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ABSTRACT

Various biases affect high-throughput sequencing
read counts. Contrary to the general assumption,
we show that bias does not always cancel out when
fold changes are computed and that bias affects
more than 20% of genes that are called differen-
tially regulated in RNA-seq experiments with dras-
tic effects on subsequent biological interpretation.
Here, we propose a novel approach to estimate fold
changes. Our method is based on a probabilistic
model that directly incorporates count ratios instead
of read counts. It provides a theoretical foundation
for pseudo-counts and can be used to estimate fold
change credible intervals as well as normalization
factors that outperform currently used normalization
methods. We show that fold change estimates are
significantly improved by our method by comparing
RNA-seq derived fold changes to qPCR data from
the MAQC/SEQC project as a reference and analyz-
ing random barcoded sequencing data. Our software
implementation is freely available from the project
website http://www.bio.ifi.lmu.de/software/lfc.

INTRODUCTION

Quantitative RNA measurement is an essential tool in bio-
logical research. The established method is next generation
sequencing (NGS), where RNA is converted to cDNA, am-
plified and sequenced, leaving the researcher with hundreds
of millions of 30–100 bases long reads. The most prominent
application for quantitative NGS is mRNA-seq (1,2), where
the abundance of mRNA is determined. Other examples are
ribosomal profiling (3), DNAse-seq (4), RIP-seq (5), CLIP-
seq (6–8), ChIP-seq (9,10) and PARS (11).

The basic principle of quantitative NGS is to count se-
quences belonging to the entities of interest and to take
these counts as a measure of abundance of these entities in
a biological sample. For example, in mRNA-seq, sequences
of random mRNA fragments are determined (in fact, either
the prefix in single-end sequencing or the prefix and the suf-
fix in paired-end sequencing of each fragment is sequenced)

and the number of all sequences or fragments matching an
mRNA is used for quantification. Due to the amplifica-
tion step during sample preparation, only the relative abun-
dance within the sample can be determined. The often used
RPKM or FPKM (1,12) measures for this correspond to
the respective fraction of all mRNA in the sample but not
the absolute abundance of the mRNA (i.e. the copy num-
bers per cell).

However, such single-sample or per-experiment mea-
surements are hampered by known biases introduced dur-
ing sample preparation, e.g. by polymerase chain reaction
(PCR) amplification (13,14) or adapter ligation (15,16). As
a consequence, some sequences from the same entity are ob-
served orders of magnitude more often than others (1,17).
Several computational ad-hoc attempts have been made to
correct for such bias (18–20), but cannot remove it com-
pletely.

Differential quantification is deemed more reliable, since
bias affects all samples equally and should therefore can-
cel out when samples are compared, e.g. by taking ratios.
For several NGS based experiments, differential quantifi-
cation is inherently necessary. For instance, in ribosomal
profiling (3), the observed reads are not only dependent on
the translation rate (which is the quantity of interest) but
also on the corresponding mRNA expression level, i.e. in
order to derive the translation rate, the ribosomal profiling
read counts must be compared to corresponding mRNA-
seq read counts (21). Analogously, in RIP-seq, the obser-
vations are dependent on the rate of bound RNA binding
proteins and the total mRNA level (5). For other exper-
iments, differential quantification is not inherently neces-
sary for the experiment itself, but for the biological ques-
tion. For instance, we have shown that by treating CLIP-
seq read counts in a differential manner, context-dependent
microRNA binding can be analyzed (22).

Our initial goal was to analyze differential quantification
for entities with few reads. This is important for small ex-
ons in differentially spliced mRNAs in mRNA-seq or local
translation rate changes in ribosomal profiling. It is also of
special interest for CLIP-seq, where the sequenced target
sites are as short as 30 nucleotides and as few as 5 reads
are often deemed enough for a reliable site (6,23). The main
problem here is to handle the inherent sampling noise of
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count data appropriately. For instance, if 4 and 2 reads are
observed for a certain entity in two conditions, the actual
fold change most certainly was not exactly 2, but rather
within some interval around 2. Thus, a credible interval
gives more information on the true fold change. Intuitively,
we would assume a relatively large interval if only as few
reads as 4 and 2 are observed, and a smaller interval for
higher counts.

Importantly, the purpose of such credible intervals is dif-
ferent from P-values of available methods such as DEseq
(24) or others (25): those methods test for each gene X the
null hypothesis H0 = the treatment does not affect expres-
sion of X. An hypothesis test for H0 is only reasonable when
many replicates are available that repeatedly measure ex-
pression of X with and without treatment. In contrast, the
credible intervals here characterize the measurement uncer-
tainty inherent for sampled count data and can be com-
puted for any pair of experiments, i.e. also when no repli-
cates are available.

We developed a probabilistic model to estimate credible
intervals and show that the intuition more sequenced reads
means more accurate fold changes is misleading when raw
NGS read counts are used. Moreover, using this model we
show that known bias does not cancel out when ratios are
computed leading to inaccurate fold change estimates. Bias
can be handled experimentally by labeling RNA fragments
using random barcodes before PCR (14). Thus, additional
experimental steps are necessary, that so far have only been
applied in a few published studies (7,14). To handle such
bias in available data sets, we introduce a novel method to
estimate fold changes. We show that fold change estimates
are significantly improved by our method using data from
the MAQC project (26,27) and that about 20% of genes that
are called differentially expressed are affected in a standard
RNA-seq setting. Finally, we show that the method can also
be applied to the estimation of normalization constants and
show that it outperforms the widely used median based nor-
malization.

