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RESEARCH HIGHLIGHTS: 1985-89

Science of Porous Media and Flow Therein

e Developed a computer simulations on theory to interpret the data generated in volume-
controlled mercury porosimetry. With the aid of the simulation, the Apparatus for
Pore Examination, developed by Yuan and Swanson at Shell, can be a powerful tool
for measuring pore sizr “stributions in reservoir rock.

e From the study of capillary pressures at low saturations of wetting phase, found that
the sizes of porespace asperities are fractally distributed, i.e., the sizes are distributed
over many different decades of length scales. Showed that this fractal property im-
plies universal dependence of capillary pressure, hydraulic conductance and capillary
dispersion on saturation of wetting phase in the low saturation regime. The universal
laws explained literature data on reservoir rocks and soils.

e With fast-freeze cold-stage scanning electron microscopy determined the distribution
of oil and water in Berea sandstone and Prudhoe Bay reservoir rock as a function
of wettabilities ranging from water-wet to mixed-wet to oil-wet. This most extensive
microscopic study available today shows precisely where the oil is distributed as a
function of wettability and local mineralogy and relates the capillary pressure curves
to the oil and water distribution.

¢ Improved the method of analysis for determining the capillary pressure curve by the
centrifuge method. The traditional approximate analysis developed by Hassler and
Brunner places restrictions on sample size and mounting. The new analyses devel-
oped eliminate these restrictions and allow direct numerical evaluation of the capillary
pressure without approximation of the theoretical equation or allow fast numerical
evaluation with an approximation greatly superior to that of Hassler and Brunner.

e Developed an effective medium theory of anisotropic media. The theory is useful
and economical for predicting conductance and permeabilities for multiple phases
occupying anisotropic porous media. Such a theory did not previousiy exist. Monte
Carlo computer simulations carried out on model systems showed that the theory is
quite accurate.

o Carried out molecular simulations and constructed a statistical mechanical theory
(density functional theory) to understand the solvation forces, disjoining pressure, ad-
sorption, transport and flow of fluids in ultrathin films or in ultranarrow pore spaces.
The results provide a molecular-level understanding of the effect of fluid-solid interac-
tion on the wettability of pore surfaces and of the adsorption and transport of wetting
fluid into tight spaces, such as between clay platelets or near particle contacts of
adsorbed or aggregated fines in reservoir rock.



Science of Microstructured Fluids: Phase behavior, Interfacial Tension and
Rheology.

e Applied a battery of experimental techniques to reveal the connection between the
ultralow tensions enabling microemulsions to enhance oil recovery and the transport
behavior, phase behavior and supramolecular microstructure of these oil, water sur-
factant solutions. Established the existence of bicontinuous microemulsions in which
oil-rich and water-rich regions, separated by surfactant sheets, continuously span the
solution. Related the ultralow tension microemulsions to their proximity of critical
points in the phase diagram. By comparison with oil, water alcohol solutions, deter-
mined that the conditions for ultralow tensions require both proximity to the critical
point and the existence of supramolecular microstructure. Showed that the transition
from monocontinuous to bicontinuous microstructure can occur by percolation, i.e.,
random interspersion of oil-rich and water-rich regions, or can be driven by tempera-
ture controlled preferred mean curvature of the surfactant sheets.

e Invented and patented the controlled environment vitrification system (CEVS) en-
abling vitrification and viewing of thin (2000 angstroms) frozen samples of microstruc-
ture fluids in the transmission electron microscope (TEM). The CEVS has been in-
stalled in a dozen industrial and university laboratories around the world and has
become the most unambiguous method for identifying the supramolecular microstruc-
ture of micellar solutions, liquid crystals and microemulsions. Cryo-TEM at Minnesota
has been successful in (1) identifying the spherical to wormlike micelle transition as
the reason some surfactant solutions have a 10%-fold increase in viscosity upon addi-
tion of less than a percent of salt, (2) finding a transition from a disk-like micellar
solution to ripple phase liquid crystal (ripple phase consists of a periodic stack of cor-
regated bilayers, (3) determining the variety of liquid crystallites and vesicles formed
by mechanical agitation of liquid crystal dispersions, and(4) exposing the bicontinuous
structure of microemulsions.

¢ Developed the theory of imaging liquid crystallites with polarized light as a function of
their shape and structure and invented a low cost system for simulating and animating
liquid crystallites viewed with polarized light. The simulation results, available as a
16mm movie, help identify liquid crystallites and vesicles from micrographs taken with
a polarized light microscope. ‘

* Introduced an accurate, tractable molecular theory of the electric double layer which is
so important in controlling the microstructure and phase behavior of many oil, water
and surfactant solutions. By comparison with computer simulations, the theory was

shown to be vastly superior to the traditional Gouy-Chapman theory of the electric
double layer.
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Supercomputer-Aided Mathematical Modelling

e Developed an adaptive, finite element frontal displacement simulator in which initial
and boundary conditions are handled efficiently and without introducing the usual
numerical artifacts (oscillations) plaguing simulators. The simulator was tested to
be accurate and economical by comparison with an analytically solvable model. The
simulator was also used to study stability of two-phase frontal displacement in hetero-
geneous reservoirs and under conditions of favorable and unfavorahle mobility ratios
of the phases. It was shown that linear stability analysis fails for two-phase frontal
displacement.

¢ Developed a mechanism-based simulator of two and three-phase frontal displacement.
The model combines self-consistently the microscopic statistical network theory for
computing capillary pressures and relative permeabiliiies of the advancing front and
numerical solution of the Darcy-level frontal displacement equations. The model is
potentially especially useful for predicting oil recovery in three-phase displacement
processes because empirical correlations are rare for this case and will be expensive
to generate because of the number of variables involved.

o Developed a three-dimensional, adaptive, finite element algorithm with automatic grid
generation for studying the free energy, conduction and flow in periodic porous media.
The algorithm and its associated supercomputer code has established the current state
of the art in 3D computing. the algorithm has been used to calculate the free energy
of bicontinuous liquid crystals. It has also been used to calculate flow and transport in
several families of periodic porous media. Regions of recirculation flow, important in
flow driven dispersive mixing in porous media, were found. The relationship between
the form factor and the permeability of these porous media was investigated. The
values of a characteristic transport length that can be deduced from the results agree
with that proposed recently by physicists at Schlumberger.
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FLOW IN POROUS MEDIA, PHASE BEHAVIOR
AND ULTRALOW INTERFACIAL TENSIONS:
MECHANISMS OF ENHANCED PETROLEUM RECOVERY

Department of Chemical Engineering and Materials Science
University of Minnesota

ABSTRACT: 1985-89

A major program of university research, longer-ranged and more fundamental in ap-
proach than industrial research, into basic mechanisms of enhancing petroleum recovery
and into underlying physics, chemistry, geology, applied mathematics, computation, and
engineering science has been built at Minnesota. The 1988-89 outputs of the interdisci-

plinary team of investigators were again ideas, instruments, techniques, data, understand-
ing and skilled people:

e 76 scientific and engineering publications in leading journals.

e Ten Ph.D. theses, six authors going to industry. The other to a postdoctoral
university position.

e Three M.S. theses. One author is now pursuing a Ph.D. degree in Chemical
Engineering and the other is inactive.

e Numerous presentations to scientific and technical meetings, and to industrial,
governmental and university laboratories in the U.S., Europe and South Amenca

e Vigorous program of research visits to and from Mxnnesota

This report summarizes the papers and theses that emerged during the period 1
October 1988 to 30 September 1989 and features thirteen major accomplishments of the
program during that year. The major accomplishments are reported in greater detail
in the remainder of the report. The major accomplishments of the program of 1985-
88 we described in three previous Annual reports and twelve Quarterly Reports. The
major accomplishments during 1988-99 are reported in this report. However, the research
highlights of the entire four years of the program are briefly outlined in the next section.



INTRODUCTION

This report summarizes the outputs that emerged from the Minnesota research pro-
gram during the period 1 October 1988 to 30 September 1989. The goals of the program,
ideas, instruments, techniques, data, understanding, and skilled people for the longer term,
~ doing so especially by elucidating basic mechanisms. For then the uncertainties in pro-
cess design, particularly in scale-up, control and optimization, are reduced, and innovative
process development is promoted. |

The original focus was surfactant-based chemical flooding, but the approach taken
were sufficiently fundamental that the research, longer-ranged than industrial efforts, has
become quite multidirectional. Many current outputs of program are basic enough to
pertain to petroleum recovery more broadly and to energy-related technologies as well.

Research Highlights

The emphasis of the research program is on understanding basic physical chemical
mechanisms with the goal of transforming this knowledge into the concepts and mathe-
matical formulations needed for engineering process design and analysis. In this section is
presented highlights of the research progress described in detail in subsequent sections of
the report.

Volume controlled porosimetry. A few years ago Yuan and Swanson introduced a new
Apparatus for Pore Examination (APEX) for a new kind of porosimetry. Instead of setting
the capillary pressure and measuring the increase in saturation, they inject a controlled
amount of volume and measure the resulting capillary pressure. This volume-controlled
porosimetry generates far more information about the morphology of the pore space. To
use this information effectively one must, however, understand how capillarity and pore

morphology jointly govern the capillary pressure curve observed in volume-controlled in-
jection of a wetting phase.

Earlier Minnesota researchers (e.g. Mohanty et al. 1987, Heiba et al. 1982) estab-
lished capabilities of simulating processes like mercury injection with mechanism-based,
computer-facilitated models of pore-level displacements in the pore network. We bring
these capabilities and some new features to bear on APEX to discover how much useful
information about a porous medium can be extracted from volume-controlled mercury
displacement. The disordered nature of porous media we reduce to decorated network ap-
proximations onto which any pore size distribution, pore structure, and topological feature
can be mapped. Such networks can represent sandstenes and carbonates closely, including
pore systems that display bimodal size distributions, diagenetically altered shapes, random
or correlated heterogeneities, and stratification. APEX mercury injection is quasi-static;
so is our simulation. Displacement under these circumstances consist of smooth, reversible
changes linked by jumps in capillary pressure, the sequence of which follows from the
structure of the porous medium and the saturation history. Thus, careful examination of
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fluctuations in the capillary pressure provides detailed information about pore structure,
notably distributions of pore size and pore volume. The results account quantitatively
for the APEX mercury capillary pressure curves measured by Yuan and Swanson. In our
work, sample size — an aspect not reported previously — is found to be a major factor
in APEX response. By Monte Carlo simulation of APEX mercury injection we find the
optimum size of specimen for examining pore space of given properties. By the same
means we investigate added kinds of experiments that extend the capabilities of APEX
mercury injection, namely withdrawal experiments, withdrawal after partial reinjection
and full scanning loops. We also investigate the potential use of high pressure mercury
porosimetry to characterize microporosity and surface roughness in reservoir rocks.

Fluid distribution and Transport in Porous media at low wetting phase saturation.
Data on the capillary pressure, the hydraulic conductivity and the capillary dispersion
coefficient as a function of saturation of wetting phase at low saturations can be used to
deduce the distribution of sizes of the asperities of porespace and the disjoining pressure
of the thin films of wetting phase. Katz and Thompson by electron microscopy observed
that the asperities in the porespace of natural sandstone are fractally distributed. Davis
showed that Melrose’s capillary pressure at low water saturation implies the same fractal
dimension. We have combined the theories of fractal geometry and thin film physics to
derive power laws for the capillary pressure, hydraulic conductance and capillary disper-
sivity at low wetting phase saturation. The theory provides a basis for similar empirically
derived laws for sandstones and soils.

Molecular dynamics of fluids in ultranarrow pores. Fluids in molecularly thin pores,
e.g., water between clay platelets or oil in diatomacious earth, have no regions of homo-
geneous concentration. The pressure in such confined thin films of fluid is anisotropic and
is very sensitive to pore size. To understand how the fluid molecules are distributed in
confined thin films and how this density distribution affects pressure, diffusion and flow in
ultrathin films, we have carried out molecular dynamics studies of simple fluids confined
between flat solids. The density distribution and the diffusivity are not affected appreciably
by the flow even though the shear rates are very high compared to laboratory rates.

However, the strong density variations across the pore render the usual dependence
of the local viscosity on local density inappropriate. At separations greater than four
molecular diameters flow can be described by a simple redefinition of local viscosity. In
narrower pores a dramatic increase of effective viscosities is observed and is due to the
inability of fluid layers to undergo the gliding motion of planar flow. This effect is partially
responsibility for the strong viscosity increases observed experimentally in thin films that
still maintain their fluidity

Molecular dynamics and molecular theory of wetting and adsorption. Van der Waals
or dispersion forces and the electrical doubly layer interactions control the wetting and
adsorption behavior of fluids contracting solid surfaces. As these forces operate at the
molecular level an understanding of the mechanisms of wetting and adsorption can be
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achieved only through a molecular-level theory. The combination or density functional
theory and molecular simulations has lead to considerable progress toward developing
such a theory in recent years. Molecular dynamics of the primitive model electrolyte has
provided much insight into the nature of the electrical double layer. We have developed
a density functional free energy theory that predicts quantitatively the ion density and
electrical potential profiles of a primitive electrolyte at a charged surface. The usual
approach — a Stern layer plus a Gouy-Chapman region — is wrong because it assumes the
ions near the electrode form a dilute solution and that the Stern layer possesses a bulk-like
dielectric constant. Density functional theory itself involves approximations, even though
it is considerably better than the Gouy-Chapman theory. As a guide to help invent the
most accurate, tractable density functional theories we have found exact solutions to simple
one-dimensional fluids. Earlier we solved the hard-rod problem. In this report we present
exact solutions for a 1D fluid whose particles interact with an arbitrary nearest neighbor
potential. Density profiles and disjoining pressures are computed for square -well and
triangular-well particles. We also show that the modern density functional theories which
compare well with computer simulations, predict the same wetting transition behavior that
older, less quantitative theories did.

New numerical methods to handle initial and boundary conditions in tmumiscible dis-
placement. The analysis of continuous flow situations requires identification of a ‘system,’
which is the region of particular interest, and its ‘surroundings,” which are represented
by conditions imposed at the boundary of the ‘system.’ General procedures for choos-
ing boundary conditions at surfaces at which no phase boundary exists, i. e. ‘synthetic’
boundaries, seem to be lacking. Drawing on the example of immiscible displacement of
oil by water in a one-dimensional, semi-infinite porous medium, we compare four types
of synthetic downstream boundary conditions — Dirichlet (first kind), Neumann (second
kind), Robin (third kind), and what is in essence none — to find which is the most efficient
when predictions are to be computed from the solution of the governing equation set. The
Robin-type condition proves best: it gives the most accurate solution at fixed cost or, al-
ternatively, requires the least work to achieve a given accuracy. To represent faithfully the
physics of the situation, the Dirichlet and Neumann conditions must be imposed farther
downstream of the region of interest than the Robin condition. In addition, we explore
the behavior of a ‘pseudo-boundary condition,” which is in fact not a proper boundary
condition at all, but discretization and truncation errors mask its redundant nature and
allow it to perform well in cases where there is little upstream signalling. Although our

findings are drawn from the displacement problem, they are more broadly applicable to
analysis of transport phenomena.

An initial condition, which sets the state of a system at a particular time, should
describe accurately the physics of the situation and should not create computational ar-
tifacts when the governing equations are solved numerically. Drawing on the example of
two-phase flow in porous media, we show that unphysical oscillations can mar a solution
should the initial condition violate an inflow boundary condition. Tracking these oscilla-
tions can increase by orders of magnitude the computer time needed to solve the equations

4
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of change. At an internal boundary between two different media, an initial condition that
violates the steady-state equations of change produces features that might be equally un-
desirable. We propose a way to generate initial conditions that avoid these artifacts, viz.
by splicing together a solution of the linearized governing equations in the region of change
and solutions of the steady-state equations in regions of constancy. We demonstrate our
proposal using the situation of two-phase flow in porous media. Our findings are broadly
applicable because of the partial analogies among transport of mass, heat, and momentum.

Electron microscopy of surfactant fluid microstructure. A major goal of the Minnesota
program has been to determine the microstructure of surfactant solutions and to relate the
microstructure to the phase interfacial and rheological properties of surfactant solutions.
In previous work we developed cryo-electron microscopy and holey polymer sample hold-
ers that enable one to visualize directly fluid microstructures as small as 50 angstroms.
In this report, we present cryo-microscopy studies of surfactant microstructures in dilute
aqueous solutions and dispersions — globular, swollen and cylindrical or wormlike mi-
celles, discoid and ripple phase structures, and uni- and multi-lamellar vesicles — can be
seen at high resolution by cryo-transmission electron microscopy (cryo-TEM) of thin vit-
rified sample films. Sample films are prepared within a chamber where temperature and
chemical activities of the surrounding vapor are controlled, thereby preventing evaporation
and temperature changes that could alter the microstructure in the labile systems. The
thin liquid films are quenched by rapidly plunging them into liquid ethane. The resulting
vitrified samples are mounted into a cold-stage and transferred into a TEM for direct obser-
vation. Monophasic solutions of cetyltrimethylammonium bromide (CTAB) show globular
micelles that swell with added toluene or styrene to form swollen micelles. Wormlike mi-
celles form in CTAB-NaBr solutions. Dilute mixtures of dipalmitoylphosphatidylcholine
(DPPC) and diheptanoylphosphatidylcholine (DHPC) show discoid structures above the
main transition temperature of DPPC and A and A/2 ripple structures of the Py phase at
temperatures below the main transition temperature. A new model is proposed for the A
structure and the ripple structures are shown to exist as single bilayers. Biphasic disper-
sions of sodium 4-(1'-heptylnonyl)benzenesulfonate (SHBS or Texas # 1) show spheroidal
and tubular vesicles, and complex encapsulated vesicles and coiled tubules. Vesicle-like
microstructures of SHBS persist at 90° C. At the relatively low SHBS concentrations stud-
ied there is no evidence of the constant spacing characteristic of the lamellar phase at
higher concentrations, suggesting that the structures observed may result from unbinding
fluctuations that disrupt lamellar phases.

A low cost system for animating liquid crystallites viewed with polarized light. Ani-
mated movies of scientific graphics can be recorded on film with the low cost system of
hardware and software described here. The hardware consists of a 16mm camera, a step-
per motor, and a simple camera-motor controller. The software is designed to produce
bitmaps from graphical data, combine bitmaps into composite frames, and record frames
onto film. The camera is fully controlled by the same graphics workstation that is used to
display the images, so fades and dissolves can be performed in software with a camera not
equipped for such special effects. The graphical data, generated on a supercomputer, is
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subsequently transferred to the workstation where it is stored and recorded frame by frame
according to a configuration file. A variant of the software, which operates across.local
and wide area networks, makes use of network computing software to send computation-
ally intensive tasks to a remote supercomputer or to other workstations in a distributed
computing environment. We have used the system to simulate polarized light microscope
images of liquid crystals according to a single-scattering ray-tracing theory.

Surfaces of constant mean curvature with prescribed contact angle. The relationships
between the structures and properties of foams and emulsions are not yet fully understood.
An emulsion or a foam is defined in general terms as a reasonably stable dispersion of
one fluid phase in another, immiscible, fluid phase. Various additives may prevent the
dispersion from separating for a period of time yet it is not thermodynamically stable. The
relationships between physical structures and physical properties of such dispersions are of
practical as well as theoretical interest. These relationships can be computed from three-
dimensional models of the structures. At volume fractions below some critical value, there
is an ‘internal’ phase that is dispersed in a continuous ‘external’ phase and the former’s
form can be modeled as undistorted spheres. At volume fractions approaching unity, the
‘internal’ phase forms polyhedral structures and the ‘external’ phase is limited to thin films
between polyhedral faces and channels at the polyhedral edges. At intermediate volume
fractions, there are structures that are not well characterized, much less well understood.
Physical properties cannot be accurately simulated without adequate A Galerkin weighted
residual formulation of the Surface Divergence Theorem is used with finite element basis
functions to compute geometric models of foam and emulsion structure. The models are
surfaces of constant mean curvature arranged on a simple cubic lattice so that they meet
the boundary planes of the unit cells at prescribed contact angles. Surfaces are computed
for a variety of contact angles and mean curvatures. With contact angle between 5° and
133°, the structure inverts as the mean curvature decreases, whereas with contact betweer
134° and 180°, the structure fills the unit cell as the mean curvature decreases, passes

through a turning point, and then increases. The models have implications to mercury
porosimetry.



PORE-SPACE STATISTICS AND CAPILLARY PRESSURE CURVES
FROM VOLUME-CONTROLLED POROSIMETRY

Synopsis

Far more information about pore space of reservoir rock samples can be obtained
from volume-controlled mercury porosimetry than from conventional pressure-controlled
mercury porosimetry, as Yuan and Swanson (1986) demonstrated in landmark experiments
with their new Apparatus for Pore Examination — APEX.

Earlier researches (e.g. Mohanty et al. 1987, Heiba et al. 1982) established capabilities
of simulating processes like mercury injection with mechanism-based, computer-facilitated
models of pore-level displacements in the pore network. We bring these capabilities and
some new features to bear on APEX to discover how much useful information about a
porous medium can be extracted from volume-controlled mercury displacement.

The disordered nature of porous media we reduce to decorated network approxima-
tions onto which any pore size distribution, pore structure, and topological feature can be
mapped. Such networks can represent sandstones and carbonates closely, including pore
systems that display bimodal size distributions, diagenetically altered shapes, random or
correlated heterogeneities, and stratification.

APEX mercury injection is quasi-static; so is our simulation. Displacement under
these circumstances consists of smuoth, reversible changes linked by jumps in capillary
pressure, the sequence of which follows from the structure of the porous medium and
the saturation history. Thus, careful examination of fluctuations in the capillary pressure
provides detailed information about pore structure, notably distributions of pore size and
pore volume.

The results account quantitatively for the APEX mercury capillary pressure curves
so precisely measured by Yuan and Swanson. In our work, sample size — an aspect not
reported previously — is found to be a major factor in APEX response. By Monte Carlo
simulation of APEX mercury injection we find the optimum size of specimen for examining
pore space of given properties.

By the same means we investigate added kinds of experiments that extend the capabil-
ities of APEX mercury injection, namely withdrawal experiments, withdrawal after partial
reinjection and full scanning loops. We also investigate the potential use of high pres-

sure mercury porosimetry to characterize microporosity and surface roughness in reservoir
rocks.



Introduction

Mercury porosimetry, the forced intrusion of mercury into a porous material, has
been used to characterize the microstruciure of the pore space since Washburn (1921)
suggested how to obtain a ‘pore size distribution’ from measurements of volume injected
versus pressure applied. Ritter and Drake (1945) authored the first work fully devoted to
mercury porosimetry, describing the construction and operation of the equipment, report-
ing many experimental duta and forming the basis of subsequent developments. In 1949
Purcell introduced the technique to the petroleum industry. Since then, mercury capillary
pressure curves measured ou reservoir rock samples (cores, chips, etc.) have been used
routinely in connection with petroleum exploration and production. The goal is to get
information on relationships between petrophysical properties and the microstructure of
the pore space, particularly information useful for predictions of porosity, permeability,
relative permeabilities, and residual oil saturation of reservoir rocks.

In the classical experiment, pressure or: the mercury is raised in increments and the
amount of mercury injected into a sample is measured at each step. This is pressure-
controlled measurement of a mercury capillary pressure curve. Commercially available
mercury porosimeters offer a simple and rapid procedure to obtain a kind of ‘fingerprint’
of a reservoir rock. How much of the internal structure is represented by the fingerprint
is not clear. Indeed, interpretation of the fingerprint is still the subject of active research.
The basis of the method is the concept that in a previously evacuated specimen, mercury
is forced into smaller and smaller pore segments against capillary forces as the mercury
pressure is increased. Such measurement do not directly give the true pore size distribution.
There may, for example, be large pore segments which could be filled at low pressure
except that they connect with the mercury source only through smaller pore segments
(cf. Everett 1958, Heiba 1985). The effect of these so-called ink-bottle pore segments is to
assign too small a portion of the pore space to the large pore segments and too large a
portion to the small pore segments, if the mercury injection data are taken at their face
value. Porous media are irregular networks of pore space, the constrictions and enlarged
junctions of which are usually termed pore throats and pore bodies. Thus, a pressure-
controlled capillary pressure curve, even if accurately measured (cf. Katz and Thompson
1987, Thompson et al. 1987), reveals the distribution of pore throat sizes in only a subset
of the entire population of throats. It is possible for two porous niedia having different
microstructures to give the same capillary pressure curves. This ambiguity is the main
obstacle to correlating properties like permeability with pore structure as inferred from
capillary pressure data.

Injection of mercury into a sample by a stepping-motor-driven positive displacement
pump or a constant rate pump is another way of measuring capillary pressure curves. This
is volume-controlled measurement of a capillary pressure curve. The mercury capillary
pressure is monitored as the dependent variable. During the process, mercury menisci
curve to accommodate to pore shapes and pressure differences. Because capillary pressure
1s inversely proportional to a mean radius of curvature of the mercury menisci, fluctuat »us
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in curvature bring fluctuations in capillary pressure.

That pressure fluctuates during volume-controlled fluid displacement has been ob-
served. Irreversible pressure fluctuations at the pore-level scale are evident from observa-
tions made by Haines (1930): during invasion of pore spaces, the development of unstable
interface configurations leads to small oscillations in pressure. In 1959, Gates (as mentioned
by Yuan and Swanson 1986) observed pressure fluctuations during mercury porosimetry
of vuggy carbonates. Crawford and Hoover (1966) reported striking instances of fluctua-
tions in capillary pressure curves recorded during injection of water into synthetic porous
media. Morrow (1970) demonstrated that drying of a heap of tapered capillaries and a
heap of spheres saturated with volatile liquid cannot be conducted smoothly and reversibly
because of spontaneous changes in fluid configuration. In 1971 Gaulier described the first
automatic device for exploiting pressure fluctuations to measure vugular porosity by con-
stant rate porosimetry. In all these works, capillary pressures are measured in coarse-pored
media. When capillary pressures are measured in fine-pored media, such as sandstones or
clay-coated carbonates, fluctuations in pressure are generally too small to be observeo’l or
detected by available pressure transducers. Thus, experimental capillary pressure curves
appear to be smooth and reversible.

Recently Yuan and Swanson (1986), using high-precision sputtered straingage pressure
transducers.and a high-precision stepping motor for controlled volume injection, success-
fully resolved very small pressure fluctuations as mercury was injected into sandstones and
carbonates. These authors demonstrated in landmark experiments with their new Appa-
ratus for Pore Examination (APEX) that far more information about the pore space of a
reservoir rock sample can be obtained from volume-controlled mercury porosimetry than
from conventional pressure-controlled mercury porosimetry.

APEX mercury injection is quasi-static. Displacement under these circumstances con-
sists of smooth, reversible changes followed by spontaneous changes, generally irreversible
ones, in capillary pressure at constant mercury saturation. The particular sequence of
alternate reversible and spontaneous changes is determined by the structure of the porous
medium and the saturation history. An understanding of this relationship is essential to
convert the fluctuations in the capillary pressure into pore structure information. To this
end, computer simulation of volume-controlled mercury porosimetry in a well defined model
porous medium should be of great benefit through understanding Yuan and Swanson’s ex-
periment, and guiding extension of the capabilities of APEX. To our knowledge, volume-
controlled mercury porosimetry has not heretofore been simulated with mechanism-based.
computer-facilitated models of pore-level displacement in networks of pore segments. We
have developed such a simulation and here describe the method and report the results.

In the next section we synthesize two models of porous media, one of low size contrast
between pore bodies and throats, the other of high size contrast. In the models the
network of porespace is constructed by starting with a cubic lattice and pruning it down
to a representative mean coordination. Pore segments are converging and diverging in
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character: biconical pores are chosen here to capture this essential feature. Sizes of pore
segments are arrived at by drawing at random from a truncated log-normal distribution of
pore throat radii. The size of a pore body is a multiple of the size of the largest adjacent
pore throat. This produces correlation of size throughout the pore network.

Next we describe aspects of meniscus movement in the pore space that are taken into
account in the analyses of injection and withdrawal. We consider low enough capillary
number that menisci remain quasi-static most of the time, except when a meniscus becomes
unstable and jumps under the combined effect of inertia and capillary forces. We restrict
attention to the sequence of capillary equilibrium states that precede and succeed these
jumps.

Next we give details of the computations from the theory. They constitute a ‘Monte
Carlo simulation’ of volume-controlled mercury injection and withdrawal.

We conclude with a summary of results and a proposal of injection-withdrawal ex-
periments to generate more information about pore space, thereby extending the power of

APEX.

Modeling Rock Morphology

Capillarity-dominated flow is commonly interpreted in terms of simplified pore mod-
els. Simplification is necessary because nearly all porous media are so complex that their
microstructure can be neither determined nor described completely. The simplification
gained by treating the pores as though they were uniform cylinders, or the spaces between
regularly or randomly packed spheres or cylinders had to be accepted in the past. As
fuller understanding of the capillary processes ir such idealized systems developed, a more
realistic approach to these processes in real porous media emerged from statistical consid-
erations of the disordered array of pore spaces of variable geometry and connectivity in
sandstones and carbonates (Fatt 1956, Mohanty 1981, Heiba 1985).

Network modeling of the pore space is an active area of research with a correspond-
ing large body of literature. The crudest model is that of a bundle of non-intersecting
tubes, each of constant but different cross-section corresponding to some given pore size
distribution. This ‘parallel type’ model is the basis of so-called ‘hydraulic radius’ theories
used to describe single-phase transport in porous media (Scheidegger 1974). The opposite
extreme model is obtained by assuming that all the pore space is serially lined up. Such
model is referred to as ‘serial type’ model because capillaries of different pore radius are
put together in series one after another (Scheidegger 1974, Dullien 1979). Such models fail
to predict the salient features of capillary displacement, i.e. the known hysteresis between
injection and withdrawal, and the trapping of displaced fluid.

It is clear that a more appropriate model of pore space should involve some kind of
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random network. Indeed such an approach, introduced by Fatt in 1956, has been widely
used in the last two decades to simulate the petrophysical properties of rock formations and
the processes that occur within it. The terms pore, pore body, pore throat, pore system,
pore space distribution are used rather loosely however. The ‘sticks and balls’ model,
which approximate the pore space as a network of tubes and spheres, has been frequently
used. Sticks and balls seem simple because their singularities of pore wall curvatures
invite definitions, e.g. of pore body and pore throat, that are nevertheless arbitrary at
root. This model fails to capture the converging and diverging character of most porous
media. Consequently, there cannot be stable interfaces in the midst of pore segments, an
essential feature of volume-controlled displacement processes.

Mohanty et al. (1987) and Lin and Cohen (1982) have provided a conceptual frame-
work — contraction mapping — by which pore spaces can be mapped into equivalent
networks. The authors have identified the method of recording completely the geometry of
porespace and composition of pore walls, etc. It is called decoration — i.e. ‘decorating’ the
network map with information about local properties. Levels of decoration can be adopted
rationally and systematically, for whatever purpose they are needed. To synthesize our

model porous media, in the remainder we simply follow Mohanty et al. (1987) and Lin
and Cohen. (1982).

We reduce the disordered nature of porous media to a decorated network approx-
imation onto which wide ranges of porosity, pore size distribution, pore structures and
topological features can be mapped. The converging and diverging nature of pore seg-
ments we conveniently captured with biconical pore segments. We define a pore segment
as a cubic body that opens ontc¢ a number 2 of converging conical portions of pore space,
each of which leads either to a dead end or to volumeless throat beyond which lies another
segment. In this way, the common arbitrary practice of separating the pore space volume
into pore bodies and pore throats is avoided. Figure 1 shows the cross-section of a typical
pore segment of our networks. The volume V}, of a pore segment is given by

Vo= Vit ) Ve, | (1)
where Vj is the volume of a body of cube edge 2, i.e.
Vs = 8rf

and V, is the volume of the i-th converging conical portion of porespace of length I,,
which leads to a throat of size ry,,

Ve

1

|

mle, (rf‘ + rory, +77)

We construct a network of biconical pore segments as follows.
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THROATS
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Figure 1. Idealization of a pore segment. Small scale roughness is not illustratced.

