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Abstract

Background and Aims

Opioids are indispensable for pain treatment but may cause serious nausea and vomiting.

The mechanism leading to these complications is not clear. We investigated whether an

opioid effect on the vestibular system resulting in corrupt head motion sensation is causa-

tive and, consequently, whether head-rest prevents nausea.

Methods

Thirty-six healthy men (26.6±4.3 years) received an opioid remifentanil infusion (45 min,

0.15 μg/kg/min). Outcome measures were the vestibulo-ocular reflex (VOR) gain deter-

mined by video-head-impulse-testing, and nausea. The first experiment (n = 10) assessed

outcome measures at rest and after a series of five 1-Hz forward and backward head-trunk

movements during one-time remifentanil administration. The second experiment (n = 10)

determined outcome measures on two days in a controlled crossover design: (1) without

movement and (2) with a series of five 1-Hz forward and backward head-trunk bends 30

min after remifentanil start. Nausea was psychophysically quantified (scale from 0 to 10).

The third controlled crossover experiment (n = 16) assessed nausea (1) without movement

and (2) with head movement; isolated head movements consisting of the three axes of rota-

tion (pitch, roll, yaw) were imposed 20 times at a frequency of 1 Hz in a random, unpredict-

able order of each of the three axes. All movements were applied manually, passively with

amplitudes of about ± 45 degrees.
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Results

The VOR gain decreased during remifentanil administration (p<0.001), averaging 0.92

±0.05 (mean±standard deviation) before, 0.60±0.12 with, and 0.91±0.05 after infusion. The

average half-life of VOR recovery was 5.3±2.4 min. 32/36 subjects had no nausea at rest

(nausea scale 0.00/0.00 median/interquartile range). Head-trunk and isolated head move-

ment triggered nausea in 64% (p<0.01) with no difference between head-trunk and isolated

head movements (nausea scale 4.00/7.25 and 1.00/4.5, respectively).

Conclusions

Remifentanil reversibly decreases VOR gain at a half-life reflecting the drug’s pharmacoki-

netics. We suggest that the decrease in VOR gain leads to a perceptual mismatch of

multisensory input with the applied head movement, which results in nausea, and that, con-

sequently, vigorous head movements should be avoided to prevent opioid-induced nausea.

Introduction
Opioids are indispensable in the treatment of moderate to severe pain [1]. They are compo-
nents of the number one oral prescription drugs in the US [2] and are applied several million
times a year during general anaesthesia [3].

Opioid use can be complicated by the common adverse reactions of nausea and vomiting
[4], occurring in a third of all patients treated with morphine equivalents [5]. The incidence of
postoperative nausea and vomiting (PONV)–with opioids as a key causative factor [6]–is
approximately 20–30% in the general population [7] and reaches up to 80% in PONV high-
risk patients [6].

Opioid-induced nausea and vomiting is a significant threat: Patients rank it the most dis-
tressing non-life-threatening side effect [1] and consider vomiting the most undesirable com-
plication after surgery [8]. They are willing to spend their own money [9] and even accept pain
[8] in order to avoid it. Opioid-induced nausea and vomiting is a significant factor in complica-
tions such as pulmonary aspiration, dehydration, and electrolyte imbalance. Its treatment costs
several million dollar a year [10], frequently delaying discharge and leading to unexpected hos-
pital admissions after ambulatory surgery [11].

How opioids cause nausea and vomiting is still under debate [7]. It has been suggested that
they have a direct effect on the chemoreceptor trigger zone in the area postrema or on the
vomiting centre in the brainstem [7]. In addition, opioid-induced nausea seems to be triggered
by head motion and avoided by rest [12]. This is why the vestibular system, which senses
head motion, was thought to contribute [6]. But while opioid-receptors can be found within
peripheral [13, 14] and central [15] vestibular structures, tests of vestibular function with opi-
oid administration (e.g., caloric irrigation, galvanic stimulation, and active VOR-testing) were
inconclusive since both a hyper- [16] and hypo- [12, 16–18] excitability were found.