MATERIALS AND METHODS

Data sets

We downloaded the SAM files of the sequencing data
of (14) from GEO (accession numbers GSM849370 and
GSM849371). For both replicates, SAM files corresponding
to “digital” counts (respecting random barcodes) and “con-
ventional” counts (disrespecting random barcodes) were
provided and utilized to generate Figures 2 and 4, respec-
tively. All genome aligned reads from those SAM files were
mapped to Escherichia coli genes using Genbank anno-
tations (accession U00096.2). For both digital and con-
ventional counts, normalization constants were computed
such that the median log fold change of genes with more
than 50 counts in both replicates was 0. For all genes, the
Maximum-A-Posteriori (MAP) estimate with no pseudo-
counts and its 99% symmetric credible interval (see below)
were computed. As the true fold change of all genes should
correspond to the normalization constant, genes where the
normalization constant was outside of the computed cred-
ible interval were marked in Figures 2A and 4B. Further-
more, we computed all MAP estimates of local fold changes

along all genes, their 99% credible intervals and the median
of the posterior distribution. These statistics were plotted
on to of the alignment start position to generate Figures 2D
and 4D. To test local deviations from the gene fold change
(Figures 2E and 4E), the Positive predictive distribution of
our Bayesian model was used as follows: we computed the
cumulative distribution function for local read counts of the
first replicate using the Beta-Binomial distribution param-
eterized with the sum of the local read counts and the total
counts from each replicate.

For the validation, we downloaded TaqMan qPCR data
from GEO (accession number GPL4097) and computed
gene fold changes as described (26). Sequencing data for the
same sample were downloaded from SRA (accession num-
ber SRA010153), aligned to the human genome (hg19) and
transcriptome (Ensembl v70) using bowtie 1.0 (28).

Data from (29) were downloaded from yeastgenome.org
and aligned to the yeast genome using STAR (30). Data
from the SEQC project (31) have been downloaded from
SRA and aligned to the human genome using STAR (30).
We only used the data from the official sequencing site Bei-
jing Genomics Institute (BGI), replicates a and b and pooled
all lanes from flow cell AC0AYTACXX, as according to the
SEQC publication, all data sets were of similar quality.

Hellinger distance and resampling

The squared Hellinger distance between two Beta distribu-
tions with parameters (�1, �1) and (�2, �2) is computed ac-
cording to

d(α1, β1, α2, β2) = 1 − B( α1+α2
2 ,

β1+β2
2 )

B(α1, β1)
1
2 · B(α2, β2)

1
2

(1)

where B is the Beta function. In order to estimate the in-
fluence of sampling alone, the following resampling proce-
dure was applied: for gene g with observed count pair oA,
oB, sample a new count cA according to a Binomial distri-
bution with parameters n = oA + oB and p = p(l) + n where l
is the qPCR log fold change p as defined in equation 2 and n
a normalization factor computed for this replicate. For the
other condition, we set cB = oA + oB − cA.

Read count ratio model

The following considerations are based on mRNA-seq data,
because it is the most widely used quantitative NGS tech-
nique and other models have been developed and described
specifically for it. However, all results also apply to any
quantitative NGS experiment where two conditions are
compared.

Probabilistic models for mRNA-seq data draw reads per
experiment across all possible genes (1,12,24,25). The basic
per-experiment model is as follows: when we have N reads
in our experiment and a gene g with relative frequency pg,
the number of reads mapping to g is distributed according
to a binomial distribution with parameters N and pg. Since
N is large and pg is small, the Poisson distribution is a good
approximation. The single parameter of the Poisson distri-
bution is its mean and can be estimated using replicate ex-
periments. Then, significantly differentially expressed genes



PAGE 3 OF 14 Nucleic Acids Research, 2015, Vol. 43, No. 20 e136

can easily be determined since for the Poisson distribu-
tion, mean and variance are equal. However overdispersion
(greater variance than mean) is generally observed for per-
experiment models (24,25). As a solution, population based
estimates of more general distributions, e.g. negative bino-
mial (24) or generalized Poisson (25) are fitted and used for
estimating significance. There are a few other variations of
this basic model, e.g. to incorporate multi-mapping reads,
paired-end reads, to handle positional or sequence bias or
to handle sequencing errors (18–20).

We take a fundamentally different approach: instead of
drawing reads across entities in a single experiment, we draw
the number of reads with the same sequence across two ex-
periments. Then, we estimate a local fold change for the cor-
responding position within a gene between the experiments.
The main advantage of this approach is that any sequence-
specific factor that may bias the read count should affect
both conditions equally, so it is important to handle such
bias as early as possible in the probabilistic model. In con-
trast, the established method of computing a fold change
for a transcript is to first sum all the read counts belonging
to it and then to compute the ratio. The major disadvantage
of local fold changes is the loss of accuracy: in most cases
there are very few reads at a certain position and random
sampling strongly affects the estimated fold changes. Thus,
the main challenge in our approach is to give a reliable in-
terval estimate for fold changes instead of a point estimate
and to find a way to combine multiple local estimates to an
overall per-transcript estimate.

Maximum likelihood estimators

Let c1 and c2 reads be observed for a certain sequence in
two conditions. We call c1 and c2 local counts, the sum c1
+ c2 the total local count and the ratio c1

c2
local fold change.

For fixed log2 local fold change l and total count n = c1 + c2,
the probability of getting a local count c1 follows a binomial
distribution with parameters n and p. Here,

p(l) = 2l

1 + 2l
(2)

is the probability of drawing a read from the first exper-
iment when the true log2 local fold change is l. The ratio-
nale behind the logistic function p(l) is as follows: if there
is abundance a for an RNA fragment in one of the condi-
tions and the true log2 fold change is l, the abundance in the
other sample is a · 2l. If both samples are pooled and a read
is drawn at random, the probability of getting a read from
the second condition is a·2l

a+a·2l = p(l). Importantly, the bino-
mial distribution is fundamentally different from the above
mentioned per-experiment model. Also, the magnitudes of
the parameters involved here do not allow for a Poisson ap-
proximation.

The goal is to estimate l from data, which can be done by
transforming an estimator for p by

l(p) = log2
p

1 − p
(3)

Given the i.i.d. read counts ci, j, with i = 1...N denoting
the N positions in a gene and j = 1, 2 denoting the two ex-

periments, the maximum likelihood estimators (ML) for p
and l are

p̂ML =
∑N

i=1 ci,1∑N
i=1(ci,1 + ci,2)

(4)

l̂ ML = log2

∑N
i=1 ci,1∑N
i=1 ci,2

(5)

Thus, the ML estimator is equal to the usually used per-
transcript count ratio and, thus, disregarding normalization
constants, to the RPKM or FPKM ratio (1,12). Further-
more, the ML estimator can be seen as a weighted average of
the local counts ci, 1 and ci, 2. Large local counts contribute
more to the total fold change than small counts.