(i) Choose an underlying lattice, i.e dimension and connectivity. Specify size and boundary
conditions.

Notewithstanding two-dimensional networks are less expensive and easier to work
with, we use a simple cubic lattice of nodes and branches as an underlying lattice to better
account for the three-dimensional pore space of natural porous media. Actually, though
this paper concentrates on the simple cubic lattice with a N x M x L lattice size, the
network generator can handle the two-dimensional square lattice equally well.

Although conceptually simple, the specification of boundary conditions we optimized
to increase the versatility of the simulation. The boundary conditions are implemented as

either open, closed, or periodic, depending on the displacement mode and the propertxes of
the fluid/fluid pair.

To model volume-controlled porosimetry, the lateral sides of the pore network are
connected to each other to form a cylindrical plug (periodic boundary condition). One
side of the plug (of size N x M) is connected to a source that supplies mercury (open
boundary condition), while the opposite side (of sxze N x M also) is impermeable (closed
boundary condition).

(ii) Prune the underlying lattice down to a representative mean coordination.

As a rule, the connectivity z of a porous media has a probability distribution rather
than a particular value. To obtain a representative mean coordination < z >, we start with
z = 6, the connectivity of the underlying simple cubic lattice, and then randomly prune
branches with probability 1— < z > /6. The number of edges v emanating from any vertex
has then a binomial distribution with mean < z > and variance < z > (1- < z > /6)

12
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given by
P, = (S)(< > /6)"(1-< 2> /6)6"" (2)

6\ 6!
<L/> BACESA)

(ii1) Decorate the lattice with independent features.

where

is the binomial coefficient.

Pore throat radii (r;) are randomly assigned according to a truncated log-normal
distribution, which has the probability density function

2
ool ()
f(Tt;O') = 1 Inr Ttmv’n S Tt S Ttmuz
TiO [erf(—'l%ml) - erf(-——iamiﬂ-”

(zero otherwise) (3)

where o is the standard deviation of the parent normal distribution. Because the tails
of the distributicn are difficult to sample uniformly from one realization to the next, the
full log-normal distribution was truncated (outside [r,,, = 0.1, ry,,,, = 60} um) and
normalized to reduce the variance of the capillary pressure values.

We assign body size at i-th body according to ry;, = pry, p is a prescribed ratio. r,
is the size of the largest throat adjacent to the i-body. This produces correlation of size
throughout the pore network.

We ascribe a constant pore-center-to-pore-center distance 2! (cf. Figure 1) so that
linked to the other geometrical features, such as pore body size and pore throat radius,
give a porosity ¢, consistent with that of the porous medium one wishes to mimic.

(1v) Deduce dependent features.

To each pore body we attached z = 6 frustrums, each of right circular cone of radii
r, ¢ (right circular cones if r, = 0) and height I = [ — r}, (cf. Figure 1). Semi-apical cone
angles we obtain from a = tan™![(ry — ry)/l.].

Figure 2 illustrates two-dimensional views of four networks generated according to
this procedure. The network of Figure 2a, which has a high size contrast between pores
bodies and pore throats, might represent a carbonate severely altered by diagenesis. Based
on core analyses, such a rock can have sufficient porosity to make an attractive reservoir,
but the pore segments are either poorly interconnected or else connected predominantly by
small pore throats. Figure 2b shows a network with low size contrast that might represent
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a consolidated sandstcne. Such a rock can have a relatively homogeneous pore system.
Primary pores tend to Le destroyed with burial because of compaction and cementation.
In this paper results are presented for the ‘high aspect ratio’ network of Figure 2a and for
the ‘low aspect ratio’ network of Figure 2b, deferring other cases (Figure 2¢c and 2d) to a
future publication.

Characterization of Pore-Wall Roughness

The geometry of pore walls in reservoir rocks varies from the smooth, crystalline
surfaces of dolomites to the rough, pitted or clay-coated surfaces of sandstones and soils.
Historically, studies of the physical properties of gorous media have focused on either the
solid matrix or the pore space. Relatively little attentinn has been paid to the interface that
divides the solid space and the pore space. Recent efforts seek to characterize the roughness
of pore walls and to understand its effects on the bulk properties of chaotic porous media.
To this end fractal geometry should be a useful tool, as several have suggested (Katz and
Thompson 1985, Wong et al. 1987,

For our purposes, what is important about fractal roughness is that asperities are
distributed over more than a few length scales. Even though real porous media resemble
fractal objects, they do so only between lower and upper cutoff of scale. Katz and Thomp-
son (1985) using microscopy and Wong et al. (1987) using neutron scattering, measured
features of several sandstone. at the pore level. They found that the pore walls are surface
fractals in a statistical sense on length scales between 1 nm and 100 pm with Hausdorff
dimensions between 2.57 and 2.87.

It has been suggested (Davis 1989) that not only microscopy or neutron scattering, but
also capillary pressure data at low saturation of wetting phase can be used to characterize
pore-wall roughness over a range of length scales by a Hausdorff dimension. Qur recent
works (Novy et al. 1989, Toledo et al. 1989) support this view. High pressure mercury
capillary pressue, such as those measured by Swanson (1985), should be equally useful.

The dependence of the inventory of pendular structures on capillary pressure can
be measured in the laboratory, and conceptual models enable interpretations of these
data. de Gennes (1985) examined two families of fractal extremes of pore-wall roughness:
iterative pits (self-similar pits within pits) and iterative flocs (self-i .milar grains fused to
grains). Toledo et al. (1989) examined the case of the Menger sponge. In each case the
following proportionality was obtained

{1 - VHg] x ApD_3

Vg is the volume of mercury occupying the pore space and Ap = [pHg - pvac], 1s the
capiilary pressure. High pressure mercury capillary pressure can be used to determine D,
the Hausdorff dimension of the pore walls, D being a measure of how the subject space
fills the Euclidean space in which it is imbedded.

14
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Figure 2. Computer-generated porous media. (a) ‘High aspect ratio’ network, repre-
sentative of a carbonate rock with ‘reconstructed’ pore space, i.e. secondary
porosity. (b) ‘Low aspect ratio’ network, representative of a consolidated
sandstone. (¢) and (d) Correlated and random heterogeneities, respectively.
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For the purpose of this work we used [1 — Vy4| = 0.25Ap%4% (Davis 1989) to account
for the inventory of pendular structures.

Equilibrium and Stability of Static Interfaces in Porous Media

The equilibrium and stability of interfaces constrained by solids play a central role in
fluid distribution. Of primary interest here is to understand how capillary forces determine
the distribution of fluid phases within the pore space of disordered porous media.

In the absence of external constraints (gravity or boundary conditions imposed by solid
surfaces) an interface between two immiscible fluids tends to minimize its area by adopting
a spherical shape. In the presence of a solid surface, however, the interface between two
fluid masses assumes configurations, the equilibrium and stability of which depend on pore
geometry, contact angle and externally imposed conditions (pressure, volume, etc.). A
study of mercury porosimetry, is thus, in the most general case, a study of the nature of
surfaces of constant mean curvature, subject to various boundary conditions.

It is only for constant curvature surfaces having radial or cylindrical symmetry, viz.
the cylinder, unduloid, sphere, catenoid, and nodoid, that an exact analytical approach
1s possible (cf. Bolza 1909, Tyuptsov 1966, Huh 1969). For systems of lower symmetry,
numerical approximation methods must be used. The goal of this section is to determine -

the equilibrium and stability of axisymmetric interfaces in axisymmetric biconical pore
segments.

When mercury, a nonwetting phase, is present within an otherwise evacuated porous
media, the complex mercury/vacuum interface consists of a number of menisci, i.e. surfaces
that obey the Young-Laplace equation. According to Mohanty (1981), menisci are chiefly
of two types: head menisci and neck menisci. Head menisci are interfaces with only positive
elements of curvature, referred to as concave (toward the nonwetting phase) or clastic, i.e.
surfaces with a positive Gaussian curvature. Neck menisci are interfaces with negative as
well as positive curvatures, i.e. radii of curvature occur on both sides of an interface. This
selloidal, saddle-shaped, or anticlastic interfaces have negative Gaussian curvature. Figure
3 L.lustrates two such menisci in a biconical pore segment. Not shown in Figure 3 is the
small scale surface roughness which is also present. The thread of nonwetting phase at the
throat is called a neck. Accumulation of wetting phase around a nonwetting phase neck is
called a collar. Collars are bounded by neck menisci and pore wall.

For an ensemble of menisci to be in stable equilibrium Gillette and Dyson (1974) and
Mohanty (1981) showed that each meniscus must first be singly stable to volume-conserving
shape perturbations. Consider the system mercury/vacuum. Let [Apli = [pHg = Prac)i =
[PHg)i be the capillary pressure across the i-th meniscus, and [Vigli be the volume of
mercury in the immediate neighborhood of the mercury/vacuum interface. At equilibriumn,
the capillary pressure Ap, acros: every meniscus of the ensemble, must be the same.
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TPigure 3. A fluid/fluid interface in a biconical pore segment.
provided that pressure gradients and gravitational effects are negligibly small, then
Api=Apj=-=A8pn (4)
where ¢, j,...,n represent both neck menisci and head menisci.

For stable equilibrium, it is sufficient that (Melrose and Brandner 1974, Gillette and

Dyson 1974)
dAp
(dVHg)i >0 (8)

for every meniscus ¢ in the ensemble. Riicker (1887) recognized that Eq. (14) is necessary
for stability of single interfaces.

While satisfying Eq. (5) by all menisci in the ensemble is sufficient, Gillette and Dyson
(1974) found that this is not always necessary. If at most one meniscus violates Eq. (5),
the rest of the ensemble can stabilize it if the following conditions are met

dAp C,
(dVHg),->0 forallz:,\‘:]‘ (6)

and

dAp>“
<0 (7)
Z,-: (dVH 9/ 4

Thus the ensemble stability conditions are given by either Eq. (5) or by Eqgs. (6) and
(7). Violating these conditions leads to instabilities and sudden movement of menisci. In
what follows, we study the equilibrium and stability of neck menisci and head menisci in
biconical pore segments. ‘
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Neck Menisci in Biconical Pore Segments

As capillary pressure is lowered in a system similar to that in Figure 3, the curvature
of the neck menisci changes to a critical value at which the fluid/fluid interface becomes
unstable and suddenly ruptures. Prior to this event, the interface is stable and can be made
to advance or retreat in response to small changes in the capillary pressure. Rupturing of a
selloidal interface which has become unstable has been referred to as snap-off or choke-off,
a well-understood phenomenon for systems with one fluid that completely wets the solid.
Its occurrence depends on pore wall curvature and the pressure levels in the wetting and
nonwetting phases. For zero contact angle, there is a critical ratio of pore radius (rp) to
throat radius (r), at which choke-off of a neck meniscus occurs. As a result the nonwetting
phase becomes disconnected and nonwetting phase is trapped in the medium. This is an

important mechanism of trapping of oil in water-wet reservoir rocks during waterflooding
(Stegemeier 1974, Mohanty 1981).

Breakage or choke-off when one of the fluids partially wets the solid, such as the case
of mercury on silica surfaces, is a less-understood phenomenon, although it has been cited
as a possible cause of hysteresis and trapping (van Brakel et al. 1981). Wardlaw (1976)
found experimentally that if large pores are connected by narrow throats, mercury choke-
off occurs on pressure reduction at relatively high pressures. This result is at variance with
the work of Mohanty (1981). Using pores with a variety of toroidal shapes, this last author
demonstrated, theoretically and experimentally, that incomplete wetting adversely affects
the tendency to choke-off. The conclusive work is yet to be done. If choke-off is a factor in
mercury porosimetry, we doubt that the phenomenon can be captured with axisymmetric
interfaces in axisymmetric pores. Other factors, such as pore segments of lower symmetry
and pinning of the contact lines should be considered. In what follows we discuss the
impact of a non-zero contact angle on the equilibrium and stability of neck menisci in
biconical pore segments with two axes of symmetry and with one axis of symmetry. Qur
work closely follows the work of Huh (1969) and Mohanty (1981).

Figure 4 shows the volume of collars of wetting fluid (vacuum) as a function of capillary
pressure, for § = 0°, # = 5°, and 6 = 35°, and semi-apical angles a[l° < a < 30°].
Menisci represented by long broken lines are unstable to non-axisymmetric perturbations,
whereas those represented by dotted and short dashed lines are unstable to axisymmetric
perturbations. Selected equilibrium configurations in single conical pore segments are
shown in Figure 5. Figure 6 shows equilibrium configurations in single non-symmetrical
biconical pore segments. The contact angle is fixed, § = 0° (Figure 6A) and 8 = 20° (Figure
6B). Stability analysis to volume conserving shape perturbations indicate no region of
stable neck menisci with dAp/dVy, > 0 in symmetrical pores. Non-axisymmetry stabilizes
some isolated menisci but they become unstable, i.e they do not exist when other menisci
exist, thus hindering the choke-off process.

Our calculations, as those of Mohanty, only considered fixed contact angles, i.e. mov-
able contact lines. Departure froin this situation brings in more hysteresis and pinning of
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Figure 4. Equilibrium and stability of neck menisci to volume-conserving shape pertur-
bations. Volume of vacuum collars in biconical pore segments (inset) as a
function of capillary pressure. Fixed contact angle, movable contact lines. (a)

6 =0° (b) 8 =5° and (c) 6 = 35°.
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Figure 5. Isolated equilibrium configurations in hiconical pores with reflective symmetry
in the throat plane. Semi-apical angles ajiesyg = 30°, Q[righy = 30°. Fixed
contact angle, movable contact lines. 6 = 0°. Non-dimensional capillary
pressure Apry/v: (a) 0.40, (b) 0.42, (c) 0.47, (d) 0.53, (e) 0.63, and (f) 0.82.
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Figure 6. Isolated equilibrium configurations in biconical pores without reflective sym-
metry in the throat plane. Fixed contact angle, movable contact lines. Semi-
apical angles afiefr) = 40°, a[righg = 30°. Non-dimensional capillary pressure
Apre/y: (a) 8 = 0°: (a) 0.36, (b) 0.40, (c) 0.43, (d) 0.59, (e) 0.68, and (f)
0.81. (B) 6 = 20°: (a) 0.46, (b) 0.51, (c) 0.56, (d) 0.61, (e) 0.69, and (f) 0;86.
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the contact lines and, in generai, adds a lot of physics to the analysis. Appropriate consid-
eration to these factors may refiglt in choke-off to be possible with incomplete wetting. A
detailed study of neck “henisci, their equilibrium and stability, in a variecy of model pores
and subject to different boundary conditions will be published elsewhere. For the purpose
of this work, choke-off is not considered.

Head Menisci in Biconical Pore Segments

Head menisci are surfaces of constant mean curvature, hence they obey the Young-
Laplace equation. These interfaces are concave (toward the nonwetting phase) at all points.
Figure 7 illustrates two such menisci for the mercury/vacuum system, one in the converging
section of a biconical pore segment and the other one in the diverging section of a biconical
pores segment. Both these menisci are stable when the volume of the fluids are held

constant.

The stability condition for head menisci can be obtained directly because stability
depends on how displacement changes interfacial curvature. Thus, d(pyy — pyac]/dVa, is
positive for menisci in a converging section and negative for menisci in a diverging section.

We censider the relationship between capillary pressure, Ap = [PHg—Pvac] = PHy, and
mercury volume, Vp,, for conical pore segments with semi-apical angles «{0° < a < 45°].
The geometry of the system is shown in Figure 7.

VACUUM
VAC
(0 + «)
8
MERCURY,
R
5-{a+9)

(a) (b)

Figure 7. Geometrical relationships of head menisci in biconical pore segments. (a)

Head meniscus in a converging section. (b) Head meniscus in a diverging
section.
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Converging Section

The capillary pressure is given by

2y
Ap = - cos(8 + «)

(8)

, .
The volume of mercury, Vi, up to a sui%ﬁble constant, between the conical pore and the

head meniscus is given by

VHg 8 Y :
—L = Fi(a,0
nr} 3 [Aprt] i(e.6)
where
Fi(a,8) = cot acos® (6 + a) — [2 + sin(8 + a)][1 — sin(6 + «))?
and A
0< =P < 2cos(f + a)
v/re
In addition,
VHy _ 8 vy s
™™ 3 [Apr,} F"g(a,B)
where
F,(8) = cot acos®(6) — [2 + sin(6)][1 — sin(6))]?
and -
cosd = R
and A
2cos(8 + a) < £P <2
v/

Drverging Section
We distinguished three cases:
(i) a—0<0
The capillary pressure is given by
Ap = g;— cos(f — a)

The volume of mercury is given'by

Vg _ 8| _v
3

mr Apry

3
] F(a,0)

)

3

(9)

(10)

(11)



where
F3(a,8) = cotacos®(6 — a) + [2 + sin(f — a)][1 — sin(8 — a))?

and
p
<2 0 -«
ST S cos( )
In addition, : |
VHg 1 b : 8 vy :
229 2 cotal 2 - -
? =3 a[rt] +3 [Aprt Fy(6) ‘(13)
where
Fy(6) =4 - [2 +5in6]ll —siné)?
and -
6= —
cos R
and A
2cos(f — a) < =P < 2cosé
v/
a—6>0
The capillary pressure is given by
2
Ap = — cos(a — 6) (14)
The volume of mercury is given by
Vu 81 v 3
9 i 9
s 3 [Aprt] Fs(a.9) (15)
where
Fy(a,6) = cot acos®(a — 8) + 4 — [2 + sin(a — 6)][1 — sin(a — 6))?
and A
P < 2cos(a — 6)
v/Ts
In addition, for
2cos(a —6) < P < 2cosé
¥/Ts

Vhy is given by Eq. (13).




(iii) a— =0

The capillary pressure is given by

Ap = L2l (16)
r
The volume of mercury follows
Vg 8| 7 ’
RLLY AP E 17
mry 3 [Aprt o(@) ’ (17)
where
Fs(a) =2+ cosa
and A
p <2
v/
In addition, for
—A—P— < 2coséd
v/

Vhg is given by Eq. (13).

Physics of Volume-Controlled Mercury Porosimetry

The conditions for equilibrium and stability of interacting menisci in porous media
have now been established. We consider next the pore-level physics of quasi-static, volume-
controlled mercury injection and withdrawal in the limit of vanishing mercury flow rate.

The crucial feature of these displacement processes i3 the strong mentscs interaction.
The interaction leads, for example, to simultaneous menisci coalescence, assisted jumps
through a single pore segments or group of pore segments, concurrent local advance of a
single meniscus and global retraction of all other existing menisci, etc. Careful consid-
eration to these cooperative phenomena, the hallmark of volume-controlled displacement
processes, distinguish our work from other studies of capillary displacements where, at
each step, a single meniscus moves through the pore segment where the displacing force is
largest.

Although here we concentrate in low capillary number mercury porosimetry, we can
also account for waterflooding, i.e. oil displacement by water in reservoir rocks, where the
interfaces move, on average, at 3 ft/day.

A basic trait of fluid interface motion during volume-controlled displacement processes
is the so-called Haines jump, resulting from unstable configurations (Haines 1930, Miller
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and Miller 1956, Melrose 1965). Jumps are followed By essentially smooth and reversible
changes in pressure as mercury is constantly injected or withdrawn.,

Haines jumps in volume-controlled fluid displacement are subject to two constraints:
a volume constraint and a pressure constraint.

Volume constraint: The spontaneous redistribution of mercury within a porous
medium takes place at constant mercury volume, i.e. the net flow of mercury vanished.
The process can be described as concurrent local injection, i.e. one meniscus jumps, and
global withdrawal, i.e. all other menisci recede.

When displacement is dominated by capillarity, the mercury volume withdrawn, Vitgs
is exactly equal to the mercury volume injected into evacuated pore space, V,"{g; thus

Vi, = Vi, (18)

Pressure constraint: Once an unstable configuration is reached, the interface moves
rapidly to a new equilibrium position, i.e. the capillary pressure across the mercury/vacuum
menisci is the same, i.e.

Apr = Apy =+ = Apn (19)

where n is the number of existing menisci.

Simultaneous solution of Egs. (18) and (19) provides the new stable equilibrium
menisci configuration after a Haines jump. Solution of Egs. (18) and (19) indicates that
the pore space spontaneously occupied by mercury in injection or evacuated in withdrawal
can vary from a fraction of a single pore segment to an assembly of pores segments. Next,
we discuss the physics of Haines jumps in volume-controlled mercury injection.

Invasion of a single pore segment.

Figure 8 shows the mechanism of volume-controlled mercury injection into an evac-
uated network of biconical pore segments together with capillary pressure vs. mercury
injected. The directions of menisci movement are indicated by arrows. The process cor-
responds to a global injection of mercury with menisci advancing toward throats, grooves
and pits (small scale roughness is not shown in Figure 8).

Mercury menisci initially advance from their equilibrium positions, at pressure p,
(Figure 8a), driven by a slightly higher pressure as mercury arrives from the source. The
injection of mercury continues quasi-statically. Figure 8a depicts an intermediate config-
uration at pressure p;. These displacements are smooth and reversible with continuous
increase of menisci curvature; hence capillary pressure as mercury invades the evacuated
pore space.
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Figure 8. Mercury invasion of a single pore segment. (a) ‘Global injection’: menisci
advance from equilibrium positions toward throats, grooves, and pits (small
scale roughness is not shown). (b) One meniscus reaches largest of the throats.
(¢c) Meniscus in (b) remains pinned at throat until one of the following cases
occurs: (A) meniscus satisfies the contact angle in diverging section of a bicon-
ical pore, or (B) meniscus becomes unstable and jumps. (d) At jump, menisci
move rapidly to a new equilibrium position and pressure drops suddenly. (e)
Menisci have the same curvature as before the jump. Added volume after
jump is a measure of pore segmer.ts’ volume.
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Mercury menisci advance continuously until one meniscus reaches the largest of the
accessible throats (Figure 8b), at which the capillary pressure is

2y
p3 = — vcos(f + a) (20)

Tt

where r; is the throat size.

The pore walls of natural porous media have edges, 1.e. regions of extremely high
curvature, such as the pore throats pictured here. The criterion for contact angle equi-
librium given by the Young-Dupré equation does not apply at a throat. In contrast, for
equilibrium, the angles at which the contact line can possibly meet the throat, cover a
range which is determined by the angle subtended at the throat by the converging and
diverging pore wall surfaces. This condition was first derived by Gibbs (1906/1961).

The range of angles through which the contact line can be observed at a throat,
provided other requirements of stability are met is given by

T—0<Yp<m—0+(a; +az) (21)

where a; and ay are the semi-apical angles of a tvpical biconical pore segment. Clearly,
the contact angle condition for equilibrium has been relaxed.

The contact line is pinned until a value

Y =7 =60+ (a1 + az) (22)

is attained. If the condition represented by Eq. (22) is satisfied, the Yeung-Dupré equation
is again valid and the menisci advance smoothly and reversibly as shown in the insert A
of Figure 8c.

However, if the stability condition dP/dV > 0 comes into force before the contact line
satisfles Eq. (22), as shown in the insert B of Figure 8c, then an unstable configuration
is reached and the menisci move rapidly to a new equilibrium position accompanied by
a sudden pressure drop (Figure 8d). The size of the throat through which the meniscus
jumps 18 obtained from

re = 2"Y/pentry (23)

In networks of biconical pore segments, such as those illustrated in Figure 2, the total
volume recruited in the global withdrawal process Vii, 1s given by

8 y 3 N 3\ n(Ap)
[ — | - | — {5 2
n=3rl(ah] o] ) X Fes

J

where Ap; and Apy are respei ively the capillary pressure at the jump and after the jump.
The summation includes all existing menisei, the number of which depends on the capillary
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pressure level, n(Ap) = n(Api) = n(Apys). The function F is given by Eqgs. (12), (13),
(15) or (17) depending on the capillary pressure level, pore geometry, and location of the
contact lines.

The volume injected into the new pore segment V} g follows from straightforward
geometrical considerations

: 1 . 2
Vi, = 3 m(ry, —r¢,) cotaj — 3 nry, + Vet
T z—1 3 z~1
- 3 cota; — F(a;, 25
3 ;rb' cot a; Apf Z: (a;,0 (25)
i | i

where Apf is the capillary pressure after the jump. The summations take into account all
new menisci, i.e. those created by the jump, that rest in converging sections of previously
evacuated pore segments. In our model, V, = 87',,

After a Haines jump has occurred, injection of mercury continues again under bal-
anced, stable conditions. The displacement process is once more smooth and reversible
and capillary pressure increases continuously as mercury is injected.

For networks of biconical pore segments, the total volume of injected mercury Vi, is

given by ,
n(Ap)
. _ 8 v 1
Viie =3 W([Apf] [AP:] ) Z Fleg,6) (20)

where Ap; and Apy are respectively the capillary pressure after the jump and before the
next jump. The summation includes all menisci advancing toward throats, the number of
which depends on the capillary pressure level, n(Ap) = n(Api) = n(Apy). The function F
is given by Egs. (9) or (10) depending on the capillary pressure level, pore geometry, and
the position of the contact lines.

When the capillary pressure returns to the value it had when the Haines jump oc-
curred, the change in mercury volume corresponds to the filling of a new pore body (Figure

8e). That volume is an excellent estimate of the volume of the pore segment, typically
better than 80%.

Invasion of an assembly of pore segments.

Menisci interaction can cause displacement in large group of pores during a single
Haines jump. For example, Figure 9 shows that two pore segments are invaded by mercury
before the constraints given by Eqgs. (18) and (19) come into force. The discussion is
now resumed immediately after an unstable configuration is attained (Figure 9a) and the
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menisci moves rapidly to a new equilibrium position (Figure 9b). In Figure 9c the pressure
is back to the value it had before the jump. The volume of mercury injected is an excellent
measure of the volume of the two pores segments as Figure 9c suggests.

Invasion of a portion of a pore segment.

Enforcing the constraints given by Eqs. (18) and (19) can result in an arrested or
frustrated jump, as shown in Figure 10. The equilibrium configuration depicted in Figure
10a is stable, though dAp/dVy, < 0 because the mercury displacement is infinitesimally
slow.

Frustration arises when there are only a few menisci present. This is the case of small
specimens, the start of injection, and when the viscous resistance to fluid redistribution
is cignificant. Figure 10b shows that a Haines jump completes only as mercury arrives
from the source. The volume of mercury injected after the jump and before the capillary
pressure returns to the value it had before the jump is a measure of the pore segment’s
volume as indicated in Figure 10c.

Menisci fusion and consequent invasion of a constriction of a pore segment.

Figure 11 shows a situation in which the largest accessible throat holds two back-
to-back menisci (Figure 11a). The displacement is smooth and reversible with continuous
increase in capillary pressure as mercury advances toward the throat (Figure 11b). At some
critical capillary pressure these menisci come into contact and coalesce. As a consequerice
menisci are lost and dAp/dVy, increases as shown in Figure 1lc,

Thus, the magnitude of the finite pressure change accompanying a Haines jump de-
pends on both the size of the region spontaneously occupied by mercury and the capacity
of the system to withdraw mercury by retraction of its menisci. We define this capacity
as small when the menisci curvature decreases appreciable as to be measurable in the lab-
oratory. In fine-pored media, here represented by a low aspect ratio network, there is a
large number of menisci at any given capillary pressure and so the capacity of the system
1s large compared to the net volume redistributed by a Haines jump; the pressure change
is small, hence difficult to resolve. On the contrary, small specimens hold fewer menisci
at each capillary pressure. The capacity of the system to relinquish mercury is small so
capillarity forces the menisci to move far back to the enlargements. Consequently the
pressure change is large, hence accessible to pressure transducers. Should the specimen be
too small, there is a possibility, ruled by Eqs. (18) and (19) for some of the menisci to take
a jump backwards while being retracted. These are unwanted events because regions of
pore space would be proved more than once and the statistics would be meaningless.

Thus, a new concept emerges out of this discussion: the concept of an ‘optimum’
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Figure 9. Mercury invasion of two pore segments. (a) One meniscus becomes unstable
and jumps. (b) A new equilibrium position is attained only after invasion of
two pore segments. (¢) Volume added after jump is a measure of the volume

of two pore segments.
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Figure 10. Mercury invasion of a portion of a pore segment. (a) Jump arrested by in-
sufficient volume of mercury. (b) Jump completed as mercury arrives from
source. (c) Menisci have the same curvature as before the jump. The volume
of mercury added after the jump provides a measure of pore segment’s volume.
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Figure 11. Fusion of menisci. (a) Largest throats hold back-to-back menisci. (b) Menisci
advance toward throats, pits, and grooves. (c¢) Menisci come into contact and
coalesce. Menisci are lost, so d(Ap)/dVy, increases.
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specimen size for examining pore space of given properties, large enough to give appreciable
pressure changes and small enough to reduce duplication of infé¢rnaiition to a minimum.
As a result, sample size becomes a major factor in volume-controlled porosimetry.

Upon completion of mercury injection, the direction of the pump can be reversed
~ so that slow volume-controlled withdrawal begins., As in injection, mercury retraction is
driven by the combined effect of capillarity and mercury flow rate (set by the pump).
Although such an experiment has not been done, it is feasible and would provide pore
space statistics not observable in the injection experiment. In what follows we identify the
major physical events occurring in the withdrawal process.

Incremental retreat.

Figures 12a and 12b depict stable equilibrium menisci configurations. The contact
line is pinned at the edges delimiting a pore body, so the Young-Dupre equation is not
enforced until Eq. (22) is satisfied. Then the menisci retract smoothly and reversibly.

The configurations are so stable that unpinning followed by displacement is possible
only upon considerable pressure reduction, perhaps with mercury being in tension. Con-
sequently, mercury retracts first from elsewhere. For networks of biconical pore segments,
the total volume retracted in the global withdrawal process is given by the appropriate
equations for head menisci in the diverging section of biconical pores.

Figure 12. Incremental retreat of mercury. (a) and (b) represent two very stable equi-
librium configurations. Upon reduction of pressure, menisci remain pinned at
throats.
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Retreat in a single pore segment.

Figure 13 depicts the mechanism of volume-controlled mercury withdrawal together
with the relationship capillary pressure ws. mercury cjected. The direction of enisci
movement is indicated by arrows.

Mercury menisci advance continuously from capillary equilibrium position (Figure
13a). The process corresponds to a global withdrawal of mercury with menisci retracting
toward the pore bodies. Mercury menisci retracts continuously until menisci fusion occurs
in a pore body. As shown in Figure 13b, three menisci fuse into a single hemispherical
meniscus that is no more stable. Infinitesimal mercury removal is not possible without
increasing the pressure, i.e. dAp/dVy, < 0. Menisci moves rapidly to a new equilibrium
position, determined by Eqs. (18) and (19), accompanied by a sudden pressure increase
(Figure 13b). The size of the pore body through which the meniscus jumps can be esti-
mated from

Ty = 27/]72 (27)

The process correspond to local withdrawal in a few pore segments and global injection
with menisci advancing back to throats and pits.

After a Haines jump has occurred, retraction of menisci continues under balanced, sta-
ble conditions. The withdrawal process is once more smooth and reversible with capillary
pressure decreasing continuously as mercury is withdrawn. When the pressure returns to
the value it had before the jump, the change in mercury volume correspond to the evacua-
tion of a pore segment (Figure 13c). That volume is as excellent a measure of the volume
of the pore segment as that obtained from injection. Of course, cooperative effects can
cause retraction in more than a single pore during a single Haines jump.

