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1. INTRODUCTION _,.

This final technical report documents the accomplishments of the program of

research entitled "Radiation Disorder and Aperiodicity in Irradiated Ceramics" for a

program of research funded under DOE Grant DE-FG02-89ER45396 for the period June

22, 1989 - June 21, 1992. This research forms the latest part on an on-going program, begun

at MIT in 1983 under DOE support, which has had as its objectives investigation of the

responses in radiation environments of ceramics heavily-irradiated with electrons, neutrons

and ions, with potential applications to fusion energy technology and high-level nuclear

waste storage. Materials investigated have included SiO 2, MgA1204, A123027N 5, SiC, BeO,

LiA102, Li2ZrO3, CaTiO3, KTaO 3 and Ca(Zr, Pu)Ti20 7. The radiation responses of many

of these ceramic materials, and non-metals in general, have been reviewed by Clinard and

Hobbs [1] The issues involved have been the subject of a series of DOE-sponsored

workshops [2-5] in which the principal investigator has participated, the most recent of which

[5] was held in August 1990.

The program initially proposed for 1989 had as its major objectives two main thrusts:

1) research on defect aggregation in irradiated non-oxide ceramics, and 2) research on

irradiation-induced amorphization of network silicas and phosphates. Austerities in the

DOE-BES budget rendered only one of these thrusts fiscally viable for the period 1989-92,

and the second was selected as the principal focus of the supported work. The subject of

amorphization, about which much less is known about aggregate defect responses of

crystalline ceramics, represents one of the major topics cited by the recent DOE workshop

in its review of relevant radiation effects in non-metals and is introduced in Section 2. The

work on silica has involved two approaches, the first being continued modelling of the

topological possibilities inherent in fully- but aperiodically-connected silica nets, and the

second an experimental assessment of aperiodic structures, produced by cooling through the

glass transition and by electron, ion and neutron irradiation, using energy-filtered electron

diffraction techniques. Progress on these two fronts is described in Sections 3 and 4 of this

proposal. Proposed work on network phosphates was originally envisioned msa collaborative

program with Dr. Lynn Boatner at Oak Ridge National Laboratory, who had been

investigating structural characteristics of crystalline and glassylead pyrophosphates (Pb2P207,



or 2PbO.P205). Because the collaboration did not develop, an independent effort was

instead mounted and expanded to include production, irradiation and evaluation, not only

of crystalline and glassy lead pyrophosphates, but also of a second Pb phosphate

composition, _'the metaphosphate (.PbPzO6, or PbO.P2Os), and intermediate compositions

as weil. Accomplishments in this study are detailed in Section 5.

Two fundamental concerns arising in the study of radiation responses of ceramics are

1) how displacements are created and 2) how the resulting point-defect disorder is

accommodated. Irradiation of solids with fast electrons or very light ions produces relatively

isolated Frenkel defects, with a uniform distribution, in widely-separated direct knock-on

(ballistic) events, while neutron and heavier-ion irradiation generate dense localized collision

cascades within which the structural disorder is anomalously high. Ceramics which are

substantially insulating offer a third prospect, radiolysis, by which the electronic stopping

power (for photons, as well as for electrons and ions) can contribute atomic displacements

by indirect processes involving intermediate localized electronic excitations [6]. For many

ceramics, e.g. halides, silicates) radiolysis competes favorably with direct displacement

processes. What distinguishes most ceramics (with the exception of elemental

semiconductors, like Si or Ge, and diamond) from metals is that they are compounds with

strong site preference and prohibitively high antisite defect energies, which are the

consequence of substantial ionicity; Si, Ge and diamond (and to some extent SiC) are

distinguished by the strongly directed nature of their covalent bonding. Polyatomicity and

site order additionally introduce the possibility of non-stoichiometry in the displacement

spectrum, which has its extreme confirmation in solids, such as halides [7] and SiO2 [8],

which suffer radiolytic di'splacement on only a single sublattice. Structural units are

important in ceramics, both conceptually and mechanistically, and are often vigorously

maintained in the subsequent response to extensive irradiation-induced disorder.

The conventional (i.e. traditionally-studied) mode of accommodating irradiation

disorder is accumulation of point defects at fixed, local sinks, such as dislocation loops, voids

or precipitated phases. These aggregate defect sinks are catalogued in some detail by

Clinard and Hobbs [1] for a representative range of ceramics studied to date and were an

early focus of this program. A second important radiation response, the crystal-to-glass
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transformation known geologically as the metamict transformation [9] or, less accurately,

anaorphization [10], is especially prevalent in ceramic systems (including semiconductors

[11]) but also observed in intermetallic compounds [12]. lt differs fundamentally from the

more usual response of aggregation of irradiation-induced point defects into localized

aggregate sinks in that the result is ultimately global, the entire solid adopting a _miformly

(though not necessarily homogeneously) defective state. Because initially aperiodic solids

(e.g. glasses) are also known to alter their structure (as evinced from density changes) under

irradiation [13], it is suggested here that the metamict states of a solid comprise those

aperiodic structures which are metastable under particular irradiation conditions, irrespective

of the initial structural configuration (crystalline polymorph or glass). The term metamict

is preferable to the somewhat inaccurate epithet amorphous, because there is abundant

evidence that significant medium-range order exists in glasses, and especially radiation

glasses [14]. Aperiodic is better still, but because no suitable corresponding verb expressing

transformation under irradiation to an aperiodic state exists, the terms amorphize and

amorphization will continue to be used, advisedly; metamictization is just too awkward.

Radiation glass is not always appropriate, because metanfict material has not necessarily

been shown to exhibit a glass transition temperature, although again the term will continue

to be used advisedly.

2. THE METAMICT TRANSFORMATION OF IRRADIATED CERAMICS

During amorphization, long-range ordered periodicity (though not necessarily short-

range or even medium-range order) is progressively lost. The transformation is often

complete at surprisingly small displacement doses, 0.1-1 dpa, whether the transformation

results from accumulation of point-defect disorder (as occurs in electron-irradiated silicates

[8] or Si implanted with light ions [15]) or overlap of dense collision cascades. A critical

energy density (of order 5-10 eV/atom) appears to be required, at least for ion

bombardment of semiconductors [11]. The structure of radiation glasses is demonstrably

different from that of their melt-derived counterparts, and often appears to differ from the

crystalline analogues by only small misalignments of the structural coordination units [23].
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There is still no understanding of why some structures are susceptible to

amorphization and others not. Alkali halides, for example, and most metals (with the

_xception of ordered intermetallic alloys) can suffer hundreds of dpa, even at 4K, without

surrendering their crystallinity. Alumina [16,17] and other oxide ceramics with more

complex structures, such as ABO3 perovskites [18,19], A2B207pyrochlores [20-22], ABC207

z_irconolite [22-24] and ASiO4 orthosilicates such as zircon [21,25-28] lose crystallinity under

heavy-ion implantation or e-recoil damage at about 1dpa. Network silicates (such as quartz

[29]), most mineral silicates [30] and complex framework silicates (such as zeolites [31])

re:Mily amorphize as a consequence of radiolytic displacements in an electron beam [32],

whiileother covalent network structures, such as Si [15,33] and some apatite silicates [34,35],

capitulate only under ion bombardment, and still others, like SiC [17,36], only under heavy

ion bombardment.

Matzke [37], following the earlier attempt by Naguib and Kelly [38], has formulated

three criteria, based on crystal structure, bond type and a thermal spike model, to predict

whether or not amorphization occurs in a given material. Typically, largely ionic cubic

subst_rices were predicted to remain crystalline, whereas materials with complex anisotropic

struct_res, covalent bonding and high recrystallization temperatures were predicted to

amo_hize. Despite generally observed adherence to these phenomenological guidelines,

little l;'rogress has been made on their theoretical underpinnings in the intervening half

decade [39].

Some of these trends can, however, be explained in at least general terms. Certainly,

the eox_aleney criterion is related to the lower coordination expected of directed covalent

bonds, and the lower coordination in turn to ease of glass formation [40], which has to do

with co_abinatorial aspects of structural connectivity. Si, with 4-fold coordination, and SiO2

with [4,2_1connectivity, form network structures whose possibilities for restructuring are much

richer thz_,nfor close-packed simple ionic structures. We have come some way in describing

what the'e possibilities are in network silicas over the three years since Matzke's second

review [3:_],and these results are reviewed in Section 3.

Th_;structural complexity issue is related to ease of recrystallization, which is in turn

related to _lefect diffusion and recovery processes. The spatial extent of disorder remaining
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in collision cascades (or "damage tracks") is governed by the extent of epitaxial

recrystallization from the surrounding matrix template, which is why we have consequently

pursued study of the solid-phase epitaxial recrystallization of amorphized ceramics, notably

the peroskites CaTiO 3 [18] and explored the effect of irradiation temperature, annealing

temperature and dose rate in amorphization of zirconolite [46].