We investigated the vestibulo-ocular reflex function under μ-receptor agonist infusion and
tested the influence of movement on the incidence of opioid-induced nausea.

Material and Methods

Subjects
Thirty-six healthy men (ten for experiment 1, aged 28.1±6.3 years (mean±standard deviation),
ten for experiment 2, aged 26.0±3.2 years, 16 for experiment 3, aged 26.1±3.2 years) took part
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in the study that was approved by the Ethics Committee of the Technische Universität Mün-
chen and in accordance with the Declaration of Helsinki. Subjects gave their written informed
consent and were free to withdraw from the experiment at any time. They were financially
compensated for taking part in the study. Subjects had no history of balance disorders and
were not taking any medication (explicitly no opioids). They experienced no nausea or vomit-
ing when being bent forward and backward passively five times at a frequency of 1 Hz
(about ± 45 degrees, head-trunk movements) or after 20 head-bends for each of the three axes
of rotation (pitch, roll, yaw) with a frequency of 1 Hz (about ± 45 degrees, isolated head move-
ment) at inclusion to the study (without any drug administration).

The simplified risk score for predicting PONV [6], chosen because of its ubiquitous use in
anaesthesiology, was 28±9%, 35±8% and 38±8% (mean±standard deviation) in the subjects of
experiments 1 (n = 10), 2 (n = 10) and 3 (n = 16), respectively. According to this score, 35% of
all subjects (13/36), on average, were expected to experience PONV. Motion sickness suscepti-
bility (assessed by the Motion Sickness Susceptibility Questionnaire, MSSQ-Short [19]) was
4.8±5.0, 7.9±6.1 and 4.2±5.3 respectively. The MSSQ was used in addition to the PONV score
to make sure that groups had comparable motion sickness susceptibility in addition to having
comparable PONV risk. Subjects showed no abnormalities on a standard neurological exam.
They had fasted for 6 hours and refrained from alcohol and smoking for more than 24 hours
before the tests.

Opioid administration
Remifentanil was administered continuously through a cubital vein at a rate of 0.15 μg/kg/min.
It was chosen over other opioids because of its well-known pharmacokinetic characteristics of
a steady-state plasma level after a short time of continuous intravenous administration (90%
after 17 min) and a context-sensitive half-life time of 3.7 min after stopping the drip [20]. Stan-
dard monitoring was applied using ECG, non-invasive blood pressure and pulse oxymetry.

Vestibular testing
Video-head-impulse-testing was used to assess horizontal rotational VOR function as previ-
ously described [21]. Briefly, passive high-acceleration (2000–6000°/s2), small amplitude (10–
20°) head rotations to the right and left in the planes of the horizontal semicircular canals were
applied by an experienced examiner while subjects fixated a target 2.50 meter away (standard
head impulse testing [22]). During head impulse testing, eye movements were measured by
video-oculography, head movements by integrated 6-degree-of-freedom inertial sensors (Eye-
SeeCam [21]). Eye and head movement data were sampled at a rate of 220 Hz. The gain of the
VOR was determined for each head impulse as the ratio of the median of eye and head velocity
between 55 and 65 ms after head movement start. Data for right and left head rotations were
pooled.

Assessment of nausea
Experiment 1. Subjects were asked if they experienced any nausea. The occurrence of

vomiting was noted. Nausea and vomiting were assessed before starting the remifentanil drip,
and after 30 min and 45 min of remifentanil infusion at a rate of 0.15 μg/kg/min.

Experiment 2 and 3. Nausea (maximum experienced for the relevant time period) was
quantified psychophysically in arbitrary values on a numerical scale from 0 (“everything
okay”) to 10 (“vomiting”). The 11-point scale was chosen in analogy to Apfel et al. [23]. Quan-
tification occurred before starting the remifentanil drip and after 45 min of remifentanil infu-
sion at a rate of 0.15 μg/kg/min.
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Nausea was always assessed before video-head-impulse testing (experiments 1 and 2).