Stepwise retreat in a single pore segment.

Figure 14 shows mercury retraction from a pore segment when two menisci are present,
This mechanism in square tubes was first studied by Lenormand and Zarcone (1984)
experimentally and theoretically.

bl

Mercury menisci continuously retract from capillary equilibrium position until menisci
fusion occurs in a pore body, at which the capillary pressure is p2 = 2v/ry. As shown in
Figure 14a, two menisci fuse into a single meniscus, but contrary to the case of withdrawal
from a single pore segment, the configuration is stable because removal of mercury is still
possible without increasing the capillary pressure, i.e. dAp/dVy, > 0. The contact line as
shown in Figure 14b is pinned until the condition given by Eq. (22) is attained. Since here
we are dealing with a complex three-dimensional menisci, we assume that the nmercury
volume withdrawn is 1/2 of the volume of the pore segment once the pressure decreases to
ps = 2v/(2ry), where ry is half the size of the pore body. Once the condition represented
by Eq. (22) is satisfied, the Young-Dupré equation is again valid and the menisci retract
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Figure 13. Retraction of mercury from a single pore segment. (a) Menisci retreat from an
equilibrium position. Eventually, menisci fuse into.an unstable hemispherical
meniscus. (b) Menisci move rapidly to a new equilibrium position and pressure
increases suddenly. (c) Menisci have the same curvature as before the jump.
The volume of mercury withdrawn after jump is a measure of a pore segment’s
volume.
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Figure 14. Stepwise retraction of mercury from a single pore segment. (a) Menisci fuse
into a single stable meniscus. (b) The new meniscus remains pinned until
contact angle is again satisfied. (c) Menisci retract smoothly and reversibly
until the new meniscus is pinned again. (d) The new meniscus becomes un-
stable, fissicns, and jumps. (e) Menisci have the same curvature as before the
jump. The volume of mercury withdrawn after the jump is a measure of a
pore segment’s volume.
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smoothly and reversibly until the large meniscus in Figure 14c is once more pinned. We
assume the volume retracted is 3/4 of that of the pore segment when capillary pressure
decreases to

pa = 27/(1/2) (28)

where [ is half the pore-body-to-pore-body distance. That the size, not the volume, of
pore segments can be overestimated from Eq. (25) is shown in the section on results. At
this point we assume the meniscus becomes unstable (Figure 14d) and the menisci moves
rapidly to a new equilibrium position with a sudden pressure increase. The new position
is determine by solving Eqs (18) and (19).

After the Haines jump, retraction continues under stable conditions with pressure
decreasing as mercury is withdrawn. When the capillary pressure returns to the value it
had before the jump, the change in mercury volume is a measure of the volume of the pore
segment as shown in Figure 14e.

Monte Carlo Simulation Details

The computer simulation of volume-controlled mercury porosimetry proceeds as fol-
lows.

(i) Create a pore network of specified length (L), width (N), and thickness (M),
mean coordination number, and boundary conditions, according to the general

procedure presented in the section PORE MORPHOLOGY.

(ii) Initialize a list of accessible pore segments, pore throats in injection and pore
bodies in withdrawal, to consist of those pores connected to the mercury source.

(iii) Choose one of the accessible pores to be filled (injection) or evacuated (with-
drawal) according to the criterion that mercury will flow through the largest
accessible throat in injection, smallest accessible body in withdrawal.

This choice must be made at each step, hence on the order of N x N x N times,
where N is the number of pores on a side of a cubic sample. A brute-force
approach involves searching the entire list of accessible throats (of length at least
order N x N) each time step, and this approach therefore takes time proportional
to at least N°. We used a more sophisticated approach that involves sorting the
pore throats (injection), pore bodies (withdrawal) by size as they are added to

the list of accessible pores. This technique can reduce the time per step to order
log N (Knuth 1973).

(iv) Find the menisci configuration after a Haines jump.
Determining the configuration of interfaces after a Haines jump is both concep-

no
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(vi)

(vii)

(viii)

tually and computationally complex. The highly nonlinear Eqs. (18) and (19)

“are to be solved. It is not certain, a priori, if the jump will go through a single

pore segment or a group of pore segments. This introduces the complexity be-
cause Eqgs. (18) and (19) have to be modified accordingly, resulting in an entirely
new problem. We used Newton-Raphson with a technique similar to first-order
continuation. The initial state of the interfaces is given by the position attained
immediately after the jump. This configuration is slightly perturbed, for example,
increasing the volume in injection, or decreasing the volume in withdrawal. Equa-
tion (18) is then solved for the capillary pressure. A solution is accepted when
all the menisci can be accommodated in the pore space and boundary conditions
are satisfied (contact angle for instance).

Add all of the nearest neighbors of the occupied pores (injection), evacuated pores
(withdrawal) which are not already on the list of accessible pores.

In withdrawal, determine if any of the pores in the list of accessible pores are
trapped. Remove each such pore (if any) from the list of accessible pores.

Determining which pores on the list have become trapped is also computationally
difficult. In the brute-force approach, where a path is traced from each accessi-
ble pore to the mercury source, the time required is of order N? at each step.
Since there are roughly N3 steps, this leads to a time proportional to N® for the
complete simulation. A classical breadth-first search (Aho et al. 1974) limits the
time spent in this step to be proportional to the trapped mercury discovered at
each step. Thus the total time is proportional to the amount of trapped mercury.
In our simulations we found that the time complexity is roughly N3. This step
1s the most costly in the simulation process.

If there are pores left on the list of accessible pores, return to step (iii) and
repeat the procedure with the next-largest throat (injection) next-smallest body
(withdrawal). If there are no pores on the list, the simulation for the sample size
picked at step (i) is complete.

Evaluate the following least-squares objective function

ND

J = Z[finput - finferred]2 (29)

=1

where f is the pore throat size distribution and N D is the number of discretiza-
tions of 7. If J is not a minimum return to step (i). If J is minimum the simulation
1s complete.
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Results and Discussion

Figures 15 and 16 display computer simulation of volume-controlled mercury capillary
pressure curves, respectively for a ‘low aspect ratio’ network of 30 x 30 x 30 pore segments
and for a ‘high aspect ratio’ network of 40 x 40 x 40 pore segments. Envelopes corresponds
to the classical pressure-controlled capillary pressure curves, i.e. primary injection curve,
withdrawal curves, and reinjection curves. Simulation parameters are summarized in Table

1.

Table 1. Network parameters.

Network <z>  rp/re L St. Dev.* Mean Radius Variance
(jm) (um) (jum?)

Low aspect ratio 3.0 3.5 150 c=1.5 21.25 7106.69
High aspect ratio 3.0 2.0 200 oc=15 21.25 7106.69

*Standard deviation of the parent normal distribution

Several features are worth noting. We attempted to use realistic parameters in the
calculations, but have not varied them extensively to obtain a quantitative fit of experi-
mental data. Nonetheless, the envelopes of the volume-controlled capillary pressure curves
reflect all the features of experimentally-measured capillary pressure curves (cf. Wardlaw
et al. 1987). As shown by Yuan and Swanson (1986), the entry pressure for sandstones
is lower than the entry pressure for carbonates, indicating that for samples they studied,
sandstones have larger pore throat size than carbonates. Although we used the same pore
throat size distribution to generate the networks (see Table 1), the feature that is changed
is the size contrast between throats and bodies, the low aspect ratio network exhibit an
entry pressure of approximately 50 kPa, lower than that of the high aspect ratio, 65 kPa.
This result can be only explained by a sample size effect.

In this work, sample size is found to be a major factor in APEX response. By Monte
Carlo simulation of APEX mercury injection we find the ‘optimum’ size of specimen for
examining pore space of given properties; large enough to yield appreciable pressure drops
and small enough to reduce duplication of information to a minimum. The optimum sample
size for the low aspect ratio network is 35,000 (approximately 30 x 30 x 30 pore segments
and for the high aspect ratio network is 52,000 pores (approximately 40 x 40 x 40 pore
segments. A small optimum sample size for the low aspect ratio network results in larger
pressure drops, accessible to accessible pressure transducers. A large optimum sample size
for the high aspect ratio network reduces the possibility for some of the menisci to take
jump backwards, consequently proving regions of pore space more than once is minimized.

Minimization of the least-squares objective function given by Eq. (29) iz appropriate

40



because the number of Haines jumps is maximized, i.e. an optimum number of pore throats
is sampled. Proving all pore throats is of course impossible. Figures 17a and 18a show
actual and inferred pore throat size distributions, respectively for the low aspect ratio
network and for the high aspect ratio network, of optimum sizes. The errors bars on the
inferred distributions are 95% confidence intervals around the mean of 11 realizations with
the optimum network sizes. The actual distributions, input to the simulations, also have
error bars because they change from realization to realization. The bars are typically of the
same size or smaller than thoese for the inferred distributions. For clarity sake report only a
typical actual distribution. The inferred distribution in Figures 17a and 18a are remarkable
close to the actual distributions. After close examination, a pattern emerges out: small
pore throats are underestimated and the larger throats are overestimated. Cooperative
effects, even with an optimum sample size, can cause displacement in clusters of pores,
interconnected by throats, during a single Haines jump. Therefore, the interconnecting
throats are not detected. This should affect the statistics of small and large throats equally
well. On the contrary, fusion of back-to-back menisci occurs mainly in the smaller throats.
Although fusion is accompanied by a change in the slope in the capillary pressure curve,
this may not be detected in the laboratory. Neglecting this information explain the pattern
in Figures 17a and 18a.

Figures 17b and 18b display pore body size distributions. The information is obtained
from volume-controlled mercury withdrawal. As shown in these figures, withdrawal after
complete primary injection leaves a number of pore segments, containing trapped mer-
cury, inaccessible to measurement. Thus, below the residual mercury saturation, we use
retraction after partial injection, as indicated by the scanning loops in Figures 15 and 16.
To avoid sampling of pore bodies more than once, the maximum mercury saturation in a
partial injection cycle is approximately equal to the residual mercury saturation left after
the next cycle. Although the inferred pore body size distributions in Figures 17b and 18b
are scattered, so are the actual distributions.

Figures 17c and 18¢ shows distribution of volume of pore segments obtained from
volume-controlled mercury injection. As mentioned before, similar information can be
obtained also from withdrawal, what would make an interesting comparison. Pore volume
distributions covered approximately the volume range 0 to 15 nl, with a median of 5 nl for
the low aspect ratio network and 0 to 200 nl, with a median of 50 nl for the high aspect ratio
network. Although these results seem at variance with the statistical information reported
by Yuan and Swanson (1986), this may not be so in view of the following discussion.

Yuan and Swanson focused on volume distribution of pore systems in Berea sandstone
and San Andres dolomite. They found that distributions for both samples, of the same size
apparently, covered approximately the same volume range, i.e. 1 to 500 nl. The information
1s deduced from APEX data acquired from volume-controlled mercury injection. In the
process and after a Haines jump, the capillary pressure increases as mercury arrives from
the source. Yuan and Swanson define a pore system as the pore space invaded by the
mercury after the jump and before the capillary pressure returns to the value it had
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Figure 15.
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Figure 16.
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Figure 17.
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Figure 18.
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in Table 1). Optimum sample size to deduce pore structure information is

35,000 pores. (a) Throat radius distribution, (b) body size distribution, and

(¢) pore volume distribution. Error bars are 95% confidence intervals around
the mean from 11 realizations.
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before the jump. Thus, a pore system is in the most general case a large group of pore
segments connected through pore throats of larger size than the throat through which
the jump occurs. We define a pore segment as the pore space occupied by mercury after
the jump, when pressure is p1, and immediately before the next jump, when pressure is
p2. Equilibrium and stability conditions can result in py being lower than py. Actually,
p2 can be not only lower than p; but also lower than the pressure corresponding to the
same saturation in the capillary pressure envelope. Clearly, the different definition of pore
volume can explain the differences between the statistics of Yuan and Swanson and those

displayed in Figures 17¢ and 18c.

Another explanation is based on specimen size. In a large sample, larger than the
optimum size defined above, Haines jumps are accompanied by small pressure drops. The
amount of mercury redistributed is large and consequently, assemblies of pore segments of
large volumes are occupied by mercury. This argument is consistent with the observations
of Yuan and Swanson and explain the apparently large median pore system volume of 25
to 500 nl in Berea sandstone.

The discrepancies however, are less pronounced if we compare the statistics for the
high aspect ratio network and that for the San Andres dolomite. This suggests that
specimen size in this case may be optimum in the sense we used it here.

Although interesting, Yuan and Swanson’s statistics are available also from Katz and
Thompson’s ‘Devil’s staircase’. This is an accurate pressure-controlled experiment that
yields stepwise capillary pressure curves. Each step represents a pore system with an
associated volume and a threshold pressure which is inversely proportional to the size of
the throat through which the pore system is invaded.

Yuan and Swanson suggest tlrat APEX-measured pore systems represent potential
traps for nonwetting phase and that the total pore system volume can be used to estimate
the degree of trapping in a rock sample. To reconcile this argument with the observations
of Chatzis et al. (1983 and 1984) is difficult. The work of Chatzis and coworkers suggests
that residual oil in Berea sandstone occupies mainly single and double pore segments. We
arrived to the same conclusion after analyzing results of Monte Carlo simulations of volume-
controlled liquid-liquid displacement in networks of biconical pore segiments similar to those
used here. Typically, choke-off disconnection of the nonwetting phase occurs before any
wider region of the network’s pore space relinquish any significant amount of nonwetting
fluid. This results suggest that the trapping potential of a rock sample not only depends on
pore structure but also on the wetting properties of the fuid/fluid pairs. Thus, although
the statistics on pore system volume is readily available from the computer-generated data
on volume-controlled mercury injection, we choose to resolve as many pressure luctuations
as practically possible and display the data as in Figures 17¢ and 18c. It is shown that for
the optimum sample size a remarkable recreation of the actual pore volume distribution
is possible. The idea of using specimens of ‘optimum size’ in APEX experiments should
now be clear: after a Haines jump, ideally, only single pore segments should be filled.
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Equilibrium and stability conditions indicate that this is not always possible. It is not
surprising then, to observe if Figures 17c¢ and 18¢ that pore volume of single pores is
underestimated, and pore systems of a large volume are detected.

Conclusions

Monte Carlo simulation of volume-controlled mercury porosimetry in well-defined net-
works of biconical pore segments reveals that fluctuations in the mercury capillary pressure
as mercury is injected provide detailed ‘nformation about the pore space structure, no-
tably pore throat size and volume distributions. The results reported in this paper confirm
Yuan and Swanson's claim that far more information about the pore space of a reservoir
rock sample can be obtained from volume-controlled porosimetry than from conventional
pressure-controlled porosimetry.

Added kinds of volume-controlled experiments, namely withdrawal experiments, with-
drawal after partial reinjection and full scanning loops can extend the capabilities of APEX
mercury injection. That this is so is demonstrated here for statistical pore hody size dis-
tributions.

Sample size, an aspect not reported previously, is found to be a major factor in
APEX response. Smaller specimens are required for fine-pored media, such as sandstones
and clay-coated carbonates, On the contrary, comparably larger specimens are needed for
coarse-pored media, such as carbonates severely altered by diagenesis.

The surface roughness of pore segments varies greatly among natural porous media,
It is shown that high pressure mercury porosimetry and fractal geometry can be used to
characterize microporosity and surface roughness in reservoir rocks.

This paper concentrates on weakly correlated, irregularly connected, fairly homoge-
neous three-dimensional networks of pore segments. It is anticipated that APEX exami-
nation of pore systems that display bimodal size distribution, random or correlated het-
erogeneities, and stratification will pave the way to correlating properties like permeability
with pore structure as inferred from capillary pressure data.
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FLUID DISTRIBUTION AND TRANSPORT IN
POROUS MEDIA AT LOW WETTING PHASE SATURATIONS

Abstract

Capillary pressure, hydraulic conductivity, and capillary dispersion coefficient have
been observed to obey pnwer laws in the wetting phase saturation. We relate power-law
behavior at low wetting phase saturations, i.e., at high capillary pressures, to the thin-
film physics of wetting phase and the fractal character of the porespace of natural porous
media.

Recent displacement experiments show “anomalous” rapid spreading (hyperdisper-
sion) of water during imbibition inte a prewet porous medium. Either hyperdispersion
or hypodispersion can occur according to our model; which one occurs depends on the
disjoining pressure behavior of the thin films involved.

Introduction

The capillary pressure and the hydraulic conductivities (permeabilities) of wetting
and nonwetting phases in a porous medium are complicated functions of wetting phase
saturation S, (percent porespace occupied by wetting phase), the morphology (shape and
curvature) and composition of porespace, and the process whereby wetting and nonwetting
phases come to occupy the porous medium. Since oil recovery technology has driven much
of the research on fluids in porous media, most of the studies have been on system.s with
appreciable amounts of wetting phase. It appears, however, that the capillary pressure and
permeability behavior at low saturations of wetting phase provides information about the
asperities or roughness of porespace and about the physics of thin films on pore surfaces
that cannot be obtained from the high saturation studies. The behavior of wetting phase
(water) at low saturation is of substantial interest to the soil scientist in connection with
agricultural crops, the balance of aquifers and the migration of agricultural, chemical and
nuclear contaminants.

In this paper we describe recent work (Davis (1989), Toledo et ¢l.(1990)) in which
we have derived and tested scaling laws based on the hypotheses that porespace asperities
or roughness are fractally distributed and that at sufficiently low saturation the hydraulic
conductance of wetting phase is controlled by thin films.

Porespace Morphology of Natural Sandstone

A scanning electron micrograph of a fracture exposed surface of an oil reservoir sand-
stone is shown in Figure 1 (Su.anto et al.1990). The major grains and pores of this clayey,

consclidated sandstone are on the order of 100 microns in dimension (Figure 1a). Stacks

50



of book like kaolinate clays (Figure 1b, le, 1f) are attached to the pore surfaces. These
stacks sometimes extend hundreds of microns in width. The spacing between the booklets
is about 10 microns and between the kaolinate platelets is less than a micron (Figure 1f).
There are also aggregates of quartz crystallites (chert) on the pore surfaces (Figure 1¢ and
1d). The crystallites are a few tenths of a micron in diameter. Between the aggregates are
porous regions of the order of a few microns to a micron in diameter. Within the chert
aggregate are intergranular spaces of the order of a few hundredths of a micron in size.

It follows from the micrograph presented in Figure 1 that the porespace in this natural
sandstone is highly disordered and that the characteristic sizes of the various cavities
forming the porespace are distributed over at least four decades of length. This is consistent
with scanning electron microscope (SEM) studies reported for several natural sandstones
by Katz and Thompson (1985). They measured the number of features (asperities) versus
size of the feature on several natural porous sandstone fracture surfaces and concluded
that porespace is fractally distributed between a minimum dimension ¢; (of the order of
10 to 100A4) and a maximum dimensiou ¢, (of the order of 100pem). According to Katz
and Thompson’s argument the porosity ¢ of fractal sandstone is

o=a(B) 8

where A is of the order of 1 and D is the fractal or Hausdorff dimension, which is a measure
of how fuly the subject space fills the Euclidean space in which it is imbedded. By plotting
the number of geometric features versus size, they found values of D ranging from 2.57 to
2.87 from SEM studies of five natural sandstones.

Roberts (1986) has criticized the conclusions of Katz and Thompson (1986), who
countered that Roberts was ignoring the fact that sandstones are disordered media and
that they are fractal only between the lengths ¢; and £5.

If the volumes of the cavities formed by the various asperities illustrated in Figure 1
are fractally distributed, this has particular implications for the capillary pressure behavior

at low saturations of wetting phase. In what follows we explain and report tests of these
implications.

The Capillary Pressure and the Saturation of Pendular Structures and Thin
Films

In this paper we are interested in fluid pairs in which one of the fluids strongly wets
the porous medium. Thus, even at saturations so low that bulk wetting phase seemingly
exists only as isolated regions or pendular structures, the wetting phase remains hydrauli-
cally connected through thin films. Common examples of such pairs are water/air and
water /hydrocarbon in sandstones and soils. To achieve a given wetting phase saturation
Sw, the pressures Pp,, in bulk wetting phase and P, in bulk nonwetting phase must satisfy
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the Young-Laplace equation for the capillary pressure P, i.e.
P. =P,y — P, =2Hy (2)

where H is the mean curvature and + is the interfacial tension of the meniscus between
wetting and nonwetting phases. The mean curvature is related to the principal radii of
curvature Ry and R, of the meniscus by the expression

1/1 1
H—§<E+—}E>~ (3)

In a given displacement process, fixing the mean curvature of the menisci between wetting
and nonwetting phases fixes the saturation S,,.

The Young-Laplace equation is applicable when both the wetting and nonwetting
phases are present in bulk amounts. When the wetting phase is present as a thin film
(thinner than a few thousand angstroms), the thin film pressure differs from that of bulk
wetting phase by the disjoining pressure II(h) which depends on film thickness h. In this
case the Young-Laplace equation must be replaced with the augmented Young-Laplace
equation (Mohanty et al.1981).

P. = TI(h) + 2H-~. (4)

For water on clean quartz or glass the disjoining pressure has been shown (Pashley, 1980)
to be well approximated by II(h) = 41h~'dyn/cm for films thinner than 10004 and by
(Derjaguin et al.1976) II(h) = 2 x 10~7h~2dyn for films thicker than 1200A4. For water in
clayey soils the data of Viani et al. (1983) can be fit to II(h) = 250h~1/2dyn/cm?/? for
film thicknesses is in the range 1754 < h < 375A. Films of nonpolar fluids obey the power
law II(h) = Ah~3 when h is less than a few tenths of a micron, e.g., for octane on glass®
II(h) =9 x 10~%h3ery.

Equations (2) and (4) provide the basis for understanding how the capillary pressure
sets the inventory of wetting fluid at saturations below the percolation threshold, in which
case wetting phase exists as thin films or as “pendular structures” at intergranular contacts,
i.e., isolated regions smaller-than-average porosity, or in nooks and crannies provided by

the pore surface asperities. The pendular structures are hydraulically connected by thin
films.

To understand the connection between capillary pressure and saturation, consider the
pendular structures shown in Figure 2. The menisci in the conical and hemispherical pits
are pieces of a sphere whose radius r. (H =r]!) is given by

Te = 2'7/PC» (5)

whereas the menisci along the pore edges and between the fused spheres (p >> r.) are
pieces of a cylinder whose radius r. (H = (2r,)~!) is given by

rc::7/PC~ (6)
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Figure 2. Wetting liquid present as pendular structures in conical and hemispherical pits,

as wedges along pore edges and as collars between fused spheres.
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By elementary geometry, it follows that the volume of wetting phase in the conical and
hemispherical pits scales as 72, and so if all the pendular structures were in such pits
and if their characteristic dimension R were of the same length scale, the wetting phase
saturation in pendular structures would scale as Sy, o 12 o P72,

Similarly, the volume of wedges and collars (with p >> r.) scales as r2, and so the
saturation of pendular structures would scale as Sy, o< 72 o< P72 if all the edges and fused
spheres were of the same geometric dimensions. Since pits, pore edges and fused grains
are the most likely sites of pendular structures, we expect the scaling relation

Sps = AP7* + BP® (7)
if the sites are nonfractal, i.e., if they are all of the same characteristic length scale.

If, on the other hand, the pendular structures are in sites fractally distributed ac-
cording to Eq. (1), then at a capillary pressure P. all the porosity with dimension
¢ < r. = 2v/P. would be filled with wetting phase and so S, r3=D or

Sys = AP7G-D) (8)

Pendular structures in self-similar fractal media are depicted in Figure 3. Shortly after the
appearance of the work of Katz and Thompson, deGennes (1985) pointed out that Eq. (8)
holds in the cases of a porespace of self-similar iterative flocs of the type shown in Figure
3 and a porespace of self-similar iterative pits (self-similar pits within pits). The Menger
sponge shown in Figure 3 is an interesting example because its fractal dimension can be
easily determined. The sponge is generated by the following iterative process. A cube with
sides of length R is partitioned into 27 cubes the length of whose sides is R/3. The seven
cubes along the three axes of symmetry of the parent cube are removed. The partitioning
and deletion process is iterated for each of the remaining cubes. The Menger sponge is
made by indefinite continuation of this process. The resolution length r is defined as the
size of the smallest measurable feature. The Menger sponge in Figure 3 is depicted with
a resolution length of R/81. Holes smaller than R/81 are not resolved in the figure. The
number N, of solid cubes increases with resolution as

D ‘

where D is the fractal or Hausdorff dimensionr of the object. In the case of the Menger
sponge 20 cubes are resolved at a resolution r = R/3, and so D = log20/log3 ~ 2.73. In
general, the Hausdorff dimension D can range from 2 to 3, depending on the geometry of
the object.

As is obvious from Figure 1, a natural sandstone is not a regular self-similar fractal.
Instead, consistently with the arguments given by Katz and Thompson (1986), we believe
it is better viewed as a disordered assembly of matrix grains ranging in size from (y, to
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Figure 3. Wetting liquid present in fractally distributed pendular strutures. The examples
given here are geometrically regular, self-similar fractal objects.
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l24. The size distribution of pores will naturally be broad if that of the granular subparts
is broad. It is the wide distribution of poresize and roughness that is the important
distinction between Eqs. (7) and (8). If all of the pendular structures are about the same
size, then, as indicated by Eq. (7), the saturation of wetting phase approaches zero as a
strong function of capillary pressure (as P72 or P3). On the other hand, if the sizes are
distributed broadly as in a fractal structure, the range of capillary pressure over which the
pendular structures are emptied is correspondingly broad. From Katz and Thompson’s
work we anticipate D ~ 2.5 — 2.8, and so according to Eq. (8) the pendular structure
inventory approaches zero as P95 to P7%2 a much weaker function of P, than in the
case of nonfractal structures.

As we commented at the outset, we are interested in the distribution of wetting phase
at saturations below the wetting phase percolation threshold and so bulk wetting phase
does not span the sample. Instead, wetting phase is present as isolated pendular structures
hydraulically connected to one another through thin films. The thickness of these filins is
fixed by the capillary pressure through the augmented Young-Laplace equation, Eq. (4).
Thin films tend to form in regions of porespace whose mean radius of curvature is large
compared to film thickness h, that is in relatively smooth regions. Otherwisc, pendular
structures will form instead of thin films. Thus, we expect the capillary contribution, 2H+~,
to be negligible compared to the disjoining pressure contribution, i.e., we expect

P, ~ TI(h) (10)

for thin films. The volume of wetting phase present as thin films is Viy = hd,s, where
Ay is the area of porespace favoring thin films over pendular structures (i.e., the regions
of relative simoothness -— these could include surfaces with large mean radius of curvature
but with a small scale roughness, e.g., from chert, that lies underneath the meniscus of the
thin film). Assuming that A, is a weak function of the capillary pressure, we find that
the saturation Sy of wetting phase present as thin films is proportional to film thickness.
If the disjoining pressure obeys a power law of the form

[I(h) oc A7, (11)
it then follows from Eq. (10) that
Syp o PTUM (12)

The total saturation of wetting phase is given by S, = Sty 4+ Sps. However, under the
conditions of the experiments to be discussed in a later section, the thin film saturation is
generally negligible compared to that of pendular structures, and so the behavior of the
capillary pressure versus wetting phase saturation can be used as a probe of porespace
roughness independently of the disjoining pressure behavior.
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Hydraulic Conductivity and Capillary Dispersivity

The local flow of wetting phase at low saturations is very complicated because it
involves flow in geometrically complex pendular structures and thin films. However, if the
pendular structures do not span the sample, the major resistance to ow will be the thin
films of thickness h providing the hydraulic connectivity between the pendular structures.
The hydraulic conductance of thin filims is proportional to A% and inversely proportional
to the viscosity iy, of the wetting phase. The hydraulic conductance Iy, of wetting phase
is defined as vy = —(Ky/pw)APyw /L, where vy, is the mean flow velocity in a sample of
length I across which a pressure drop APy, is imposed on the wetting phase. If the major
resistance to flow of wetting phase is provided by thin films, then I, o h®, and if the
disjoining pressure obeys the power law (11), it follows from Eq. (12) that

Ky o P73m, (13)

If, furthermore, the inventory of wetting phase is primarily that of pendular structures
fractally distributed, Eq. (8), the hydraulic conductivity obeys the scaling law

Iy Sﬁ/'"w"‘m . (14)
In this case, the saturation dependence of the hydraulic conductivity of wetting phase
yields information regarding the disjoining pressure dependence on film thickness and the
geometry of porespace.

If a sample porous medium at low wetting phase saturation contacts a reservoir of wet-
ting phase as illustrated in Figure 4, it will spontaneously imbibe wetting phase according
to a convection-dispersion equation

05w Of _ 8 [D asw],

Yor T 0z |7 02

ot Oxr Jx

where ¢ 1s porosity of the medium, v is the net flow velocity, f is the ratio of the flow
velocity of wetting phase and the net flow velocity, and D., the capillary dispersivity, is
approximated by

Ly dP,

D, = — w c (16)

Hw dSw
The fractional flow f depends on saturation S, through the ratio Iy, /K,y of the perme-
abilities of wetting and nonwetting phases.

The right hand side of Eq. (15) has the form of a concentration-dependent diffusion
equation. However, as pointed out by deGennes ((1985), the effect of capillary dispersion
can be either hypodispersive, diffusive, or hyperdispersive depending on how D.(S,,) be-
haves with decreasing S,,. If D.(S,) tends to zero as Sy, approaches zero, the invading
front of wetting phase disperses less than in a diffusive front. If D.(S,) tends to infinity
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Figure 4. Illustration of hypodispersion (De — 0 as Sy — 0), diffusion-like dispersion
(D. — constant as S, — 0) and hyperdispersion (D — oo as Sy — 0) in
wetting phase invasion of a porous medium.

as Sy, approaches zero, the invading front disperses more broadly than in a diffusive front.
If D.(S,) tends to a constant value as Sy approaches to zero, the front in the experiment
indicated in Figure 4 spreads in a diffusive manner (i.e., or described by error function).

If Sw & Sps, if the pendular structures are fractally distributed [Eq. (8)], and if thin
films control hydraulic conductivity [Eq. (14)], the capillary dispersion coeficient obeys
the scaling law

-D(: x Stugil-— m(d~ D) /m(3-D) (]7)

at low wetting phase saturations. Thus, the spreading will be hypodispersive if m <
3/(4 — D), hyperdispersive if n > 3/(4 — D), and diffusion-like if m = 3/(4 - D). By
changing wetting phase (e.g., water in air versus oil in air), one could expect to find both
hypo and hyperdispersion in the same porous medium.
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Bacri et al.(1985) have observed hyperdispersion in oil/water flow in a porous medium.
However, their experiments were conducted at saturations higher than those for which we
expect the scaling laws given here to hold.

Comparison of Theory and Experiment

Few data exist on the behavior of a wetting phase at low saturation in a porous
medium. In the soils literature, scaling laws of the form P, o« S7¢, IV, o< Sb and D,
St where a, b and ¢ are positive constants, have been observed empirically (Gardner et
al.(1970), and Gardner (1960) for capillary pressure; Campbell (1974) and Gardner and
Mayhugh (1955) for hydraulic conductance and Gardner and Mayhugh (1955)for capillary
dispersivity ).