Though there is at present little information on the structure of metamict states,

there exist two schools of thought regarding the mechanism of their formation. The first

[33], deriving largely from observations of the metamict transformation under heavy-ion

implantation (but also including heavy a-recoil ions in actinide-containing natural minerals

or doped ceramics), holds that order within individual collision cascades is wholly destroyed,

and that the increasing overlap of disordered (or reordered) cascades progressively

consumes unaffected material until the whole is transformed. Since amorphization is

observed in some materials (e.g. Si) even with light ions, where cascades are small or

substantially absent, a second school contends that the metamict rearrangement takes piace

(perhaps precipitously, and so giving rise to dose-rate and temperature dependencies) when

a critical energy density [11] or critical point defect disorder level [38] accumulates. This

second approach has particular applicability to the role of irradiation-induced chemical

disorder in intermetallic compounds which precedes, and ostensibly precipitates,

amorphization [41], whereas only topological disorder has any relevance for monatomic

solids like silicon or for ceramic compounds with anti-site proscription. Synergism of the

two mechanisms may, of course, be important [42], and grosser yardsticks, such as the

critical energy deposited/atom [11], are frequently invoked. Diffusional rearrangement of

atoms in the "thermal spike" phase of displacement cascades (time - 100 ps) has regained

acceptance as a model for explaining gross disorder within cascades, even in metals [43], but

especially in ceramics where electronic excitations are not quickly delocalized and the large

energy densities (-10 eV/aton.) present are in excess of those at the melting point, lt is

notable that "holes" can be "drilled" in A1203 and other ceramics by the intense ionization

field of an electron beam [44]. Coghlan and Clinard [45], in turn, have emphasized the

importance of redamage in overlapping damage tracks which causes relaxation to a second,

more stable metamict state and so explains earlier density and stored energy results for
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metamictization of CaPuTi207 at 350K and 575K [46]. Weber [27,28] has shown that the

observed sigmoidal amorphization kinetics of Pu-doped (and natural) zircon are

incompatible with direct amorphization within individual cascades and best fit a model of

multiple cascade overlap.

Our own suspicions, based on our experience with tetrahedral networks, defect

fluorite, perovskite and pyrochlore structures, is that what is important for amorphization

are the structural options available to a given compound. When alternative (even higher

energy) structural forms are possible, for example polymorphic forms or particularly where

structures incorporate so-called "structural vacancies", then in the wave of irradiation

disorder multiple medium-range ordered atomic rearrangements can occur during the

thermal phase of recovery which may not be mutually compatible, owing to both volumetric

and structural constraints. It is not so much the complexity of the structure as the

multiplicity of reordering routes which then leads to frustration in recrystallization. In

network silicas, the options are so many, and their choice so stochiastic, that it is impossible

to recover the original structure, short of global recrystallization from the molten state. In

more compact ionic structures, fewer alternatives are available and with greater

differentiation in free energy, but irradiation at low temperature can successfully preclude

uniform adoption of the lowest energy medium-range ordered arrangement. Different

metamict densities for different irradiation types or temperatures may reflect different

proportions of the incompatible alternatives adopted.

3. MODELLING THE METAMICTTRANSFORMATION OF SILICA

Silica is known to adopt a wide variety of structures, most of which comprise three-

dimensional networks of corner-sharing tetrahedra with a silicon atom at their centers and

oxygens as vertices [47]. Several of these networks are crystalline and distinct (cristobalite,

tridymite, keatite, quartz and coesite -- in ascending order of density; see Table I,

reproduced from our 1989 proposal with some additions and subsequent corrections). The

crystalline polymorphs are ali at least metastable at room temperature (through

thermodynamically stable under formation over very different temperature ranges) and, once
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formed, cannot transform into any of the other forms without first melting. One of these,

stishovite, a high-pressure form found in meteorite impacts, is actually close-packed ([SiO6]

octahedra) and dense (4.35 g/cre3). The others are all more open network structures based

on the corner-shared [SiO4] tetrahedral unit, with densities ranging from 2.26 to 3.01 g/cre 3.

Coesite is also formed only in high pressure conditions; quartz and keatite form only

hydrothermally. Cristobalite and tridymite can crystallize from the melt or in a devitrifying

glass.

An indeterminate number of other SiO2 networks are glasses, or are at least

aperiodic and lack the long-range translational periodicity required of crystalline solids.

Silica is an easy glass former, as implied earlier, because the [4,2] connectivity in its network

structure provides only as many constraints on each atom (or tetrahedron) as there are

degrees of freedom; in other words, there is little structural redundancy to oppose arbitrary

rearrangement of structure. SiO2 is thus delicately poised between a crystal and a glass.

(Other oxides, like B203, have more freedoms than constraints and are seldom crystalline;

A1203 has more constraints than freedoms and is rarely glassy-- an exception is a-A1203

corrosion films. Significantly, it is not possible to amorphize GeO 2, isostructural with

stishovite and having the [6,3] rutile structure, with electrons [48]). For this reason, silica

may form not just one but many glass structures, limited only by the steric and topological

constraints which are the subject of this section.

Several of these are identified also by their processing routes. Vitreous silica is

formed by cooling the melt below its transition temperature and has a density about 2.2

g/cm 3. (This glass is sometiimes called "fused quartz" because it can be produced by melting

and recooling quartz, but the name is a misnomer for topological reasons discussed below.)

Pressure-loading quartz produces a high-temperature glassy phase reported to represent a

distinct structural variant [49], while irradiation of quartz produces a glass of unique density
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TABLE I. Silica Polymorph Topology

Polymorph StabilityRegime Density Primitive N= 3
Ring Content

Stishovite high pressure 4.35 (octahedra)

Coesite (site I) high pressure 3.01 2 4-rings 29

1 6-ring

2 8-rings

10 9 rings

3 10-rings

12 ll-rings

9 12-rings

Coesite (site II) 2 4-rings 28

2 6-rings

2 8-rings

8 9-rings

2 lO-rings

10 11-rings

9 12-rings

Quartz low temperature 2.65 6 6-rings 30
(537-870* C)

40 8-rings

Keatite (site I) low temperature 2.5 3 5-rings* 28

5 7-rings

3 8-rings

Keatite (site II) 4 5-rings 30

4 7-rings

4 8-rings

Cristobalite high temperature 2.32 12 6-rings 24
(1470-1728 *C)

Tridymite high temperature 2.26 12 6-rings 25
(870-1470° C)

Metamict low temperature 2.26 fi - 6?

Vitreous high temperature 2.21 fi < 6
frg- :060*c)

•Ring counts for Keatite are incomplete
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(2.26 g/cre 3) which is 14% less dense than quartz and 3% more dense than vitreous silica.

Vitreous silica itself compacts under irradiation to this same unique density. Thus, at least

two glassy states derived from different origins may have a common structure, and at least

two glassy states must differ in structure because they differ in density.

While many oxides amorphize under heavy ion bombardment [17, 19], silicas are

remarkable in their radiation response in that they undergo radiolysis [8,50] and the product

of that radiolysis is the metamict state rather than extended defect formation. These two

features provide a unique opportunity to explore the metamict transformation atom-by-atom,

since radiolysis involves breaking bonds one at a time rather than inducing global disorder

as in a collision cascade. Inui et aL [50] have, indeed, recently shown that, while radiolysis

dominates the metamict transformation for electron irradiation at energies up to 1.5 MeV,

even when ballistic damage becomes dominant at higher energies the transformation

proceeds identically. While this susceptibility has unfortunate implications for the radiation

stability of silicas, and silicates in general (such as nuclear waste storage glasses), the

metamict response under simple bond breaking raises some profound questions about the

structural options available to tetrahedral network structures, both crystalline and aperiodic,

and in turn about the transformation pathways available between options. In one sense,

these questions are both fundamentally about the structure of network glasses.

3.1 The Metamict Transformation in Quartz

We have for some time maintained that details of the metamict state, difficult to

extract by diffraction techniques from fully amorphized material (see Section 4), can be

guessed at from extrapolating observations of how it got to be. This is particularly true for

silica because of the single displacements characteristic of radiolysisl Both high-resolution

structure images (Fig. 1) and diffraction data (such as convergent beam patterns) obtained

during radiolytic transformation of quartz on anelectron beam [29,48] have been shown to

provide information on these intermediate pathways. We propose an extension of these

approaches in quartz and other crystalline polymorphs, for which there was insufficient time

or money in the last funding period, in Section 4.3. A second approach which we have'

pursued is the computer modelling of the early stages of structural rearrangement occurring
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during radiolytic amorphization.

Radiolysis of quartz involves excitonic rupturing of an Si-O bond to form an oxygen

vacancy (the well-known E' center) and its complementary defect, the peroxy radical [8,51].

The mobility of these defects are enhanced in the presence of an irradiation field because

they will be rendered in excited states; with this enhanced mobility it is possible for several

oxygen atoms to rebond, so as to bridge two silicon atoms, one of which is different from

that bonded originally. The process results in a different arrangement of [SiO4] tetrahedra,

giving eventual rise to a small amorphous region within the crystal which will grow in size

as more Si-O bonds break and are rebonded in different stochastic ways. In the equilibrium

state, the atoms surrounding the di,;torted region will relax so that the elastic energy is

minimized, For small displacements of atoms from their equilibrium positions, we can

suppose the total energy to be proportional to the sum of the squares of these

displacements. Therefore, in the minimum energy configuration, the sum of the squares of

the displacements will also be minimum. While this approach has little of the sophistication

of a molecular dynamics simulation, it is considerably simpler to implement for the well-

defined configurations involved and does not require explicit knowledge of Si-O, O-O and

Si-O potentials. An abbreviated account of initial results has been published [52] and is

supplemented here by some later results and more detail.

In the present work we have built a simple engineering model simulating the process

described above. The program is written in VAX Fortran and operates under the

VAX/VMS operating system on our (now somewhat outdated) VAX Station II computer

purchased In 1985 with DOE funds. We have used clusters of two sizes in our program:

27 unit cells (273 atoms) and 64 unit cells (628 atoms); the limit to the size of the cluster

is essentially dependent on the computer memory available. The orthogonal coordinates

of the atoms in the cluster are calculated by program CRYSTAL. Program PLOT plots and

displays the crystal structure on the screen, a hard copy of which can be obtained on the

printer. There is a choice of bonds to be drawn: Si-O, Si-Si or O-O. The coordinates of

any atom or the distance between any two atoms can be displayed. PLOT uses features

from NAMROD (Nagoya University Molecular Structure Display Program [53]) to draw

perspective diagrams of molecules representing atoms and bonds as balls and sticks re-
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spectively. The orthogonal coordinates of the atoms and the interatomic distances are

stored in a file.