MAP estimators

However, this point estimator does not tell us anything
about our degree of belief in the estimated log fold change.
Therefore, we generalize this estimator using Bayesian in-
ference: we assume a Beta distribution as prior for p. Due
to its domain and its flexibility the Beta distribution is often
used as a prior for probability parameters. Furthermore, it
is a conjugate prior to the binomial distribution. Therefore,
assuming the prior to be Beta(�,�) and i.i.d. read counts
ci, j, the posterior distribution also is a Beta distribution:

p(l) ∼ Beta(α +
N∑

i=1

ci,1, β +
N∑

i=1

ci,2) (6)

The mode of a Beta(�,�) is at α−1
α+β−2 and thus, the MAP

estimators are

p̂MAP = α + ∑N
i=1 ci,1 − 1

α + ∑N
i=1 ci,1 + β + ∑N

i=1 ci,2 − 2
(7)

l̂ MAP = log2

∑N
i=1 ci,1 + α − 1∑N
i=1 ci,2 + β − 1

(8)

Beta(1,1) is the [0,1]-uniform distribution, therefore for
� = � = 1, the MAP estimator is equal to the ML estima-
tor. At first glance, using the Beta distribution seems arbi-
trary. However, its two parameters � and � have an intu-
itive meaning: � − 1 and � − 1 are pseudocounts that are
often used to avoid division by zero when taking the ratio
of counts. Importantly, using no pseudocounts is equiva-
lent to a uniform distribution of the proportion parameter
p. However, it does not correspond to a uniform log fold
change distribution.

Log fold change distribution

In order to derive the density function of the log fold change
corresponding to the binomial proportion parameter, we
use the method of substitution.

The density and probability function of the Beta distri-
bution with parameters (�, �) are

g(p|α, β) = pα−1 · (1 − p)β−1

B(α, β)
(9)
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G(p|α, β) =
∫ p

0
g(x|α, β)dx (10)

where B is the beta function. By substitution, the proba-
bility function of a random variable transformed by equa-
tion 2 can be expressed as

F(l|α, β) = G(p(l)|α, β) (11)

=
∫ p(l)

−∞
g(x|α, β)dx (12)

=
∫ l

−∞
g(p(x)|α, β)

dp
dx

dx (13)

Hence, the density function is

f (l|α, β) = g(p(l))
dp
dl

(14)

= ( 2l

1+2l )α−1 · (1 − 2l

1+2l )β−1

B(α, β)
· 2l log(2)

(1 + 2l )2
(15)

= (2l )α · log(2)
B(α, β) · (1 + 2l )α+β

(16)

Compute prior parameters

Given the knowledge of an expected log2 fold change � with
a log2 tolerance of t with certainty c, the parameters � and
� can be computed by numerically via

F(μ + 0.5 · t|α, β) − F(μ − 0.5 · t|α, β) = c (17)

under the constraint that � = 2� · � (e.g. by using the bisec-
tion method after exponential search for start values). The
probability function F of the posterior log fold change dis-
tribution can be computed in an efficient and numerically
stable way using Beta functions in log space.

RESULTS

Quantitative experiments can be affected by two sources
of error, noise and bias. Noise is the random variation ob-
served from repeated measurements and can be controlled
using appropriate probabilistic models. In contrast, bias is
the systematic deviation of measurements from the true
quantity, i.e. in repeated experiments, measurements may
not scatter around the true quantity (due to noise), but may
deviate reproducibly from it. Removing bias often is much
more difficult than handling noise, as the source, type and
extent of bias must be known and predictable.

However, under certain conditions, correcting for bias is
straight-forward: when the experimenter is interested in ra-
tios of measurements and bias is linear, it cancels out. Lin-
ear means that the expected effect of bias can be represented
by a fixed multiplicative factor. In many NGS experiments,
these conditions appear to hold. First, many NGS experi-
ments are inherently differential, i.e. the quantity of inter-
est is already fold change (see above). And second, linear-
ity can safely be assumed based on the following consid-
erations, exemplary for bias introduced by PCR: during a

single PCR cycle a fragment with sequence s is amplified
by a certain probability ps. The expected yield of n copies
before this PCR cycle then is (1 + ps) · n and (1 + ps)c · n af-
ter c cycles. Here, (1 + ps)c is the fixed multiplicative factor
that determines a sequence specific linear bias. Thus, PCR
may indeed meet the condition of linearity, and a similar
argument can be made for the other processes involved in
an NGS experiment. If all experimental steps produce lin-
ear bias, the total bias is also linear as the product of the
biases of the individual steps result in another overall fixed
multiplicative factor.

However, it is important to make the distinction what is
measured and consequently affected by bias, and what are
the entities the experimenter is interested in. In NGS, read
counts are measured, i.e. the number of times a certain read
sequence is observed. However, the experimenter is not in-
terested in read counts but in the quantity of more coarse-
grained objects, e.g. transcripts in RNA-seq or binding sites
of transcription factors in ChIP-seq. Thus, distinct mea-
surements (read counts) must be aggregated across these ob-
jects.

As a consequence, the fold change of the wanted entity
may still be affected by bias. Assume that in one mRNA-
seq experiment, only a single fragment i is isolated for a cer-
tain mRNA that is amplified poorly (i.e. pi is small). Fur-
thermore, assume that in another experiment, again a sin-
gle fragment j is isolated for the same mRNA that is differ-
ent from fragment i and amplified very efficiently (i.e. pj is
large). The total fold change estimate then is (1+pi )c ·n1

(1+p j )c ·n2
. Even

if the true mixing ratio is 1 (i.e. n1 = n2), the estimated fold
change is heavily biased.