We located and analyzed (Davis, 1989; Toledo et al.1990) three sets of carefully mea-
sured data on capillary pressure and hydraulic conductance of sandstones and clayey soils.
Melrose (1988) carried out a series of measurements of the capillary pressure of water in
the presence of air in Berea sandstone. As is illustrated in Figure 5, Davis (1989) found
that the capillary pressure curve obeys the scaling law P, o« S3%%3, Davis also showed
that the nonfractal scaling relation, Eq. (7), fits the data poorly and is not appreciably im-
proved by adding a term proportional to P! to account for the thin film inventory (since
IT ox h~1 for thin films of water on quartz). Thus, the implication of Melrose’s data is that
in the saturation range 0.03 < S, < 0.1, the wetting phase inveritory is primarily pendular
structures and that the sites holding the pendular structures are fractally distributed in
size. According to Eq. (8), P. x S;]/("}—D). Since the slope of log P, versus log Sy,
in Figure 5 is —2.23, one obtains for the fractal dimension of the porespace roughness of
Berea sandstone the value D = 2.55. This result compares favorably with the range of
values 2.687 < D < 2.87 found by Katz and Thompson in SEM studies of other natural
sandstones.

Nimmo and Akstin (1988) have reported recently measurements of the capillary pres-
sure and hydraulic conductance of water at low saturations in the presence of air in several
compacted samples of Oakley sands (a clayey soil). The data of Viani et al. (1983) on
the disjoining pressure of clayey soils fit the formula II(h) = 250h~1/2dyn/cm3/?). We
analyzed (Toledo et «l.1990) their data in terms of the scaling laws

P, x Sl;l/(ﬂ_m and K, o §3/m3-=D) (18)

w

implied by the assumptions of negligible thin film inventory, fractally distributed pendular
structures, thin film controlled hydraulic conduction, and a power law disjoining pressure
[I(h) o b=, The capillary pressure data were used to obtain the fractal dimension D, We
sct m == 1/2 in accordance with the results of Viani et al. and computed from 3/m(3 — D)
the exponent of the scaling law for I,. The results are summarized in Table 1. The
fractal dimensions deduced from the capillary pressure curves range from 2.09 to 2.62 with
an average value of 2.45. With the exception of sample 4, the fractal dimensions of all the
samples compare well to the value 2.55 of Berea sandstone.
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Figure 5. Capillary pressure curve for water in Berea sandstone. (Data from Reference 18.)

The predicted exponent for I, agrees with the measured value to better than 24%
for all samples except numbers 5 and 7. Given the simplicity of the model, the agreement
between theory and experiment as demonstrated in Table 1 is satisfactory.

As a matter of clarification, we point out that the assumption that film flow controls
the hydraulic conductance does not require that most of the flow paths be thin films. For
example, suppose the conductance of a strip of film is 1000 times less than that of a strip
of the same length of a pendular structure. Then if in a series of strips, only 1% are thin
films, the net hydraulic resistance of the thin films in the series is ten times larger than
the net hydraulic resistance of the pendular structures in the series.

Ward and Morrow (1987) determined the capillary pressure curves of water in the
presence of air in a number of low permeability sandstones (natural gas reservoirs). Their
results are plotted in Figure 6. In all cases the capillary pressure curve has two distinct
regions. If Equation (18) is used to extract D, there is a low saturation region where the
deduced value of D is near 2 and there is a higher saturation region in which D ranges
from 2.61 to 2.89. The values of D in the higher saturation region are consistent with the
findings of Katz and Thompson, but those in the low saturation region (especially those less
than 2) do not fit the fractal model. We do not know much about the porespace of these
low permeability sandstones, except that the mean pore size is significantly smaller than
those of Berea and the sandstones examined by Katz and Thompson. It is possible that
in the low saturation regime (where the capillary pressures are greater than 100 bars, the
highest capillary pressure in Melrose’s experiment was 93.6 bars) the pendular structures
have been totally removed and only thin films remain. If the disjoining pressure of the
thin films obeys the water on quartz law, II(h) o< h~!, then Siy o< P!, and if Sy, ~ Syy,
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then the expected scaling law would be P, x S;!. This law would be consistent with Eq.
(18) if D = 2. Thus, perhaps the low saturation region of the capillary pressure curves
of Figure 6 is one in which most of the wetting phase occupies thin films and the higher
saturation region is one in which the wetting phase samples a fractal distribution of pore
sizes,
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Figure 6. Capillary pressure curves for water in low permeability sandstones (data from
Reference 20).

In closing, we would like to emphasize that the capillary pressure, permeability and
capillary dispersivity of wetting phase at low saturations provide probes that can reveal
geometric features of porespace and the nature of the disjoining forces on thin films of
wetting phase. Under the assumptions that pendular structures occupy porespace of fractal
dimension D, that the disjoining pressure obeys the power law II(h) x hA~™, that the
wetting phase inventory is primarily pendular structures, and that thin films control the
hydraulic resistance of wetting phase, we deduce the power laws

X xSt X =P, K, and D, (19)
where for capillary pressure —v, = 1/(3 — D), for permeability v, = 3/m(3 - D), and
for capillary dispersion v; = [3 - m(4 — D)]/m(3 — D). The experimental work analyzed

above lends support to the scaling laws for P, and K, in the cases of natural sandstones
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and clayey soils, By choice of the wetting fluid the values of m can be varied in the same
porous sample to test the implications of the scaling laws for K, and D,.
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MICROSCOPIC DYNAMICS OF FLOW
IN MOLECULARLY NARROW PORES

Synopsis

Flow of fluids confined in molecularly narrow pores is studied by molecular dynamics.
Strong density variations across the pore render the usual dependence of the local viscosity
on local density inappropriate. At separations greater than four molecular diameters flow
can be described by a simple redefinition of local viscosity. In narrower pores a dramatic
increase of effec.ive viscosities is observed and is due to the inability of fluid layers to
undergo the gliding motion of planar flow. This effect is partially responsibility for the
strong viscosity increases observed experimentally in thin films that still maintain their
fluidity.

Introduction

During the last two decades, molecular dynamics (MD) has been employed successfully
for the simulation of macroscopic flows (Hoover, 1983). Recently, quite complex flows
have been simulated (Marachel et al., 1987) and issues fundamental to fluid mechanics,
such as the origin and the microscopic realization of the stick boundary conditions, were
explored by MD simulations (Koplik et al.1988; Heinbuch and Fischer 1989). MD is
ideally suited for the study of yet another class of flow phenomena, namely the flow of
molecularly thin liquid films (and interfacial flows in general). What makes interfacial fluids
fundamentally different from bulk fluids is the fact that their density varies considerably
over microscopic (molecular) distances. A class of such strongly inhomogeneous fluids are
fluids confined in very narrow spaces by solid barriers. In this case, the confined fluid
minimizes its free energy by arranging its molecules in layers parallel to the solid walls.
Despite the solid-like appearance of these layers, the medium preserves its fluidity, at least
next to idealized smooth walls that lack molecular structure and, therefore, do not promote
epitaxial crystallization. '

Our understanding of the equilibrium properties of interfacial fluids (Nordholm et al.
1987; Fischer and Methfessel, 1980; Tarazona 1985) has advanced considerably, although
much less has been accomplished towards rationalizing the effect of sharp density variations
on a molecular scale on the flow and transport properties. The essence of the problem can
be summarized as follows: the microscopic identification of thermal transport coeflicients
(Irving and Kirkwood, 1950) shows clearly that, on a microscopic scale, these quzntities
are nonlocal functionals .f the density profile. This intrinsic nonlocality can be ignored
when the density variavions occur only on a macroscopic scale (regular fluids) but it
cannot be neglected under any circumstances when the fluid density varies appreciably over
molecular distances (interfacial fluids). Therefore, in the latter case, the usual constitutive
equations are inappropriate and traditional hydrodynamics cannot be applied. These
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‘general considerations are supported by the MD results that we shall present in this paper,
as well as by earlier MD simulations performed in our laboratory (Bitsanis et al.1987).

The most important finding in our earlier work (Bitsanis et al.1987) was that the flow
behavior of the strongly inhomogeneous fluids simulated could be understood in terms of a
local average density model (LADM). The idea is that the local transport coefficients can
be approximated by the corresponding quantities of a homogeneous fluid, not at the local
fluid density, but at an average fluid density inside a volume of molecular dimensions (in
the work of Bitsanis et al.(1987) this volume was a sphere equal to the molecular size).

In this communication we present the result of a new, more extensive series of MD
simulations of strongly confined fluids undergoing simple flows. The conclusions of Bitsanis
et al.(1987) are reconfirmed for all but the narrowest micropores. An important finding of
this work, however, is that in films narrower than three to four fluid molecular diameters
flow is dramatically different from that of bulk fluids and cannot be explained by a local
average density model. As we shall discuss later, we think that this fundamentally different
behavior originates from the inability of the molecules of the ultrathin film to undergo the
types of systematic movements that would realize flow.

We simulated liquids consisting of spherically symmetric molecules interacting via
pairwise additive forces of the Lennard-Jones (LJ) type. The fluids in our simulations
were confined between planar, parallel 10-4-3 LJ solid walls. It should be emphasized that
the atoms of the solid walls are smeared out, i.e., our walls lack the atomic roughness of
actual solid surfaces. The smoothness of our walls suppresses the development of lateral
fluid density variations, preserves the film’s fluidity by ruling out the possibility of epitaxial
crystallization and, consequently, does not enable us to answer the question of the origin of
stick boundary conditions. Nevertheless, by eliminating all the above factors, our modeling
can focus on one aspect of ultrathin film fluid rheology and transport, namely the effect
of the sharp density variations over molecular distances on the molecular mechanisms of
transport and on the “macroscopic” obserables of the film’s flow and transport behavior.

All confined fluid films simulated had the same chemical potential. This was achieved
by choosing the same temperature, pore average density and well potential as in the grand
canonical ensemble Monte Carlo simulations of Snook and van Megen (1980).

We studied plane, simple shear (Couette) and pressure driven (Poiseuille) flows, em-
ploying the “reservoir” method of nonequilibrum (Ashurst and Hoover 1975). The appli-
cation of this method to Couette flow simulations of micropore fluids was presented in
Bitsanis et al.(1987). A straightforward modification of the original “reservoir” method,
which consisted in the application of a uniform force field on the film’s molecules while
keeping the reservoirs stationary, was employed in the isothermal, Poiseuille flow simula-
tions. Numerous tests on the reliability of the “reservoir” method, as well as the reasons
for the choice of this particular method for isothermal flow simulations of strongly inho-
mogeneous fluids and the absence of any nonlinear effects because of the high shear rates
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present, are discussed in Bitsanis et al.(1987). Here we simply mention that the fluid-like
reservoirs employed in our simulations are merely a means of imparting momentum and,
therefore, of inducing flow in a fluid that has developed strong density variations because
of the 10-4-3 potential, i.e., the smooth solid walls. Obviously, such smooth walls are
incapable of driving flow; they would simply let the fluid film slide past them without
shear.

Typically, the duration of our simulations was 50,000-100,000 time steps (which cor-
responds to 0.5 - 1.0 nsec if the LJ parameters are given the Ar values). In what follows,
all quantities are measured in a system of units with the LJ parameters as units of length
and energy and the mass of the fluid molecule as unit mass. In these units, our time
steps 0.00462 (10714s for Ar) and the temperature and density of the bulk fluid that the
micropore fluid were in equilibrium with was 1.2 and 0.5925.

Results and discussion

A sample density profile determined from our simulations is shown in Fig. 1, for the
pore width of 4.0. Since the zero of the solid-wall potential is placed at the center of mass
of the fictitious solid particles (which have the same size as the fluid particles), the regions
within a distance of 0.8 from the solid walls are depleted of fluid particles.

For all systems simulated, and for both types of flow, the density profiles under flow
were identical with the equilibrium density profiles. This confirms an important conclusion,
first drawn in Bitsanis et al.(1987), namely that the presence of flow seems to have no effect
on the density profile even at the extremely high shear rates present in our simulations
(=~ 10'%~1). The insensitivity of the density profile on flow has considerable theoretical
implication since it allows the decoupling of the problems of density profile determination
and flow description.(Bitsanis et al., 1987; Bitsanis et al., 1988).

The Couette and Poiseuille flow velocity profiles of the same system are also shown in
Fig. 1. These velocity profiles are different from those of a homogeneous fluid (linear for
Couette flow and parabolic for Poiseuille flow). In both cases, the major deviation from the
shape of the homogeneous fluid velocity profile is their flatness inside the regions occupied
by the two outermost fluid monolayers. Effectively, the two outermost monolayers behave
as a fluid of very high viscosity. This confirms the rough correlation between density
and velocity profiles observed in Bitsanis et al(1987). Nevertheless, the deviations of the
velocity profiles from the linear or parabolic shape are much weaker than those expected
by usual hydrodynamics. According to usual hydrodynamics, the local viscosity is a point
function of the local density. In view of the extreme density variations across the pore,
such an approach would result in much stronger deviations of the velocity profiles from the
linear or the parabolic shape (Bitsanis, et al., 1988). Despite their very viscous character,
the two outermost monolayers remain fluid-like. This was confirmed by examining the
radial distribution function and the mobilities (in all directions) of the molecules inside

66



0.35 0.65

025 0.6 -
—4/\ s E
E
£ os 3
=
] [=)
=2 ]
S 005 0s 3
g 2
g -0.15 =
2 045 2
o -0.25 D?-
-0.35 " M | L 1 2 [ 2 1 2 i 3 "\ 0.4

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
Distance From Center of Pore (0)

Figure 1. Density profile ( - - - ) and Couette (e) and Poiseuille (¢) flow velocity profiles
for a pore of width h = 4.00. The velocity profile for Poiseuille flow is largest in
the center of the pore. o is the diameter of a fluid molecule. Density and velocity
are in units of o3 and (e/m)'/2. The pore average density of the fluid is 0.876
at this separation. Reservoir molecules are the same as fluid molecules and are
at a density of 0.715.

these layers.

It must be emphasized that slip was present in all our simulations. We do not draw
any conclusions from this, since the coupling between fluid and the artificial reservoir walls
is not representative of that with a realistic wall. The reservoir corresponding to Fig. 1
and 3 had particles identical to the fluid particles. Figure 2 reports results for a reservoir
of molecules 20 times heavier than but otherwise identical to the fluid molecules. The
heavier reservoir molecules reduce the slip. The shape of the velocity profile, however,
is independent of the amount of slip and, therefore, reflects genuine flow features of the
layered fluid.

For a fluid with variable density the effective viscosity is not a fluid property, but it
depends on the type of flow as well. This is a consequence of simple hydrodynamics (any
hydrodynamics for that matter), and it is equally true both for regular inhomogeneous
fluids (density varies over macroscopic distances) and for interfacial fluids (density varies
over molecular distances) (Bitsanis, et al.1988). For a particular type of How, the effective
viscosity is defined as the viscosity of a fictitious homogeneous fluid that would result in the
same value of a certain macroscopic observable of the flow. If the macroscopic observable
is selected in a sensible way the effective viscosity should be a good collective measure of
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Figure 2. The same as in Fig. 1, except the reservoir molecules are twenty times heavier
than the fluid molecules and are at a density 0.873.

the inhomogeneous medium'’s resistance to flow.
The obvious macroscopic observable for the definition of the effective viscosity for

Couette flow is the force on the wall or, equivalently, the shear stress which is constant
throughout the fluid slab. Thus, the effective viscosity is given by

sy = [v(0.8) — v(h -ZB.S)]/(h —~1.6) (1)

where h is the pore width. All the quantities in Eq. (1) are determined directly from the
simulation.

For Poiseuille flow, a proper macroscopic observable is the mass flow rate, so for the
definition of viscosity we choose

2 3
Pav g(h - 16) '
14 —_ g
Meff = hlos (2)

12 [ p(z)v(2)dz
0.8

where the pore average density is defined as:

h—0.8 )
ofa p(2)dz
Pave = 316 )
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Figure 3. Effective viscosities in units of (me)t/? /a? for Couette Poiseuille flows versus pore
width in units of the fluid particle diameter. the viscosity of homogeneous fluid
at the pore average density is also shown. Self diffusion coefficients in units of
o(e/m)!/? were computed from the velocity autocorrelation for diffusion parallel
to the pore walls. The results are shown in the insert in the figure.

In the above equations, v(z) is the flow velocity at a distance z from the lower wall, 7:4is
the zz component of the stress tensor, h is the pore width, p(z) the fluid density at z
and ¢ the pressure gradient that induces the Poiseuille flow. Note that for the definition
of the effective viscosities an “effective pore width” h ~ 1.6 has been used instead of h.
There is some arbitrariness in this but we think that this is the correct quantity to use
since there are no fluid particles within 0.8 of the origin of the wall potential (Fig. 1). For
Poiseuille flow another effective viscosity can be defined in terms of the volumetric, rather
than mass, flow rate. Obviously, the values of the two effective viscosities are not identical.
Nevertheless, the volumetric flow and the mass flow rate effective viscosities exhibit a very
similar dependence on the pore width which suggests that either is a physically meaningful
quantitative measure of the fluid film’s resistance to flow.

The Couette and Poiseuille flow effective viscosities determined from our simulations
are plotted in Fig. 3. Since the effective viscosity of (both weakly and strongly) inhomo-
geneous fluids is a low-dependent quantity.(Bitsanis, <t ¢l.1988), it is no surprise that the
effective viscosities of the same fluids are different for the two different flows.

Clearly, the most striking feature of the effective viscosity (Fig. 2) is the dramatic
increase of hoth effective viscosities at very small pore widths (less than 4.0 for Poiseuille
flow and less than 3.0 for Couette flow). This demonstrates the profoundly different nature

69



of flow in ultrathin fluid films.

At larger pore widths the effective viscosities differ moderately from those of a homo-
geneous fluid with density equal to the pore average density. The Local Average Density
Model (LADM) first presented in Reference 9, accounts for these differences very success-
fully. LADM, however, fails to predict the strong viscosity increase in ultrathin (less than

3.0 - 4.0) liquid films.

As we explained in section 1, the constancy of the chemical potential leads to a
variation of the pore average density with pore width. The overall trend is an increase of
the pore average density with decreasing pore width. This will result in an increase of the
cffective viscosity, which has nothing to do with the layered fluid structure and is merely
a reflection of the average density rise. Such an effect, although present, cannot account
for the observed explosive increase of the effective viscosities, as shown in Fig. 3. The
viscosities of the homogeneous fluids at the pore average density, which were determined
by MD, increase much more slowly than the inhomogeneous fluid effective viscosities at
small separations. Furthermore, the homogencous fluid viscosity at very small separations
oscillates with pore width following the oscillations of the pore average density. Hence,
the dramatic increase of the inhomogeneous fluid effective viscosities is a result of fluid
layering and not a consequence of the average density rise.

Despite the lavering and the extreme resistance to flow, our systems retain their
fluidity up to smallest separations examin.ed. As a measure of fluidity, we have computed
the self-diffusion coefficient from the velocity autocorrelation function in the direction
parallel to the walls and perpendicular to the flow (for Couette flow the same result was
found from the velocity autocorrelation function the direction of flow). The diffusivities
decrease moderately with decreasing pore width but they retain liquid-like values at all
pore wides (Fig. 3). Again, we would like to point out that the preservation of the film's
fluidity may be related to the smoothness of the solid walls. Structured solid surfaces
can sometimes (not always) induce freezing (crystallization) of the thin film (Schoen, et
«l.1988). We calculated, but do not report, diffusivities in the absence of flow. They
agreed with those found in Couette flow to within the variances shown in Fig. 3. The
higher values obtained for Poiseuille flow arise from the slightly higher temperature (about
nine percenc higher) resulting in this low.

Up to this point we have established that the observed increase of the effective viscosi-
ties observed in our siinulations cannot be attributed to the increase of the pore average
density to to some loss of fluidity (solidification). Instead, as illustrated schematically in
Fig. 4, this phenomenon is essentially an excluded volumne effect on the glide of molecular
layer required in a shearing flow. Even thongh the effective viscosity rises sharply with
decreasing wall separation, the self-diffusion coeflicient by contrast decreases slowly (Fig.
3). Diffusive motion depends only ou fluidity to individual molecular movement, not glide
of an entire layer. '
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Figure 4. Schematic molecular explanation of the observed viscosity increase for both flows
a) Couette flow; b) Poiseuille low. The wall molecules are smeared out in our
simulations. They are drawn in the Figure only to indicate up to what distance
from the zero of the wall potential (center of mass of solid molecules before they
were smeared) fluid particles can approach.

To pursue the effect of molecular size on flow, consider Couette flow in fluid confined
between two 10-4-3 Lennard-Jones walls, less than 3 fluid molecular diameters apart (Fig.
4a). The space available to the fluid molecules is not sufficient to accommodate two ordered
fluid monolayers. The layer of fluid molecules close to the left wall will have a tendency to
move in the opposite direction of the layer close to the right wall. Because of the limited
space, this requires a squeezing of the fluid molecules which is hardly possible due to the
strength of the intermolecular repulsive forces. Such a situation will clearly result in a
sharp increase of the Couette flow effective viscosity for h < 3.0, as is actually observed in
our simulations (Fig. 3). A similar situation arises for Poiseuille flow but now three fluid
layers are needed for the realization of Poiseuille flow (Fig. 4b) (e.g. the middle layer must
now glide between the two outer ones with a systematically higher velocity than that of the
two outermost layers). This will lead to a similar increase of the Poiseuille low effective
viscosity for h < 4.0, again in agreement with the simulation results. Of course, particle 1
(Fig. 4a) can certainly pass particle 2 by means of their thermal (random) motion. This,
however, would require a temporary exchange of their layer identities. It will not produce
flow since it will contribute to the the systematic momentum transfer which accompanies
flow.

Finally, we would like to commment on the relation between our simulation findings
and several measurements of the rheological response of ultrathin liquid films that have
been carried out in the last four to five years (Chan, et al.1985; Israelachvili and McGuig-

71



gan 1988; Van Alsten and Granick, 1988). These studies determined that the continuum
description of the thin film breaks down for films thinner than approximately ten molecular
diameters. Of course the origin of this breakdown of continuum mechanics is the develop-
ment of fluid layering, a manifestation of the molecular nature of the fluid when the film
thickness becomes molecularly small. Qur current simulations (and those of Reference 9)
reveal how these initial deviations from continuum hydrodynamics oceur. The fluid film
now has a variable density and the ability of molecules to move or exchange momentum
varies from point to point. These effects can be quantified adequately by means of prop-
erly defined local transport coefficients. The frequency of the collisions experienced by a
molecule with its center of mass at a position r from the wall is related to the average
density in the neighborhood of r and not with the density exactly at r. This is the un-
derlying idea of LADM, and this is the mechanism by which the strong density variations
effect transport and flow properties.

Before attempting a more detailed comparison with the experimental observations
one has to acknowledge the very significant differences between our molecular model and
the systems studied experimentally. First of all, it should be noted that the experiments
were carried out at constant load (i.e., constant normal stress) whereas our computer
simulations were carried out at fixed pore widths and with average pore densities set by the
constant chemical potential siimulations of Snook and van Megen (1980). Perhaps the most
important difference between experiment and simulation is the lack of atomic roughness of
our 10-4-3 walls. As mentioned earlicer, atomically structured walls can promote epitaxial
crystallization (Schoen, et «l.1988) and they are responsible for the rich behavior that
has been observed in molecular simulations (Schoen, et «l.1989). It is very likely that
these effects are partially responsible for the rheological behavior observed experimentally,
and more specifically for the solid-like, elastic response seen in films one to three (or five,
depending on the fluid) molecular diameters wide. Our simulations cannot explain (and
they were not designed to explain) the solid-like response observed experimentally. Instead,
our aim was to focus on the viscous response of a strongly inhomogeneous fluid that is
guaranteed (by the wall smoothness) to maintain its fluidity.

Slightly wider films (three or five to six or ten molecular diameters, depending on
the material) were found experimentally to exhibit a viscous (fluid-like) behavior but with
an apparent viscosity much higher than the bulk viscosity. We think that this behavior
is similar to the sharp increase of the viscosity observed in our simulations and that the
physical origin of the phenomenon is basically the same in both cases (the inability of
the layers to glide past each other). Nevertheless, significant differences still exist. First
of all, the viscosity rise was observed experimentally in significantly thicker films, and it
was not as steep as in our simulations. Speculating on the origin of these differences, we
note that the presence of one (or two) epitaxially crystallized fluid layers (a possibility
that cannot be dismissed in the experiments) would effectively decease the width of the
flowing thin film by two (or four) molecular diameters, Furthermore, the chain molecules
that were mostly studied experimentally cannot simply pack their monomers on top of
each other for obvious steric reasons. This implies that a film, say six monomer diameters
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thick, is not likely to have six monomers layers but rather a smaller number of more
diffuse, more complex and wider periodic structures (“layers”). A decrease in separation
will be accompanied by a gradual change in shape of the interior monomer “layers”, and
it will result in a smoother viscosity rise as the chains adopt more and more deformed
configurations in order to accommodate their monomers in the confined space. |

Furthermore, our simple LJ particles cannot model hydrocarbons, but they are reason-
able representations of fluids of more compact molecules (e.g. OMCTS and cyclohexane).
The high shear rates employed in our simulations may have important consequences (melt-
ing of epitaxial layers), but only if epitaxy (or crystallization) is indeed a possibility. As
we have mentioned several times up to now, phenomena like the above simply do not take
place next to smooth walls.

As a further consideration, a pressure increase at the separations slightly larger than 3
for Couette flow or 4 for Poiseuille might diminish the already limited available free volume
which will make the layer gliding from marginally possible to virtually impossible. This
might be related to the extreme pressure sensitivity of the viscosity observed in Reference
16.

Summary

Summarizing, the strongly layered nature of ultrathin liquid films confined hetween
solid walls results in a flow behavior profoundly different from that of homogeneous fluids.
The differences originate directly from the fluid layering and manifest the inability of fluid
layers consisting of finite volume particles to the collective gliding plane motion necessary
for the realization of flow. The segregation of fluid molecules into layers, and the resulting
dynamic restrictions described above are, we believe, one of the major causes of the dra-
matic viscosity increases seen experimentally (Van Alsten and Granick 1988; and Schoen
et ¢l.1989) in thin films that still exhibit a viscous (fluid-like) response.
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MOLECULAR DYNAMICS STUDY OF THE PRIMITIVE MODEL
OF 1-3 ELECTROLYTE SOLUTIONS

Synopsis

Molecular dynamics simulations al constant temperature have been carried out for the
primitive model of 1-3 electrolyte solutions. Thermodynamics, pair distribution functions,
and self-diffusion coeflicients were computed to examine the electrostatic effects on the struc-
tural and dynamical properties. The simulation results were used to evaluate various theo-
retical equations, namely, the exponential form of Debye-Huckel theory, the mean spherical
approximation, and the hypernetted chain approximation. As has been observed for sym-
metrical electrolytes, the latter turns out to be the best approximation. Ior asymmetrically
charged 1-3 electrolytes, it was found that ionic aggregation significantly influenced the dy-
namical properties of electrolytes, Coherent motion between highly charged negative ions
and positive ions surrounding them was deduced from the time dependence of the velocity
autocorrelation functions, particularly at concentrations between 0.4 and 4 total molar,

Introduction

The wettability of reservoir porespace determines how oil and water are distributed in
oil bearing reservoirs and affects the displacement of oil in a recovery process. Wettability, in
turn, is affected by adsorption and double layer forces at the fluid-solid surfaces of the reser-
voir. Understanding adsorption and double layer forces at the molecular level will enhance
our ability to design enhanced oil recovery formulations that reduce unwanted wettability
hehavior or to modify the wettability in a beneficial way.

During the last couple of decades much progress has been made in our understanding
and interpretation of the physical properties of electrolyte solutions. A number of different
theoretical approximations have been used to evaluate the thermodynamic and structural
properties of bulk electrolytes, One of the simplest but most commonly used models in these
theoretical approaches is the so-called "primitive model electrolyte solution” (Outhwaite
1975; Friedman and Dale 1977) in which the charged hard-sphere ions are immersed in a
continuum solvent represented only as a uniform dielectric constant of the medium.

Reliable and unambiguous results, in turn, have become increasingly necessary to elim-
inate any underlying uncertainties involved in theoretical approximations. However, the
present level of modeling, particularly the use of a solvent continuum assumption, is far too
crude to allow the direct comparison with real laboratory experiment. Consequently, machine
experiments (computer simulations), which provide essentially “exact™ experimental data for
precisely defined model systems, have proven to be an extremely useful diagnostic tool to
investigate such systems. The great advantage of computer simulations over experiment lies
in the possibility of obtaining detailed physical information, which may be very difficult or
impossible to realize in the laboratory. The best known example is the measurement of pair
distribution functions as a function of distance at the molecular level,
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There are in general two classes of computer experiment: stochastic Monte Carlo (MC)
and deterministic molecular dynamics (MD) simulations, In the MD calculations, the actual
trajectories of molecules are evaluated by the numerical integration of Newton’s equations
of motion. In addition to static equilibrium properties, time-dependent transport properties
can be also obtained by the MD method. For the system of primitive model electrolytes,
however, the discontinuous nature of hard-sphere repulsions combined with continuous elec-
trostatic interactions introduces some technical difficulties into the traditional MD algorithm.
Recently, implementations have been made to extend the MD method to the system of hard-
cores with soft attractive potentials. In the work of Heyes (1982) for the restricted primitive
model of 1:1 electrolytes, two different forms of MD were combined. The hard-sphere col-
lisions were allowed to take place while the forces and velocity changes due to continuous
electrostatic interactions were evaluated. The agreement with the previous MC calculations
was excellent even at higher concentrations.

Almost all simulations for the primitive electrolytes have been carried out using the MC
simulation method (Valleau, 1970, 1980, ; van Megen and Snook 1990; Rogde and Hafskjold
1983; Ciccariello and Gazzillo 1983). Much of the earlier work on the MC calculations in
a variety of different ensembles has been summarized by Levesque et al (1984). Valleau
and his collaborators (1970, 1980) have extensively reported the canonical and the grand
canonical MC results of such systems. In their studies, various theoretical approaches were
also discussed and compared with the results obtained from their MC simulations. They
adopted the minimum image convention to evaluate the Coulombic part of potentials for
each configuration, and the resulting energy was linearly extrapolated as a function of 1/N
to estimate the values of an infinite system. These data should be accepted with some
care because the method with as few as 200 ions the method could yield results depending
on system size. This is particularly true for higher concentrations and for higher charged
systems. Explicit results for osmotic pressure were not published in the previous works.

In the MD simulations, better statistics can be achieved. For instance, in order to cal-
culate the virial contribution to the equation of state for the hard-core system, the MC
computations require an accurate estimation of pair distribution functions at the contact
point (Freasier, 1980). For the system of ionic solutions, pair functions may change rapidly
near contact distances due to the formation of ionic aggregates (see Fig. 4a). The extrapo-
lation of pair functions to the contact value lead to large uncertainties in this case of ionic
solutions, For this reason the MC results for osmotic pressure coefficients are known to be
less certain than those for energy calculations.

In the present paper, we report computer simulation results for the asymmetrically
charged system of 1-3 electrolyte solutions via-molecular dynamics simulation techniques,
This asymmetric system is of special interest because it provides a strong test of the ap-
plicability of approximate theories available in the literature. Computational details of the
method employed here are discussed in the next section. In section 3, the thermodynamic
and structural properties obtained from our MD simulations are compared with various the-
oretical predictions, namely, the exponential form of Debye-Huckel theory (Valleau, et al.
1970,1980: the mean spherical approximation (Waisman and Lebowitz, 1972), and the hyper-
netted chain approximation (Rasaiah and Friedman, 1968; Rasaiah, 1972). We also report
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in this section the dynamical properties including the velocity autocorrelation functions and
the self-diffusion coefficients, The dynamical properties of the primitive model electrolytes
are of course not comparable to those of electrolyte solutions since solvent dynamics are
totally absent in this model. However, the resulls are an inexpensive by-product of the sim-
ulation and are interesting to the extent that they yield insight into the interplay between
short range repulsive and long range forces and provide an indication of the distribution of
ion cluster formaltion.