Experimental paradigms
Experiment 1 was designed to test the effect of remifentanil. Experiment 2 had a crossover
design to further verify the motion-dependency and, in particular, to exclude the possibility of
a simple time effect, i.e., that nausea and vomiting would have occurred after prolonged remi-
fentanil exposure even without movement. To verify that head motion alone, sensed by the ves-
tibular system, leads to nausea during opioid-use, experiment 3 was designed as a cross-over
design with the paradigm “rest” being compared to a paradigm “head move” consisting of head
movement alone (trunk stationary). Graphical explanations of all experiments are in Fig 1.

Experiment 1. Remifentanil was continuously administered with increasing rates of
0.05 μg/kg/min, 0.10 μg/kg/min and 0.15 μg/kg/min while subjects lay in a semirecumbent
position (total time of administration at 0.15 μg/kg/min: 45 min). The occurrence of nausea
and vomiting was documented before starting the drip and during remifentanil administration
at 0.15 μg/kg/min at rest and after consecutive passive ± 45 degree head-trunk movements,
which were applied manually (forward and backward five times at a frequency of 1 Hz). Head-
impulse testing was performed before and during continuous administration of remifentanil,
and, as far as nausea and vomiting permitted, continuously during the 30 min after stopping
remifentanil (9/10 subjects).

Experiment 2. The ten subjects were divided into two equal subgroups with no significant
differences in age (25.6±3.1 years and 26.4±3.5 years, mean±standard deviation; t-test,
p = 0.71), MSSQ (8.9±7.6 points, 6.9±4.8 points; p = 0.63) and PONV-risk (39±0%, 32±10%;
p = 0.14). In a crossover design, each subject was tested twice with at least a day washout period
between the measurements. Five subjects were first tested with a paradigm “rest” and then with
a paradigm “head-trunk move”, and vice versa. In the paradigm “rest”, subjects rested in a
semirecumbent position during 45 min of continuous intravenous administration of remifen-
tanil (0.15 μg/kg/min). Nausea assessment, head-impulse testing, and a clinical oculomotor
exam were performed before and 45 min after initiating remifentanil. The paradigm “head-
trunk move” was the same as the paradigm “rest” except for one additional intervention: after
30 min, subjects’ head-trunk was manually and passively bent forward and backward five times
at a frequency of 1 Hz with a motion range of about ± 45 degrees. In both paradigms, subjects
were continuously encouraged to report any opioid effects they experienced. At the end of
each experiment, subjects were asked to name the opioid effect they experienced as most
unpleasant.

Experiment 3. The sixteen subjects were divided into two equal subgroups with no signifi-
cant differences in age (26.2±2.3 years and 25.9±4.1 years, mean±standard deviation; t-test,
p = 0.82), MSSQ (2.9±3.3 points, 5.4±6.8 points; p = 0.37) and PONV-risk (37±6%, 40±11%;
p = 0.54). The crossover design was the same as in experiment 2, but instead of the paradigm
“head-trunk move” a paradigm “head move” was employed; passive, isolated head movements
consisting of the three axes of rotation (pitch, roll, yaw) with a motion range of approxi-
mately ± 45 degrees were imposed manually 20 times at a frequency of 1 Hz in a random,
unpredictable order of each of the three axes.

Note that, due to practicability in the operating room, the head was moved differently in
experiment 2 (movement together with trunk) and 3 (isolated head movement).

Statistical analysis
For experiment 1, differences in VOR gain within the conditions (factors: before, with, and
after remifentanil) were assessed by a repeated-measures analysis of variance (ANOVA). The
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half-life time of VOR recovery was determined from the continuous head-impulse testing after
stopping the drip. An exponential function was fitted to the VOR gain values by means of least
square fitting (function fminsearch, MATLAB, Mathworks, Natick, MA, USA). The quality of
individual fits was expressed by the R2 value. The mean R2 was calculated after Fisher’s z-
transformation.