In summary, when neglecting bias, there are three build-
ing blocks in the differential analysis of NGS data: ag-
gregation, controlling noise and computing ratios. We do
not consider replicate experiments or normalization at this
stage. Replicate experiments can be incorporated by pool-
ing reads prior to this analysis and normalization can be
performed afterward (see analysis and discussion below).
Existing methods follow one specific path (see Figure 1).
First, reads are aggregated, then the parameters of a prob-
abilistic model are estimated to control noise and finally,
fold changes are computed. This is true for the most ba-
sic method (1), where read counts are summed up for mR-
NAs, the mean of a Poisson distribution using measure-
ments of replicate experiments is estimated and the ratio
of two means from two conditions is computed. This is
also true for more sophisticated methods such as DEseq
(24) or others (12,25), where the simple Poisson model is
replaced by more general distributions. When bias has to
be accounted for, bias correction methods (18–20) have to
be incorporated in this workflow prior to read aggregation.
Hence, such methods do not exploit the linearity assump-
tion for differential analysis of NGS data.

To make use of linearity, we assemble these building
blocks in a different order in our approach. First we take
ratios of read counts to let bias cancel out, and then ag-
gregate ratios and estimate a model built upon aggregated
ratios to handle noise (see Figure 1). The major advantage
of this workflow is that bias is completely removed under
the assumption of linearity. The major problem is that indi-
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Figure 1. Workflows for differential NGS analysis. Differential analysis of NGS data starts with the aligned reads of two conditions, here exemplified as
RNA-seq reads from samples A and B aligned to an mRNA. Existing models take one specific route through the necessary steps defined in the main text: (I)
For each sample, reads are aggregated and an appropriate probabilistic model is used to control noise and estimate the sample specific mRNA abundance.
(II) These abundance estimates are then divided to give an estimate of the mRNA fold change. Our approach takes a different route by first computing
local ratios for all read sequences and then aggregating them using an appropriate noise model for count ratios to estimate the total mRNA fold change.
Using a basic noise model for the second step makes both routes equivalent. However, using extensions to it leads to more accurate fold change estimates
by exploiting the fact that bias cancels out when taking the ratio of counts of individual sequences. Note that two important aspects of NGS (replicate
experiments and normalization) are left out in this figure and are analyzed and discussed below.

vidual read counts and thus individual ratios are heavily af-
fected by noise. Thus, the effectiveness of such an approach
depends on the ability of the probabilistic model to handle
this random variation.

Here, we develop such a model. First we introduce a basic
version and show that its point estimate is equivalent to ex-
isting approaches, indicating that the operations aggregate
and control noise and compute ratio can be commutative (see
again Figure 1). We further show that this basic model in-
troduces two new notions: prior knowledge can be utilized
and credible interval estimates can be computed. Then, we
test the basic model using a data set where bias can be de-
tected and removed by a clever experimental setup. Finally,
we show that the basic model severely underestimates noise
in the presence of read count bias and propose and test a
more conservative noise model.

Count ratio model

We define local read counts as the number of reads that have
been aligned to a certain genomic position. Importantly,
genomic position does not only refer to the start position
of the alignment, but also includes all potential splice junc-
tions and the alignment end (which is important when reads
have different length due to trimming). A local count ratio
is the ratio of two local read counts from two conditions
or samples or aggregated numbers from sets of replicates or
sets of samples/conditions.

Our model is based on the following considerations: given
two lists of local read counts we want to determine the true
mixing ratio that has led to these counts. If we assume that
all n reads belonging to a pair of local read counts were
pooled, the local read count from the first condition is bi-
nomially distributed with parameters n and p, where p is re-
lated to the true log fold change between the two conditions.
The lists of local read counts represent repeated and inde-

pendent measurements of this binomial distribution with
the same parameter p. Thus, these lists of local read counts
can be used to estimate p, and, by transformation, the true
log fold change. In fact, the Maximum Likelihood Estimate
(MLE) of this model is mathematically equivalent to the ob-
vious and widely used log fold change, which is the total
number of reads in condition 1 divided by the total num-
ber of reads in condition 2 (see Methods section for further
details).

Furthermore, the Bayesian MAP estimate extends the
MLE and introduces the parameters of its prior distribu-
tion as pseudocounts that are added to both total numbers
of reads. Of note, pseudocounts are widely in use as well to
avoid division by zero.

Thus, the basic statistics from the count ratio model are
already widely in use. However, it brings three additional
benefits for NGS data analysis. First, it introduces a the-
oretical justification for ad-hoc pseudocounts. Second, we
can analytically compute the full posterior distribution or
credible intervals for the true log fold change in addition to
the above introduced point estimates. And third, our model
indicates that the total number of reads can be decomposed
into many local read counts, which allows to handle bias in
a straight-forward way (see below).

Credible intervals

To test whether our model and its posterior distribution for
the log fold change are indeed appropriate, we tested sym-
metric credible intervals derived by our model using a spe-
cial RNA-seq data set that recently became available. Usu-
ally, it is not possible to distinguish whether high copy num-
bers of observed sequences are the product of PCR amplifi-
cation or indeed correspond to multiple copies of the same
RNA fragment in the sample before amplification. By using
random barcodes in the sequencing adapters, it is possible
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to make this distinction. In (14) 32+26 million paired-end
mRNA-seq reads of two replicates for E. coli were gener-
ated that correspond to less than 85.000+58.000 original
fragments. Thus, fragment counts should well fit the basic
experimental model introduced above. Figure 2A shows a
scatterplot of fragment counts for each gene in the two repli-
cates. All genes should lie on a diagonal with slope 1 and an
offset corresponding to the difference in sequencing depth
of the two libraries and all deviations should be due to sam-
pling noise according to our model. Indeed, only for 18 of
2193 genes, the diagonal is outside of their 99% credible in-
terval. Without our model, we could only check how many
genes are deviating more than 2-fold from this line (in this
case 467 out of 2193), which could lead to wrong conclu-
sions about the variability of the replicates.