We have used program DLS-76 [54] to minimize the sum of the weighted squares of

the deviations from equilibrium interatomic distances. We have prescribed these

interatomic distances to be 0.162 nm for Si-O, 0.2645 nm for O-O and 0.309nm for Si-Si

bonds with weights in the ratios 2:1:0.1 and in some cases 2:1:1 for the sake of comparison.

These weights are chosen so as to maintain the tetrahedral structure while giving maximum

flexibility to the angles between tetrahedra. The resulting crystal structure with the atoms

in the relaxed positions is displayed by PLOT.

Fig. 2(a) shows a ciuste, of 273 atoms (27 unit cells, or 3 cells each in x, y and z

directions) in a perfect crystal. Fig. 2(b) is the same cluster with the crystal disrupted in the

center so that the connectivity of the tetrahedra is changed. We did this by breaking two

existing Si-O bonds and replacing them with two new ones. Fig. 2(c) plots the atoms of Fig.

2(b) after they are relaxed. The coordinates of some of the outer Si atoms in the cluster

were kept invariant for reasons of stability and also because we have assumed that the

strained region is confined within the cluster and does not extend beyond it. We find that

the average Si-O distance in the strained region is increased by 2.5%, the O-O distance by

4% and the Si-Si distance by 3%. These are reasonable values, since quartz expands 14%

by volume in its metamict transition, corresponding to an increase of about 4-5% in length.

We also notice that the crystal structure surrounding the strained region is overly distorted

from a perfect lattice configuration. As mentioned above, we kept the coordinates of the

Si atoms at the outer edges of the cluster invariant, and this has resulted in some large bond

distortions because the cluster is clearly not big enough to accommodate the strain. We

took care of this by removing the constraints on two corner Si atoms. The problem did not

occur when we used the larger cluster described next.

Figures 3(a-c) are similar plots for a cluster of 64 unit cells (4 unit cells each in x,

y and z direction) consisting of 628 atoms with a similar rearrangement of tetrahedra. The

weights for Si-O, O-O and Si-Si distances are, in this case, in the ratio 2:1:1. The

coordinates of ali the Si atoms along the outer edges of the cluster were kept invariant. We

find a similar increase in Si-Si, Si-O and 0-0 distances. The crystal structure surrounding
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the strained region is also similarly distorted.

Figures 4 and 5 ali plot clusters of 27 unit cells. Fig. 4(a) plots a different

rearrangement of the tetrahedra, Fig. 4(b) the result after the atoms were relaxed. The

interatomic distances are about the same as in Fig. 4(b) which is what we expected. Fig.

5(a) has one tetrahedron removed from the center (equivalent to removing one Si and two

oxygen atoms), with Fig. 5(b) showing the result after the atoms _,re relaxed. Since we have

decreased the number of atoms we expect a larger increase in bond lengths. That is, indeed,

what we find. The Si-O distances are increased by about 4% wher-.a_ O-O and 31-Si

removed. The bond distortions are about the same as in Figs. 5(a,b). The weights for Si-O,

O-O and Si-Si distances are in the ratio 2:1:1 for Figs. 4(b) and 5(d).

The present work illustrates the feasibility of modelling strain centers in irradiated

quartz by minimizing the square of the displacements of the atoms from their equilibrium

positions. The bond distortions are calculated to a fairly reasonable accuracy. With the

memory available in our present system, it was not possible to do computations with clusters

larger than 64 unit cells. Since DLS-76 uses a matrix inversion routine, the cpu time is

increased considerably with increasing size of the cluster. In fact, the time for one iteration

for 64 cells was 10 hours cpu time. We are working on changing the matrix inversion

routine in DLS-76 to make it faster.

With larger clusters, it is possible to extend the damaged region by repeating the

process of rearranging the tetrahedra; for example, we could combine the arrangements

shown in Figs. 2(b) and 3(b). One could also create two strained regions separately in the

same cluster which, predictably, would disrupt the surrounding crystal considerably. Such

combinations could be guided by our knowledge of the combinatorial geometric possibilities

for rearrangement discussed below.

3.2 Combinatorial Geometry of Aperiodic Silica

The classical description of crystals is couched in the languages of synunetry and

periodicity. Indeed, a complete description of a crystal (in terms of its atomic coordinates)

can be arrived at using these two languages and a knowledge of its constituents, even though



Fig. 2(a) Representation of 27 unit cells of quartz with no defects.



Fig. 2(b) Representation of 27 unit cells of quartz with 2 central tetrahedra rebonded.



Fig. 2(c) Representation of 27 unit c ells of quartz with 2 tetrahedra rebonded and the
structure relaxed.



Fig. 3(a) Representation of 64 unit cells of quartz with no defects.



Fig. 3(b) Representation of 64 unit cells of quartz with 2 central tetrahedra rebonded.



Fig. 3(c) Representation of 64 unit cells of quar.tz with 2 tetrahedra rebonded and the
structure relaxed.



Fig. 4(a) Representation of 27 unit cells of quartz with 4 central tetrahedra rebonded.



Fig. 4(b) Representation of 27 unit cells of quartz with 4 tetrahedra rebonded and the
structure relaxed.
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Fig. 5(a) Representation of 27 unit cells of quartz with 1 tetrahedron removed.
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Fig. 5(b) Representation of 27 unit cells of quartz with one tetrahedron removed and
the structure relaxed.



Fig. 5(c) Representation of 27 unit cells of quartz with 2 tetrahedra removed.
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Fig. 5(d) Representation of 27 unit cells of quartz with two tetrahedra removed and the
structure relaxed.



there is little in either language which reflects in a direct way the local environment about

. any atom. Glasses are neither symmetric nor periodic, but neither are they random, and it

is the similarity in local environment with that of tile crystalline analogues which conveys

similar physical and classical properties. What crystals and glasses also have in common is

topology, and a topological description is possible for both which reflects even more of the

stractural commonality. Using network silica as the model system, we have been able to

distinguish completely each of the crystalline network silica polymorphs on the basis of its

local topology [55], as detailed in our 1989 proposal, and have now applied insights derived

from this exercise to an investigation of the structural possibilities for fully-connected silica

glass structures [56], which suggest a new model for the intermediate- and long-range order

of vitreous and amorphized silicas [57].
I
i

' The crystalline nature of quartz was first established in mineralogical investigations

of crystal growth facets in _he late 19rh-century, and details of the atomic structure in both

high- and low-temperature distortions worked out by X-ray diffraction in 1920's. An

appreciation of the network linkage of [SiO4] coordination polyhedra in this and other

crystalline silica polymorphs deriving from such diffraction studies led Zachariasen [58] to

postulate the notion of a continuous random network (CRN) as the corresponding structural

basis for oxide (including silica) glasses. The important features of the model are that,

: unlike for crystals, there are no fixed Si-O-Si bond angles and no fixed interatomic distances

beyond first-neighbor atoms. Despite the fact that the model was then (and has since been)

depicted only in two dimensions, and has never been proved to be infinitely extendable, the

CRN model has gained not only currency but ascendancy. The first model for vitreous silica

to be put forward was, however, the crystallite model of Lebedev [59] which has continued

to exert its fascination in the form of subsequent models of glassy silica as a mix of

crystalline polymorphs [60] or as paracrystalline distortions based on rotational freedoms

[61] or siliconyl (O=SIO2) structural groups [62].

Cooper [40] has pointed out that the basis for Zachariasen's structural rules for glass

formation is topological, in that what is characteristic is not the structural unit themselves

but the way in which they are connected together -- their combinatorial geometry. The

notion of a topological network as an analogue of the crystalline lattice has been
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subsequently explored by Wright et al. [63,64]. Meanwhile, crystalline forms continue to be

described in terms of periodic repetition of symmetry elements or of space-filling by periodic

repetition of regular polytopes. That this way of describing crystalline structure has so

dominated thinking is due to an accident of mineralogical history and the aesthetic of

periodicity. There is no reason why crystalline network structures should not be described

with the same topological formalism applied to non-crystalline nets, and indeed there is

considerable advantage in doing so because the approach reveals the commonality of local

structure shared by crystalline and non-crystalline arrangements.

We first briefly describe a method for enumerating the combinatorial possibilities for

fully-connected tetrahedral network structures, as exemplified by SiO2 crystalline

polymorphs, and for establishing the limitations of these possibilities which are ultimately

more topological than steric. The possibilities and limitations function in the same way as

the rules of crystallography do for crystals: they provide a vehicle for usefully describing the

structure, they categorize structural types into classes, and they provide predictive power for

extrapolating to unknown or uncharacteristic structures. The focus is on the one common

unit of structure, an [SiO4] tetrahedron, and how it is connected to its first, second, third,

fourth, and so on, neighbors in network. Even at second network neighbors, few structural

differences emerge: cristobalite, tridymite, keatite and quartz all have twelve second

network-neighbors, though coesite has only ten. This is why it is so difficult to extract

information about structural differences for glasses from diffraction or EXAFS data which

emphasize shorter-range correlations, lt is only at third network-neighbors, (N =3, Table

I), where 6-rings close, that the topology of the crystalline polymorphs significantly differs:

cristobalite has 24, tridymite 25, quartz 30, keatite 28 or 30, and coesite 28 or 29 (the latter

two polymorphs have two topologically inequivalent tetrahedron sites). This focus on

connectivity also provides the means to quantify reconstructive phase transformations; for

example, the transformation between cristobalite (24 third network-neighbors) and quartz

(30 third network-neighbors) must involve creation or elimination of six tetrahedra, which

explains why this transformation does not occur.