Fig 1. Experimental design. Experiment 1 (ten subjects): Subjects lay in a semirecumbent position during continuous intravenous administration of
remifentanil (increasing rates of 0.05 μg/kg/min, 0.10 μg/kg/min and 0.15 μg/kg/min). After 30 min at 0.15 μg/kg/min, subjects were manually passively bent
forward and backward five times at a frequency of 1 Hz (head-trunk movement, about ± 45 degrees). Nausea assessment was performed before, after 30 min
before movement and after 45 min of continuous administration of remifentanil at 0.15 μg/kg/min. The head-impulse test (HIT) of vestibular function was
performed before and 45 min after initiating remifentanil at 0.15 μg/kg/min. Experiment 2 (ten subjects): There were two paradigms: in the paradigm “rest” (A),
subjects lay motionless in a semirecumbent position during 45 min of continuous intravenous administration of remifentanil. Nausea assessment (numerical
scale from 0–10) and head-impulse testing (HIT) of vestibular function were performed before and 45 min after initiating remifentanil. The paradigm “head-
trunk move” (B) was identical to the paradigm “rest” except for one additional intervention: after 30 min, subjects were manually passively bent forward and
backward five times at a frequency of 1 Hz (“head-trunk move”, amplitude about ± 45 degrees). In a crossover design, subjects were tested twice with at least
1 day washout between measurements. Five subjects were first tested with paradigm “rest” (A) and then with paradigm “head-trunk move” (B), and vice
versa. Experiment 3 (sixteen subjects): The crossover design was the same as in experiment 2 but instead of the paradigm “head-trunk move” a paradigm
“head move” was done (twenty isolated head movements for each of the three axes of rotation (pitch, roll, yaw) performed randomly and unpredictable with a
frequency of 1 Hz). Eight subjects were first tested with paradigm “rest” (A) and then with paradigm “head move” (B), and vice versa.

doi:10.1371/journal.pone.0135263.g001
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For experiment 2, ANOVA was used to determine differences in VOR gain within the con-
ditions and paradigms (factors: “rest” and “head-trunk move”) and between the subgroups of
the crossover design. A Bonferroni corrected post-hoc test was used for pairwise comparison.
Differences in nausea scale ratings between the subgroups were assessed with an independent
samples Mann-Whitney U test, differences within the paradigms (“rest” and “head-trunk
move”) with a related samples Friedman’s ANOVA by ranks.

For experiment 3, differences in nausea scale ratings between the subgroups were assessed
with an independent samples Mann-Whitney U test, differences within the paradigms (“rest”
and “head move”) with a related samples Friedman’s ANOVA by ranks.

The difference in nausea rating between the “rest” and “head-trunk/head move” conditions
was computed for experiments 2 and 3. Independent samples Mann-Whitney U test was used
to assess whether this difference is the same in experiments 2 and 3, i.e. in the “head-trunk
move” and “head move” conditions.

Kolmogorov-Smirnov test was used to examine normal distribution of VOR gain values,
Spearman correlation analysis to examine correlation between a decrease in the VOR gain and
the score of motion-induced nausea, and Fisher’s exact test to compare the actual and expected
incidences of nausea.

In all statistical analyses, significance levels were p<0.05. All data are fully available without
restriction.

Results

Vestibular function
Fig 2 shows eye (black) and head (grey) velocity traces during head impulse testing in one
exemplary subject before (A), during (B) and after (C) continuous intravenous administration
of remifentanil. Before remifentanil, the VOR was intact: the eyes exactly mirrored the head
movements and kept gaze stable on the target (A). With remifentanil administration, the gain
of the VOR significantly decreased: the compensatory eye velocity did not match head velocity
(B), the eyes moved together with the head and the subject used catch-up saccades (arrow) to
re-fixate the target. Thirty minutes after stopping the remifentanil drip, the VOR was intact
again (C).