Moreover, we can graphically check the consistency of lo-
cal fold changes across an mRNA by plotting local credi-
ble intervals (i.e. by computing the credible interval not for
the whole mRNA but for each individual read count pair;
illustrated for fumA in Figure 2D). The estimated mRNA
log fold change should be within the bounds of the credi-
ble intervals along the whole mRNA (as for fumA; see Fig-
ure 2D). If not, deviations cannot be explained by sampling
noise introduced by sequencing, but must be due to techni-
cal (see below) or biological reasons, e.g. differential splic-
ing.

This can also be tested formally by computing P-values
of local fold changes using the Bayesian posterior predic-
tive distribution that computes the probability of observing
the measured read count pairs while respecting the uncer-
tainty of the estimated mRNA log fold change (see Figure
2E for the P-value distribution for fumA). Without technical
or biological influences, the distributions of these P-values
for a single mRNA should resemble a uniform distribution,
which can be tested using any hypothesis test for uniformity.

Prior knowledge

Often, prior knowledge is available for differential expres-
sion of genes. For instance, the experimenter could be 99%
sure that the fold change of a certain gene is 2 with a toler-
ance of 0.5 fold. Or, when the two conditions under inves-
tigation are quite different, we would like to tolerate high
fold changes in general, and only small changes, when con-
ditions are highly similar.

Our model allows to incorporate such prior information
by transforming it into corresponding pseudocounts � and
� (see Methods section for details).

There are a few remarks here. First, even if no pseudo-
counts are used, i.e. � = � = 1, a specific log2 fold change
distribution is imposed on the fold change estimator (see
Figure 3A and B). Specifically, deviations of at most 10 are
tolerated with a certainty of about 90%. This does not mean
that larger deviations are not allowed: the more data are
used for the inference, the less influence has the prior distri-
bution. However, this plays an important role especially for
entities with few reads. Second, it is possible to intention-
ally bias fold changes toward specific values known a-priori
by using asymmetric pseudocounts and our framework pro-
vides the theoretical background for specifying the intended
value as well as its tolerance. For instance, if the log2 fold

change is supposed to lie between 0 and 2 with 50% cer-
tainty, � = 3.26 and � = 1.63 must be used. And, finally,
� and � may be smaller than 1 (but strictly greater than 0),
corresponding to a wider prior log2 fold change distribution
than when no pseudocounts are used (see Figure 3A and B).

Sampling accuracy

An important benefit of our model is that it allows to es-
timate measurement uncertainty due to sampling (see Fig-
ure 3C). For instance, given the observed data, a 95% cred-
ible interval contains the true log fold change with a prob-
ability of 95%. If 50+50 reads have been observed, indicat-
ing a likely log fold change of 0, the 95% credible interval is
greater than 1, indicating that the range of log fold changes
that could have produced those read counts is between −0.5
and 0.5 (see Figure 3C). There are two interesting observa-
tions here. First, even for larger number of reads, the size
of the credible interval approaches 0 only slowly, e.g. for
250+250 reads, the 95% interval is still greater than 0.5. And
second, when the read counts are more unbalanced, the un-
certainty is even greater (e.g. for 97+3 reads correspond-
ing to a log fold change l ≈ 5, the interval spans log fold
changes 3.5 to 6.5, which is a more than 8-fold difference).
This clearly shows that although only considering the point
estimate may be convenient, but gives only part of the truth.

Conservative noise estimation
So far we have provided evidence that this basic model
is appropriate for data without PCR bias, e.g. when ran-
dom barcodes are included to distinguish PCR duplicates
from duplicate RNA fragments in the sample. First, the
fold changes of genes between replicates are highly consis-
tent and deviations can be explained by sampling noise (see
above and Figure 2A–C). And second, the same is true for
local fold changes within genes (see Figure 2D and E). How-
ever, this model should not directly be applied to standard
RNA-seq data. If random barcodes are ignored in the E.
coli RNA-seq data set, replicate gene fold changes are highly
inconsistent, i.e. outside of their credible intervals (see Fig-
ure 4B). In addition, the quantiles from the posterior pre-
dictive distribution indicate extreme deviations and the es-
timated local fold change is clearly outside of the credible
interval in almost all cases (see Figure 4D and E). This in-
dicates that the basic model severely underestimates noise
in the presence of PCR amplified and biased read counts.

Furthermore, when ignoring random barcodes, 599 out
of 2193 genes deviate more than 2-fold from the normal-
ization constant (see Figure 4C) as compared to 467 genes,
when random barcodes are respected. This clearly shows
that PCR bias does not only affect quantification within
a single experiment (1,17), but also differential quantifica-
tion. Importantly, as the fold change estimate of the basic
model is equivalent to fold changes derived from existing
approaches, this is not only a problem of the proposed basic
model but also of the standard method of taking the ratio
of total read counts.

The aggregation strategy in the basic model intrinsically
assigns high weights to local fold changes derived from large
read counts. This is an appropriate way to estimate noise,
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Figure 2. Credible intervals for random barcode RNA-seq data. (A) A scatter plot of the fragment counts from two replicate RNA-seq experiments for
each gene is shown. The dashed line corresponds to a log2 fold change (lfc) of 0, the dotted lines to a lfc of 1 and −1. Black dots correspond to genes
where the normalization constant is outside of the 99% fold change credible interval. (B,C) The number of not credible genes and genes deviating more
than 2-fold are illustrated; i.e. the number of black dots and dots outside of the dotted lines in Figure 2A, respectively. (D) The MAP fold changes of the
local fragment coverage of fumA, their 99% credible intervals as well as the median of the posterior distribution (MED). The horizontal line corresponds
to the estimated total fold change of fumA (total MAP). At several positions, the MAP is undefined due to zero coverage in one of the replicates. (E) The
distribution of P-values computed by the posterior predictive function is shown for all positions in D. It is essentially a uniform distribution, i.e. the local
fold changes indeed are distributed according to the beta binomial distribution, as predicted by our model.

when large counts are produced by sampling, i.e. the corre-
sponding fold changes are not heavily affected by noise and,
thus, relatively stable. However, this is not reasonable, when
read counts are artificially increased by PCR. Thus, the idea
of the conservative version of this model is to reduce read
counts.