Connectivity can be characterized, uniquely for the crystalline polymorphs and at

least generically for network glasses, by a set of rings, or closed paths, of connected
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tetrahedra which pass through a tetrahedron of interest. The rings that are of interest are

those which are indecomposable, that is, which cannot be expressed as the sum of two or

more smaller rings; these rings we call primitive rings, and the (surprisingly firtite) set of ali

primitive rings passing through a given tetrahedron we call the local cluster.

That rings form at all is a necessary consequence of steric hindrance; an ever

branching tree increases in density without limit (unless its structural units get progressively

smaller, as they do in self-similar fractal constructions), unless the branches somewhere close

back on themselves. Rings serve as perfectly adequate descriptors of two-dimensional

networks because the areas they enclose tessellate (tile completely) two-dimensional space;

indeed, the Zachariasen model is always seen depicted in two dimensions because the

topological choices are trivial: every [SiO3] triangle must have three primitive rings passing

through it and these must average by Euler's theorem to 6-fold rings [65]. Generalization

to three dimensions is not permissible, however, because three-dimensional space can be

tessellated only by three-dimensional void polytopes [66], the faces of which are not uniquely

described by rings. A tetrahedron, having six edges, can close multiple rings, whereas a

trianlge in two dimensions closes only three. Ring statistics are necessarily incomplete

descriptors of structure in three dimensions.

The primitive ring content of the local cluster is, nevertheless, remarkably descriptive,

and each of the crystalline network polymorphs is distinguishable on this basis (Table I).

For example, a local cluster of quartz contains six 6-rings and forty 8-rings; cristobalite has

twelve 6-rings passing through each tetrahedron, while tridymite also has twelve 6-rings, only

eleven of which are linearly independent. Two inequivalent tetrahedron sites exist for both

keatite and coesite, each with different primitive ring content.

, One interesting property to emerge from such considerations is the relationship

between primitive ring size and density. Whereas it might be supposed that the presence

of large rings implies lower density, in fact the opposite holds true, as shown in Table I.

This result obtains because large rings can fold back on themselves, whereas small rings

cannot. Also, the presence of odd-numbered rings in crystalline networks (e.g. 5- and 7-rings

in keatite, 9- and l 1-rings in coesite) contradicts the traditional association of odd-

membered rings witb glassy structures. From the position of vitreous silica in the density
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table, it is reasonable to deduce that the average primitive ring size is near six and that the

average number of 6-rings is probably close to twelve, as in the two crystalline polymorphs,

cristobalite and tridymite, of similar density. (The constraints on structures with 6-rings are

discussed below). The fact that vitreous silica densities to form metamict silica suggests that

some increase in primitive ring size has occurred.

Physical modelling has played a large part in the approach to be describeO for

aperiodic structures and has led us to intuitive truths which were later supplied their

mathematical proofs. The model of vitreous silica by Evans and Shirley King [67] was

among the first to attempt to depict the random network in three dimensions, and it was

their models that provided King [68] with information about the ring structures of

crystobalite and tridymite and exposed the utility of enumerating rings passing through a

given center in aperiodic networks. Our models were generated using transparent plastic

tetrahedra, 50 mm on a side, folded up from acetate sheets and connected together with

pipe cleaner segments.

The object of our model building exercise was, however, quite different. While Evans

and King, Bell and Dean [69] and ali subsequent modelers, including Gladden's recent

computer building algorithm [70], have attempted to generate models which conformed to

experimentally-established bond and dihedral angle distributions or imposed steric

constraints, our intent was solely to explore the range of combinatorial possibilities for

tetrahedral network structures and to discover the limits imposed by topological constraints

[57]. lt was therefore possible to construct large models quickly and so produce numerous

examples from which to distinguish small difference between them.

Initially, models of glass structures were built which incorporated a desired local

structure. For example, models were constructed to fourth network neighbors of "quartz-

like" and "cristobalite-like" glass which have a local cluster at each tetrahedron which

approximates either that of quartz (six 6-rings, forty 8-riL'gs) or of cristobalite (twelve 6-

rings). To enumerate the primitive ring content, the tetrahedron connections (vertices,

appropriately numbered) were read into a Symbolics computer (made available through

MIT's Artificial Intelligence Laboratory) for which appropriate LISP code has been written

for finding primitive tings. The models so constructed were completely differentiable,
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proving that two glasses with readily distinguishable network topologies are distinct from

each other and can have different properties. These structures are nevertheless not unique

in that there may exist many, e.g. quartz-like glasses, which are distinct phases but differ

little from each other in network topology.

A crucial question arising in these studies is whether a repeat unit can exist in a glass

in the sense that if a local environment (v/z the local cluster) is associated with one

tetrahedron, can that same local environment be repeated at every tetrahedron? lt is, for

example, possible to repeat a local cluster comprising twelve primitive 6-rings, because that

is the case for the crystalline networks of cristobalite and tridymite. Local clusters of

fourteen, fifteen and even sixteen 6-rings are constructable without steric difficulties, and

can even be embedded in a network, but cannot be repeated at every tetrahedron. We

have, in fact, shown [71] that a cluster with more than twelve linearly.independent 6-rings

cannot be propogated. A structure with fewer than twelve 6-rings (and no larger rings) is

pathologically an underconnected "tree" and soon overgrows itself, resulting in steric

problems and unacceptable densities. There is therefore something generic about twelve

6-rings, and the starting point of our most recent model lies in the characterization of a

fully-bonded infinite silica network whose primitive rings are 6-rings. Some experimental

support for models of this type is provided by Konnert and Karle [72].

Both cristobalite and tridymite, two high temperature silica polymorphs, contain

twelve such rings, and both the correlation between density and ring size and that between

formation temperature and ring size distribution argue for vitreous silica (the thermal glass)

having a similar ring content. Cristobalite and tridymite differ only in the stacking sequence

of sheets of tetrahedra, ABC for cubic (c) cristobalite and AB for hexagonal (h) tridymite.

The linkages between adjacent sheets are made using 6-rings. A silica network, fully bonded

and composed entirely of primitive 6-rings can readily be shown to be a one-dimensional

crystal, as outlined below. Indeed, many models were constructed by Dr. Marians in a vain

attempt to build a three-dimensional network with only 6-rings and no periodicity in any

direction.

The claim follows from three theorems whose proofs have been given by Marians and

Burdett [57] The first is that, in a network of tetrahedra whose primitive rings are all 6-
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rings, each tetrahedron has at least one face which is part of a two-dimensional 6-ring

subnetwork of alternating tetrahedra, as shown in Fig. 6. A two-dimensional subnetwork

contains only vertices, edges and triangles [71]. Such a subnetwork occurs as the basal plane

of tridymite and {111} planes in cristobalite. The tetrahedra in these planes alternate

pointing up and down, as claimed, but the result is quite general. All the faces of a

tetrahedron in cristobalite are part of such a subnetwork, but only one face of a tetrahedron

in tridymite. The second theorem asserts that in a three-dimensional network where

irreducible rings are 6-rings, each tetrahedron has exactly twelve 6-rings, two through each

of its edges. The sterically viable arrangements of these twelve 6-rings exhibit only four

possible local clusters which are embeddable in a 6-ring infinite network. Tl:iese are shown

in Fig. 7 and correspond to cristobalite-like and tridymite-like stacking sequences which may

repeat in arbitrary sequences, such as hhcchc, not unlike polytypic stacking sequences in SiC

[73]. It follows, from a third theorem, that once either a cristobalite-like layer or a

tridymite-like layer has formed, then the rest of that layer must form similarly. A silica

network composed entirely of primitive 6-rings must therefore be topologically, at the very

least, a "one-dimensional" network crystal with a unique direction normal to the two-

dimensional subnetwork. A three-dimensional network cannot be constructed with only 6-

rings and no periodicity in any directions.

One model of silica glass structure to emerge from these observations is one in which

discrete domains ("blobs") of such "almost" crystalline material,, composed wholly of 6-rings,

are linked together by interfacial materials ("glue") exhibiting other ring sizes. The

interfacial material must necessarily consist of a mixture of both larger and smaller rings.

Our models invariably had interfacial material comprising mostly 8-rings, but also of some

rings smaller than 6-rings. Reference to Table I reveals that a "glue" containing

predominantly 8-rings (quartz-like) leads to the densities unacceptably high for vitreous

silica. Vitreous silica must therefore contain some rings smaller than 6-rings. 5-rings are

likely, and in fact a similar conclusion has been reached recently by Gladden [70] using a

structure building algorithm. A two-dimensional analogue is illustrated in Fig. 8.

The modulated network model suggested here retains features of both the random

network and microcrystallite models, lt differs from the continuous random network model
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Fig. 6 :_'_6-ring subnetwork of alternating tetrahedra as found on the basal plane of
tridymite and on {111} planes of cristobalite.