In all subjects, the VOR function consistently decreased with remifentanil (Fig 2D).
ANOVA revealed that remifentanil had a substantial effect on the VOR gain (p<0.001, experi-
ments 1 and 2); this was independent of the subgroup (p = 0.39) and paradigm (“rest” or
“head-trunk move”, p = 0.53) of experiment 2. The average gain of the VOR was 0.92±0.05
before remifentanil (mean±standard deviation); it decreased to 0.60±0.12 with remifentanil
and returned to base level after remifentanil stopped (0.91±0.05, no difference from base level,
p = 0.86 and p = 0.53 in experiment 1 and 2, respectively). VOR recovery after stopping remi-
fentanil followed an exponential increase with an average half-life time of 5.3±2.4 min (R2 =
0.94±0.03, mean±standard deviation, see Fig 2E for an example).

Nausea and vomiting
In experiment 1, none of the subjects reported nausea while lying still. After movement, seven
subjects reported nausea; three of them vomited. This indicates a motion-dependency of nau-
sea and vomiting with remifentanil use. Experiment 2 was designed to further verify this
motion-dependency and, in particular, to exclude the possibility of a simple time effect, i.e.,
that nausea and vomiting would have occurred after prolonged remifentanil exposure even
without movement. In the “rest” paradigm, one subject out of ten reported “a touch” of nausea
(nausea scale 1) after 45 min of continuous remifentanil administration. In the “head-trunk
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move” paradigm, seven subjects reported nausea after movement with nausea scale values
ranging from 4 to 10 (Table 1, first five subjects are subgroup 1). There was no difference in
nausea scale values between the two subgroups of the crossover design (independent samples
Mann-Whitney U test, p = 0.69 for the “rest” condition, p = 0.42 for the “head-trunk move”
condition) and therefore no conditioning or learning effect. Fig 3A shows pooled nausea scale
values for both subgroups: they were 0.00/0.00 (median/interquartile range) without move-
ment and 4.00/7.25 with movement. This represents a substantial difference (related samples
Friedman’s ANOVA by ranks, p = 0.008) and shows that nausea and vomiting during remifen-
tanil administration were triggered by motion.

Fig 2. Remifentanil effects on the head impulse gain of the vestibulo-ocular reflex. A-C: Eye (black) in response to head (grey) velocity traces during
head-impulse testing in one subject (left (sign-inverted) and right side pooled) before (A), during (B) and after (C) continuous remifentanil administration.
Before remifentanil, eye velocity was exactly opposite to head velocity. The vestibulo-ocular reflex (VOR) was intact. With remifentanil administration (B), eye
velocity did not match head velocity. The subject used catch up saccades (arrow) to compensate for the deficient VOR. Thirty minutes after stopping
remifentanil (C), the VOR was intact again. D: Mean head impulse gain of the VOR for each of the 20 subjects of experiments 1 and 2 (individual circles)
before (left), during (middle) and after (right) remifentanil administration. Before averaging, the VOR gain was calculated for each head impulse as the ratio of
the median of eye and head velocity between 55 and 65 ms after head movement start. The gain decreased with remifentanil in each subject and returned to
baseline afterwards. Black line denotes the subject in A, B, and C. E: Recovery of VOR gain after stopping remifentanil infusion. Circles represent the VOR
gain during head-impulse testing of one subject before, during and in the 30 minutes after stopping remifentanil. The gain recovery after stopping the infusion
follows an exponential increase reflecting the half-life time of the drug. In this subject, the half-life time was 8.5 min (R2 = 0.98).

doi:10.1371/journal.pone.0135263.g002
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There was no significant correlation between gain-drop (VOR-gain-before-remifentanil
minus VOR-gain-during-remifentanil) and nausea rating in the head-trunk move condition
(experiment 2, Spearman correlation, r = -0.20 and p = 0.58). Also, independent samples t-test
did not reveal a difference in gain-drop between the patients who vomited (nausea score 10)
and those who had no nausea (p = 0.67, experiments 1 and 2, t-test for normally distributed
gain values according to Kolmogorov-Smirnov test, p = 0.2).