We propose and test several ad-hoc procedures for re-
ducing the read count in order to reduce weights of local
fold changes. We either compute the logarithm (LOG) or
the square root (SQRT) of the original read count, or we
divide both read counts c1 and c2 by a constant factor, ei-

ther by max(c1, c2) (MAX), log2(max(c1, c2)) (LOGSC) or
min(c1, c2) (MIN). MAX is the most conservative way of re-
ducing the counts, i.e. it produces the smallest estimates of
the fragment counts, and produced the best results, compa-
rable to the estimates exploiting the barcodes(see Table 1).
Note that this is different from simply collapsing multi-copy
sequences to a single read, which would restrict the dynamic
range of fold changes severely.

Table 1. Outlier genes for different methods

barcode reads MAX MIN LOGSC LOG SQRT

Deviating >2-fold 467 599 477 504 496 500 525
Outside 99% credible interval 18 1970 16 60 770 767 1233

Downsampling significantly affects the number of genes outside of the 99% credible interval and deviating more than 2-fold.
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Figure 3. Count ratio priors and posteriors. (A) log2 densities of beta priors for different parameters are shown. Note that the prior density for the log2 fold
change is different from the prior density of the beta proportion p. The prior without pseudocounts (� = � = 1) has most of its mass between roughly -5
and 5. Smaller or greater tolerances can be achieved by using different choices for � and �. This is especially of importance when sample data are sparse (i.e.
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credible interval the probability is shown. More clearly than in (A), this shows that the prior belief of a deviation of at most 5 in both directions is about
75%. If larger deviations need to be tolerated, smaller parameter values have to be chosen. (C) Size of the 95% credible interval for different observed
total read counts c1 + c2 in two conditions. l = log2

c1
c2

is the estimated log2 fold change, i.e. the black line corresponds to the cases where c1 = c2. The
measurement uncertainty is high for small and unbalanced c1, c2 and slowly approaches 0 for larger read counts.
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Figure 4. Credible intervals for RNA-seq data. The same plots are shown as in Figure 2, but with reads instead of fragments, i.e. the random barcodes
have not been used to infer fragment counts. Thus, this figure and its differences to Figure 2 illustrate the expected results for an RNA-seq without random
barcodes. Due to PCR amplification, read counts are artificially inflated, resulting in grossly underestimated sampling noise. See main text for a discussion.
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Evaluation

A crucial point in evaluating the performance of downsam-
pling in estimation of fold changes is the availability of a
gold standard to compare to. Quantitative real time PCR
(qPCR) is often used as a targeted validation method for
sequencing data, albeit issues about its accuracy have been
raised recently (31). For the MAQC/SEQC projects (27,31),
qPCR measurements have been performed for a large num-
ber of genes for standardized samples. Two publications re-
port sequencing data for these two samples. In (26), the
samples were sequenced in single-end mode on an Illumina
Genome Analyzer II (subsequently called Bullard data set),
and in (31), paired-end sequencing was used on an Illumina
HiSeq 2000 (subsequently called SEQC data set). Further-
more, Bullard et al. used an older sample preparation pro-
tocol than the SEQC study. Comparing fold changes from
both NGS data sets to the MAQC qPCR measurements al-
lowed us to investigate whether downsampling is able to im-
prove fold change estimates for NGS data measured using
technology a few years old, and whether improvements are
still observable for very recent and optimized sequencing
techniques.

Consistent with the results from the replicate compari-
son above, all downsampling methods improve deviations
from the qPCR reference significantly (see Figure 5). Im-
portantly, in all cases, there are also many genes where the
deviation increases slightly upon downsampling. This can
be a consequence of the fact that the qPCR fold changes
are in fact not a gold standard and suffer from inaccuracies
as well (31). Importantly, the accuracy gain for SEQC data
set are less pronounced indicating that sequencing qual-
ity may have improved in recent years. However, it is un-
clear, whether this is a consequence of the sequencing mode
(single-end versus paired-end), the sequencing device or dif-
ferences in sample preparation. Nevertheless, even for the
recent data set, downsampling still leads to significantly
more accurate fold changes, indicating that there is still
room for improvement by computational analysis methods.

Furthermore, we tested how many genes are affected in
a typical mRNA-seq experimental setting (29). Here, due
to a missing reference, we cannot check whether corrected
fold changes are more accurate than raw fold changes. How-
ever, we are interested in the number of genes that are called
differentially expressed and affected by correction. In many
cases, a set of differentially regulated genes is defined by
imposing a cutoff on statistical significance and log fold
change, or only on the log fold change if no or too few repli-
cates are available (where the latter is the typical case). For
default choices of this cutoff the set of differentially called
genes changes by about 20%, i.e. a surprisingly large frac-
tion of genes falls below or exceeds the cutoff due to the
correction (see Figure 6). Thus, even if the correction af-
fects fold changes only slightly, the gene sets from typical
experiments may change dramatically after correction.

Handling replicates

Replicate fold change measurements may be affected by
noise (measurement uncertainty due to sampling) and po-
tentially by bias. Here, by replicates we mean technical repli-
cates where repeated sample preparations are sequenced

from the same biological sample. Biological replicates may
further be affected by natural variation between two equally
treated samples.

If the count ratio model is appropriate for NGS data,
log fold change credible intervals from technical replicates
should overlap (potentially after downsampling has been
applied). To test this, we computed the squared Hellinger
distance between posterior distributions from technical
replicates of the SEQC data set (Replicates a and b for sam-
ples A and B measured at BGI; see Figure 7A and B). The
Hellinger distance (see Methods above) quantifies the sim-
ilarity between two probability distributions and is 0 when
the distributions are equal and approaches 1 when the dis-
tributions differ.

When no downsampling is applied, the squared Hellinger
distances are slightly larger than expected from a resam-
pling approach (see Methods). Thus, credible intervals over-
lap less than expected from a model that only incorporates
sampling, or, equivalently, credible intervals are slightly to
small without downsampling. This is expected, as from the
above analyses we know, that bias indeed plays a role in this
data set (see Figure 5). However, when downsampling is ap-
plied, credible intervals overlap more often than expected,
which means that they are a conservative estimate of the
range of fold changes with a (in a Bayesian sense) high de-
gree of belief and that the count ratio model with downsam-
pling is appropriate for this data set.

