore, considering the whole studied peri-
od, total protein content was greater in RPAT than in SCAT (P< 0.001).

As shown in Fig 2D, expression of the cytoskeletal protein β-actin was gradually higher at
the observed time points throughout the periparturient period in SCAT (P< 0.001). Further-
more, it was significantly lower in RPAT than in SCAT (P< 0.001), in consistence with previ-
ous work [23]. The lower proportion of cytoskeletal structure (β-actin) and the higher
proportion of total protein (enzymes, receptors, cell organelles etc.) suggested greater metabolic
activity for RPAT as an abdominal adipose depot. This was in agreement with Locher et al.
[17,23], also concluding an enhanced metabolic flexibility of RPAT based on greater hormone-
sensitive lipase and AMP-activated protein kinase phosphorylation rates in this depot in peri-
parturient dairy cows. Furthermore, these findings were in agreement with Akter et al. and von
Soosten et al. [12,15] as well, observing a more prominent decrease of RPAT adipocyte size and
RPAT depot mass compared to SCAT during the first 105 d of lactation.

The current findings extended previous work investigating adipose tissue of slaughtered
cows, by tracking the dynamic changes proceeding during the periparturient period in the
same individual animals. However, as a limitation of the study, it has to be noted that the analy-
sis of biopsy samples still provided information of single time points only as snapshots. Conse-
quently, it could not be extrapolated how the studied variables were changing in the time
frames between the samplings. Still, studying adipose tissue morphology at these critical time
points provided data that allow us to characterize remodeling of SCAT and RPAT in a descrip-
tive manner. Additionally, further mechanistic studies should be conducted addressing the dy-
namics of metabolic processes that account for the observed differences in adipose tissue
morphology.

In conclusion, RPAT was suggested to undergo a more dynamic remodeling process during
the periparturient period, implying a higher plasticity of RPAT compared to SCAT.

Supporting Information
S1 Fig. Hematoxylin and eosin stained histological sections of (A-D) subcutaneous adipose
tissue and (E-H) retroperitoneal adipose tissue samples of one representative cows at (A,E)
42 days prepartum, and at (B,F) 1 day, (C,G) 21 days, and (D,F) 100 days postpartum.Mea-
sure bar indicates 100 μm.
(TIF)

S2 Fig. Representative Western blot membranes showing expression of β-actin in (A) sub-
cutaneous adipose tissue, and (B) retroperitoneal adipose tissue samples of dairy cows at
42 day prepartum.
(TIF)
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