To verify that isolated head motion, sensed by the vestibular system, can trigger nausea dur-
ing opioid-use, experiment 3 was designed as a cross-over design with the paradigm “rest”
being compared to a paradigm “head move” consisting of head movement alone (trunk sta-
tionary). Fig 3B shows nausea scale values for “rest” and “head move” conditions. In the “rest”
paradigm, three out of the sixteen subjects reported nausea (nausea scales 1, 3 and 6). During
the “head move” paradigm, nine subjects reported nausea after movement with nausea scale
values ranging from 2 to 9. There was no difference in nausea scale values between the two sub-
groups of the crossover design (independent samples Mann-Whitney U test, p = 0.064 for the
“rest” condition, p = 0.784 for the “head move” condition) and therefore no conditioning or
learning effect. Pooled nausea scale values for both subgroups were 0.00/0.00 (median/inter-
quartile range) without movement and 1.00/4.5 with movement. This represents a substantial
difference (related samples Friedman’s ANOVA by ranks, p = 0.005) and shows that nausea
and vomiting during remifentanil administration were triggered by isolated head motion.

The difference in nausea ratings between the “rest” and “head-trunk/head move” conditions
were not different for the groups who performed head-trunk (experiment 2) or isolated head
movement (experiment 3; independent samples Mann-Whitney U test, p = 0.068).

Overall, the nausea incidence during remifentanil infusion at rest in our study (4/36 or
11%) was lower than the PONV incidence expected according to the Apfel score ([6], 35% or
13/36, p = 0.025 by Fischer’s exact test); the nausea incidence with motion during remifentanil
infusion (23/36 or 64%) was higher than that expected from this score (p = 0.033, Fischer’s
exact test).

Ranking: unpleasantness of opioid effects
All subjects from experiment 2 who experienced nausea greater than 1 on the nausea scale, i.e.,
all subjects from the “head-trunk move” paradigm that experienced nausea, rated it the most
unpleasant remifentanil effect (Table 1). Those without any relevant nausea rated various other

Table 1. Unpleasantness of remifentanil effects (experiment 2).

Subject Paradigm „rest“ Paradigm „move“

Nausea scale Most unpleasant opioid effect Nausea scale Most unpleasant opioid effect

1 0 Fixating difficulties 0 Swallowing difficulties

2 0 Slow breathing 8 Nausea

3 0 Feeling heavy 0 Itching

4 0 Itching 7 Nausea

5 0 Itching 0 Itching

6 0 Fixating difficulties 4 Nausea

7 0 Swallowing difficulties 4 Nausea

8 0 Feeling heavy 6 Nausea

9 0 Itching 4 Nausea

10 1 Swallowing difficulties 10 Nausea

doi:10.1371/journal.pone.0135263.t001
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Fig 3. Effects of head-trunk and isolated headmovement on nausea with remifentanil administration (cross-over design).Median (horizontal bold
line) and interquartile range (box) of nausea values quantified on a numerical scale from 0 (“everything okay”) to 10 (“vomiting”) in paradigms “rest” (left) and
“head-trunk/head move” (right). Data of each subject is shown by a white dot. A: Experiment 2, head-trunk movement led to a marked increase in nausea
(p = 0.008, related samples Friedman’s ANOVA by ranks). B: Experiment 3, isolated head movement led to a marked increase in nausea (p = 0.005, related
samples Friedman’s ANOVA by ranks). The difference in nausea rating between the “rest” and “head-trunk/head move” conditions were not different for the
groups who performed head-trunk or isolated head movement (Independent samples Mann-Whitney U test, p = 0.068).

doi:10.1371/journal.pone.0135263.g003
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opioid effects as the most unpleasant: itching, difficulties swallowing, feeling heavy, difficulties
fixating, and slow breathing. The rating varied within the same subject between the conditions.