Moreover, as indicated above, when multiple replicates
are available, the experimenter may be interested in an aver-
age fold change. This can be estimated by pooling all reads
before analysis. However, subjecting the pool of all repli-
cates for the same condition to downsampling is not rea-
sonable, as downsampling is supposed to remove PCR du-
plicates and two reads from distinct replicates may not be
the result of the same amplified RNA fragment. Thus, we
downsample each replicate separately and sum up down-
sampled read counts per replicate. Interestingly, this mode
of downsampling improves the overall correlation between
replicate fold changes (see Figure 7C). Furthermore, the av-
erage fold change is improved to a similar extend as for a
single replicate upon downsampling (see Figure 7D).

Bayesian modeling suggests a normalization procedure

Due to different sequencing depths, normalization between
experiments is necessary. The underlying principle of most
normalization procedures is the assumption that either all
or some specific genes are not changed on average. Often, a
normalization factor is used to transform all fold changes
such that they fulfill this assumption. Effectively, in DESeq
(24), the median log2 fold change of all genes is subtracted
from all log2 fold changes, i.e. after normalization, half of
all genes appear downregulated, the other half upregulated.

We can extend our computation of gene fold changes to
a genome fold change which can be used as a normalization
constant. Given the local read counts cg, i, j, with g = 1...G
corresponding to all genes, i = 1...Ng denoting the Ng posi-
tions in gene g and j = 1, 2 denoting the two experiments, the
maximum likelihood estimator of the genome fold change
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Figure 5. Validation of downsampling. (A/C) qPCR measurements from the MAQC/SEQC project are scattered against corresponding the mRNA-seq
derived fold changes (A) for the older data set (26) and (B) for the more recent data set (C). Arrows are drawn for each gene indicating the fold changes
before (arrow start) and after (arrow tip) downsampling by LOGSC. Improved fold changes are indicated in blue, worse fold changes in red. Fold changes
whose deviation is smaller than two-fold with and without correction are indicated in gray. (B/D) Results are summarized for all procedures. The x-
axis corresponds to the absolute difference of log2 fold change upon downsampling, i.e. to the length of an arrow in (A) and (C). Plotted is the log
ratio comparing the number of genes that are improved to the number of genes that are made worse by downsampling for a minimal value of absolute
difference. Dots correspond to statistically significant odds ratios according to a binomial test (p < 0.01). In (B) especially for LOGSC and MAX, there
are significantly more genes where downsampling leads to smaller deviations from the gold-standard than genes with larger deviation. In (D), differences
between the downsampling approaches are less pronounced and odds are more modest (but still significantly in favor of improved fold changes).

is

l̂g
ML = log2

∑G
g=1

∑Ng

i=1 cg,i,1∑G
g=1

∑Ng

i=1 cg,i,2

(18)

This is equivalent to normalization by RPKM/FPKM.
However, as before, this is only reasonable when read counts
are not distorted by PCR amplification, i.e. when random
barcodes have been used or bias has been reduced by proper

downsampling procedures. Indeed, both possibilities, ran-
dom barcodes and downsampled reads, result in similar
normalization constants (see Figure 8A) that perform very
well for the whole range of expression in the E. coli experi-
ment (see Figure 8B). Surprisingly, when applied to random
barcode data, the robust normalization constant estimate of
DESeq appears to be questionable especially for medium to
highly expressed genes (e.g. about 70% of all genes with to-
tal read count over 50 appear to be upregulated in replicate
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Figure 6. Affected genes in a typical RNA-seq experiment. (A) In (29), the yeast transcriptome was analyzed using RNA-seq under 18 environmental
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A; see Figure 8B). Moreover, when the normalization con-
stant is estimated without random barcodes by DESeq (as
in a normal RNA-seq experiment), the number of upreg-
ulated genes increases even further (see Figure 8B). Over-
all, for this data set, estimates based on the median of all
log2 fold changes appear to be implausible and would imply
questionable conclusions on differentially regulated genes.

DISCUSSION

The standard way of computing fold changes from quanti-
tative NGS data is to compute the ratio of the number of all
reads belonging to a certain biological object in condition
A and the number of all reads belonging to the same object
in condition B. As introduced above, this total fold change
is a weighted average of local fold changes, where positions
with many reads contribute more to the total fold change
than positions with few reads.

Using RNA-seq data where PCR duplicates can be de-
tected using a special experimental setup, we have shown
that these weights are only reasonable when no bias is in-
volved in local read counts and that read count bias does
not generally cancel out when fold changes are computed.
This unexpected result stems from the fact that read counts
are aggregated for larger biological objects such as mRNAs,
which leads to the fact, that linear bias of read counts is not
linear for the larger objects. One way to deal with bias is to
develop models that try to predict read count bias based
on the observed read sequences. However, such methods
suffer from several drawbacks. First, sequencing is a mul-
tistep protocol, and each step may introduce some sort of
bias into the measurements that might still be unknown.
Second, even if the source of bias is known, the biochem-
ical processes behind it are highly complex and existing
models gross oversimplifications. Third, even if those mod-
els were appropriate, incomplete observations could com-
plicate bias predictions, as only prefixes (for single-end se-

quencing) or prefixes and suffixes (for paired-end sequenc-
ing) of the RNA molecules are usually observed in NGS.

Therefore, we take a different route in the differential
analysis of NGS data, which exploits the linearity assump-
tion for bias acting on read counts and avoids the nonlin-
earity for bias acting on larger biological objects. Instead of
first aggregating reads per biological entity for each sample
and then computing ratios, we first compute all read count
ratios and aggregate them to a total fold change. We have
demonstrated that both workflows are equivalent when our
proposed basic noise model is used. This means that tak-
ing the other route does not cancel out bias for free. If
read counts are indeed biased, the basic model will under-
estimate noise. However, we have also shown that the ba-
sic model allows for straight-forward extensions to estimate
noise in a more conservative manner, leading to more ac-
curate fold change estimates as established for the MAQC
data set.