Fig. 7 The four sterically-viable local clusters of a three-dimensional network
containing only primitive 6-rings.
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Fig. 8 a) A two-dimensional topologically-crystalline triangular network, b)
Domains in a two-dimensionalglass,dominated by 6-rings,which are bounded
by lower- and higher-membered rings.



in proposing a specific local network structure, lt differs from the microcrystallite model

in that there is no discrete boundary between the more- and less-ordered regions and the

most-ordered regions are not truly crystalline. They are not formally crystalline because

two-dimensional subnetworks are aperiodic as networks only; embedded in Euclidean space

they are curved. Small networks of the ordered regions built with our allowed local cluster

at each tetrahedron within two tetrahedra of the center, generated domains of order 2 nm

diameter with about ten (if tridymite) layers; if the transition surface is three tetrahedron

thick, the overall doman size comprises 17 tetrahedra and is 3.4 nm in diameter.



4. ELECTRON DIFFRACTION FROM APERIODIC STRUCTURES

Diffraction techniques using X-ray, electron or neutron radiation are powerful methods

in structure determination. For crystalline materials, the systematic correlation of atom posi-

tions due to thespatial periodicity of the crystal structure gives rise to discrete sharp diffrac-

tion peaks located at the reciprocal lattice points. For noncrystalline materials_ however,

the only correlation of atom positions is tha_ due to interatomic bonds of closely prescribed

lengths, and this gives a modulation of the diffraction intensities with a period roughly pro-

portional to the reciprocal of the bond lengths. The diffraction patterns appear as diffuse

halos smeared out into a quite uniform background.

X-ray, neutron and electron diffraction have also been the most powerful techniques

used in the studies of the structure of noncrystalline materials [75 - 80] With electron diffrac-

tion_ the Very strong interaction with matter makes possible the analysis of very small volumes

with acceptable statistics. X-ray or neutron diffraction experiments require relatively much

larger samples, and thus the information obtained is an average over a larger volume of the

sample. In diffraction experiments, both signals that contain structural information and noise

that reduces the quality of the signals are collected, and these must be separated from each

other for an accurate analysis to be made, or some technique must be applied to enhance the

signal/noise ratio.

In an electron diffraction pattern of aperiodic structures, the interatomic interference,

which is representative of the atomic radial distribution, smears into a background contributed

by both elastic and inelastic atomic scattering. Among the major sources that contribute

to the background noise of an electron diffraction pattern are energy fluctuations, arising

from the energy distribution of the electron source and inelastic scattering events occurring

as electrons pass through the thin sample. For a crystalline specimen, the Bragg diffraction

peaks are positioned at a discrete set of locations_ and thus the signal/noise ratio can be

greatly enhanced by using spatial filtering techniques which are commonly utilized in image

processing. When the specimen is non-crystalline, there are no Bragg peaks in the diffraction

patterns, and spatial filtering becomes much more complicated, if not impossible.

Transmission electron diffraction has long been employed to investigate the structure

of such disordered materials, particularly for thin film materials, lt is also ideally suited
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to analysis of small electron-beam amorphized regions in silica thin films and the thin ion-

amorphized surface layers in ion-implanted materials which can be viewed in TEM cross-

sections. There are two ways to approach the structure solution: a) using the experimental

intensity information to deduce the radial distribution function; and b) assuming a structure

model and simulating the diffraction pattern of it which is then compared to experimental

diffraction patterns. The latter method has been employed also to study crystallite structures

in thin films [81 - 83] With proper background reduction, the former method has been used

to deduce radial distribution functions [84 - 90],

Though energy-filtering has long been used to study the energy losses for spectroscopic

analysis, it has not been equally weU explored in diffraction studies. In an attempt to improve

the resolution of their scanning electron diffraction instrument [91 - 93], Grigson and his col-

leagues installed an electrostatic energy filter [94], and the structure of amorphous germanium

films deposited onto carbon substrates was investigated [95]. Graczyk and Moss [96] at MIT

built a similar scanning unit and installed it in a transmission electron microscope. With

such an instrument, studies were made on the structures of amorphous silicon [97], vapor-

deposited and ion-implanted thin films of amorphous germanium [98], and glow discharge

amorphous silicon [99]. Recently the technique has been re-investigated by Cockayne and

McKenzie [100] and their colleagues. With the use of modern energy-loss spectrometers, they

studied both polycrystaUine and amorphous materials, such as a hydrogenated amorphous

silicon-carbon alloy [101], a boron- and phosphorus-doped hydrogenated amorphous silicon

[1021,and BN [103].

4.1 Theory of Energy-Filtered Electron Diffraction

By elastic scattering we mean that the state of the atom is undisturbed due to the

scattering processes. Although in general the collision between electrons and an atom is a

many-body problem, to a very good approximation, it can be treated as a scattering problem

in which the incident electron wave is scattered by the potential field of the atom [104]. In

particular it is applicable to the so-called fast electron regime, when the incident electrons

possess kinetic energies be'_ween 1 kev and 10 MeV, encountered in electron microscopy

experiments. Therefore the elastic scattering problem reduces to solving the Schr_Sdinger

equation with the potential term V(_ being the atomic coulombic electrostatic potential.
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When there is an array of atoms positioned at 7r,_,_m' _,2,3,..., the coherent scat-

tering amplitude is the sum of all amplitudes scattered from each individual atom,

F(_ = _/_ _p(-2_i_. _,) (_)

-.. 2 ein(_) inwhere/0_ is the atomic scattering amplitude for atom m positioned at r,,_ and s = _ ,

which )_is the electron wavelength and O the scattering angle. The intensity is

±(_- IF(_t_= _ _/_/_ _xp(-2._. _.) (2)
Wt ft

where _',,,,,= r',,, - r_ is the interatomic vector between atoms m and n.

If we define the atomic pair correlation function P(r-') in terms of the density function

of scatterers p(_ as the self-correlation function

P(_ = f p(_')p(¢'+_d_', (3)

the Fourier transform of the pair correlation function gives the scattering intensity

I(_ = f P(r-')exp(-27ri_'. (4)

and the inverse Fourier transform of the scattering intensity function gives the pair correlation

function

_d_. (_)

For crystals, the intensity distribution is a set of discrete Bragg peaks and _he pair correlation

function is the Patterson function [105 - 106].

When an array of atoms, considered as a rigid body, is _llowed to take with equal

probability all orientations in space, we have [107]

1 _,r -2,,i,,,,,,, ¢o.¢2__2 sin
< exp(- 2_rig. {wt.) > = 47rrL----_ ._ e .,-wt.

¢d¢
2

sin(21rsrm.)

= 2vsr.,,, ' (6)

and we come to the Debye formula [108] which gives the average intensity from an array of

atoms that take all orientations equally in space,

I(s) = __, _ f._&sin(2_rsr.,.) . (7)
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The pair correlation function is given by [109]

P(r) = 47rfo °°I(s)sin(2_'sr)2_rsrs2ds" (8)

In general the atomic arrangement in a material can be described in terms of three-

dimensional pair-density functions p_j(r-'), which are proportional to the probability that there

is a j-type atom at vector position _' from an average i-type atom. But for a system where

the interatomic vectors have no preferred orientations, the density functions are spherically

symmetrical, and the average scalar quantity 4_'r2p(r)dr is the total number of atoms in a

spherical shell of radius r and thickness dr about an atom. The function 4_rr2p(r) is called

the radial distribution function (RDF). The differential radial distribution function is defined

as

G(r) = 4_rr_ip(r)- p_] (9)

where p_ is the average density of atoms, and the reduced RDF is defined as

D(r) = C(r) = 4_r[p(r)--p°] ' (10)
r

In a multiconstituent material the total RDF can be expressed in terms of the partial

RDFs p_(r) around each type of atom

Ft

4_p(_) = 4_ _ :,p,(_) (11)

where
n

p,(_)= _ p,j(_), (12)
j=l

zi is the fraction of each atom type, and n is the number of different species.

Another often-used function is the so-called interference function defined as

= 2_ / p(_)¢xp(-2_iz._d_

= 8_"2f0 _ p(r)sin(27rsr)rdr (13)

• which characterizes the correlation of the atom positions within the sample.
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For a monoatomic system, with N atoms located at F,_ in the sample, the scattering

intensity is given by equation (2), which can also be expressed as

p.] sin(2xsr)
I = Nf 2 + N/2 f0_" 4rrZ[p(r)-

dr. (14)

Defining

i(s) = I/N- f2
/_ (15)

which is an experimenta_y observable quantity, we have

ffei(s) = 2 rip(r) - po]sin(2rsr)dr. (16)

Using the inverse Fourier transform, we obtain

//47rr2p(r) = 47rr2p, + Srr si(s)sin(27rsr)ds (17)

This result was first derived by Zernike and Prins [110].

In the above integration, however, the upper limit of infinity cannot be realized in

data processing. In practice the integration is carried out up to a finite lirait s,_ and a

termination function g(s) is usually applied. The final transformation is done over g(s)si(s):

// //g(s)si(s)sin(27rsr)ds = g(s)si(s)sin(27rsr)ds , (18)

and this leads to the final result

// g(s)si(s)sin(2_'rs)ds= g _ h(t)(_- t)[p(_- t)- poldt, (19)

where h(r)is the cosine transform of g(s) (assumed to be an even function).

lt is clear from the above discussion that the Fourier transform of si(s)g(s) function

(derived from experimental data) gives a convoluted radial distribution function.

4.1.1 Multiple Component Systems

When there is more than one type of atom existing in the sample, the intensity formula

of equation (2) is still valid. Letting zl, z2,..., z,_ be the atomic fraction of atoms of scattering

mnplltudes fl, f2, ..., fn, we have

n rt n lO0

I(s)= N_zjf_ + N_-_zjf_fj Jo 4rr2P_J(r)Sin(27rsr)a(r)dr ' (20)2tsr
j=l i=l j=l
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where tr(r) is a lunch,ion to allow for the finite size of scattering volume and pie(r) the partial

atomic density distribution function. Introducing a constant mean density of j-type atoms

_j, we can then have

'_ '_ '* [** sin(2_rsr)
l(s) = N _ zjf: + N _ _ zjf, f_ Jo 47rr2[P'J(r) - _'j] 2tsr tr(r)dr+

j=1 i=i j=l

_t n _0 _
-t- N _ __, zifif i 4z-r2_ij sin(27rsr) tr(rldr . (21 /

i=1 j=l 27r_r

The last term gives rise only to a very small contribution to the small-angle region [111].