Model and Computations

The MD calculations were carried out with a system containing 216 charged hard-spheres
with equal diameter, d, of 0.425 nm and mass, m, of 100 a.m.u. (There are 162 cations with
charge +1 and 54 anions with charge —3.) Usual periodic boundary conditions were applied
in a cubic fundamental cell to approximate an infinite system.

The pair potential energy between ions i and j is (in S.I. units)

Uii(r) {oo , ifz<d )

where 2; and z; are the valence of ion ¢ and j, and ¢ is the unit of electronic charge. €, is
the uniform dielectric constant of the medium relative to the permittivity of free space, e,.
As used in most other studies, the relative dielectric constant, ¢,, was chosen to be 78.356
corresponding to those for water at room temperature, 298.16 K.

The long-ranged interactions in ionic systems give a configurational energy that converges
slowly with the increasing system size. Use of a spherical cut-off or a minimum image
convention has shown to be inappropriate, particularly for highly charged dense systems
(Adams, 1983; Adams and Debye, 1987). The resulting configurational energy for such
systems must take account for the ion pairs not only with the nearest images in a fundamental
cell but also with all images in other periodic cells. The Coulombic potentials or forces, in
this study, were calculated using the Ewald sum technique (1921), which is a well-known
method for evaluating the electrostatic interactions in ionic crystals,

The Ewald transformation is expressed by two convergent sums, One in real space of a
short-ranged potential, Uy,

Un = E Z Z sizyg” ¢ (.‘.mj'“), (2a)

1= 1] 1 n 47“6067 T‘;]‘n

and the other in reciprocal lattice space of periodic Fourier domains, Uy,

2}, 2
ziz;q* n°h (27r )
J Il —-— 2cos [ ==h.rj; 2
(h QWLZZZ ( (Ysz)/h cos Lhr'} ’ (b)

i=1j=1 h#0 dme (r

where [ is the box length, o is an arbitrary parameter, typically set to 5/L, and er fc is the
complementary error function. Note that h is a reciprocal wave vector in units such that its
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components are integers. In the latter case of reciprocal space, the order of computations can
be reduced by the method suggested by Singer and described in Ref. [18]. In this method,
the double sum over particles ¢ and j is simplified into two single sums over particle . Total
of 6.3 wave vectors were computed using a recurrence relationship of complex arithmetic to
avoid repeated calculations.

The system of a hard-core repulsion: with continuous attractive interactions gives rise to
problems for MD compu‘er simulations. Computational techniques for trajectory calcula-
tions are totally different between the discontinuous and the continuous MD method. In the
hard-core MD program . itroduced in the pioneering work of Alder and Wainwright (1959),
th. collision equations between all possible colliding pairs must be solved before advancing
their trajectories. In contrast, in the MD for continuous potentials, the time evolution of
phase space is followed by solviry the equations of motion suitably discretized in time.

Two distinct algorithms can be combined into the same MD program by returning to
the hybrid “step-by-step” approach described elsewhere (Heyes, 1982; McNeil and Madden,
1982, Heyes and Woodcock, 1986). The time step interval is of order of femto seconds which
is very small compared to the average time between hard-sphere collisions. The first step
is identical to the system of conventional continuous potentials. The system trajectories
are adiancad from the current positions to the next positions only under the influence of
continuous forces without imposing the hard-core constraints. In this step, any possible
hard-core collision occurring during a fixed time interval is ignored, and this may result in
unrealistic hard-core penetration. The next step is then to check whether or not the pair
distances are closer than a hard-sphere contact diameter, and the resulting configuration is
resolved for the overlapping pairs. Because the time interval is so small, the majority »f
particles proceed without colliding with each other. When an overlap is found in a time
step, the step is repeated, but this time the particle velocities are assumed to be constant.
Under this assumption, the particles are advanced until the overlapping pair collides and
the algebraic equations of colliding hard-spheres are used to find the postcollision positions
and velocities. The algorithm then returns to the continuous potential MD sequence. This
apprcach has been applied for the various systems of model fluids and did not show any
measurable inaccuracy for the thermodynamic and transport properties of such systems
(Heyes, 1982; McNeil and Madden, 1982, Heyes and Woodcock, 1986). A logic flow chart
for this MD method is illustrated in Figure 1.

For the computational efficiency, it is appropriate to eliminate any redundant calculations
and this can be done by the construction of the collider table to speed up the seaiching
routine. Before entering the force loop in the first step, the maximum velocity was scanr ~d
to decide the maximum cut-off distance for the collider table. The table was updated at e..:h
step to ensure possible colliding pairs. Only the pairs within this maximum distance were
considered to examine the colliding pairs in the next step, rather than all possible pairs.

The equations of motion were integrated using the leapfrog version of Verlet algorithui

(1967), and the velocities were scaled at e.ch time step to maintain constant temperature

- ey A b Do doe o3 2] (1004 T S 1 3000 dbo S et Ot
in the manner described Uy OIOrTnascilt o &, (1007 10 aGGividn, wic initvial CONNgUravionis

were generated by randomly inserting particles to assist in‘the equilibration of the system.
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Step 1 : Evaluate new positions under the influence of continuous forces only.

Step 2 : Examine the resulting configuration for overlaps.
The next steps 3 to 5 are executed for overlapping pairs.

Step 3 : Determine the hard-core collision times.

Step 4 : Scan the minimum collision time and advance particles during this time.

T

Step 5 : Compute the post-collision velocities.

Step 6 : Search for the next collision and repeat steps 3 to 5.
If the configuration is fully resolved, return to step 1 for the next time cycle.

IYigure 1. Scheratic of the molecular dvuamics proceduie.

Configurations were aged, or equilibrated, for 6,000 steps before accumulating data and the
resulting ensemble averages were obtained during the final 40,000 steps. The MD algorithm
implemented here has been tested in a number of ways. When the ionic charges were as-
signed to a value of zero, the results faithfully reproduced the thermodynamic and transport
properties of the pure hard-ephere system available in the literature (Alder et al. | 1970).
The results obtained from the MD) simulations for a few selected runs of 1-1 electrolytes
were also compared to the MC (Valleau, et al 1970; 1980) and MD (Heyes, 1982I1eyes, 1982
The good agreement with the previous data again confirmed the quality of our MD method.
All production calculations were performed on a Cray-2 supercomputer at Minnesota Super-

computer Center. kixtensive use was made of vectorization and optimization.
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Results and Discussion

The thermodynamic and transport properties of 1-3 electrolyte solutions obtained from
the MD simulations are presented in Table 1. The range of concentration investigated here
was from 0.02 Mt to 6 Mt, where Mt is the total ion concentration in units of mole per
liter, but not the stoichiometric concentration, Afs. (Note that Mt = 4Ms = 21.6318 nd®,
where nd® is the total number density.) The self-diffusion coefficients were calculated from
the integration of the velocity autocorrelation function using the Green-Kubo relations and
from the slope of the mean-square displacement versus time using the Einstein equations.
The two methods gave results in good agreement, typically less than 3% difference, and the
self-diflusion coefficients in Table 1 are averages of the values found by the two methods. In
this table, we also report the ion/ion collision frequencies in columns 7 to 9.

Table 1. System characteristics and MD results
for 1-3 Primitive Model Electrolytes

Table 1. System Characteristics and MD Results for 1-3 Primitive Model Electrolytes

Mt _U/NKT  PV/NKT D, D. Wit we- -t
(moles/1) (1074 em?/s) (10~% cm?/s) (10%0s~1) (1010 s~1) (1010 sh)
0.02 0.5169 (0.0437)* - 0.8558 3156.21 113.84 0.068 0.000 1.929
0.2 1.1983 (0.0543]) 0.7433 57.42 22.26 1.042 0.000 11.119
0.5 1.5010 (0.0495) 0.7239 28.54 12.94 2.801 0.000 17.185
1.0 1.7423 (0.0495) 0.7370 17.24 8.817 5.977 0.007 23.603
2.0 2.0022 (0.0469) 0.8110 9.574 5.503 13.142 0.014 33.174
4.0 2.2978 (0.0438) 1.0293 5.151 3.288 31.182 0.019 50.895
6.0 2.4957 (0.0405) 1.3495 3.490 1.699 55.679 0.167 70.319

*The values in parentheses indicate uncertainties in the MD simulations.

In Figures 2 and 3 we illustrate the concentration dependence of the reduced configurational
energy, U/NkT, and the reduced osmotic pressure, PV/NkT, respectively. Also shown in
these figures are the results obtained with the exponential form of Debye-Huckel theory
(DHX) [Valleau et ai.,, 1970,1980; Debye and Huckel, 1923) , the mean spherical approx-
imation (MSA) (Waisman and Lebowitz, 1972), and those reported in Ref. [4] for the
hypernetted chain theory (HNC). The thermodynamic properties can be expressed in terms
of pair distribution functioas, gi;(r), between inic species ¢ and j.

The configurational energy of the fluid is

_ 27
NkT i Z/ Uiy (r)gny (), 3)
and, the virial expression for the osmotic pressure is
PV U 27rnd ,
AT = TN T T ZZ XiXigld “
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Figure 2. Reduced configurational energy Figure 3. Reduced osmotic pressure of. -3
of 1-3 primitive model electrolytes as a primitive model electrolytes as a function of
function of concentration. oM D results; -~ concentration. The symbols have the same
DHX; — MSA; - - — HNC[4)]. meaning as in Figure 2.

where X; is the mole fraction of species ¢ and g;;j(d) is the contact value of the pair function
for species ¢ and j.

We first focus our attention on the results obtained from the DHX theory. This simple
approximation is inadequate over most of the range of the concentrations investigated in this
work. The discrepancy is gradually amplified with increasing concentration. Although the
poor results are observed here, we point out that for the 1-1 electrolyte system and Mt < 2.0
the DHX energy predictions are in reasonable qualitative agreement with previous simulation
results [8]. The main failure of the DHX approximation is that it misses the structure of the
pair distribution functions. The oscillatory behavior occurring at higher concentrations due
to the hard-sphere exclusion volume is totally ignored in this theory. The contact values of
the pair distribution functions of the DHX theory are also inaccurate.

This last point is illustrated in Figures 4a and 4b. Pair distribution {unctions were
computed by sorting the relative pair distances into the equal radial increments of width
0.01d. Even at the low concentration of Mt = 0.2 (Figure 4a), slightly more +— and ++
ion pairings at the short range of distances were found in the MD results compared with
the DHX pair functions. The sharp peak near the contact point in g4 indicates the strong
tendency to the formation of unlike-pairs. As seen in Figure 4b (Mt = 4.0), however, the
DHX model significantly overestimates-pairings in g—_ while the underestimation of the
Coulombic attraction between unlike-pairs results in much lower value in g4_. In the MC

81



PDF

0

15

10

0

calculations for the 2-2 electrolytes [9,11], the presence of linear ion triplets was manifested
by a local maximum in like-pair functions near r = 2d. Similar results were observed, but,
in the case of our 1-3 system, the maximum peak in g_. was shifted to approximately
r = 2.5d. The salient feature displayed here is a noticeable trend to the formation of larger
ionic clusterings for higher charged systems.

) 1 ! 1

() ~ (b)

3
Ly
1A
1 A
2
1 s —
0 L | 1
{ 2 3 4 { 2 3

r/d r/d

Figufe 4. Pair distribution functions for like-pairs and unlike-pairs. (a) MT = 0.2; (b)
Mt =4.0. Also shown as dotted curves are DHX predictions.

The MSA and HNC theories are both based on the Ornstein-Zernike integral equation
along with specific closure relationships. The MSA model has a great advantage; it is the
only theory that can be solved analytically for the system of charged hard-spheres [3]. As an
extension to the Debye-Huckel theory, in the MSA theory, the Liard-sphere oscillations due to
the ion-cores have been taken into account. In the limit of point charges, the MSA becomes
identical to the Debye-Huckel theory. As illustrated in Figure 2 and 3, the MSA results
for the energy and for the osmotic pressure are in relatively good agreement with the MD
data. However, the MSA pair distribution functions are known to be poor. Particularly for
a range of low concentration, the linearized nature of the MSA model leads to the unphysical
negative values among the like-pair functions as in the Debye-Huckel theory. The MSA pair
functions are only symmetrically disposed around those for the hard-sphere pair function.
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The better agreement for pressure than for energy in the DHX model seems to be coincidental
and caused by a cancellation of errors between energy and collision contributions (the second
and the third term in the virial pressure in eq. (4), respectively). For Alt = 2.0, for instance,
an underestimation in g4 (d) by about 30% is almost equally balanced by an overestimate
in energy. The HNC results for Lhe systeni of 1-3 electrolytes [4] predict the configurational
energy and the osmotic pressure in very mw)d agreement to the MD results within statistical
errors. Although special iterative ft‘r '\M]um are necessary in order to reach convergence [4],
HNC theory has also shown to be »uu/ﬂésful for the 1:1 and 2:2 electrolytes [9,11].

The velocity autocorrelation functions (VACF) can provide useful insights into ion dy-
namics and transport. The normalized VACF is defined as a function of time, ¢, by

VACF = — Z<v, () > | <vi0) >, (¢

(14
~——

where the symbol < > denotes the average over an equilibrium ensemble. Those time correla-
tion functions are, in principle, measurable quantities from inelastic scattering experiments.

In Figures 5a to 5c, we plot the normalized VACFs for a few selected runs to illustrate
the manner in which those functions change with increasing concentration. The solid curves
correspond to the VACF's for positively charged jons, VACF(4), and, respectively, the dotted
curves, for negatively charged ions, VACF(—). The VACF's for lower concentration exhibit a
stronger velocity autocorrelation than those for higher concentration. The primary mecha-
nism of decay of the time correlation functions is the hard-sphere collision, in which colliding
particles rapidly forget their initial velocities through successive collision. In the high con-
centration regime, the hard-core repulsive collisions are expected to play a dominant role in
determining the dynamical properties of the system. In agreement with this, the resulting

VACF(+)s exhibit the exponential behavior which characterizes the dynamics of hard-sphere
fluids [24].

However, as shown by the VACF(-)s in Figure 5, there are substantial differences
between the motion of the positive charges and the highly charged negative ions. The
VACF(-)s decay more rapidly than the VACF(+)s. The VACF(—)s exhibit non-exponential
behavior. At low or intermediate concentration, the long-ranged Coulombic potential in-
creasingly influenices the collective motion of ionic fluids by the acceleration or retardation
of velocities between colliding pairs. The electrostatic force enhances correlations between
unlike-pairs, and decorrelation between like-pairs. ,

The most striking feature of the VACF(—)s is the peculiar peak displayed in the range
of intermediate concentration. The peak occurs at relatively the short time de ay between
5 ps and 10 ps. At the very low concentration regime, the VACF(—) decays monotonically.
However, a weakly oscillatory behavior starts to emerge in the VACF(—) for Mt = 0.5
(Figure 5a), and is clearly apparent for Mt = 1.0 (Figure 5b). This can be explained
in terms of the coherent motion of a highly charged negative ion, and the positive ions
surrounding it. The coherent motion in_this range of concentration results in an increased
persistence of velocity of the negative ions. Because the cluster tends to move coherently
over a period of time longer than the mean collision time between ions in the cluster, this
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Figure 5.
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Normalized velocity autocorrelation function vs. time at three different concen-
trations: a) Mt = 0.5, b) 1.0, and c¢) 6.0. The solid curves correspond to the
velocity autocorrelation function of positive ions (VACF(+)) and dotted curves
to that of negative ions (VACF(-)).
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collective motion conducts the negative ion in the direction of the net drift of the entire
cluster. In the cases presented in Figures Ha and 5b, the bump in the VACF(—-) is located
at nearly twice the mean collision time between negative and positive particles. This fact
suggests that the mechanism responsible for this velocity persistence is a double collision.
[First, a collision occurs between the negative central ion and the positive ions in front of it.
Then, a second collision occurs when the same negative ion is reached by the positive ions
which the electrostatic attraction drag behind it. In contrast, as seen in Figure 5c, these
bumps are reduced at the higher concentration of Mt = 6.0. In this case, there is perhaps
not enough free volume for the ionic clusters to move coherently over appreciable distances.

In the previous MD simulations [8] for the 1-1 electrolytes, the modified Enskog theory
of hard-sphere was shown to predict the self-diffusion coeflicients reasonably accurately. It
is also interesting to note that the diffusion constants of positive ions for the 1-3 electrolytes
here (Table 1) are close to those for the 1-1 electrolytes except for the low concentration limit
of M( < 0.2, However, the self-diffusion coefficients of negative ions are smaller by a factor
of two or three than those of positive ions. An interpretation of this observation is that the
free motion of negative ions is likely to be restricted by the formation of ionic aggregates.

For a hard-sphere system [25], the collision frequencies, wjj, are expressed in terms of
the contact values of pair distribution functions,

wij = dnid® (rkT/m) 2 g45(d), (6)

.sp where w;; is the number of collisions per particle of component j, per unit time between
particles of component ¢ and j. The collision frequencies determined from the MD simulation
are plotted in Figure 6. For the purpose of comparison with the corresponding hard-sphere
system, the predictions using the MD contact values in eq. (6) are also shown in this
figure. The MD results are seen to be in excellent agreement with theory. This suggests
that the microscopical behavior of the primitive electrolytes is much like to the hard-sphere
dynamics. In this sense, the transport properties of the primitive model electrolytes are, at
least qualitatively, related to those for the system of hard-sphere fluids.

Conclusion

In the present paper we have reported the MD simulations for the thermodynamic and
transport properties of 1-3 electrolyte solutions. The results obtained from computer sim-
ulations have been used to assess the applicabilities of theoretical equations, namely, the
exponential form of Debye-Huckel theory, the mean spherical approximation, and the hyper-
netted chain theory. The HNC theory is shown to be the best approximation compared with
the simulation results both for energy and for osmotic pressure. For asymmetrically charged
1-3 bulk electrolytes, the presence of ionic clustering was observed in pair distribution func-
tions. The local maximum in g__ was shifted to r = 2.5d.

The MD results presented in this paper indicate that the diifusion processes in primitive
model electrolytes are strongly dependent on concentration. In contrast, experimental diffu-
sion coefficients in aqueous solutions are nearly concentration independent [26]. This result
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Figure 6. Semilogarithmic plot of collision frequency as a function of concentration. aM D
results for w44 ; M D results for w_4. The dotted curves are predictions by Eq. (6) using
the MD contact values of pair distribution functions.

is to be expected since solvent-ion collisions are absent in primitive model electrolytes. This
simple model is inadequate to describe the ionic structures and dynamics in aqueous elec-
trolyte solutions. However, the primitive model electrolyte shows solution thermodynamic
behavior in qualitative agreement with experimental results on simple aqueous electrolytes
[9). Moreover, at sufficiently high ionic densities the model would give a reasonable first
approximation to the equilibrium and dynamical behavior of molten salts.
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DENSITY FUNCTIONAL FREE ENERGY THEORY OF
THE ELECTRICAL DOUBLE LAYER 2:1 ELECTROLYTES

Synopsis

This paper reports the predictions of a nonlocal free energy density functional theory
of the ion density and the mean electrostatic potential profiles of the restricted primitive
model of the electrical double layer. Results for unsymmetrical 2:1 electrolytes predicted by
three different nonlocal free energy density functional approximations are compared with
those of Monte Carlo simulations and of the modified Gouy-Chapman theory. The diffuse
layer potentials are also compared with those of some recent theories of the electrical double
layer. In the free energy density functional theory, the hard-sphere repulsive contribution to
the Helmholtz free energy is represented by nonlocal density functional models which have
appeared in previous works. The mean spherical approximation for the bulk electrolyte
is used to model the electrostatic part of the nonuniform ijon-ion correlations present in
the interface. In the case of singly charged counterions the agreement between the free
energy density functional theory and the Monte Carlo simulations is within a few percent at
the electrolyte concentrations and surface charges studied. In the case of doubly charged
counterions, however, the agreement is poor at low electrolyte concentrations although
good at high concentrations. The density functional theory correctly predicts the existence
of an extremum in the diffuse layer potential as a function of the surface charge density.

Introduction

The wettability of reservoir porespace determines how oil and water are distributed in
oil bearing reservoirs und affects the displacement of oil in a recovery process. Wettability,
in turn, is affected by adsorption and double layer forces at the fluid-solid surfaces of the
reservoir. Understanding adsorption and double layer forces at the molecular level will
enhance our ability to design enhanced oil recovery formulations that reduce unwanted
wettability behavior or to modify the wettability in a beneficial way.

Recently, a nonlocal frce energy density functional theory for the restricted primitive
model (RPM) of the electrical double layer was presented and the results for symmetiical
1:1 and 2:2 electrolytes were reported (Mier y Teran et al. (1990), Tang et al. (1990)).
An electrical double layer is the separation of charge which occurs in an electrolyte in the
presence of an electrode. In the RPM of the electrolyte, the ions are modeled as charged
h: rd spheres of equal diameter d and the solvent is represented by a uniform dielectric
m »dium with dielectric constant e. At the same time, the electrode ix taken to be an
infinite, planar, uniformly charged, hard wall with surface charge densiiy o.
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In Mier y Teran et al. (1990) the grand potential functional for the RPM of the elec-
trical double layer was constructed and minimized to obtain integral equations for the ion
density distribution functions. The equations are equivalent to those obtained by func-
tional differentiation of the Helmholtz free energy with respect to component density to
derive expressions for the chemical potential of each species in the inhomogeneous elec-
trolyte, as was done in Tang et al. (1990). In the free energy density functional theory, the
hard-sphere repulsive contribution to the free energy is represented by a nonlocal generic
density functional proposed by Percus (1981) and extended to hard sphere mixtures by
Vanderlick et al. (1989b). It has been shown by Vanderlick et al. (1989a) that this generic
functional can be used as a generating functional of several nonlocal approaches including
the generalized van der Waals (GVDW) model (Nordholm et al. (1981)), the generalized
hard-rod model (GHRM) (Robledo and Varea (1981); Fischer and Heinbuch (1988)), and
the Tarazona (TRZ) model (Tarazona (1985)). In addition, we have used the analytical
solution of the mean spherical approximation (MSA) (Waismann and Lebowitz (1972))
for the bulk electrolyte to approximate the electrostatic part of the nonuniform Ornstein-
Zernike direct correlation function of the inhomogeneous electrolyte in the interface.

The results of previous papers (Mier y Teran et al. (1990); Tang et al. (1990)) can be
summarized as follows. Comparison of the density functional theory with the Monte Carlo
(MC) simulations of Torrie and Valleau (Torrie et al. (1980)) shows that, when combined
with the Carnahan-Starling equation of state, the free energy density functional theory
is successful in predicting the behaviors of th~ ion density and the mean electrostatic
potential profiles for symmetrical electrolytes. The theory predicts correctly the layering
effect of the counterions and the charge inversion phenomenon. The results predicted by
the GHRM (Mier y Teran et al. (1990)), the GVDW, and the TRZ models (Tang et al.
(1990)) are in close agreement with each other at low concentrations and low surface charge
densities but the differences between them increase when the charge or the concentration
is increased. Comparison with the MC values of the diffuse layer potential as a function
of the surface charge density shows that the GHRM is superior to the other two models at
high surface charge densities for highly concentrated 1:1 electrolytes (Tang et al. (1990).
We believe this is due to a fortuitous cancellation of errors in the calculations when the
GHRM is combined with the MSA solution of the electrostatic correlation, since the TRZ
model, which is a better approximation than the GHRM for inhomogeneous hard-sphere
system (Vanderlick et al. (1989a)), better represents the layering effect of the counterions
at high charge densities. For 2:2 electrolytes, on the other hand, all these three models
predict results which are only in qualitative agreement with the MC data for the ditfuse
layer potential.

In this paper we report results of the density functional theory for 2:1 electrolytes
next to both positively and negatively charged electrodes. As in Tang et al. (1990), we
present a comparison between the GHRM, the GVDW, and the TRZ models. We also com-
pare our results with those of the modified Gouy-Chapman (MGC) theory (Gony (1910);
Chapman (1913); Stern (1924)) and of some recent theories of the electrical double layer.
These include the most refined version of the modified Poisson-Boltzmann theory (MPB5)
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(Outhwaite and Bhuiyan (1983)), the hypernetted chain/mean spherical approximation
(HNC/MSA) theory (Lozada-Cassou and Henderson (1983)), and the Yvon-Born-Green
(YBGQ) theory with closure introduced by Caccamo et al. (1986). In addition, we also
compare our results with those of Plischke and Henderson (1989), who solved the inho-
mogeneous Ornstein-Zernike (OZ) equation for the pair correlation function together with
the Lovett-Mou-Buff-Wertheim equation and the hypernetted chain closure (OZ/LMBW),
whenever the latter are available. As pointed out previously by others (Torrie and Valleau
(1982); Lozada-Cassou and Henderson (1983)), results for 2:1 electrolytes are interesting
not only because their practical applications but also because the MGC theory exhibits
both qualitative agreement or disagreement with the MC simulations, depending upon
whether the counterion is monovalent or divalent.

The rest of the paper is arranged as follows. In Sec. II we review briefly the free
energy density functional theory of the RPM of the electrical double layer. We report our
results in Sec. III and conclude in Sec. IV with a disscusion.

Theory

With the the same notations as those in Tang ¢t al. (1990) the Helmholtz free energy
density functional F({n}) for a mixture of charged particles in an external field of potential
vo(r) can be written as

F({n}) =Z/darna(r)va(r)+kTZ/d3rna(r) [l (A3 na(r)) - 1]
1 A
+ kT d*rd®r' na(r)ng(r') | dX [ dNeap(r,r'; ),
>// o) [ 64 e

where k is Boltzmann’'s constant, T the absolute temperature, and A, the de Broglie
wavelength of particles of species a. The first two terms in Eq.(2.1) correspond to the
external field and the ideal gas contributions to the free energy, respectively. The third
term represents the contribution from the ion-ion pair interactions. The path integration
characterized by the parameter A is along a linear density path from the initial state
ni (r) = 0 to the final state nq(r), with cqpg(r,r’; A) being the Ornstein-Zernike direct
correlation function of a nonuniform electroiyte at a particular point, ne(r;A) = Ang(r)
(0 < X <£1), on the integration path.

(2.1)

Although cqg(r,r') is not in general known for inhomogeneous electrolytes, it can be
separated formally into three parts:

daqp

e ha ! . ]
Py + cap(r,r') + Acag(r,r'). (2.

cap(r,r') = —

Q)
1AV

Here qo is the charge of ions of species a. The first term on the right side of Eq.(2.2)
is simply the Coulombic interaction between charged particles, whereas the second term
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is the hard-sphere correlation due to the finite size of the particles, which is discussed in
more detail later in this section. The third term is the residual part of the Ornstein-Zernike
direct correlation function, which must be prescribed by some means., We choose here to
approximate this nonuniform residual correlation function by the counterpart of a neutral
bulk electrolyte. The latter is further approximated by the analytical solution given by
Waismann and Lebowitz (1972) when the MSA is used for the RPM electrolytes. This
solution, Acqg(|r — r'|), depends only on the relative distance between two particles, The
explicit expression for Acag(i) can be found in Mier y Teran et al. (1990).

By functional differentiation of the free energy density functional F({n}) with respect
to the density distribution function n(r) we obtain the chemical potential j, of particles
of species a. The chemical potential is everywhere constant and so uy can be eliminated
from the general expression for the double layer by subtracting from it the corresponding
equation for the coexisting bulk electrolyte. This yields the following integral equation for
the ion density distribution function:

In (na(r)/n8) = — o= (2"*(r) + gath(r))

T kT
+ Zﬂ: /dar' (na(r') — np) Acqap(r,r') (2.3)
N 5Fexccas({n}) N aFemceaa(nO)

dng(r) on? ’

where nQ is the number density of particle o in the bulk electrolyte. In Eq.(2.3), v**(r) is
the interaction potential between an ion and an uncharged hard wall,

v (r) = o0, r<df2,

= (), Tz >d/2, (2:4)

where z is the ion’s distance to the wall. On the other hand, 1(r) is the mean electrostatic
potential, due to both the ionic charges in the electrolyte and the uniformly distributed
charges on the surface, which can be expressed in terms of the ion density distribution
function by solving Poisson’s equation. The result is

Y(z) = ég / de' (z — J?I)Z danalz'), (2.5)

where the condition of overall electroneutrality,

dz' fanal(z') + 0 =0, 2.6
/0 D danalz') (2.6)

(e}

has,been imposed.

91



The crucial step leading to Eq.(2.3) is introducing the excess hard-sphere free energy
functional F¢*°¢**({n}) to incorporate the hard-core repulsive contribution to the free
energy as we did in previous studies (Mier y Teran et al. (1990); Tang et al. (1990).
We use the generic functional proposed by Percus (1981), which is the three-dimensional
generalization of the Helmholtz free energy of an inhomogeneous one-dimensional hard rod
system. For hard sphere mixtures this functional can be written as in Vanderlick et al.

(1989a) .
' Fereess({n}) = Z/dar AL (r) Fo (A7(r)), (2.7)

where Fo(n) is the excess free energy per particle of a homogeneous hard sphere fluid of
density n; this function can be derived from the hard-sphere equation of state. In our
calculations, we chose the Carnahan-Starling formula for Fo(n), i.e.,

Fo(n) = k7¥4=3Y) | (2.8)

(1-y)?’

where y = mnd?/6.

In the expression for the excess hard-sphere free energy density functional, Eq.(2.7),
n%(r) and n.(r) are coarse-grained densities defined as spatial averages of the local density
na(r) over certain small domains:

A% (r) = / B va(r — ' {n))na(r'), (2.9)

AL(r) = / Br' 1o(r — ©'; {0} nalr'). (2.10)

The weighting functions vo(r — r'; {n}) and r4(r — r'; {n}) are, in the most general case,
functionals of the density distribution functions. By changing the specific form of the
weighting functions, different density functional models can be generated (Vanderlick et
al. (1989a). In this work we solved Eq.(2.3) for the three model functionals mentioned
before: the GVDW model, the GHRM, and the TRZ model. The weighting functions

vo(r — r'; {n}) and 74(r — r'; {n}) for these three models have been given explicitly in
Tang et al. (1990).

Results

In this work we carried out calculations for 2:1 electrolytes at bulk concentrations of
0.003, 0.05, and 0.5 M. For the latter two concentrations we considered both positive and
negative surface charge densities 0. For concentration of 0.005 M the MC data reported
(Torrie and Valleau (1982)) are for negative values of o only; therefore we restricted our
calculations to the same range of 0. For positive surface charges the counterions are singly
charged, whereas for negative surface charges the counterions are doubly charged.
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Due to the planar symmetry of the problem, Eq.(2.3) can be reduced to a one-
dimensional integral equation by integrating over the y-z plane, which is parallel to the
charged surface. In order to solve this one-dimensional integral equation we employed the
finite element method described elsewhere (Mier y Teran et al. (1982)). Asin Mier y Teran
et al. (1990) and Tang et al. (1990), we used quadratic Lagrange interpolating polynomials
as basis functions for the GHRM and linear functions for the GVDW and the TRZ inodels.
We generated solutions in the domain d/2 < z < L, where L was the cutoff distance from
the wall used as the upper limit in the integrals. A uniform mesh of NV points was used in
all cases. Both N and L depended strongly on the concentration of the bulk electrolyte.

The Newton iterative scheme was used to solve the system of nonlinear algebraic
equations for the nodal values of the reduced density: gai = na(zi)/n%. The iteration
was continued until the Euclidean norm of the updates after k iterations became less than
1010 .,

k k
Zcx Zi (g((:n'+1) - gc(:n')

)2 %
s < 10710, (3.1)

As a second test of the numerical accuracy of our calculations we also checked the agreement
of the overall electroneutrality condition, Eq.(2.6). This equation was satisfied to at least
five significant figures in all the calculations.