Oculomotor findings
Remifentanil induced downbeat nystagmus in all subjects. In some subjects, there were addi-
tional cerebellar oculomotor signs such as saccadic smooth pursuit and gaze-evoked nystag-
mus. All oculomotor findings ceased after ending the remifentanil drip.

Discussion
Our findings indicate that remifentanil had an effect on the vestibular system since the VOR
gain decreased in all subjects, experiments and conditions assessed. The half-life time of VOR
gain recovery after stopping remifentanil infusion (5.3±2.4 min, mean±standard deviation)
reflects the pharmacokinetics of remifentanil [20]. Nausea during remifentanil administration
was triggered by head movement in the majority of subjects. Four of the thirty-six subjects also
experienced mild to moderate nausea at rest.

The remifentanil effect on the vestibular system agrees with previous observations that
noted a decrease in caloric response with morphine [12], a diminished active VOR with pethi-
dine and fentanyl administration [17], and of passive VOR and dynamic vision with remifenta-
nil [18] and vestibular dysfunction with heroin abuse [24].

Opioid effects on receptors in the VOR-three-neuron arc [13, 14] and in the cerebellum
[15] could mediate the changes in vestibular-ocular motor function (VOR gain). The addi-
tional oculomotor findings, such as gaze-evoked nystagmus, saccadic smooth pursuit and, in
particular, downbeat-nystagmus, point to an involvement of the cerebellum [17].

When the VOR gain was decreased, head motion (either as part of head-trunk motion or
isolated) triggered nausea and vomiting. The incidence of nausea at rest during remifentanil
infusion (4/36 or 11%), however, was significantly lower than that expected from the Apfel
score ([6], 35% or 13/36). This is in line with observations that motion worsens the incidence
and severity of PONV [6] and indicates that, in addition to possible direct opioid effects on the
chemoreceptor trigger zone in the area postrema or the vomiting centre in the brainstem [7],
which lead to nausea at rest, there is a head-movement triggered pathomechanism. With a
motion-induced nausea incidence of 23/36 or 64%, which is significantly higher than the inci-
dence expected from the Apfel score ([6], 13/36 or 35%), the present study overestimates the
motion-induced mechanism, possibly because the stimuli were more vigorous than the ones
patients commonly experience perioperatively. Importantly, whereas all our subjects who expe-
rienced nausea with movement rated it the worst side effect, which corresponds to patients
ranking nausea the most distressing non-life-threatening side effect [1] and consider vomiting
the most undesirable complication after surgery [8], this was not the case for nausea at rest.

The discordance between movement information from different sensors (e.g., visual, propri-
oceptive, vestibular) or between expected and real sensory information is thought to cause nau-
sea and vomiting of motion sickness [25–30]. Similarly, movement-induced nausea during
opioid administration could be due to a mismatch either within opioid-corrupted vestibular
input or between vestibular input and that of other sensors (e.g. vision, proprioception). This
would become apparent during movement generating vestibular input, i.e., head movement.
As in motion sickness, nausea and vomiting would then result from mismatched input to the
vomiting centre in the lateral reticular formation in the medulla oblongata and the chemore-
ceptor trigger zone in the area postrema. Perception has been shown to correlate with VOR
function [31–33]. As this study demonstrates a corrupted VOR response with opioid adminis-
tration, nausea could result from the corrupted perceptual response.
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In our experiments, remifentanil itself was emetogenic only in some subjects at rest, while
being so in a majority of subjects during movements. Further, the head motion itself induced
nausea in none of our subjects before remifentanil decreased VOR gains, whereas it induced
nausea in a majority of subjects after remifentanil decreased VOR gains. These findings clearly
indicated that remifentanil induced vestibular dysfunction, evaluated as decreases in VOR
gains, and that vigorous head motions manifested opioid-induced motion sickness though
such vestibular dysfunction, thereby exacerbating remifentanil-induced nausea. Although we
could not find any significant correlation between VOR gain drops and nausea scores, this may
simply reflect the possibility that the mismatch that triggered nausea can be independent of the
amount of gain change—similarly to motion sickness where symptom strength poorly corre-
lates with that of the provoking stimulus [34].