Ignoring this term, we then obtain
n

j=l

" " [0o _ ,sin(2_rsr) , ,,
4- N __, _ z,ififj Jo 47rr2[Plj(r) - PqJ 2-_sr trt r)ar.

(22)
i=1 j=l

For a binary compound, i, j = 1, 2,

I(s) = N(z_f_ + z=f_)+

fo_ sin(27rsr) dr++Nzxf? 4rr2[P_(r) - Pxx] 27tsr

f0 ° sin(2rsr) dr++Nz_f_f2 47rr2[pt2(r) - P_2] 2_rsr

fo _ sin(27rsr) dr+N 2ff 2rs +

+ Nz2f_ fo_47rr_[p22(r) - P22]sin(27rsr)2_rsrdr . (23)

Though the analysis of compounds is complicated by the multiple density functions and

different scattering amplitudes for different kind of atoms, the Fourier technique is still valid.

By rearranging the above equation, we can have

f2 . fxf2 fzfx • f__22z.si22(s)si(s) = -_2s,_(s) + --F-_-si_2(s) + -_-Ts,2_(s) + F
(24)

where

si(s) = s[I(s)- N(z_f? + z2f_)I/NF 2 (25)
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and

sin(27rsr )ds . (2_)

F2(s) is a normalizing function, typically, but not necessarily, equal to (zlfl + z2f2) 2.

As for the single component case, we apply a termination function g(s) to obtain

2 g(s)si(s) si_;27rsr)ds =

f+__Q_(t)(_- t)[p_(_- t)- _]_t+Z1

+zl

+ xi O,,(t)(r - t)[p,,(r - t)- -fi,,]dt (27)
CO

where

_+_ f'fJ ¢o_(2_)d_; i,j = 1,2. (2s)
From this expression we can clearly see that one diffraction experiment is not sui_cient to

deduce the individual p_j(r) functions even though the Q_j functions are available.

One of the ways to obtain the individual p_j(7")functions is to carry out diffraction

experiments using different types of radiation, e.g. X-rays and neutrons, as first suggested

by Keating [112]. For a binary compounds the solution can be expressed as

47rr2[pl - po] = __8_'rJ0 [--_11 + -- +" 1]s sin(27rsr)ds (29)zl FI_ Fla

47rr_[p2- po] = _-87rrfo°*[Ii(S)F_+ I_(s)F_____+.F_3Ia(s)1]ssin(2_sr)ds (30)

4wr_[P_z_- po] = zlz_87rrfo°°[I_(s)_+ Is(s)F_____+ I3(s)F331]ssin(2_sr)ds
(31)

where po = -_?, and the Fs are appropriate combinations of the scattering factors of the

two different types of atoms in the three diffraction experiments required, e.g.,

fL _b (f_o- f_b)_
F_= f_b (f2a--f2b) _ + f_a fh (f2a--f_b) _ (32)

f_t, (faa- f3b)_ fL _ (f_.-f_)_
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where fj. and fib (j = 1, 2, 3), are the atomic scattering factors for elements a and b respec-

tively in the j-th diffraction experiment.

For a multiple component system, the intensity expression given by equation (2) is

E +E E s.

when the approximation [113]

fm -" K,,f. (33)

is made, in which K,_ is a constant and S_ is a function of s, but the same for all the atoms

within the sample. Then we obtain

I(s) = N E Sff + N]: E Kj ,0 41rr2[pj(r) - p'] 27rat (34)
tgC tt4_

where N is the number of units of composition (or the number of chemical molecular units)

and the summation is done over all the individual atoms within a defined unit of composition

uc. Introducing the reduced intensity function

Z(s) Z )/S; (35)i(s)=( N _ 2 2
ttc

the related intensity function si(s) is then given in the form of a Fourier transform

si(s) = 2 _ Kjr[pj(r)- p.] sin(27rsr)dr , (36)
ilo

azld the radial distribution function pi(r) about a j atom is given by an inverse Fourier

transform in the form of a linear superposition of each kind of atom in the unit of composition

gj47rr2pj(r) = 47rr2p__ gj + 87rr f0 °° si( s ) sin( 27rsr )ds . (37)
tt¢

In practice a convergence factor e"4_"_°_ and a termination at s,,_ are applied, so that a

slightly broadened quantity p_(r) is obtained. The positions of the peaks give the variousu

interatomic distances in the sample.

As discussed in the previous section, the final curve obtained

G(r) = 47rr2 _'_ gj[pj(r) - p,] (38)
tL@
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represents the linear superposition of radial distribution functions for each kind of atom in

the unit composition. The maxima correspond to the various interatomic distances. In some

cases these distances are enough to identify the kinds of atoms represented by the peak,

and in these cases the peak area can be used to calculate the r_umber of neighboring atoms.

For example [111], in the radial distribution function for a sample of metamict Si02, the

first peak at 0.162 nm is from the nearest-neighbor silicon-oxygen separation, as occurs in

crystalline silicas. The observed peak at 0.162 nm is the superposition of two peaks, one

representing oxygens about an average silicon, and the other representing silicons about an

average oxygen. The area of this peak is

A = 1Ks_noKo + 2Kons_Ks_.

where no and nsi are the numbers of nearest neighbor oxygens about a silicon and of nearest

neighbor silicons about an oxygen. However, the stoichiometry gives no = 2nsf, hence the

peak area is given by

A = 2Ks_Kono .

From the measured peak area and the known value of Ksi and Ko, the number of nearest

neighbor oxygens about a silicon c_m be determined.r

4.1.2 Experimental Considerations for Electron Diffraction

Although the procedures to derive RDFs appear to be straightforward, the final result

is subject to a number of errors arising from such factors as misalignment, uncertainties in the

shape of the atomic scattering amplitude, beam divergence, absorption effects, temperature

factors and, most of all, from termination of the experimental data at finite scattering vectors.

The presence of such errors probably accounts for the differences between various sets of data

and the deduced KDFs. Therefore in the numerical procedure used to deduce the radial

distribution functions, these errors must be eliminated in order to obtain any reliable results.

For simplicity, in the following treatment a single component system is assumed. Defin-

ing the reduced interference function Q(s) as

I/N

Q(s)- 2_rsi(s)- 2_rs[ f2 1] (39)



then from the definition of the reduced radial distribution function equation (10) we obtain

the relationship
t

ZO(s) = D(r)sin(2vsr)dr. (40)

The following data reduction procedure was proposed by Kaplow, Strong and Averbach

[114]. In practice, the experimentally observed scattered intensity I' in arbitrary units is

I'= Nit (41)

where N is the number of scatterers which can be treated as a normalization constant, and

Ie is the theoretical value of the scattering intensity which approaches f2 at large values of

s. Therefore a plot of I'/f2 should approach a limiting value of N. This can be a convenient

method of obtaining the normalization constant only when coherent radiation is significant.

When a fractional error _4_ in N is introduced, the resultant error in the reduced

interference function Q(s) is

AQ= ( l) +

= N Q(s) + 2_rs-_NN-. (42)

From the above expression it is seen that the error in D(r) is then the true function modified

by a change in scale plus the transform of a ramp of slope .4._. The transform of the ramp

has the form

AD= _AN [sin(27rrs_.=)__ 27rs._.=cos(2_rs._.=)]r (43)

where S,,,a, is the maximum value of s (the termination value). The error function AD exhibits

sharp oscillations at values of r close to zero, and the absence of these sharp oscillations is

thus a usual criterion for determining the correct value of the normalization constant N.

The termination parameter broadens the peaks in D(r), but in the form of convoluting

the data with a selection window. Another effect of these factors is to suppress the spurious

oscillations in the radial distribution function curves. The broadening will cause a change in

the area under the maxima of the RDF, which in turn can cause erroneous results in deducing

the coordination numbers.

The procedure proposed by Kaplow et al. uses two criteria to correct the errors due

to the termination effect:
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(i) A transform of D(r) must reproduce the measured intensity function;

(ii) In the absence of other errors, the function D(r) in the region below the first peak

must be linear.

Their correction formula [114] yields the D(r) function which is consistent with exper-

imental data and is also physically plausible. The shape is correct below the first peak, and

the corresponding intensity function extends smoothly beyond Sma_ in such a way that both

the extension and the resultant D(v) are physically reasonable.

4.1.3 Inelastic Scattering and Multiple Scattering

From previous discussions it is clear that in order to obtain the partial radial distri-

bution functions, more than one diffraction experiment is required. Instead of using different

types of radiation as discussed in Section 4.1.2, an alternative could be to use the inelastically

scattered electrors with a characteristic energy loss as has been wel|-discussed for the X-ray

case [115]. By choosint; a characteristic energy loss, e.g., the K-edge absorption energy of

an element in the compound, one can collect reflections that have only experienced a single

inelastic scattering event. For a binary compound composed of elements a and b, one can

choose to use the K-edges of a and b respectively. In addition to the elastic diffraction data

one can therefore obtain three sets of diffraction data, and the systematic equations can be

solved to obtain the partial radial distribution functions.