Dimensionless quantities proved convenient. The dimensionless surface charge density
is 0* = od?/e with e being the magnitude of the electronic charge. The dimensionless
mean electrostatic potential is ¢*(z) = fey(z) (8 = 1/kT). The distance z is reduced by
the hard sphere diameter d. As in our previous work we fixed the plasma parameter to
['* = Be?/ed = 1.6809 in order to compare our results with MC data (Torrie and Valleau
(1982)) This value of I'* corresponds to T=298 K, ¢ = 78.5, and d= 4.25A.

Our results of the dimensionless diffuse layer potential, ¥*(0) = ey(0)/kT, at several
values of the surface charge density o* for 2:1 electrolytes are summarized in Table 1. For
comparison, in the same table we also display the MC values (Torrie and Valleau (1982), the
results of the MGC (Gouy (1910); Chapman (1913); Stern (1924)), the MPB5 (Outhwaite
and Bhuiyanb (1989)), the HNC/MSA (Lozada-Cassou and Henderson (1983)), and the
YBG (Caccamo et al. (1986)) theories. For positive values of o*, the agreement between
the results of the density functional theory and the MC data is within a few percent, which
is comparable with the statistical uncertainty in the MC data. In this case the GHRM is
shightly superior to the other two density functional models. For negative surface ch  ses,
the agreement between our results and MC simulation is only fair at low concentrations
(31% high for the GHRM and 25% high for the GVDW and the TRZ models) but improves
at the higher concentration of 0.5 M (22% high for all the three models). The GVDW and
the TRZ models are both slightly hetter than the GHRM for the range of negative values
of o* investigated in this work.
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TABLE 1. Diffuse layer potential, ¥*(0) = ey(0)/kT, for 2:1 electrolytes

o* MC® MGC BGY? MPB5° HNC/MSA? GHRM  GVDW  TRZ
0.005 M
-0.01 -0.91(0.02)  -0.959  — -0.865 _ -0.947 -0.947 -0.947
-0.02 -1.37(0.01)  -1.518  — -1.28 — -1.485 -1.484 -1.484
-0.05. -1.87(0.03)  -2.381  — -1.79 — -2.233 -2.228 -2.228
0.05 M
-0.05 -1.05(0.01)  -1.315  -1.11 -0.999 -1.158 -1.160 -1.156 -1.156
-0.0975 -1.21(0.06)  -1.916  -1.476 -1.22 -1.511 -1.522 -1.505 -1.505
-0.126 -1.26(0.03)  -2.161  -1.73Y -1.27 -1.577 -1.596 -1.568 -1.569
-0.20 -1.18(0.03)  -2.612  -1.739 -1.29 -1.497 -1.551 -1.481 -1.485
-0.284 -1.02(0.03)  -2.959  -1.74 -1.28 -1.176 -1.288 1153 -1.164
0.04294 1.73(0.02) 1.740 1.705 1.69 1.89 1.675 1.672 1.672
018 3.99(0.05) 4.324 4.04 3.92 3.89 4.005 3,922 3.922
0.5 M
-0.05 -0.40(0.02)  -0.547  -0.372 -0.373 -0.311 -0.317 -0.311 -0.312
-0.099 -0.50(0.01)  -0.951  -0.509 -0.463 -0.462 -0.476 -0.462 -0.463
-0.1704 -0.46(0.01)  -1.379  -0.574 -0.459 -0.482 -0.518 -0.480 -0.484
-0.24 -0.35(0.03)  -1.683  -0.557 -0.410 -0.351 -0.425 -0.351 -0.360
0.0989 1.04(0.02) 1.308 0.97 0.985 0.966 0.988 0.965 0.967
0.20 1.94(0.03) 2.364 1.875 1.85 1.806 1.914 1.814 1.831

G. M. Torrie and J. P. Valleau (1982). Statistical uncertainty is shown in parenthesis.
C. Caccamo, G. Pizzimenti, and L. Blum (1983).

C. W. Outhwaite and L. B. Bhuiyan (1983).

M. Lozada-Cassou and D. Henderson (1983).

8o U@

A comparison of the results of the three density functional models with the MGC
theory and the MC data is presented in Fig. 1. This figure shows the dimensionless diffuse
layer potential as a function of the electrode charge density o* at concentrations of 0.005,
0.05, and 0.5 M. The MGC theory, which neglects the exclusive effects due to the finite size
of the ions, overestimates the thickness of the double layer and predicts a monotonic rise
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Figure 1. Reduced diffuse layer potential, Bet(0) (6 = 1/kT), as a function of the charge
density, od?/e, for 2:1 electrolytes. Solid curves represent the results of the
GHRM, dot-dashed curves the results of the GVDW and the TRZ models. The
results displayed are at concentrations of 0.005, 0.05, and 0.5 M. Solid squares,
open circles, and solid circles are the corresponding MC results. The dashed
curves are the results of the MGC theory and the dot curves are the results of
the OZ/LMBW theory (Plischke and Henderson (1989)).

of the diffuse layer potential as the magnitude of o* increases. As has been pointed out
by other authors (Torrie and Valleau (1982)), for positive surface charges the behavior of
the diffuse layer potential as a function of o* is reminiscent of that of 1:1 clectrolytes. For
negative surface charges, the monotonic behavior of the MGC theory disagrees significantly
with MC simulations, since the simulation results present a minimum in the diffuse layer
potential as a function of o*. The density functional theory predicts the presence of that
minimum. Because the results of the GVDW and the TRZ models differ by no more
than 1% and are indistinguishable in our plots, we show only one curve for these two
approximations. At ¢ = 0.005 M, the results of all the three density functional models
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Figure 2. Reduced density profiles, n( z)/n°, Figure 3. Reduced mean electrostatic po-
of a 2:1 electrolyte at ¢ = 0.5 M and ¢* = tential profile, Bey(z), of a 2:1 electrolyte
0.2. The dots are the MC results. The at ¢ = 0.5 M and ¢* = 0.2 All symbols as
dashed curves correspond to the MGC the- in Fig. 2.

ory, the solid curves to the GHRM, and the

dot-dashed curves to the GVDW and the

TRZ models. Note that the charged surface

is at z = —d/2.

are indistinguishable (within 1%) in the plots. In this figure we also present the results of
the OZ/LMBW theory of Plischke and Henderson (1989) at concentrations of 0.5 and 0.05
M; the results at lower concentration of 0.05 M are not available. The OZ/LMBW theory
predicts the most accurate results currently available; large deviation from MC values at
c = 0.05 M and 0* < —0.2 was believed to be due to numerical difficulties. Our results
compete in accuracy with those of 0Z/LMBW.

We proceed now to examine the information contained in the ion density profiles and
the mean electrostatic potential profiles. When the surface is positively charged and the
electrolyte concentration is low, the behavior of the double layer is qualitatively similar to
that found in 1:1 electrolytes. The behavior at higher concentrations is more interesting.
In Fig. 2 we display the ion density profiles at 0.5 M and o* =0.20. The solid curves
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Figure 4. Reduced mean electrostatic potential profile, —fBey(z), of a 2:1 electrolyte at
¢ = 0.005 M and o* = —0.05. The dots are the MC results. The dashed curve

correspond to the MGC theory, and the solid curve to the density functional
approximations. In this case, the results of the three density functional approxi-
mations are undistinguishable in the figure.

correspond to the results of the GHRM, whereas the dot-dashed curves correspond to
those of the GVDW and the TRZ models. The circles represent the MC data (Torrie
and valleau (1982)). The dashed curves are the MGC density profiles calculated with the
analytical solution for 2:1 RPM electrolytes found by Grahame (1953). As shown in Fig.
2, each of the three density functional approximations predicts a counterion profile with a
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Figure 5. Reduced density proﬁle’s, n(z)/n?, of a 2:1 electrolyte at ¢ = 0.05 M and o* =
—0.2. All symbols as in Fig. 2 except that the dot curves are the results of the
OZ/LMBW theory (Plischke and Henderson (1989).

shallow minimum around z = 2.5d. To this minimum corresponds a maximum in the coion
density profile. The position of the charged surface is shifted to ¢ = —0.5d in this figure
and in all the figures to be presented. The MC results seem to show the same oscillatory
behavior, but the oscillation is partially hidden by the statistical uncertainty of the data.
As usual, the MGC theory predicts monotonic density profiles. The oscillatory behavior is
also apparent in MC profile of the mean electrostatic potential. In Fig. 3 we see the MC
data of the function (z) have a change in sign around z = 1.5d and present a shallow
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Figure 6. Reduced density profiles, n(z)/n’, Figure 7. Reduced mean electrostatic po-

of a 2:1 electrolyte at ¢ = 0.05 M and o* = tential profile, —Bey(x), of a 2:1 electrolyte

—0.284. All symbols as in Fig. 2. at ¢ = 0.05 M and o* = —0.284. All sym-
‘ bols as in Fig. 2.

minimum. The three density functional models predict quite well the location and the size
of this minimum in ¥(z).

For 2:1 electrolytes next to a negatively charged surface, the counterions are doubly
charged. In these systems, the density and the potential profiles are monotonic at low
surface charges. This is the case for ¢ = 0.005 M and o* = —0.05: see Fig. 4, where the
results of the three density functional models for the potential profile 1(z) coincide up to
the scale used in our plot. The density functional theory predicts results which represent

considerable improvements over the MGC theory, but it still overestimates the thickness
of the double layer.

At higher concentrations and surface charges the MC density profiles are no longer
monotonic. In Fig. 5 we present the density profiles at ¢ = 0.05 M and o* = —0.20. The
coion density profile obtained in the MC simulation has a peak around z = 1.5d. The
results obtained by Plischke and Henderson (1989) show such a peak and agree quite well
with the MC simulation. The density profiles predicted by the density functional theory
are still monotonic but show a tendency towards an oscillatory behavior. As before, the
difference between the GVDW and the TRZ models is negligible. Differences between the
GHRM and the other two density functional approximations are also small in this case.
These three approximations produce coion density profiles which are indistinguishable in
the figure. At the larger surface charge of o* = —0.284 and the same concentration ¢
= 0.05 M, the MC data show a small charge inversion between z = 2.5d and 4.5d: see
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Figure 8. Reduce(! density profiles, n(z)/n°, Figure 9. Reduced mean electrostatic poten-
of a 2:1 electrolyte at ¢ = 0.5 M and o* = tial profile, —Bei(z), of a 2:1 electrolyte at
—0.1704. All symbols as in Fig. 2 except ¢=0.5 M and o* = —0.1704. All symbols as
that the dot curves are the results of the in Fig. 2.

OZ/LMBW theory (Plischke and Hender- |

son (1989))

Fig. 6. The profiles predicted by the density functional models are still monotonic and
the differences between them continue to be small. The MGC density profiles are also
monotonic. The charge inversion presents in the MC data at these conditions produces an
oscillation in the mean electrostatic potential profile with a minimum around z = d: see
Fig. 7. The free energy density functional approximations, however, fail to predict this
minimum in their potential profiles.

The oscillatory behaviors of the density and the mean electrostatic potential profiles
are more evident at higher concentrations. In Fig. 8 we present a comparison of the MC
density profiles with those of the density functional theory and those of OZ/LMBW at
¢c=05M and o* = —0.1704. For comparison, in the same figure we also display the
results of the MGC theory, which show no oscillation. The charge inversion is pronounced
and clearly seen in the profiles predicted by the density functional theory. The results
of the GHRM and the GVDW (and the TRZ) model are distinguishable within some
ranges, but the difference between them is still small. The results of OZ/LMBW agree
a little better with the MC profiles than our results do. The charge inversion found in
this case produces a relatively deep minimum in the mean electrostatic potential profile.
In Fig. 9 we compare our results of the potential profile with the MC data. The density

100




functional theory predicts correctly the oscillation of the mean electrostatic potential, but
the deepness of the minimum is underestimated.

Summary

We have applied three different nonlocal free energy density functional approximations
to the electrical double layer consisting of a 2:1 RPM electrolyte in the presence of a planar
charged surface. The approach we have used in this work is the same as that in previous
works (Meir y Teran et al. (1990); Tang et al. (1990)). For 2:1 electrolytes, the free energy
density functional theory predicts correctly the behavior of the diffuse layer potential as
~a function of the surface charge density: the asymmetry with respect to the sign of the
surface charge and the existence of an extremum.

When the counterions are singly charged, the density functional theory is quantita-
tively accurate in predicting the ionic density profiles and the mean electrostatic potential
profiles of 2:1 electrolytes. Our values of the diffuse layer potential agree within a few per-
cent with the Monte Carlo (MC) data at the densities and surface charges explored. The
generalized hard-rod model (GHRM) is slightly better than the generalized van der Waals
(GVDW) model and the Tarazona (TRZ) model in this case; this is the same conclusion
as for 1:1 electrolytes (Tang et al. (1990)). The differences between the results of theory
and the simulations grow slowly when the surface charge density increases.

When the counterions are doubly charged, the density functional theory predicts re-
sults which agree only qualitatively with the MC simulations. At low concentrations, the
theory predicts correctly the monotonic behaviors of the density and the mean electrostatic
potential profiles at small surface charges, but fails to predict the oscillatory behaviors
present in the MC results when the surface charge is increased. At high concentrations,
the density and the mean electrostatic potential profiles obtained in this work show the
charge inversion phenomenon in agreement with the MC simulations.

The GVDW model is the zeroth-order approximation of the TRZ model. Thus, the
small differences found between the predictions of these two models within the intervals of
concentration and surface charge density o studied, for both positive and negative values of
o, show that the zeroth-order term in the weighting function of the TRZ model completely
overshadows the other two terms in this regime. This feature makes the GVDW model
more attractive than the TRZ model in applications to more complicated systems when
the fluid inhomogeneity is not very large, because the GVDW model is almost as accurate
as the TRZ model in this case and it can be generalized (to mixtures of hard spheres of
different sizes, for example) and numerically implemented much more easily.
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A NONLOCAL FREE ENERGY DENSITY FUNC‘TIONAL
APPROXIMATION FOR THE ELECTRICAL DOUBLE LAYER.

Synopsis

We construct a free energy density functional approximation for the primitive model
of the electrical double layer. The hard sphere term of the free energy functional is based
on a nonlocal generic model functional proposed by Percus. This latter model functional,
which is a generalization of the exact solution for the non-uniform hard rod model, requires
as input the free energy of a homogeneous hard-sphere mixture. We choose the extension
of the Carnahan-Starling equation of state to mixtures. The electrostatic part of the
non-uniform fluid ion-ion correlations present in the interface, is approximated by that of
an homogeneous bulk electrolyte. Using the mean spherical approximation for a neutral
electrolyte, we apply the theory to symmetrical 1:1 and 2:2 salts in the restricted primitive
model. We present comparisons of density profiles and diffuse layer potentials with Gouy-
Chapman theory and Monte Carlo data. We also compare our results with data from
other recent theories of the double layer. For highly charged surfaces, the profiles show the
layering of counterions and charge inversion effects, in agreement with Monte Carlo data.

Introduction

Understanding the behavior of charged particles near charged surfaces is an impor-
tant problem in physical chemistry. Separation of charge in response to the field of the
charged surface is referred to as the electrical double layer. Double layers are present in
electrochemistry in the form of the electrode/electrolyte interface, and they often play a
major role in the stability of soap films, colloidal dispersions, and biological membranes.
As a result of the occurrence of double layers in numerous situations, there has been a
considerable effort to describe them theoretically. The early theory that met with signifi-
cant success was that of Gouy (1910) and Chapman (1913) and was based on the Poisson-
Boltzmann equation. More recently, theory has been built on more rigorous methods of
the statistical mechanics of the liquid state (Carnie and Torrie, 1984). Because the phys-
ical systems in which double layer. occur are generally quite complicated (for a recent
review see Schmickler and Henderson, 1986), theoretical efforts have been directed to-
wards determination of the properties of greatly simplified models. The Gouy-Chapman
theory (Gouy, 1910; Chapman, 1913) was developed for a model of point charges next to
a uniformly charged planar surface, for example. A later modification of this theory by
Stern (Stern, 1924) , known as the modified Gouy-Chapman theory (MGC), is based on
the same model. This description is quite accurate provided the real ionic radius is not
too large compared to ionic spacing and the charge on the surface and on the particles are
relatively small (low density-weakly coupled systems). At higher densities or for highly
coupled systems, the core interaction becomes important. Thus, to take into account of
the finite size of the charged particles, many authors focused their attention on a model
electrical double layer composed of charged hard spheres ‘at a hard, planar, polarizable,
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uniformly chargea surface. The jons zre assumed to be immersed in a continuum with a
dielectric constant which may be different from that of the charged wall. This model is
known as the primitive model (PM) of the double layer.

There is a considerable body of recent work on the PM double layer. For testing theory,
the Monte Carlo {MC) simulations by Valleau and co-workers (Valleau,et al. 1980-1982)
are especially significant. There is the work on the modified Poisson-Boltzmann (MPB)
approximation (Outhwaite,et al. 1978-1986), which is based on the Kirkwood (Carnie and
Torrie, 1984) hierarchy. In that approach the effects of the wall on the ion-ion correlations
are handled in a natural way. On the other hand, the work based on the singlet Ornstein-
Zernike (OZ) equation (Henderson et al.,1976) with the mean spherical approximation
(MSA) or the hypernetted chain approximation (HNC) stresses a mnre carefu! treatment
of the effects due to the finite size of the ions while the direct ion-ion correlation functions
near the surface a1 : approximated by the functions calculated in the bulk solution (Blum.
1977) There is also work based on the Born-Green-Yvon (BGY) equation (Henderson, et al,
1981; Bruno, et al, 1987) for the inhomogeneous pair correlation functions as closures for
the BGY equation, this latter method emphasizes the importance of properly handling the
ion-ion correlation functions near the wall. The BGY equation exactly satisfies the contact
theorem (Carnie and Torrie, 1984). This is especially important'in the high density-high
coupling regime. The recent work by Forstmann and collaborators (Daguanno, et al., 1986;
Alts, et al., 1987) in which the ion-ion direct correlation functions are computed using the
MSA at a local non-neutral concentration (HNC/LMSA), is also aimed at building into
the theory good pair correlation functions. Similar in spirit to the work of Forstmann and
collaborators is that of Kjellander and Marcelja (Kjeilander,et al, 1885, 1986) in which the
double layer interaction between two uniformly charged surfaces immersed in an electrolyte
solution is calculated. Perhaps the most accurate recent work is that of Plischke and
Henderson (1989). In that work, the inhomogeneous OZ equation with the HNC and M3A
closures was solved together with the Lovett-Mou-Buff-Wertheim equation (Lovett, et al.,
1976) for the density profiles of the ‘ons (OZ/LMBW).

Double layers are good examples of strongly inhomogeneous systems. In an elec-
trolyte, especially at elevated surface charges, the density variations near the electrode are
extremely large. The situation of an ion near the wall is tota)’:: different from that of a
similar ion in the neutral bulk. Ideally, a double layer theory should take into acconnt the
correlations arising from both the hard-core repulsion and the electrostatic interactions.
Because these correlations are strongly dependent on the distance from the wall, only a few
theories are able to handle properly the ion packing near the electrode. According to MC
results for 1:1 electrolytes (Torrie, et al., 1982) at high electrode charges the counterions
start the formation of a second layer before the first layer is densely packed. Of the theories
mentioned above, only the HNC/LMSA, the BGY, the Kellander and Marcelja and the
OZ/LMBW theories are able to predict the formation of the second layer of counterions.

Parallel to the development of the double layer theories, the last de. de has seen a
great deal of activity in the study of non-uniform fluids using free energy density func-
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tional theories. This method, which originated with van der Waals (1908), requires the

~ construction of an expression for the free energy of the inhomogeneous system. Even

though the rigorous statistical mechanics formalism of density functional theory was es-
tablished more than twenty years ago (Stell, 1964;Percus 1964), the reduction of the exact
results to tractable accurate approximations has been the goal of many, more recent in-
vestigations (Ebner, et al., 1976; Davis and Scriven, 1982; Evans, 1979; Nordholm, et al,
1982; Tarazona, 1985; Curtin and Ashcroft, 1985; Meister and Kroll, 1985). Treatments
based on local density approximations have proven useful to describe weakly structured
systems, like fluid-fluid interfaces (Ebner, 1976; Davis and Scriven, 1982; Evans, 1979), or
fluids in weak external fields, but are not applicable to the strong inhomogeneities char-
acteristic of fluid-solid interfaces. In order to handle the strong inhomogeneities present
in fluid-solid interfaces, a nonlocal approach was introduced by Nordholm and coworkers
(Nordholm, et al, 1982) in their generalized van der Waals theory (GVDW). Since then,
systematic improvement. in the method in which finite size effects are considered have
been published (Tarazona, 1985; Meister and Kroll, 1985) of nonlocal theories include the
studies of the structure of confined fluids (Heffelfinger, et al, 1989; Ball and Evans, 1988;
Vanderlick et al., 1990; Vanderlick, et al., 1989), capillary condensation (Tarazona, et al.,
1987; Peterson, et al, 1988), layering transitions (Ball and Evans, 1988), and the planar
electrical double layer (Boyle, et al., 1987). Very recently, the nonlocal smoothed-density
approach (SDA) due to Tarazona (Tarazona, 1985), was extended to binary hard sphere
mixtures with arbitrary size ratio (Tan, et al., 1989).

In this work, we present a theory for the electrical double layer in which the effects due
to the finite size of the particles are considered within the framework of a generic nonlocal
functional proposed by Percus (Percus, 1981) and generalized to multicomponent fluids by
Vanderlick et al.((1990). This generic functional can be used to generate the functionals
of several known nonlocal approaches (Vanderlick et al., 1989). These include the GVDW,
the SDA, and a functional proposed by Robledo and Varea (Robledo and Varea, 1981),
and by Fischer and Heinbuch (Fischer and Heinbuch, 1988), as @ generalization of Percus’
exact solution of the one dimensional hard-rod system (Percus, 1976). We use the latter,
termed here generalized hard-rod model (GHRM), to construct a model functional for
the electrical interface. Its advantage over the OZ/LMBW theory used by Plischke and
Henderson is that its working equations are much cheaper to evaluate.

The article is as follows. The PM of a planar double layer is described in Sec. II. The
general free energy density functional formalism for the electrical double layer is presented
in Sec. IIL. In Sec. IV we report our results for the density profiles and electrostatic
potential and compare these with the MC results of Valleau and co-workers (Torrie et al.,
1982) and with results of some of the theories mentioned above.

Primitive model

In the primitive model of the electrical double layer, the electrolyte is assumed to
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be a fluid of charged hard spheres of charge ¢, and diameter d, immersed in a dielectric
continuum of dielectric constant e. Separating the Coulombic and short-range repulsive
contributions to the pair interaction, we have

Uas(F 1) = gagau(| T = &' |) +ulpl| v =¥ |) (2.1)

where
u(r)=1/er (2.2)
and . .
ubp(r) =o0, 1< (do+dy)/2 (2.3)

=0, r > (do +dg)/2.

The electrode is considered to be an infinite flat hard wall with a uniform charge density
o. This impenetrable hard wall produces a repulsive potential, for particles of species a,

of the form |
ve(z) =00, 7 <duo/2,

2.4
=0, z>dao/2, (2:4)

where z is the ion’s distance to the plate. On the other hand, the uniform surface charge
density gives rise to a Coulombic potential of the following form

vi(z) = -2n0 |z | /e + C, (2.5)
where C is a constant which depends on: the choice of the point of zero potential.

In order to eliminate image charges, the dielectric constant is also taken to be € in the
region r < do /2. The total external potential can now be written as

va(2) = gav®(z) +v5(2) (2.6)
A quantity of an enormous importance in the electrical double layer theory is the mean

electrostatic potential. The mean electrostatic potential (r) at a point r is related to the
density distribution functions n,(z) in the following way

P(r) = v(z) + /dsr'uc(l r—r'|) Z danalz'). | (2.7)

The formal solution to Poisson’s equation yields the following expression for the mean
electrostatic potential

4 [ . ‘
_— d ! ! oMo ! . .
w2 =7 [ e =) T aenale) (28)
The boundary conditions used in arriving at Eq.(2.8) are ¢)(o0) = 0, and
dy(z -4
YD) |omp= 2210 (2.9)
T €
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In the derivation of Eq. (2.8) we required

dx’ ana(') = —0, (2.10)
[

which is the constraint of overall electroneutrality of the system. From Eq. (2.8) we can
observe why the mean electrostatic potential evaluated at the closest appronch distance is
frequently used as a measure of the charge scparation in the double layer.

Density functional free energy theory
General formalism

We start our study of the double layer problem with a discussion of the grand canonical
density functional formalism for a mixture of ionic species in an external field. In this work
we adopt the general approach due to Morita and Hiroike (Morita and Hiroike, 1961), De
Dominicus (DeDominicus, 1962), Stillinger and Buff (1962) and to Lebowitz and Percus
(1963), and used later by many investigators (Ebner, et al, 1976, Davis and Scriven, 1982;
Saam and Ebner, 1977). The particle-particle direct correlation functions of a non-uniform
fluid which appear in the formalism allow us to write an exact expression for the density
distribution functions. The same formalism has been used by Forstmann and collaborators
(1987) as the starting point of their HNC/LMSA theory of the double layer. This approach,
which is due to Mermin (Mermin, 1965) and was employed by Hohenberg and Kohn (1964)

for the inhomogeneous electron gas, is naturally expressed in the language of the grand
canonical ensemble.

The properties of an interface and its coexisting bulk fluid are determined by the
constancy of the chemical potentials, 4, and temperature, T, throughout the system. The
free energy appropriate to the grand canonical ensemble is the grand potential. For a
mixture of particles of different kinds (a = 1,..., ¢), the grand potential functional is

Q= ~kTtnZ, | . (3.1)

where Z is the grand partition function and k is Boltzmann’s constant. The equilibrium

density distribution is an unconstrained minimum of the grand potential functional, (2,
where

Q({n}) = F({n}) - Z / d*riana(r). | (3.2)

Here, F({n}) is the Helmholtz free energy functional of the system and {n} denotes the
functional dependence of 2 and F on the particle densities, nq(r),a == 1,...,¢

For a mixtnre of charged particles of species at absolute temperaiure T in the field of
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an external potential v(r), the grand potential functional can be written as

Q({n}) = Z/d3r7za(r)(va(r) - )
* \ (3.3)
AT [ dma(e)ien(Adna(e) = 1] - é({n)),

The second term on the right of Eq.(3.3) is the ideal gas contribution to the Helmholtz
free energy and A, is the thermal de Broglie wavelength of particles o. The term -¢ in the
same equation corresponds to the interparticle interaction contribution to the free energy.

The grand potential functional ({n}) is minimized, for fixed vq(r) and uqsg(r,r’),
when n,(r) takes its equilibrium value. In that case, 0 corresponds to the equilibrium
grand potential function. The functional -¢, on the other hand, can be used as a gener-
ating functional for n-body correlation functions, in particular, from the first functional
~ derivative we obtain: 1 64({n}) y

n
— = cqo(r; {n}), 3.4
while the second functional derivative of ¢({n}) defines the Ornstein-Zernike direct corre-
lation function

1 6
ﬁﬁ%z%% = cas(r, s {n}). . 39)
The equilibrium condition can then be expressed as
682
—57%‘%‘—})) = kTln(na(r)/Ca) + va(r) — kTco(r; {n}) = 0, (3.6)

where (o = A® exp(Bua) is the fugacity of component « in the mixture and 8 = 1/kT.

By functional integration between an initial state n’, and a final state n, it is possible
to obtain

#({n}) = 6({n'}) + kTS / @ r{na(r) — ni(0)]ea(r; {n'})
+kT d*rd®r'[na(r) — ni(r)] 3.7
o/ .
1 A
X [ng(r') ——n;',(r')]/; d/\/ dAcap(r,r’; ).

In order to obtain this result, the linear density path,
na(r;A) = ni(r) 4+ Ana(r) — ni(r)],
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was used for the integration. The parameter ) can take values in the interval 0 < A < 1.
Equations (3.3), (3.6) and (3.7) can now be employed to write the following expression for
the grand potential functional:

a({n}) = o{n'H + 3 / 10 () [va(r) = vA(0)]
+ kTZ/d3rna(r)€n(na(r)/n;(r)) ‘
AT Y [ rina(r) = ni(r)] (3.8)

M| [ v tnae) = ni(elinale') = ni(e)

1 Y
X / d)\/ dX cap(r,T's A).
0 0

When dealing with long-ranged Coulombic potentials it is convenient to define a short-
range part of the direct correlation function csg(r, r') by

caplr,t') = —Baagpuc(| T — ¥ ) + cag(r, ). (3.9)

The short-range correlation function, cgg(r, r'), can be further separated by subtracting
from it the hard-sphere contribution,cS(r,r"). This is

Acaﬂ(r»r,) = Caﬂ(ra r') - Cfs(rar')- (310)
These definitions allow us to rewrite the grand free energy functional as
a({n)) = (n')) + Y [ drna(e)leale) - vi(r)
+ kTZ / d3rn,,(r)£n(na(r)/n;(r))
- kTZ / d®r[na(r) — nh(r)]
* (3.11)
1 . .
3% [ [ @rérinate) = niielinate) = s lgeasn(L v =5
~¥T ) / | ! na(e) = i (llm(e") = ()]
af
1 A |
X / d/\/ dX Acap(r,r's A) + AFHS({n}).
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The last term on the right side of Eq.(3.11) represents the excess free energy change,
between the initial state u', and the final state n, produced by the hard sphere interaction
exclusively (in the presence of the other interactions).

Using the equilibrium condition, Eq.(3.6), we can obtain the following formal expros-
sion for the cquilibrium density profiles na(r):

kTin(na(r)/ni(r)) = —(vi(r) - l);‘:(r)) — qo(W(r) = ¥'(r))

1
+ kTZ /(137"[11,3(1") - nb(r')]/(; dAAcqg(r,r'; ) (3.12)
3

SAFHS({n})
© O na(r)

In the derivation of Eq(3.12) use has been made of the definition of the mean electrostatic
potential, Eq. (2.7).

Generalized hard-rod model

The formalism presented above must be completed by specification of a model func-
tional for the excess free energy of a hard-sphere mixture. Generalizing the exact result
for an inhomogenecus system of hard-: ods, Percus (1981) and Vanderlick et al.(1990) have
defined a generic free energy functional for tk : inhomogeneous hard sphere fluid. In three
dimensions, the free energy function of a hard sphere mixture is (Vanderlick, et al., 1990)

pereerr = Y [ @z (R, (870, (3.13)

where Fy({n(r)}) is the excess free energy per prticle of a homogeneous mixture of hard
spheres evaluuted at the position r and 7¥(r) and n"(r) are coarse grain densities. Each
one of these densities is defined by a weighting function of the relative position to the hard
sphere center, and, in the most general case, is also a functional of the density distribution,

asr) = [ 1'valr = s (nhna(r!), (3.14)

aL(r) = /dsr'ra(r —r'; {n})na(r'). (3.15)

If these are to apply to a uniform fluid mixture they must satisfy the following normaliza-
tion conditions:

d®rvg(r —r';{n}) = /dsrra(r ~r's{n}) =1 (3.16)

In order to establish a theory for strongly inhomogeneous fluids based on Egs.(3.12)-(3.16),
parsicular forms for the weighting functions v and 7 must be specified. The assignment
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of weighting functions generates different model density functionals. A discussion of how
different appropriate selections of weighting functions generate several important model
functionals can be found in the work of Vanderlick et al.(1989). Of particular importance
for this work are the forms of v(r) and 7(r) proposed by Robledo and Varea (1981), and by
Fischer and Heinbuch (1988) as three dimensional generalizations of the hard-rod model.
This model, termed here Generalized Hard Rod Model (GHRM), is characterized by the

following weighting functions:
Valr = 1') = 6((da/2)= | ¥ — ¥ )/(47(da/2)?), (3.17)

Ta(r — ') = H((da/2)~ | r = ' )/ (47(da/2)*/3), (3.18)

where d, is the diameter of the particles in the fluid, 6(r) is the Dirac delta function, and
H(r) is the Heaviside step function:

(3.19)

In this model, the coarse grain density 7%(r) is the average density of species over the
surface of a sphere of radius do/2. The coarse-grain density 7.(r) is the average density
of species inside a sphere of radius do/2.