Due to practicability in the operation room, the head was moved differently in experiment 3
as opposed to the head-trunk movements in experiment 2. This could explain the (non-signifi-
cant but due to the small numbers maybe critical) trend that a larger proportion of subjects did
not suffer from nausea at all when the head only was moved. However, importantly, experi-
ment 3 was designed to analyse whether head motion alone leads to nausea during opioid-use,
which it does. So, even assuming that there was a difference in nausea ratings between experi-
ments 2 and 3 and that this was owing to the fact that the head was moved differently, the con-
clusion that head movement alone can greatly exacerbate nausea during opioid use would still
be valid.

The relative contribution of the movement-triggered pathomechanism and other direct opi-
oid effects is unknown from our study. The motion sickness part of the pathomechanism is in
line with several observations about PONV:

It is well known that once motion sickness is elicited, it outlasts the precipitating stimuli for
hours or up to the entire day [35]. Similarly, the decomposition of opioids and VOR recovery
do not necessarily terminate nausea in afflicted subjects. This could explain why ultra short-
acting opioid remifentanil has been found to have a PONV incidence similar to that of longer
acting fentanyl during the first postoperative 24 hours [23].

Only a few risk factors are independent predictors for PONV: a history of motion sickness
or PONV, female sex, non-smoking, and the use of postoperative opioids [6]. These risk factors
are in line with our suggestion that head motion during transient impairment of vestibular
function plays a role in opioid-induced nausea: if opioid-induced nausea and motion sickness
have a common pathomechanism, it is evident why motion sickness susceptibility also predis-
poses to opioid-induced nausea and vomiting [6] and why women, who are significantly more
susceptible to motion sickness [29, 36] also have a higher PONV risk [6]. Interestingly, both
motion sickness and opioid-induced nausea also are more common in the 6–10 year age group
[37, 38] and decrease with age [39, 40]. Tolerance to motion sickness is increased by short-
term nicotine withdrawal [41]–as is routinely practiced perioperatively. We suggest that as
non-smokers cannot benefit from this effect they have a higher PONV risk [6].

Opioid effects such as cognitive slowing and sleepiness are not mediated by the vestibular
system. They can, however, also lead to a feeling of light-headedness at rest, but not to nausea
or vomiting. In our study, all subjects (experiment 2) who experienced relevant nausea rated it
the most unpleasant remifentanil effect. When no relevant nausea was present, the most
unpleasant side effects varied, even between the paradigms (“head-trunk/head move” and
“rest”) in the same subject. This, again, underlines the unpleasantness of nausea and vomiting
compared to other adverse effects such as cognitive slowing or light-headedness.

Head-rest as a preventive measure is feasible particularly in the perioperative setting with
short opioid treatments during general anaesthesia where vigorous movements applied when
patients are transferred out of the sterile area of the operation room, for example, can easily be
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avoided during the time opioids are effective. Further studies should address which sensory
mismatch, e.g. visuo-vestibular or intra-vestibular, is relevant and, consequently whether in
addition to head-rest, darkness could help prevent opioid-induced nausea.

In conclusion, we showed that the μ-agonist remifentanil affects the vestibular function in
its pharmacokinetics-dependent manner and that vigorous head motion can extremely exacer-
bate nausea during opioid use. We suggest that the decrease in VOR gain causes an inter-sen-
sory mismatch during head movements, which results in nausea and vomiting. This could be
termed opioid-induced motion sickness. Consequently, vigorous head movements should be
avoided to prevent opioid-induced nausea.
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