The effects of multiple scattering will complicate the analysis. Since the interaction

between electrons and matter is much stronger than the interaction between X-ray photons

and matter, multiple scattering is important in electron diffraction. Though the multiple

scattering of X-rays is relatively weak, it is not always negligible as demonstrated by Warren

and Mozzi [116]. In this case corrections are required.

For electron diffraction, however, though the importance of multiple scattering in

crystal diffraction has been well recognized [117], it is much less conclusive for the case

of diffraction of noncrystalline materials. Early results [118-119] show that the multiple

scattering is also important for diffraction of non-crystalline materials, but recent arguments

[120] show that the dynamical diffraction formulae can be reduced to equivalent kinematical

form so that the kinematic theory gives reliable results. It has been pointed [121] that the



effect of multiple scattering could lead to erroneous results when the coordination number is

calculated using kinematic formulae.

Since the kinematic approximation has always been used in data aualysis, it is necessary

to investigate the multiple scattering effects in detail. We are currently investigating this effect

by using digital simulations.

4.1.4 Instrumentation

Energy-selecting instruments have been constructed in various laboratories. Grigson

[78] constructed a diffraction camera which is capable of collecting directly the energy-filtered
I

electron diffraction data sequentially with a scanning unit. The energy filtering was re-

alized [122] by using a retarding electrostatic field, and a post-specimen coil was used to

scan the diffraction pattern. Graczyk and Moss [123] incorporated an energy-filtered direct

recording arrangement into a transmission electron microscope, which combines both elec-

tron microscopy and direct recording of electron diffraction patterns. Recently Cockayne

and co-workers [100] used post-specimen scanning coils positioned close to the back focal

plane of the objective lens to scan the diffraction pattern across the entrance aperture of

an energy-selecting spectrometer to collect the diffraction pattern in a sequential mode. Re-

cent advances have now made possible energy-filtered electron diffraction and imaging to be

realized in the same microscope and the recording of the image and corresponding selected

area diffraction pattern in the parallel mode [124-125]. We initially used this type of in-

strument (Zeiss CM902) at the Harvard School of Public Health to acquire energy-filtered

electron diffraction patterns operating at 80 kV with an energy selection window of about

20 eV. Presently_ we are using a field-emission scanning transmission electron microscopes

(VG HBS) at MIT operating at 100 kV, to collect energy-filtered electron diffraction patterns

in the selected area diffraction mode with a 2 eV energy window. A selected area aperture

30#m in diameter was used to limit recorded patterns to a 10/zm specimen area_ a 10/zm

aperture is also available. A collector aperture of 70/zm determines the angular resolution of

the diffraction patterns at 7 × 10 -5 radians. The small size of the electron probe is important

in our experiments, as this can reduce the illuminated area in a minimum while maintaining

quite parallel illumination. This allows us to avoid unwanted damage to the sample and the

amorphization time is also increased. At MIT the installation of a new field-emission STEM

-47-

I_ II'



(VG HB603) has just been completed. The new microscope can be operated up to 300 kV

with post-specimen scanning coils; the post-specimen scanning coils can further reduce the

errors introduced during beam scanning. The high brightness of the fie,ld emission gun op-

erating at 300 kV will provide a more emcient electron radiation source and thicker samples

can be analyzed without sacrificing the signal/noise ration which is vital in STEM difraction

studies. Due to more advanced design, an even smaller probe size of about 0.3 nm can be

obtained, and very small area microdifraction is possible.

4.2 PreliminaryResultsand Discussions

Preliminaryenergy-filtereddiffractiondatawereobtainedfromtheVG HB5 STEM at

MIT fromfourdifferentformsofaperiodicsilica,usingtheexperimentalconditionsdescribed

inSection4.1.4.Both halodiffractionpatternsandline-scanprofileofthediffractionpattern

wererecordedatzeroloss.Intensityplotsofl(s)vs swcrc obtainedby digitizingtheline-

scanprofilesand calibratingagainstcrystallinepeaksinpartially-amorphizedquartz.Radial

distributionfunctionswerereconstructedfromtheintensityplotsusingalgorithmsdescribed

inSection4.1.

The fouraperiodicsilicasexaminedwere vitreoussilicaof verylow watercontent

(< 5ppm) obtainedfromDr.DavidGriscomatNavalResearchLaboratory;100keV electron-

amorphizedc_-quartzwiththeelectronbeam directedinitiallyalonga < 120> direction;c_-

quartzamorphizedusing1.5x 1024r_/m2fastneutronfluence;and ion.amorphizedc_-quartz

implantedalong< 120;>with150kev Si+ ionstoa fluenceof2x 1021Si+/m 2.Allsamples

weremechanicallysectioned,thinnedtoelectrontransparencyby 5 kV argonionmillingand

coatedwith10nm amorphouscarbontoprecludechargeacquisitionintheelectronbeam.

Fig.10 shows theintensityprofileforthevitreoussilicasample.The profilewas ac-

quiredwithminimalpriorelectronirradiationso asnotto altertheinitialaperiodicstate

to themetamictstructure,presumingthiscouldhappen under electronas wellasneutron

irradiation.The radialdistributionfunctionreconstructedfromtheintensityprofileisshown

inFig.11 and accordswellwithRDFs calculatedforvitreoussilicafrom X-rayand neutron

difractiondata[126].Figs.12and 13presentsimilarinformationfortheelectron-amorphized

c_-quartzwhich aresimilartothoseforvitreoussilicabut neverthelessexhibitsome signif-

icantdifferences,lttakes10- 15 minutesto completelyamorphizequartzintheVG HB5
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Fig. 10 (above) Zero-loss scattered intensity distribution for vitreous silica obtained by
digitizing electron diffraction scan profiles.

Fig. 11 (below) Radial distribution function for vitreous silica reconstructed from the
intensity data in Fig. 10.
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Fig. 12 (above) Zero-loss scattered intensity distribution for electron-amorphized e-
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Fig. 13 (below) Radial distribution function for electron-amorphized e-quartz
reconstructed from the intensity data in Fig. 12.
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Fig., 14 (above) Zero-loss scattered intensity distribution for fast neutron-amorphized
e-quartz irradiated to 1.5 x 10_ n/m 2.

Fig. 15 (below) Radial distribution function for neutron-amorphized quartz
reconstructed from the intensity data in Fig. 14.
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,/

STEM under the conditions utilized in acquiring the diffraction profiles, so there is plenty

of opportunity to investigate intermediate states. Figs. 14 and 15 present the equivalent

information from the neutron-amorphized c_-quartz, which a previous TEM study [142] had

shown to _morphize completely between 7 x 102s and 1.5 x 1024 n/m 2 fast neutron fluences.

These differ significantly from both vitreous _iHca and electron amorphized quartz. Zero-loss

scans were also produced from quartz neutron-irradiated to 3 x 102s n/m _ in which substantial

crystallknity was still apparent, but also a diffuse halo. An intermediate dose, 7 x 10_s n/m 2,

will be examined shortly to see if there is sufficient information in the h_lo to deduce an

RDF. Fig. 16 shows a cross-section TEM image of the Si+-aznorphized a-qum'tz, indicating

an amorphization depth of nearly 500 nm, right to the end of the ion range. Unfortunately

the selected azea aperture installed in the VC HB5 selected an area ._ubstantially larger than

this, so it was not possible to extract zero-loss diffraction profiles purely from the amorphized

region above_ but the profiles obtained, Fig. 17, do reveal again differences from the other

aperiodic silicas, particularly a characteristic smearing of the first strong diffraction peak.

RDF reconstruction will be performed on better data obtained when a smaller selected-azea

aperture is installed in the HB5.

These preliminary results have demonstrated the feasibility of using energy,filtered

diffraction information acquired in the STEM for the proposed study of aperiodic ceraznic

structures, information (for at least two of the cases) which could not have been acquired any

other way. From the reconstructed RDFs, we can see that at least three of the structures are

quite different from one another, though all of them are uniformly amorphized silicas. This

was expected, because we know at least two of them (for which bulk density measurements

are possible) have different densities. The common feature is that the first peak in the RDFs

appears much the same, which implies that the basic [SiO4] tetra_edron remains unchanged.

At medium range, however, the structures diverge, ant1 a detailed analysis with progressively

better data is now being made of the differences.

A first attempt was made to acquire diffraction data at energy losses corresponding

to the absm'ption edges of Si and O, without initial success due to poor statistics. We

expect that the VG HB603 STEM, particularly if equipped with parallel electron energy-loss

spectrometry (PEELS) as anticipated, will improve the situation sufficiently to acquire such

information from which to reconstruct partial radial distributions.
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5. THE METAMICT TRANSFORMATION IN POLYPHOSPHATE CERAMICS

[PO4] tetrahedra, like [SiO4] tetrahedra, can link up together by corner sharing

oxygen atoms to form polymerized structures up to and including three-dimensional glassy

networks [127, 128]. While pure P205 is unstable in moist air, addition of metal cations (as

metal oxides) stabilizes the [PO4] linkages in chains or rings. Lead phosphate glasses have

been investigated for decades because their low preparation temperatures and low softening

points have made them ideal subjects for fundamental studies of glass properties, such as

the glass transition and devitrification.

A portion of the PbO-P20 s psuedo-binary phase diagrams is shown in Fig. 18. The

principal crystalline compounds are lead metaphosphate (PbO.P205 or Pb(PO3)2), lead

pyrophosphate (2PbO.P2Os, or PbzP207) and lead orthophosphate (3PbO.P205 or

Pba(PO4)2); the orthophosphate lies in a complicated part of the phase diagram, with several

other line compounds nearby, and has a much higher melting point. Large optical-quality

single crystals of the crystalline pyrophosphate Pb2P207 can be grown to dimensions 5 x 5

x 1 mm3 and have been used to determine the structure of this compound [129], which

consists of sheets of P207 diphosphate dimer groups coordinated to the large Pb2. cations

in four non-equivalent sites.