The functional in Eq. (3.13) allows us to determine an expression for the free energy
change AF#5({n}) appearing in Eq.(3.11). It is |

1
AFHS({n}) =§;/d3r/0 d/\-%(ﬁ;(r;A)Fo({ﬁ’(r;A)}))- (3.20)

Using this expression we can finally rewrite our equation for the equilibrium density profiles,
Eq.(3.12), as

kTen(na(r)/nh(r)) = —(vi(r) = vf (r) = ga((r) = 9i(r))
+ szﬁ: / d3r'[ng(x') — n;,(r')] /: dAAcqp(r,r'; )

Vg [énay(r'; A
' OF,({n7(r'; \)}) onl(x'; A)
-Z/d3 /‘““‘ 0 2 ) }

dny(r)

(3.21)

To study a bulk fluid in equilibrium with a planar electrode we now identify the
initial state {n'} with the neutral bulk electrolyte. This corresponds to an homogeneous

111




solution in which no external forces are present. Since we are considering an infinite plane
with uniform charge density , local densities vary only in the direction 2 normal to the
wall. Additionally, Eq.(3.21) requires the knowledge of inhomogeneous direct correlation
function in excess over the hard sphere,Acqs(r,r'), for all the possible positions r and r’'
across the interface. Since these correlation functions are not known, we approximate the
function Acqp(r,r’) with the function Acqp(| r — r' |) of the homogeneous neutral bulk
electrolyte in equilibrium with the interface; this is

Acap(r,r'i N) = Acag(r,r'; A = 0) = Acapl(lr =" |). (3.22)
It is convenient to emphasize here that Aces(] r —r' |) is a pair correlation function for
a neutral bulk electrolyte whereas the interface is locally non-neutral. With this approx-

imatior, and by using Fg.s (3.14) and (3.15) for the GHRM, Eq.(3.21) can be rewritten,
for a planar symmetry, as

a('l')/na = G:Ep{—ﬁqat,/)(x)
_ / dm'um(m ~ ')BE({R"(2')}) + BFy(n)

' aﬁF ({n’(m )} aﬂF (n)

¥ ; / &' [ng(a") = nalBcap(] ¥ = 1 f; {n})},

for = >d,/2,

and

no(z) =0, for ©<du/2.

For the planar symmetry the coarse grain densities #%(z) and A7 (z) can be written as

no(z) = /um(ac —z')ne(z')dz', (3.24)

and

AL(z) = / Tra(? — 2" )ng(2')d’, (3.25)

where the reduced weighting functions v;, and 7,4, are defined by

Veo(T) :://l/o,(r)dydz, (3.26)
Tra(X) = //Ta(r)dydz. (3.27)

ottt L "



After integration over coordinates y and z, we obtain, for the GHRM,
via(z) = H((da/2)= |z |)/das (3.28)
Tra(z) = 6H((da/2)~ | © |)((da/2)2 —a?)/d’, (3.29)
We approximate now the excess free energy per particle F}, of the homogeneous hard-
sphere fluid by the Carnahan-Starling (1970) equation of state. This equation was general-

ized to a mixture of hard spheres of different sizes by Mansoori,et al.(1971). The expression
for the free energy is

Fo ""‘3 . —
T =“‘2“'(1 ~y1 +v2 +ys) + (By2 + 2y3)(1 — €)™
3 1 (3.30)
+5(1-y1—y2 - gys)(l — 672 4 (y3 — 1)en(1 =€)
where -
€= Z bar £a = VaNa, Vo = gd3 (3.31)
The variaBles Y1, Y2, and y3 are defined as follows:
1
=5 > Daplda + dg)/(dads)'?, (3.32)
af
1 1
Y2 =5 Aap(dedg)? Y €4/ (dy), (3.33)
T Y '

3
Y3 = [E(fu/&)%(na/n)%] ) (3.34)

and 1
Aaﬂ = (vavﬂ)f nang(da - dg)z/(fndadﬁ). (335)

In the last two equations, n is the total number density given by Y na.

In their study of fluids confined between planar walls, Vanderlick et al. (1989) com-
pared three different approximate density functional free energy theories of inhomogeneous
fluids for hard spheres and Lennard-Jones potentials. Their study included the GHRM
and the SDA due to Tarazona (1985). The results of that study show that whereas the
GHRM is quantitatively inferior to the SDA, it is qualitatively correct. Since the GHRM
captures the qualitative behavior of confined hard-sphere and Lennard-Jones fluids and re-
tains enough mathematical simplicity we are encouraged to apply it to more complicated
systems. ‘
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- MSA Approximation for Acys(|r—1r'|)

It follows from Eq.(3.23) that our description of the electrical planar interface is still
not complete without a prescription for bulk phase direct correlation functions Acyg

(| r=r'|). Several choices can be immediately invoked from bulk electrolyte theory. A
simple choice is to use the direct correlation functions of the MSA. The MSA is a relatively
accurate approximation which generates analytic expressions for the direct correlation
function of several important model potentials (Barker and Henderson, 1976). Waismann
and Lebowitz (1972) showed that the integral equation resulting from the Ornstein-Zernike
equation, has an analytical solution when the MSA closure for the restricted primitive
model(RPM) is employed. The RPM is a still simpler model in which all ions have the
same size; dq = d. For the RPM, the MSA provides the following expression for the
function Acqp(]| r~r'|):

Acqg(s) = :@ [(2B/d) — (B/d)*s —1/s] ,s < d

(3.36)
=0 s > d,
where s =| r —r' | and
B=[p+1-(1+20)7]/p, . (3.37)
and ¢ = kpd. The quantity £ p is the inverse Debye screening length given by ‘
wh = (47B/e) Y nagk. (3.38)

The solution given by Eq.(3.36) holds for an arbitrary number, ¢, of ionic species provided
global charge neutrality is maintained,

Y naga =0. (3.39)

The MSA direct correlation function is an important piece in the formulation of the
HNC/MSA theory of the double layer (Blum, 1977) In that theory, the approximation

cap(r,r'; A) = cap(r, s A = 0) = cop(jr—1' |) (3.40)
is made; thus, the effect of the external potential and the inhomogeneities of the interface

on ¢(r,r') are entirely neglected. We believe that this approximation is more severe than
the similar approximation of Eq.(3.22) used in this work.

Results

In this section we present our results for the density profiles, mean electrostatic poten-
tial profile, and diffuse layer potential drop for solutions containing symmetrical 1:1 and
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2:2 electrolytes. The results are compared with existing MC data and, when possible, with
results obtained from several other approximations. The calculations were performed by
means of the method of subdomains, finite element basis functions, collocation weighted
residuals, (Strang and Fix, 1973) and Newton iteration with initialization chosen by para-
metric continuation (Mier y Teran et al.1982). We choose quadratic Lagrange interpolating
polynomials as basis functions. This numerical technique was applied before to the solu-
tion of PY, HNC (Mier y Teran et al, 1982) and MSA (Mier y Teran, et al., 1985) integral
equations for bulk simple fluids and was extended by Mier y Teran et al. (Blum, 1977)
for solving the HNC/MSA integral equation for the double layer problem. A detailed
comparative discussion about the application of this method to the solution of HNC/MSA

equation for the double layer RPM and its efficiency and accuracy can be found in Mier y
Teran et al., (1989).

With the algorithm mentioned above, we reduced the set of Eqs.(3.23) to a system of
algebraic equations for the values of reduced density profiles at the nodes: goi = ne(zi)/na.
This nonlinear set of equations is solved by Newton’s method. The iterative process is

continued until the Euclidean norm of the updates after iteration k 4+ 1 becomes less than
10—10.

1 .
ZZ(Q(”” g2 /2N| <1010, (4.1)

where N is the number of nodes in the domain d/2 < ¢ < R, and R is the cutoff value for
the integrals in Eqs.(3-23). Both the number of nodes N and the value of R depend on
concentration. We used a uniform mesh in the domain d/2 < z < R.

Either the charge density, o, or the electrostatic potential at the electrode, 1., can
be specified and the equations solved. At very low charge densities, o, or potentials,
e, we found it convenient to usc the MGC density profiles as an initial guess. Once a
solution for certain values of the parameters is found, initial estimates at other values
for the parameters can be found easily by a first-order continuation technique. Typically,
three to five Newton iterations are needed to reach convergence. After convergence was
attained, the value of o or the value of 1., depending on which quantity was used as
the parameter, were computed using Eq.(2.8) or Eq.(2.10) respectively. The agreement
with the value of o or 1), originally used to solve the equations gives an indication of the
accuracy of the numerical method. Except for the very low concentration regime, Eq.(2.8)
or (2.10) was satisfied to at least five significant figures. In the most dramatic case treated:
1:1 electrolyte at 0.01 M, the dimensionles , Debye distance, ¢!, becomes very large and
Eq.(2.8) or (2.10) was satisfied to four sigaiticant figures only.

In our calculations we have used dimensionless parameters. We express all lengths
in units of the diameter d. The dimensionless surface charge is 0* = od?/e, where ¢
is the magnitude of the electronic charge. Similarly the dimensionless potential profile is
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P*(z) = Peyp(z). In order to compare with the MC data of Valleau and co-workers, (Torrie
et al., 1982) we fixed the value of the plasma parameter to I' = Be%/ed = 1.6809. This
value corresponds to

e=1785, T =28K and d=4.254.
1:1 electrolytes

We solved Eq(3.23) for electrolytes ranging from 0.01-2 M and surface charge ranging
from 0.05-0.9. In Table 1 we list the dimensionless diffuse layer potential, Sey(0), where
¥ (0) is the potential drop between the point of closest approach to the surface and infinity.
Note that the position of the wall has been shifted to # = ~d/2. In Table 1 we also display
the MC results (Torrie et al., 1982) , those of MGC, BGY (Bruno et al., 1987), MPB5
(Outhwaite et al., 1986) theories and the OZ/LMBW results obtained recently by Plischke
and Henderson (1989) using the HNC closure. The general agreement of our results with
the MC data is quite good. A clearer comparison of our results for 1:1 electrolytes with
MC data is given by Fig. 1 where we plot the diffuse layer potential ¥*(0) as a function
of the reduced charge density o*. As reported before by other authors (Bruno et al.,
1987; Plischke and Henderson, 1989), in the low concentration regime, density profiles
become very long ranged and special numerical difficulties appear. We believe that the
discrepancies between our results and the MC data at ¢ = 0.01 M can be attributed , at
least in part, to this cause. The crosses shown in Fig. 1 are the results of Plischke and
Henderson (1989).

8
1OM
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Fig. 1 Reduced diffuse layer potential, Be(0), as a function of the charge density, od?/e,
for 1:1 electrolytes. Solid lines represent the results of the GHRM functional density
theory presented here for 0.01 M, 0.1 M, 1 M and 2 M. Open circles, solid squares,
solid circles and open squares are the corresponding MC results. The crosses (x) are

the results of the OZ/LMBW theory with the HNC closure.

The classical MGC theory, which neglects the finite size of the ions, predicts an in-
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TABLE 1. Diffuse layer potential

C o* MGC MC* BGY? MPRB5 ~ PH¢ This w.

1:1 electrolytes

0.0IM 010 544 5.05(0.05) - 508 4.58 5.26
0.1M  0.30 5.34 4.63(0.03) 5.0 4.74 4.37 4.76
1M 0.10 1.4 1.09(0.06)  1.055 1.03 1.06 1.03
0.25 2.79 2.13(0.05)  2.31 2.10 2.22 2.18

0.42 3.74 3.08(0.1)  3.46 3.02 3.23 3.23

0.55 4.26 4.15(0.15)  4.21 - 4.22 4.12

0.60 4.43 4.38(0.11)  4.48 - 4.68 4.52

0.70 4.74 5.71(0.14)  5.02 - 5.76 5.41

2M 0.396 2.9 2.29(0.09)  2.303 - 2.29 2.19

2 : 2 electrolytes

0.06M 0.20 2.61 1.33(0.02) 1.81 1.36 1.18 1.59
0.5M 0.1704 1.36 0.63(0.04) 0.64 0.537 0.69 0.57

G. M. Torrie and J.P. Valleau,; 1980 and 1982. Statistical uncertainty is shown in parenthesis.
C. Caccamo, G. Pizzimenti, and L. Blum,; 1986.
C:. W. Outhwaite and L.B. Bhuiyan, ; 1986.

M. Plischke and D. Henderson,1988.

AR o o B

Table 1. Diffuse Layer Potential

terfaciul thickness which is greater than that obtained by MC simulations for low surface
charge densities, and smaller than that of the MC data for large o*. This phenomenon is
evident at 1 M concentration. In Fig. 2 we plot the diffuse layer potential as a function
of surface charge density for ¢ = 1 M. In that figure we also display the MC data, and
the results obtained from the approximations listed in Table 1. The agreement of our re-
sults with MC is very good and in some cases of comparable accuracy with those obtained
by Plischke and Henderson (1989) with the OZ/LMBW and the HNC closure. The data
available for the MPB5 theory show an excellent agreement with MC data. Unfortunately
the data are for low values of o* only, and because of the secondary role played by the
excluded volume effects in the MPBS theory, it is not expected that the theory can be
applied at higher surface charges where the size effects are very important. The BGY
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Wh .

theory of Bruno et al.(1987), which is very good for low o* fails to predict the change iu
curvature showeu by the MC results at intermediate charge densities.

The classical theory of Gouy-Chapman always predict monotonic variation for the
density profiles of both co-ions and counterions. In contrast, for 1:1 electrolytes, the MC
results of Valleau and collaborators (1982) for the structure of the RPM double layer exhibit
interesting layering effects for high surface charges. In Fig. 3 we present a comparison of
our results for the density profiles of a double layer for a bulk density of ¢ = 0.1M and
o* = 0.30, with those corresponding to MC simulation and the MGC theory. Our results
agree quite well with the MC results. All the profiles showed are monotonic in this case.
In Fig. 4 we plot the mean electrostatic profile which correspond to the same condition
presented in Fig. 3. Again we obtain good agreement with the MC results. The MGC
theory is relatively successful in describing both density profiles and mean electrostatic
potential at ¢ = 0.1M and o* = 0.30.

1LOM

Bey0)

0 / | Il 1 L
00 02 04 08 08 10
od’ /e

Fig. 2 Reduced diffuse layer potential, Be1(0), as a function of charge density, od?/e, for 1

M, 1:1 electrolytes. The solid line represents results of the functional density theory.
Solid circles are the MC results of Valleau and collaborators, Solid squares correspond

to the MPB5 theory , open circles to the BGY theory, and open squares to the
OZ/LMBW theory with the HNC closure.

In Fig. 5 we present, with solid lines, the counterion and co-ion density profiles
obtained in this work for ¢ = 1M and ¢* = 0.42. For comparison, in the same figure
we show the MC and MGC results. Also shown in the figure are the results obtained by
Plischke and Henderson for the OZ/LMBW theory with the MSA closure. It is important
to mention at this point that, for this concentration and surface charge, the results of the
OZ/TMBW theory with the MSA closure are in very good agreement with those of the
same theory when the HNC closure is einployed (Plischke and Henderson, 1989). The
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n(x)/n

Fig. 3. Reduced density profiles, n(x)/n,
for a 1:1 electrolyte at ¢ = 0.1M and ¢o* =
0.30. The dots are the MC results. The
dashed lines correspond to the MGC theory
and the solid lines to this work. Note that
the wall is at z = —d/2.

Pey(x)

Figure 4. Reduced mean electrostatic
potential profile for a 1:1 electrolyte at ¢ =
0.1M and o* = 0.3. All symbols as in Fig.
3.

MC results clearly show the onset of the formation of a second layer of counterions near
z/d = 1. Since the MGC theory is a point charge theory, it does not predict the layering
phenomenon. On the other hand, the OZ/LMBW theory accurately follows the behavior
of the MC data. It is interesting to see that the density functional theory presented in this
paper is also able to predict the formation of the second layer of counterions. However,
the position of the second layer is clearly shifted towards the electrode. The theory also
exaggerates the size of the second peak. The co-ion density profile predicted by the density
functional theory agrees quite well with MC data and is almost indistinguishable from that

of the OZ/LMBW theory.

At a bulk concentration of ¢ = 1M and a charge density o* = 0.7, a second layer
of counterions is clearly formed. In Fig. 6 we compare the density profiles predicted by
MGC, 0Z/LMBW, and density functional theories with the MC results for that conditions.

Again the MGC theory predicts monotonic pro

files while the OZ/LMBW theory very well

predicts both the position and magnitude of the second layer. Again the density functional
theory overemphasize the value of the density of the second layer. Asin Fig. 5, the position
of this layer is shifted towards the electrode. This can be a consequence of the way in which
the GHRM takes into account the hard-core effects. The GHRM predicts, for a hard-sphere
Auid near a hard wall, a density profile with a second peak shifted towards the wall when
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n(x)/n

n(x)/n

Fig. 5 Reduced density profiles, n(z)/n, Fig. 6 Reduced density profiles, n(z)/n, for
for a 1:1 electrolyte at ¢ = 1M,o* = 042, a Ll electrolyte at ¢ = 1M and o* = 0.7.
The dots are the MC results. The dashed Al symbols as in Fig. 5.

lines correspond to the MGC theory, the

dot dashed lines to the OZ/LMBW theory

with the MSA closure, and the solid lines

to this work.

compared with simulation results, (Vanderlick et al. 1989).

The mean electrostatic potential profile which corresponds to the last conditions pre-
sented is shown in Fig. 7. The agreement between the density functional theory and the
MC results is good. The density functional theory is able to predict the presence of a very
shallow minimum in this function. A similar minimum is present in the MC results. The
mean electrostatic potential function is not very sensitive to the details in the structure of
the double layer.

2:2 electrolytes

We have computed results of our density functional theory for two concentrations:
0.05 and 0.5 M. In the lower part of Table 1 we display some results of this work for the
diffuse layer potential and compare with those of the theories previously mentioned. We
find reasonable agreement with MC data.

In the case of divalent electrolytes, the MC results show the interesting phenomenon
of charge inversion. This phenomenon, which is a result of both hard-core and electrostatic
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Bey(x)
n{x)/n

Figure 7. Reduced electrostatic potential — Fig. 8. Reduced density profiles, n{x)/n,
profile for a 1:1 electrolyte at ¢ = 1M and for a 2:2 electrolyte at ¢ = 0.5M and o =
o* = 0.7. The dots are the MC results. The 0.1704. The dots are the MC results. The
dashed lines correspond to the MGC theory dashed lines correspond to the MGC theory
and the solid line to this work. and the solid lines to this work.

interactions, consists in the formation of a second layer of co-ions next to the first layer
of counterions. In Fig. 8 we plot density profiles for a double layer at ¢ = 0.5M and
o* = 0.1704. Nearly all the counterion charge 's concentrated into a thin layer next to the
wall. The response of the system to this dipole layer is the formation of a layer of co-ions
within = = d and = = 2d approximately. As can be seen in Fig. 8, the density functional
theory predicts the charge inversion phenomenon. We obtained a counterion density profile
in reasonable agreement with MC data. On the other hand, our theory underestimates the
magnitude of the maximum in the co-ion profile. As expected, the MGC theory totally
misses the charge inversion. ‘

In Fig. 9 we show the mean electrostatic potential profile for the same conditions
presented in the previous figure. The MC simulations result in a potential profile which is
oscillatory with a minimum of about —0.2 just beyond one diameter from the wall. Our
density functional theory predicts the oscillatory behavior and is in good agreement with

the MC data.

Summary

We presented a nonlocal free energy density functional theory for the electrical double
layer. Within the frame of the grand canonical formalism, we construct a free energy
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Figure 9. Reduced mean electrostatic potential profile for a 2:2 electrolyte at ¢ = 0.5M and
o* = 0.1704. The dots are the MC results. The dashed line corresponds to the
MGC theory and the solid line to this work.

functional of the density distribution. We then separate the short ranged part of the
inhomogeneous direct correlation functions which appear in the formalism into a hard-
sphere term and a residual term. The residual term contains the correlations arising
from the Coulombic interactions between particles in the fluid. The hard-sphere part
of the free energy functional is then approximated by a generic functional proposed by
Percus (1981) as a three dimensional generalization of an inhomogeneous hard-rod system.
We used its extension to mixtures due to Vanderlick et al.(1990). This generic nonlocal
functional requires the specification of two coarse- grain densities. In this work we choose
to use the weighting functions proposed by Robledo and Varea (1981) and by Fischer and
Heinbuch (1988) to generate a GHRM functional for the free energy of an inhomogeneous
hard-sphere system. In our calculations we approximate the free energy of a bulk hard-
sphere mixture with the Carnahan-Starling (1970) expression. The residual inhomogeneous
direct correlation functions are approximated with those corresponding to the neutral bulk
electrolyte which is in equilibrium with the interface. Use is made of the analytical solutions
of the MSA (Waismann and Lebowitz, 1972).

The GHRM free energy density functional theory described in Sec.IIl correctly de-
scribes the physical features presented by the MC simulations for 1:1 and 2:2 RPM elec-
trolytes. For 1:1 electrolytes the theory predicts the layering of counterions which oceurs
when the charge of the electrode is increased. Although the theory exaggerates the mag-
nitude of the counterion layering, predicts a diffuse layer potential which is in very good
agreement with the MC data. For 2:2 electrolytes, the theory predicts the charge inversion
phenomenon and vilues of the diffuse layer potential which are in good agreement with
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MC results. In general, there are small quantitative rather than qualitative differences
between the MC results for the density profiles and mean electrostatic potential and those
obtained in this work.

Even when calculations with the GHRM density functional theory are relatively sim-
ple, the theory competes in accuracy with the more sophisticated OZ/LMBW theory (Plis-
chke and Henderson, 1989). Because of its simplicity, the GHRM theory requires only a
small fraction of the computing time used to solve the OZ/LMBW theory. For the 1:1
electrolyte at ¢ = 1M, our code requires only 240 s of a Cray2 CPU time to calculate
solutions and mean electrostatic potential profiles at 15 different values of reduced charge
density,o*, with a uniform mesh of 241 nodes, for example.

From a density functional formulation similar to that presented here, Forstmann and
collaborators (1987) used in the interface ion-ion correlation functions of homogeneous elec-
trolytes with non-neutral compositions. Instead, in our work we are employing a nonlocal
GHRM functional for the hard sphere part of the free energy and neutral bulk electrolyte
correlation functions for the residual electrostatic part. Use of non-neutral composition
residual electrostatic correlations is left for future work.

The results of the GHRM for a hard-sphere system near a hard-wall, (Vanderlick et al.
1989), show a poor quantitative agreement with MC results. Since a very good agreement
between the functional theory and the MC results for the planar double layer is reported
in Sec. IV, one can naturally ask if a fortuitous cancellation of error is occurring when we
combine the hard-sphere free energy functional with the MSA solutions for the electrostatic
part of direct correlation functions. The answer to this question probably can be given by
solving the theory for a more accurate functional for the hard-sphere contribution to the
free energy. The SDA of Tarazona (1985) seems to be a good option for this purpose. We
hope to contribute to the solution of this question in the near future.
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WETTING TRANSITIONS
AND SURFACE CRITICAL PHENOMENA
AT SOLID-FLUID INTERFACES

Synopsis

The van der Waals density functional model of inhomogeneous fluids introduced by
Teletzke et al. (1982b) is applied to construct global phase diagrams that display wetting
transition points, thin to thick thin-film transition points, and accompanying surface critical,
tricritical, and multicritical points of a solid-fluid interface.

The model is based on mean field theory, yields an integral equation for density
distributions, can be solved analytically, and predicts both first- and second-order wetting
transitions depending on location in field variable space. Here we show that the model,
although mathematically simple, predicts thin to thick thin-film transition and surface
critical, tricritical, and multicritical phenomena. The various transition and critical points
are obtained directly by solution of algebraic equations derived from the model.

The global phase diagrams have as coordinates the temperature and chemical potential
and an interaction potential parameter W which is the ratio of characteristic energy of
two-hody solid- fluid interaction to fluid-fluid interaction. Diagrams are constructed for
three values of the three- body interaction potential energy parameter, Wy = 1/3, 1, and 3,
corresponding to the three phase diagrams of Nakanishi and Fisher (1982) who inferred
the diagram structure {rom scaling studies of a magnetic system obeying the Landau-
Ginzburg free energy model. Our resulls agree with their critical exponents A and 4,
for the “ordinary,” “special,” and “extraordinary” multicritical points. However, we find
a quantitative difference between our results and the parameter range over which NK
suggested one of the scaling relations holds.

Introduction

Interest in wetting transitions with associated surface critical phenomena, important in
science and technology, has grown rapidly since the seminal paper of Cahn (1977). Several
reviews of the subject have appeared (see for instance, Binder (1983), Davis et al. (1984),
Diehl (1986), Sullivan and Telo da Gama (1986), and Kung (1989)). Wetting transitions
often occur when a pair of fluids contacting a solid have an ultralow interfacial tension.
As surfactant-enhanced oil recovery often involves oil-rich and water-rich phases exhibiting
ultralow tensoins against a microemulsion phase it is important to understand the general
patterns of wetting transitions. These are investigated herein on the basis of a simple, but
qualitatively general, molecular model.
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In this paper we restrict our attention to three phase systems in which at least two of the
phases have a mutual critical point. The three phases could be solids, liquid (1), and vapor
(V). If at a given temperature and pressure a drop of liquid placed on the solid surface in
the presence of its vapor does not spread indefinitely and the contact angle made by the L-V
interface at the solid surface is not zero then the liquid is said not to wet the solid surface.
As the system temperature, pressure or composition is changed such that £ and V approach
their mutual critical point a condition is reached at which the contact angle goes to zero
and, if enough of the liquid phase is available, a macroscopic layer of the liquid completely
wets the solid surface. This transition between nonwetting and wetting by the liquid phase
is called the wetting transition (Heady and Cahn, 1972; Cahn, 1977).

Theory predicts that the wetting transition can be either first-order (Cahn, 1977; Ebner
and Saam, 1977) or second-order (Sullivan, 1979). Extensive research that used mean field
theories of inhomogeneous fluids had shown that for the solid-fluid interface where the system
temperature and pressure are above the fluid’s triple point the order of the wetting transition
depends on at least the following factors: (1) the asymptotic behavior of the interaction
potentials which has been assumed to be either an exponential (Sullivan, 1979) or power-law
decay (Ebner and Saam,1977); (2) ratio of characteristic energy of solid-fluid interaction to
that of fluid-fluid interaction for both exponential potentials (Sullivan, 1979) and power-law
potentials (Ebner, 1980; Teletzke et al., 1982a); (3) the ratio of the characteristic length
of solid-fluid interaction to that of fluid-fluid interaction for both exponential potentials
(Hauge and Schick, 1983; Tarazona and Evans, 1983) and power-law potentials (Teletzke
et al, 1982a); and (4) Higher-order effects that involve three- body solid-fluid interactions
of exponential potentials (Teletzke et al, 1982b) and retarded interactions of power-law
potentials (Dietrich and Schick, 1985, 1986; see also Kroll and Meister, 1985). These
works indicate that in systems with exponential potentials both first-order and second-
order wetting transitions can occur depending on the last three factors indicated above.
However, in systems with power-law potentials first-order wetting transition should be far
more common than second-order wetting transitions (de Gennes, 1983; 1985; Privman, 1984).
~ Investigations into the effects of fluctuation indicate that second-order wetting transition
cannot occur for systems with power-law potentials (Nightingale et al., 1983, 1984).

The existence of first-order wetting transition has been inferred from experiments
(Schmidt and Moldover, 1983; Pohl and Goldberg, 1982: Moldover and Cahn, 1980). If
the wetting transition is first-order, then a surface phase transition can also occur in two
phase systems. For a solid-fluid interface, with the fluid in the vapor single phase region
of the temperature-density phase diagram, Cahn (1977) showed that above the wetting
transition temperature there exists a temperature-density path along which two different
liquid-like thin films coexist. The surface phase transition occurring when this path is
crossed is known as the thin to thick thin-film transition or prewetting transition (Cahn,
1977; Teletzke et al, 1982a). With increasing temperature the thin-film coexistence curve
on the bulk temperature- density phase diagram eventually terminates at a critical point
called the surface critical point. At the present time experimental evidence for the existence
of such a thin-film transition remains inconclusive (Schmidt and Moldover, 1986).
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Surface multicritical points, which occur only for special values of the interaction
potential energy and range, were first explored in another system that was modeled by
equations similar in form to the gradient theory approximation (see e.g. Davis and Scriven,
1982) of density functional theory: namely, the ferromagnetic free surface (Mills, 1971;
Kaganov and Omel’yanchuk, 1971; Binder and Hohenberg, 1972 and 1974; Kumar, 1974;
Lubensky and Rubin, 1975; see also review of Binder, 1983). The connection between
surface phase transitions at ferromagnetic free surfaces and wetting transitions at solid-fluid
interfaces was discussed by Nakanishi and Fisher (1982).

The order of the wetting transition, the thin to thick thin-film transition, and the surface
multicritical points can be conveniently displayed together in global phase diagrams whose
coordinate axes are field variables which include thermodynamic variables and parameters
of the interaction potentials, Such a global phase diagram was first introduced by Pandit
et al. (1982) who studied a lattice-gas model of solid-fluid interface with nearest-neighbor
interactions. Their work showed that the point where the wetting transition turns from
first-order to second-order is similar to a bulk fluid tricritical point. Nakanishi and Fisher
(1982) used gradient theory with effectively exponential interaction potentials and extended
the range of parameter space and were able to infer the structure of two more global phase
diagrams, The global phase diagrams of Nakanishi and Fisher occupy an important place in
the theory of wetting transitions, These diagrams have been further discussed in three recent
review articles (Binder, 1983; Diehl, 1986; Sullivan and Telo da Giama, 1986). TFurthermore,
work has been done to obtain global phase diagrams in other systems as well: binary -
fluid-fluid interfaces (Costas et al., 1983); systems with more than two stable bulk phases
(Lipowsky, 1983); and systems with long-range forces (Ebner and Saam, 1987a,b). However
the solid-fluid interface with exponential interaction potentials remains the simplest and
one of the more basic systems for studies of wetting transition; it is therefore worthwhile
to obtain the diagrams of this system by direct computation. The diagrams of Nakanishi
and Fisher were based on gradient theory with a polynomial free energy. It appears from
their paper that Nakanishi and Fisher deduced the global phase diagrams without actually
computing transition and critical points.

Recently a version of mean field integral theory has received attention in the literature
because it has all of the attractive features of gradient theory yet it is not derived from
a gradient approximation so that it gives rise to correlation functions that are more
realistic than those of gradient theory (Bellare, 1988). In particular with the proper
choice of exponential interaction potentials this integral theory is exactly solvable for a
wide variety of systems such as: solid-fluid interface (Sullivan,1979,1981), fluid between two
solid walls (Evans et al.,1986), binary fluid interface (Sullivan, 1982), and solid-binary fluid
interface (Telo da Gama and Evans, 1983). However this model predicts only second-order
wetting transition at solid-fluid interfaces; Teletzke et al.(1982b) generalized the interaction
potentials introduced by Sullivan(1979) so that the new model is still solvable exactly but
predicts both second-order and first-order wetting transitions depending on location in field
variable space.
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of solutions to the density functional equations is exploited to see better the physical origins
of the patterns of wetting and surface-state transitions. The graphical construction is
presented in Section B2 and the equations that govern first-order wetting transition, thin-
film transition, surface critical point are outlined in Sections B3 and B4. Results are given

iti Section C where predicted global phase diagrams are compared to those of Nakanishi and
Fisher (1982).