The proposed extensions are downsampling techniques
that effectively reduce read counts proportionally. Instead
of giving high-copy number reads high weights for the to-
tal fold change, all local fold changes are weighted similarly.
Thus, our estimation draws its power from the large num-
ber of positions instead of the large number of reads. This is
superior whenever amplification and not high-copy number
fragments before amplification are the cause for large read
counts. And indeed, based on the random barcode data and
on the MAQC data, amplification appears to be the main
cause for large read counts. However, depending on the ex-
tent of amplification bias in a specific data set, preserving at
least the order of magnitude of two local read counts (e.g.
by using the LOGSC procedure) may lead to more accurate
fold change estimates.

Our method does not only provide accurate fold changes,
but it computes the full posterior distribution of (log) fold
changes. Thus, if either the measurements are unbiased
by the experimental design (e.g. by random barcodes), or
by applying the proposed downsampling procedures, our
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Figure 7. Handling replicates. (A/B) Distribution of the squared Hellinger distance for the posterior distributions of the fold change between replicates for
the genes with qPCR measurement without (A) and with LOGSC downsampling (B). Candlesticks show mean ± standard deviation from 100 resampled
fold change posterior distributions. Without downsampling, distances are greater than expected, which means that estimates of the credible intervals are
too small. This again is evidence that bias is involved for this data set. Indeed, upon controlling bias via downsampling, credible intervals are conservative
estimates of the sampling noise. (C) The correlation of replicate log fold changes for genes with qPCR measurement is improved upon downsampling.
Here, the coefficient of determination R2 is shown when n = 1...8 of the 8 lanes are considered (both replicates from sample A and B were measured on
8 lanes of a flow cell; thus, the number of lanes corresponds to sequencing depth). (D) Fold change estimates are improved for the average fold change
computed for replicates (compare to Figure 5D).

model is able to compute reliable credible intervals for fold
changes. However, we note that biological relevance of fold
changes must be determined by other methods. Biological
relevance is often measured by a P-value testing the null hy-
pothesis that some treatment between conditions does not
have an effect on a certain mRNA. Checking whether the
log fold change 0 is outside of some credible interval does
not test biological relevance, as here the null hypothesis only
is that the two samples have the exact same copy number of
mRNA. To find genes that are indeed affected by a treat-

ment, biological replicates and an appropriate test are nec-
essary, preferably respecting the estimated log fold change
intervals (Erhard & Zimmer, manuscript in preparation).
Thus, the methods proposed here are especially appropri-
ate for technical replicates, as the noise and bias involved
therein is effectively handled. Our methods can neverthe-
less be applied to biological replicates, e.g. to estimate the
effect size of a treatment or the average fold change, but not
to estimate biological relevance of treatments.
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Figure 8. Evaluation of normalization procedures. (A) The four normalization constants correspond to horizontal lines in the MA plot of the observed
(random barcode corrected) count data. Constants are either computed using the maximum likelihood estimate from random barcode corrected data
(ML barcodes) or from MAX-downsampled read count data (ML downsampled reads), or by using DESeq applied to random barcode corrected (DESeq
barcodes) or uncorrected data (DESeq reads). Both ML estimates are almost equal and different from DESeq estimates. Moreover, in contrast to the
DESeq estimates, the ML estimates appear to lie in the middle of the points. This trend is more clear in (B), where the fraction of genes that appear
upregulated in replicate A is shown for all minimal total expression thresholds. The median-based procedure of DESeq only leads to a 50%-50% ratio
for the complete set of genes, but, for instance, about 70% of all genes with total read count of more than 50 appear to be upregulated. In contrast, the
ML-based normalization factors behave very well over the whole range of expression thresholds.

For all experiments, with or without replicates, proper
normalization of samples is an important issue. When the
total number of reads is used for normalization, as for
RPKM/FPKM, a few high-count and differentially ex-
pressed genes may have great influence on the fold change.
To avoid this bias, a robust normalization factor as in DE-
Seq is often used. However, we have shown that incorpo-
rating many low-count genes may also lead to unrealistic
normalization. Thus, we propose to return to the original
idea of RPKM/FPKM and either use random barcodes in
the experiments or downsampling procedures to overcome
the problem of the strong influence of high-count genes. De-
pending on the experiment, however, it may be necessary to
exclude differentially expressed genes from the computation
of the normalization constant (32).

mRNA-seq is arguably the most often and widely ap-
plied quantitative NGS technique. An important aspect in
differential mRNA-seq analysis, which has not been inves-
tigated here, is differential splicing, i.e. the differential us-
age of alternative isoforms of genes between conditions. Vi-
sually, such genes can easily be analyzed by plotting local
fold changes with credible intervals as in Figure 2D. For ex-
ample, if the usage of an exon is differential, all local fold
changes belonging to it should be distinct from local fold
changes from other exons and credible intervals should not
overlap. However, to detect differential isoform usage in an
automated manner demands further work and evaluation.

CONCLUSION

We demonstrated that bias significantly affects computed
fold changes for NGS experiments and proposed a method

to remove such bias. We proposed a novel approach to es-
timate fold changes from NGS data that is based on the
aggregation of many local fold changes instead of com-
puting the fold change of aggregated read counts. We used
our method to compare RNA-seq derived fold changes to
qPCR derived fold changes from the MAQC project (26,27)
and to analyze RNA-seq data where random barcodes have
been incorporated to control PCR amplification bias. These
analyses provided evidence that our method significantly
improves estimates of fold changes. Furthermore, by ana-
lyzing additional RNA-seq data sets, we show that bias af-
fects about 20% of genes that are called differentially ex-
pressed in a typical RNA-seq setting. Finally, our method
can also be used to derive credible intervals and to incorpo-
rate prior knowledge for fold changes. It can be applied to
standard RNA-seq data as an alternative to state-of-the-art
methods for fold changes and normalization.
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