Unlike their silicate counterparts, the phosphate chains and rings do not significantly

alter their state of polymerization when dissolved into aqueous solutions [130,131]. Their

stability permit_; liquid chromatography to provide information regarding the degree of [PO4]

unit polymerization in the original solid with far more reliability than equivalent techniques

(e.g. trimethylsilylation) do for silicates. High-performance liquid chromatographic (HPLC)

techniques have been used recently to assess polymerization in melt-derived lead-iron

phosphate glasses [132, 133] and in lead phosphate glasses in various stages of devitrification

[134]. Lead metaphosphate glass, for example, consists of long polymeric chains of edge-

sharing [PO4] tetrahedra (average chain length > 15 [PO4] tetrahedra), bonded more weakly

to adjacent chains via Pb2. cations and the non-bridging oxygens in the phosphate chains

[132-134]. The average chain length in lead pyrophosphate glass is closer to two [135]. The

addition of ir(_n,which goes into octahedral sites, stabilizes this glass still further against
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dissolution in aqueous solutions [134,136,137].

More recently, Sales et al. [138,139] have examined the near-surfaces of lead

pyrophosphate single crystals and lead pyrophosphate glass amorphized using 540 kev Pb3.

and 55 keV O2. ion implantation at fluences of 1015-1019 pb3./m 2 and 1017-1021 O2+/m z

respectively. The implantation depth distribution in both cases peaked at about 75 nm. The

implanted surfaces were analyzed using Rutherford back-scattering (RBS) and HPLC. RBS

indicated that the single crystals amorphized at Pb3. ion doses of 1017-10 TMions/m z were

significantly disordered to a depth of 200 nra, at the extreme end-of-range. Calorimetry

established that the lead pyrophosphate glass had a glass transition Tg *, 663K and

crystallized exothermically at 707K. HPLC revealed that the phosphate chain length

distribution was identical for both Pb3.- and O2.- amorphized surfaces but significantly

different from that found in lead pyrophosphate glass produced by cooling from the melt.

In particular, the distribution extends to much longer phosphate chains in the ion-

, amorphized material and longest in the ion-amorphized crystal. This result suggests that the

i metamict structure forms by a quite different mechanism than envisaged [140] for formation

of the thermal glass from the melt. lt also echoes our results for silicas, described in Section

4.2, in which the structures of the thermal glass, the ion-amorphized crystal and the electron-

amorphized crystal are all different, as deduced by energy-filtered electron diffraction.

i

S.l Current Results from Lead Pyrophosphate and Lead Metaphosphate

Because the Sales et al. ion implantation work on lead pyrophosphate accomplished

a portio _1of what we had originally proposed and came out at the beginning of our funding

period, we have had to be content to supplement and extend their work, in particular adding

energy-filtered electron diffraction and high-resolution TEM as analytical tools, using P.

rather than Pb3. and O2. as the implanted ion, and extending the range of lead phosphate

compositions to the metaphosphate compositions which are characterized by initially longer

phosphate chains. Further extension to other phosphate structures is proposed in Section

5.2.

Because their samples were not made available to us, as originally anticipated, we

have developed our own procedure for manufacturing phosphate single crystals and glasses.
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Pb2P207 single crystals were prepared by slow cooling of a melt of equimolar ratios of

99.9999% pure lead oxide (PbO) and 99.9999% pure ammonium dihydrogen phosphate

((NH4)H2PO4) in a platinum crucible at ambient furnace atmosphere. Batches comprising

these two compounds in powder form were first heated to 775 K at 100 K/h and were then

held for 1 h, during which the NH 3 and water produced as a result of decomposition of

(NH4)H2PO 4 were allowed to escape. Batches were then heated at the same rate to 1175

K and held for 10 h to form a low viscosity homogeneous liquid. This liquid was cooled at

a rate of 1 K/h to 950 K, and then subsequently cooled to room temperature at a rate of

50 K/h to obtain large, transparent, micaceous single crystals of Pb2P207 . Although single

crystals as large as 18 x 15 x 2 mm 3 could be obtained, the average size of the single crystals

which could be extracted was 8 x 6 x 0.5 mm 3. Attempts to grow large single crystals of lead

metaphosphate and lead orthophosphate compositions are in progress.

Pb2P20 7glasses were prepared by quenching the same melt (in the platinum crucible)

at 1175 K between two thick copper plates (300 x 250 x 12.5 mm 3) at a quenching rate

expected to be of order 1000 K/s. The glass was then immediately transferred to a specially

designed refractory boat preheated to 650 K (20 K below the Tg of the glass) which in turn

was transferred to a furnace maintained at the same temperature. The glass was annealed

at this temperature for 1 h and then cooled to room temperature at a rate of 50 K/h. Using

this technique, shattering of the glass due to residual stresses arising as a consequence of

a high quenching rate was minimized, and large (40 x 30 x 0.3 mm3), mechanically stable,

transparent lead pyrophosphate glasses could easily be prepared.

Lead metaphosphate (PbO.P205) glass was prepared by mixing appropriate amounts

of powders of lead oxide and ammonium dihydrogen phosphate (of previously mentioned

purity levels) and following the same heating schedule as for the lead pyrophosphate glass.

However, instead of quenching between two copper plates, the melt was poured in graphite

molds preheated to 574 K (20 K below Tg) and the mold with the glass in it immediately

transferred to a furnace held at the same temperature. The glass was annealed at this

temperature for 1 h and then cooled to room temperature at a rate of 50 K/h. Glasses

whose compositions lay in the range between the lead metaphosphate composition

PbO.P20 5 and the composition 1.5PbO.P205 were also prepared using the same technique.
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As noted earlier, phosphate glasses leach rapidly in water. Although the

compositions prepared so far are expected to be stable in ambient humid air, ali of the

phosphates once cooled down to room temperature were transferred to a vacuum desiccator

and then stored in an extremely dry (relative humity less than 2%) N2-atomsphere glove box.

In addition, the raw materials, PbO and (NH4)H2PO4, were also stored in the same glove

box to eliminate batching inconsistencies due to moisture adsorption.

X-ray powder diffraction measurements, performed on crushed single crystals,

confirmed that they were phase pure. Refinement yielded the following triclinic crystal

parameters: a = 6.961(3)/_, b = 6.978(5)A, c = 12.774(7)A, tt = 83.11(8)°,B = 91.14(4)°

and _, = 90.21(5)°. Measurements were also made on glasses and confirmed their aperiodic

state. In addition, Laue back reflection measurements were performed on the lead

pyrophosphate single crystals to confirm that they were single crystals and that the cleavage

planes were orthogonal to the c-axis. DSC measurements were made for ali glasses at a

heating rate of 10 K/min on a Seiko DSC 320 H5200 high-temperature thermal analysis

system. The glass transition temperatures for ali of the well-annealed glasses were

determined and are presented in Table 2.

Table 2. Glass Compositions and Corresponding
Glass Transition Temperatures

Glass Composition T_(K)

1.0PbO .P2Os 594

1.1PbO.P205 598

1.2PbO .PzOs 600

1.3PbO .PzOs 602

1.4PbO.P2Os 616

2.0PbO .P2Os 670

None of the glasses exhibited multiple glass transition temperatures, and the

difference between Tg and the crystallization temperatures was of order only 50-75 K,
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and parallel-section TEM samples for energy-filtered electron diffraction (see Section 4),

high-resolution electron microscopy, liquid phase chromatography/flow injection analysis

(HPLC-FIA) and other analyses (discussed in Section 5.2). Figs. 20 and 21 show bright-field

zero-loss XTEM STEM cross-section images of implanted pyrophosphate and

metaphosphate glass samples, showing observable structural alteration to depths of 150 nm

and 225 nm respectively. Electron microprobe analysis (1.5 nm spot size) revealed

precipitation of anomalously Pb-rich domains in the implantation zone, corresponding to the

TEM image contrast anomalies. This loss of Pb is expected to have had a significant impact

on the phosphate group linkage. Difficulty has been experienced in preparing XTEM

specimens implanted single-crystal pyrophospate because of the micaceous clevage planes

normal to the implantation directions. Lead pyrophosphate single crystals were also

submitted to the spallation neutron source at Los Alamos Meson Physics Facility (LAMPF)

for fast neutron irradiation. These have now been irradiated at a temperature of 333 K to

a fluence of 2 x 10_ n/m z (fission-like spectrum, with a high energy tail > 20 MEV). This

fluence is sufficient to completely amorphize quartz [142]. The neutron-irradiated samples

will be shipped pending acceptable loss of activity.

Conventional and high-resolution 200-keV transmission electron microscopes were

used for the initial screening of the single crystal and glassy phosphates. Fig. 19 shows an

HREM image projected along the [001] axis andits accompanying electron diffraction patter.

TEM specimens of ali but the ion-amorphized crystalline pyrophosphates were

subsequently investigated in an energy-filtered diffraction mode in the VG HB5 STEM.

Figs. 22 and 23 show zero-loss (1.5 eV window) electron diffraction profiles from

unimplanted and P.-implanted lead pyrophosphate and lead metaphosphate glasses in which

substantial differences are evident in the nature of the intermediate-range order. Both

implanted glasses show distinct intensity reductions in the first sharp diffraction peak

(FSDP).
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Fig. 22. Zero-loss STEM diffraction profiles for unirradiated and P+-implanted
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