The Mean Field Model With Exponential Potentials

In a closed, isothermal, x-component system, equilibrium states correspond to absolute
minima in the grand potential Q = F' — 3°; i N;. Here F' is the Helmholtz free energy, u;
the ith component chemical potential which is constant throughout the system, N is the
total number of ith component particles, and the summation includes all components. For a
solid- fluid system where the solid interacts with the fluid only through long-range van der
Waals forces the grand potential can be written as

Q= —pV 474, (1)

in which p is the bulk pressure, V the volume, v the solid-fluid tension, and A the surface
area.,

The van der Waals model of the grand potential of inhomogeneous fluid is a functional of
the number density profiles ni(r), and is a function of the temperature T' and of the chemical
potentials y;

Q((n},7,) = [ &/ (n(r))
+ 1/22Z//dard3r'l/.'j(r,r’)n;(r)‘nj(r')
+2 /d"r[Uf(r) — pilni(r) (2)

Here, fn(n(r)) is the free energy of a homogeneous fluid with density distributions n =
{n1,..,nz} whose molecules only interact via hard-core potential. V;;(r,r') is the long-
ranged part of the interaction energy between a molecule of species ¢ at r and a molecule
of species j at r'. Ui(r) is the interaction energy between the solid and a fluid molecule
of species 1. p; is the chemical potential of species ¢. The summations range over the
components 1,2,..., x in the fluid,

The condition of thermodynamic equilibrium is that the functional derivative of  with
respect to each component density is zero:

6Q/éni(r) = 6F/bni(r) —pi=0, 1=1,...,x; (3a)
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where the symbol “§/6n(r)" denotes functional differentiation with respect to the density
ni. For systems with a planar solid-fluid interface the above equations are equivalent to

§Q/6ni(r) = Aby/éni(r) =0, 1=1,...,x, (3b)

where v is the excess free energy of the solid-fluid interface. The higher-order functional
derivatives of 0 determine thermodynamic stability. The equations at (3a) are the usual
starting point for theoretical investigation of inhomogeneous fluid wherein one first solves
for the density profiles and afterwards substitutes the density profiles into the appropriate
formula to get the surface tension. In this paper we find that in studying wetting transition
and critical phenomena the equivalent equations at (3b) have a very simple interpretation
in the mean field model with exponential potentials of Sullivin (1979, 1981) and Teletzke
et al. (1982b). In what follows we consider only planar inte:faces, and so densities depend
only on the distance  from the solid surface.

1. Chemical Potential Equations And Surface Tension Ezpression

With the exponential interaction model introduced by Teletzke et al. (1982b), Equation
(3a) becomes

uh(n(e)) = pg = (1 + Wa)Wak exp—z/si]

$1/25 axi/ri; [{expl-lo - o'|/ri;]
J 0

+ Wy exp[—(z + a')/ri;]}nj(a")da’s k=1,...,x, (4)
where '
n = (n1,...,ny) = set of component densities,
ph(n(z)) = chemical potential of component k in a hard sphere fluid at local
composition n(z),
m = chemical potential of component k,
Sk = characteristic range of solid-fluid two-body potential for component k,
Tkj = characteristic range of fluid-fluid potential between components k and j,
Uj = characteristic energy of interaction between components k and j relative
to that of the first component,
Wo k = ratio of solid-fluid interaction strength of kth component to fluid-fluid
interaction strength of first component,
Ws = solid-fluid three-body interaction strength.
In the computational results presented below the following units are used: [ag;] = a1,

(k] = aurrDd, () = 773, [Was] = anri. Teletzke et al. generalized Sullivan’s model by
introduction of exponential terms with the dimensionless coefficient W3 in both the solid-fluid
and fluid-fluid interaction potentials. These interactions can be interpreted as a measure
of three-body interaction strength among the solid and two fluid molecules (Davis et al.,
1984). Sullivan applied his model, for which W3 = 0, to solid-fluid interfaces but found only
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second-order wetting transition. Teletzke et al. studied the range 0 < W3 < 1 and found
first-order wetting transitions when the absolute value of the pair-interaction parameter |Ws|
is sufficiently large. In this paper we extend the range of W3 to Wy > 1; in addition we
perfortn computations to construct global phase diagrams that allow us to make comparison
with the scaling results of Nakanishi and Fisher (1982).

The system of x chemical potential integral equations Eqs.(4) reduces to one differential
equation if the characteristic ranges of solid-fluid and fluid-fuid interactions are equal, i.e.,
rgg=spg=sfork=1,...,xand j =1,...,x, and if Wy} satisfy the following equations

W'g’k = \/azw/g'h for k = 2,...,}(. (5)
Then the chemical potentials satisfy
pE = e = Vag(ef - m);  fork=2,...,x.

and the new differential equation is

dut — _ ov
where
\D(p{‘; Tyw)= (#?)2 - 2#1#’1‘ - 2ph + constant, (1)

and p" is the pressure of a homogeneous fluid of hard spheres at the given local uf. The
first boundary condition is

dul/dz = 0 for z — oo, (8)
since the fluid becomes honogeneous far from the wall. The second boundary condition is
dutfdzlzmo = B(11(0) = 1) — 2Way = Z(4}(0)), (9)
where
B=(1-W;)/(1+ Ws). (10)

The surface tension is given by (Sullivan, 1981; Teletzke et al., 1982b)
¥ = B(uH(0) = m)?/2 = 2Wan (u}(0) — 1) + 2[Wan]*/(1 + B)

Ut (o)
[ TR ) . (11)
ut(0)

In what follows we restrict ourselves to single component fluids. The simpler notation W
will be used in place of W5 in equations to follow. We use the lattice-gas model (Lee and
Yang, 1952) for which the hard-sphere contribution to the equations of state are given by

uh(n) = kpT tn[n/(1 — nb),
ph(n) = —=(kgT/b) tn(1 — nb),
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to

where kg is Boltzman’s constant and T is the absolute temperature. The critical temperature
of the bulk fluid is T, = 0.25a/bkp. In what follows the units of temperature and pressure
are [T] = T, and [p] = a11/r$,. Also, r1; is chosen such that b = r}, and so b = 1 in the
units [r3,].

2. The Method of Graphical Construction

~ For the purpose of computing wetting and thin-film transition points it is not necessary
to know the entire profile u?(z). A method of graphical construction due to Cahn (1977)
can be applied to Eqgs.(6-10) (Sullivan (1981) and Teletzke et al. (1982b)) to demonstrate
the existence of first or second-order wetting transition, thin to thick thin-film iransition,
and surface critical point without actually solving for density profiles. Here we will illustrate
the method only for first-order wetting transition.

The second-order differential equation Eq.(6) is first integrated to give

dpt jdz = £\/T(uh; T, p), (12)

In the above equation the boundary condition for £ — co, Equation (8), has been applied
so that

U= (4 - p)? - 2(p" - p), (13)
where p is the fluid pressure far from the interface. Thus the profile u*(z) can be obtained

by simple quadrature:
uh(z) dy

Wb (zo) /U (y) |

The sign convention in the above equations is as follows: If the surface and bulk densities
are such that p?(0) < pf then u*(z) increases monotonically with z and the positive sign of
+1/¥(y)of £v/¥ must be taken. If u?(0) > uh then uh(z) decreases monotonically with z

and the negative sign must be taken. u is the hard-sphere chemical potential of the stable
bulk phase.

;‘E-—(Eo=

(14)

Since the profile can be obtained by quadrature, it remains to determine #*(0), the hard-
sphere chemical potential at z = 0. Elimination of du*(0)/dz between Eq.(12) evaluated at
z = 0 and the boundary condition (9) gives the following algebraic equation for u*(0):

Z(uh(0)) = £/ ¥(uh(0)). (15)

It turns out that the solution space of Eq.(15) holds all the information needed to locate
wetting transitions and critical points.

Figure 1a shows a typical plot of the functions Z(u"(0)), +/¥(1"(0)), and —+/¥(uh(0));
the fluid, indicated in the figure by “V”, is in the vapor single phase region very close to L—V
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~ coexistence region. For the lattice-gas model the vapor phase has a hard sphere chemical
potential 4% and the liquid phase, with which this vapor phase is nearly in coexistence, has
hard sphere chemical potential ~ —puf%. To satisfy the sign convention, segments are taken

from the curves +/¥{uh(0)) and —/¥(ut(0)) to form the aggregate curve or function
4+1/W(uh(0)) in the algebraic equation (Eq.15); Fig.1(b) displays this aggregate function.
Also shown in this Figure are the linear function Z(x"(0)) and the areas Al and A2 bounded
by the curves 41U and Z; these are discussed later.

From the algebraic equation (15) it is clear that any intersection between the two
functions Z and +vW locates a value of u#(0) that satisfies the boundary condition; the
solution p*(z) with this boundary value can then be constructed by quadrature from Eq.(14).
Figure 1b depicts a situation where there are three possible solutions to the algebraic
equation (Eq.15). Of the three solutions the ones that satisfy ul < wph(0) < —puh give
composition profiles that describe nonwetting situations; the ones that satisfy u*(0) > —uh
give composition profiles that describes a wetting situation. The physical solution is that
which has the smallest value of surface tension. Consider a temperature T sufficiently low
such that T < Ty, where T, is the wetting transition temperature. Then as the temperature
is increased with the system kept infinitesimally outside the L—V coexistence region, there
comes a point where not just one but two of the solutions to the algebraic equation possess
the same minimum value of tension. This is the point of wetting transition. Due to the
equality of surface tension, at such a point the two areas designated Al and A2 in Figure
1b beccme identical. This is reminiscent of Maxwell’s equal area construction for liquid-
vapor bulk transitions. This method of graphical construction applies in similar manner to
thin-film transition and surface critical point.

3. An Alternate Method for Locating the First-Order Wetting Transition, the Thin to Thick
Thin-Film Transition, and the Critical Points

In this section we present a new method for locating a first-order wetting transition,
a thin to thick thin-film transition, and surface critical point; the method uses graphical
analysis. In what follows its motivation is explained, it is compared with the methods of
Teletzke et al. (1982a) and Tarazona and Evans (1983), and the equations used to locate
the various transition and critical points are discussed.

A primary goal in this work is to obtain the global phase diagrams of the exponential
model of Teletzke et al. (1982a). A natural way is to apply iteratively the graphical
method discussed in Section 2. For instance, to determine for given (W3, W) the wetting
transition temperature T, of first-order wetting: (i) start with a sufficiently low temperature
T < Ty and decide on a step size AT for incrementally increasing temperature, (ii) solve
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Eq.(15) for the three candidate solutions, (iii) compute the surface tension for each using
Eq.(11), (iv) test whether the wetting transition temperature has been reached or exceeded;
if the candidate with the lowest surface tension has the smallest value of x?(0) so that the
adsorption at the interface is finite then increment the temperature and repeat steps (ii)
through (iv); otherwise the wetting transition has been passed and the wetting transition
temperature is bounded by the temperatures of the preceding and current iterations. Clearly
this method can only give T\, t AT where AT is the temperature step size. Construction
of the global phase diagram that corresponds to a given value of W3 requires the wetting
transition temperature for a set of W values. To distinguish between or resolve the wetting
transition temperature of two adjacent values of W- requires AT to be sufficiently small.
Thus AT is a function of the set {W} and also of Wj. Similarly for surface critical points
(Tes, ftes) the method only gives Ty £ AT and pes = Ap and both AT and Ap are functions of
{W1} and W3. Improper choice of AT and Ap cause jagged edges to appear in the resulting
global phase diagrams. To circumvent this difficulty we expressed the graphical construction
in algebraic form and used Newton iteration to solve these sets of equations directly for the
different transition and critical points. The errors ATy, ATy, and Apcs are then controlled
by the size of the tolerance in the convergence criterion of the Newton iteration.

For arbitrary mean field models there are at least two ways to locate the first-order
wetting transition, thin to thick thin-film transition, and surface critical points. The first
method, due to Teletzke et al. (1982a), uses the adsorption isotherm while the second
method, due to Tarazona and Evans (1983), uses the dependence of nonequilibrium surface
tension on the Gibbs adsorption. It is useful to describe these two methods in further detail.
Table 1 is an outline of the method used by Teletzke et al., Tarazona and Evans, and this
work. The most important difference among the three is shown in the last three rows of
Table 1; whereas the methods of Teletzke et al. and Tarazona and Evans require for instance
an entire series of density profile solutions to locate a thin to thick thin-film transition point
the method used in this work obtains the desired transition point directly; the price we pay
being a larger equation set.

I the first method Teletzke et al. solved the chemical potential equation (Eq.3a):
0/ én(z) = 6F/én(x) — u = 0. (16)

using the Galerkin finite element method and Newton iteration to get the density profile
n(x) and the Gibbs adsorption I' at the disjoining potential:

Ap = p(h;T) = p(h =00, T) = p — p(sat) (17)

where u(h;T') = pis the chemical potential of the system at the temperature 7', film thickness
h =T /nt with nl the density of saturated bulk liquid at 7', and plh = o00;T) = u(sat) is the
chemical potential of the vapor at the temperature T when it is in coexistence with the liquid
phase at which point the film thickness & becomes infinite. They then used continuation
techniques to trace out the adsorption isotherm. The existence of multiple solutions at a given
value of disjoining potential indicates a first-order wetting transition in which the solution
having the smallest value of surface tension is the physical solution. The set of equations
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TABLE 1

Comparison of methods for locating first-order wetting transition, thin to thick thin-film
transition, and surface critical point of a solid-pure fluid interface. m Three methods are
given for comparison, that used by Teletzke et al. (1982a); that used by Tarazona and Evans
(1983); and that used in this work for the exponential model of Teletzke et al. (1982b).

Teletzke et al.

Tarazona and Evans

This work

Equations solved

Chemical potential
equation

Chemical potential
surface tension

Equation for
and its derivatives

Equation type

Ord. differential eqn.

Integral equation

Algebraic equation

Numerical method

Galerkin finite
element method and
Newton iteration

Picard iteration

Newton iteration

Immediate result

Density profile n(z)

Density profile n(z)

Wetting transition or
critical points.

Construct used to
locate transition
critical points

Adsorption isotherm

Nonequilibrium
surface tension

as function of film
thickness yne (hne; T')

Not needed

Criterion for
first-order wetting
transition and thin-
film transition

Multiplicity
adsorption isotherm

Multiple minima in
7ne(hne ) T)

Not needed

Criterion for
surface critical point

Continue increment-
ing T until multiple
solutions merge

Continue increment
ing T until multiple
minima merge

Not needed
for model of
Teletzke

et al. (1982h)

that they solved to get first-order wetting transition, thin to thick thin-film transition, and
surface critical point are shown in Table 2. Here the letters a and b designate the coexisting
thin-film states; the letters « and /3 designate the coexisting bulk phases, which in this case
are liquid and vapor. For the first-order wetting transition, the first two equations represent
the fact that the two film states nq(2) and ng(z) that coexist at the wetting transition
are extremals of the grand potential; the third equation expresses the equality of surface
tension between the coexisting o and /4 film states; and the last two equations express the
thermodynamic coexistence between the bulk vapor and liquid phases. For the thin to thick
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TABLE 2

Comparison of equaiions for locating first-order wetting transition, thin to thick thin-film
transition, and surface critical point of a solid-pure fluid interface. Here F' is Helmholtz free
energy of inhomogeneous fluids, g is the chemical potential, p is the fluid pressure, n(x)
is the density profile, v is the equilibrium surface tension, o and [ are the coexisting film
states, a and b are the coexisting liquid and vapor states.

Transition or Teletzke et al. Tarazona and Evans | This work
critical point

First-order wetting | §F/én(2)]a — =0, | 6F/é6n(z)]a —pu =0, | dv/0u"0
transition 6F[én(z)lg~p =0, | 6F/én(z)lg—pn=0, 37/3/1" ]

a=f, Yo =7 Yo =78
b = Pz h be = b

II

Thin to thick F/én(z))e ~p =0, | 6F/én(z)]le —p =0, 87/0u (0)]a =0

thin-film transition | 6F/én(z)lg—pu =0, | 6F/én(z)lg—n=0, | 0v/0uh(0)]g =0
Yo =73 Yo ='Yﬁ- Yo =75

Surface critical Obtained by conti- Obtained by conti- Oy/duh(0) =0

point nuation along thin- nuation along thin- 9?*y/0ur(0)2 =0
film transition line film transition line 33y /0ut(0)® =0

thin-film transition the equations are similar to those for first-order wetting transition except
that since the transition occurs in the single-phase region the liquid-vapor bulk equilibrium
equations are no longer needed. For the surface critical point Teletzke et al. located this
by continuation to the end point of the thin-film transitions where the two coexisting film
states become identical in structure.

In the second method, also outlined in Table 1, Tarazona and Evans (1983) employed
a feature of Picard iteration, when applied to the chemical potential equation to obtain
the nonequilibrium surface tension as a function of film thickness ype(hne; 1) wWhere vu,
is a nonequilibrium surface tension, hn, is the film thickness proportional to the Gibbs
adsorption, and T is the temperature. The desired equilibriumn film state corresponds to the
absolute minimum in vpe(hne; T). The equations that they solve are shown in Table 2. At
a first-order wetting transition the curve vpe(hne; T') as a function of hne has two identical
absolute minima: one minimum occurs at h; < co and the other minimum occurs at hy = oo
with a local maximum in between the two. At the thin to thick thin-flm transition the curve
is similar to that for first-order wetting transition except that both of the absolute minima
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have finite h values. At the surface critical point the two minima and the maximum merge
together resulting in a curve that is everywhere concave upwards.

In the fourth column of Table 1 we present our method. Here the equations for locating
first-order wetting transition, thin-film transition, and surface critical points are used from
the beginning. The advantage is the elimination of an intermediate construction such as the
adsorption isotherm or the nonequilibrium surface tension as a function of film thickness,
both of which demand the computation of at least several density profiles for sufficient
accuracy in locating transition and critical points, For more complicated mean field models
the equation set listed under column one of Table 2 can be used. Either the method of
Teletzke et al. or Tarazona and Evans (1983) can be used to provide a suitable initial
estimate but intermediate constructions are not necessary for the rest of the computations.

In the fourth column of Table 2 are the equations that we solve for locating first-order
wetting transition, thin-film transition, and surface critical points. These equations are
discussed in more detail in the next section.

4. Fquations Governing Wetting Transitions And Critical Phenomena

The discussion of the method of graphical construction shows that any profile u*(z)
that satisfies the chemical potential equation (Eqgs. 6 and 7) must satisfy Eq.(15), i.e., where
1" (0) is the value of u*(x) at the interface. This equation can be directly derived from the

surface tension expression Z(u"(0)) = +,/¥(uh(0)), Eq. 13, by differentiating the surface
tension with respect to u(0):

8v/0u™(0) = Z(k"(0)) — [/ ¥(uh(0)) ] = 0. (18)

In subsequent sections this equation enables us to express the graphical solution of the
first-order wetting transition, the thin to thick thin-film transition, and the surface critical
point in terms of the surface tension and its derivatives. The concept of surface tension
derivative in the context of wetting transitions is not new; Nakanishi and Pincus (1983)
used the vanishing of the second derivative of surface tension to define their surface spinodal
points. Here we show that defining equations can also be written for the first-order wetting
transition, the thin to thick thin-film transition, and the surface critical point. In addition
equations that do not utilize the derivatives of surface tension also exists for second-order
wetting transition, surface tricritical point, and multicritical point.

First — order wetting transition. The graphical method implies that at the first-order
wetting transition the two coexisting film states should satisfy three conditions: (1) tension is
a minimum, (2) equality of surface tension, and (3) the thermodynamic coexistence between
the bulk fluid phases. These conditions translate into the following equations which are also
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listed in Table 2:

0v/0u* (0)|a =0 (19a)
Bv/au"(0)]p = 0, (19b)
Yo = VB (19¢)
fa = [, (19d)
Pa = Py (19¢)

where the letters o and § designate the coexisting film states; the letters a and b designate
the coexisting bulk phases (liquid and vapor in this case). Substitution of Eq. 11 into Eqs.
19a-19e yields

Bya — 1) = 2W — [£/U(ya) ] =0 (20)
Blyg — ) — 2W — [£/¥(yp) | = 0 (200)
yp ‘
Bly% — v)2 = (B +2W)(ya — vg) + [[£y/¥() Jay' =0, (20¢)
Yo
fa — pp = 0, (20d)
Pa — pp = 0. ‘ (20e)

Here yo and yp = 1 (0) for surface phases o« and . Solution of Eqgs.(20) for different values
of W and W3 enables construction of the first-order wetting transition curves in the global
phase diagrams. These will be discussed in Section C.

Thin to thick thin — film transition. The equations are similar to those of first-order wetting
transition except that since it occurs when the fluid is in either the liquid or the vapor single-
phase region the equations for bulk phase coexistence should be removed. Therefore

Ya = 78, (21a)
[07/84"(0)]a =0, | (21b)
[07/0u"(0)] = 0. - (21c)
With substitution of the equation for v the above equations become

v :

B2 = vB)/2 = (B + 2W)(va — vg) + [[£1/¥(0") Jdy' =0, (224)
Yo

Blya — 1) = 2W = [+/¥(ya) | = 0, (226)
Blyp — p) = 2W — [£/¥(yg) | = 0. (22¢)

Solution of Eqs.(22) for different values of W and W3 yields the sets of thin-film transition
curves in the global phase diagrams. These are discussed in Section C.
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Surface critical point. At the surface critical point the two coexisting film states not only
share the same value of surface tension but also become completely identical in structure,
Hence there is no need to state the equality of surface tension. However the film state should
still satisfy Eq.(18) so that the first derivative of the surface tension with respect to uh(0)
must still vanish. In addition highct- order derivatives must also vanish since in analogy
to bulk criticality the critical point is not only the confluence point of binodal curves but
also, as previously noted by Nakanishi and Pincus (1983), of the spinodal curves. Thus the
equations for surface critical point are

dv/8p™(0) =0, (23a)
9*y/0uh(0)* = 0, (230)
O%y/0ut(0)® = 0, | (23c)

Upon substitution of the equation for g the above equations become
By —p) —2W — [£/¥(y) | = 0, (24a)

B—[£y¥(y)]=0, | (24b)
3£/ ¥(y) 1/8y = o. (24c)

where y denotes the value of u"(0) at the surface critical point. Solution of Eqs.(24) for
different values of W and Wj yields the curves of surface critical point in the global phase
diagrams. T'hese are discussed in section C.

Surface tricritical point and second — order wetting transition As pointed out by Pandit
et al.  (1982), in appropriate regions of parameter space a surface tricritical point
(Wis, Tis, Apgs = 0) can be defined such that for Ay = 0 and |W| > Wy, the wetting
transition is first-order, while for |W| < Wy,, the transition is second-order. This is in direct
analogy to the bulk case where the bulk tricritical point is the termination of a line of critical
points and beyond this point the transition becomes first-order (Griffiths, 1970). For our
mean field integral theory such surface tricritical points occur for 0 < Wy < lor 1 > 3> 0.

The equations for the surface tricritical point cannot be obtained by analogy to bulk
tricriticality because of the singularity at the wetting transition so that all derivatives of ~
with respect to ji#(0) of order higher than or equal to two diverge at Ap = 0. The same
situation holds for wetting transitions. Nevertheless equations for the surface tricritical point
and second- order wetting transitions can still be defined in another way that is valid only
for the mean field model of Teletzke et al. (1982b). The transition equation is (Sullivan,
1979):

Z(kh(0)) = B(u(0) ~ p) —2W = 0 (25)

where p"(0) = u# and there is L—V coexistence.
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Multicritical points. The density functional model of Teletzke et al.  (1982b) is
mathematically equivalent to gradient theory used by Cahn (1977) in that the second-
order differential equation Eq.(6) is of the same form as the chemical potential equation of
gradient theory. It turns out that gradient theory with parameters equivalent to W = —fgu/2
has already been studied extensively by workers interested in surface phase transitions at
ferromagnetic free surfaces which occur at the bulk critical temperature Ty (Mills, [971;
Kaganov and Omel'vanchuk, 1971; Binder and Holenberg, 1972 and 1974; Kumar, 1974;
Lubensky and Rubin, 1975; see also reviews of Binder, 1983 and Kung, 1989). They found
that at conditions that correspond to L—V coexistence the surface phase transitions are
multicritical points. FFour types were identified depending on the value of fithree of these,
the so-called “ordinary,” “special,” and “extraordinary” multicritical points turn out to
correspond to wetting transitions at different values of g ; while the fourth one, the “surface”
multicritical point, corresponds to a surface critical point (Nakanishi and Fisher, 1982). The
appropriate fF-values at which the first three multicritical points occur are listed in Table 3
along with other information.

C. Results of Computations

This section presents solutions of the equations, discussed in Section B3, that govern
first-order wetting transition, thin to thick thin-film transition, surface critical point, second-
order wetting transition, and surface tricritical point in the mean field model with exponential
potentials. These equations are nonlinear algebraic equations and were solved by Newton
iteration. The initial estimate to the solution was obtained by either searching in the
appropriate parameter space, as for instance searching in temperature to locate wetting
transition, searching in chemical potential at given temperatures to locate thin to thick thin-
film transition; or by zeroth- order continuation from another solution with a similar set of
parameter values if such a solution was available. The convergence criteria were

IIF®))] < 1075 and [|ly®) — y* =D < 1078 (26)

where ||[F(®)|| is the Euclidean norm of the vector equation set at the k' iterate and
lly®) — y*=D[] is the Euclidean norm of the difference between the estimate to the solution
at the k" and (k — 1)** iterate. In general the average number of Newton iterations neceded
is much less than 10 even when near a surface critical point. The only exceptions are the
calculations for 7 = 1/2 of the surface critical points in the vicinity of the surface tricritical
point at Wi, = 0.2028, Ty, = 0.8538, Apues = 0 for which it took much more than 10
iterations to converge. Due to this difficulty the surface critical point temperatures Tes
reported in Table 4 for 3 = 1/2 for W = 0.23, 0.22, 0.21 were not obtained [rom solving
the set of nonlinear equations (Eq. 24) but rather from a search in the (7', Ap) parameter
space in the same manner as described above for the initial estimates. We turn now to the
results.
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1. First-Order Wetting Transition, Thin To Thick Thin-Film Transition, And Surface
Chritical Point

We solved for the wetting transition, thin-fillm transition, and surface critical point for
about 20 W-values in the vicinity of W = —t/2 for each of the cases 4 = 1/2,0,~1/2 or
equivalently Wy = 1/3,1,3 (see Tables 4, 5, and 6), Of the 60 or so W-values reported here,
about 50 correspond to first-order wetting transition and therclore have thin-film transitions
and surface critical points,

TABLE 3

Summary of results on the order of the wetting transition at solid-fluid interfaces for the
mean field integral theory with exponential potentials, Here Wy is the three-body interaction
strength relative to the two-body interactions; g = (1 — Wy)/(1 4+ Wa3); W is the ratio of
solid-fluid to fluid-fluid interaction energies; W* is a positive constant that depends on Wi;
f is the constant chemical potential of the system; and the last column lists where possible
equivalent surface-phase transitions are predicted to exist for the ferromagnetic free surface

Wi 3 w Order Ferromagnetic
free surface
0 1 All Second
0<Wy<l 1>p8>0 ~Bul2 Second “Ordinatry transition”
< W+ Second
wH Tricritical
> W+ First
1 0 0 Multicritical ~ “Special transition”
>0 First
> 1 <0 ~Buf2 Multicritical ~ “Extraordinary transition”

> —fuf2  First

Figures 2(a-c) are plots of 9v/0u"(0) as a function of p*(0) near a first-order wetting
transition, a thin to thick thin-film transition, and a surface critical point respectively
wherein the interaction potentials have parameters 4 = 0 and W = 0.004. The horizontal
line is 8v/0uh(0) = 0; intersections between the curve and the horizontal line are values of
1" (0) that extremizes the surface tension and satisfies Eq.(18) or equivalently Eq.(17). The
first two plots show van der Waals-like loops that connect coexisting film states; the third
plot show critical isotherm-like curve near the surface critical point. However, the analogy to
bulk transitions and critical phenomena is incomplete due to the singularity at the wetting
transition point.
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TABLE 4

Properties of the thin to thick thin-film transition line from the mean field integral theory
with exponential interaction potentials and 4 = 0.5. The third column gives the length of
the thin-film transition line; the {ourth colutuin gives the distance frora bulk coexistence,

W f A’w/Tc (Tﬂcs - Tw)/Tc (ﬂca - /t)/kB T,
0.3000 0.2802 0.2488 0.0870
0.2900 0.3764 0.1821 0.0680
0.2800 0.4532 0.1367 0.0509
0.2700 0.5198 0.1020 0.0366
0.2600 0.5799 0.0744 0.0250
0.2500 0.6352 0.0520 0.0159
0.2400 0.6869 0.0340 0.0091
0.2300 0.7354 0.0156 0.0031
0.2200 0.7813 0.0087 0.0014
0.2100 0.8247 0.0013 0.0001
0.2028 0.8538
0.1900 0.9022
0.1800 0.9317
0.1700 0.9552 —

0.1600 0.9733
0.1500 0.9865
0.1400 0.9952
0.1300 0.9994
0.1250 1.0000

[igure 2(a) shows 9v/u"(0) as a function of 4" (0) near the first-order wetting transmon
I'rom the figure there are three va,lues of 1(0) that satisfy &y/0uh(0) = 0, the profiles u*(z)
that correspond to these values of "(0) are therefore candidate ﬁlm states. The two outer
points are relevant while the middle one has a higher tension value than the other two. At

the wetting transition the 5h where there is a sharp change in slope becomes singular. Apart,
from the existence of a near singular point the curve exhibits all the familiar characteristics
of a van der Waals loop in bulk liquid-vapor systems, The singular point marks the nearby
()\Ist( nce of a second stable bulk ])lmsv and implies that the film state with the largest value
of 1h(0) hiave infinite or macroscopic thickness at Ay = 0. From Eq (18

v

O/ 0um(0) = Z(u"(0)) = [£/W(ph(0 ))]=0.
lence just as in the method of graphical construction discussed in Section B2 the equality of
surface tension between the two outermost filin states results in an equal-areas construction

for the van der Waals-type loop.

144



TABLE 5

Properties of the thin to thick thin-film transition line from the mean field integral theory
with exponential interaction potentials and # = 0. The third column gives the length of the
thin-film transition line; the fourth column gives the distance from bulk coexistence.

W Tw/Tc (Tcs - Tw)/?b [(Mca - ,U»)/kBTc]
0.0040 0.9808 0.0117 0.0018
0.0038 - 0.9817 ‘ 0.0111 0.0016
0.0036 0.9827 0.0105 0.0015
0.0034 0.9836 0.0099 : 0.0014
0.0032 0.9846 0.0094 0.0012
0.0030 0.9856 0.0087 0.0011
0.0028 0.9865 0.0082 0.0010
0.0026 0.9875 0.0076 0.0009
0.0024 0.9885 0.0070 0.0008
0.0022 0.9894 0.0064 0.0007
0.0020 0.9904 ‘ 0.0058 0.0006
0.0018 0.9914 0.0052 0.0005
0.0016 0.9923 0.0046 0.0004
0.0014 0.9933 0.0041 0.0004
0.0012 0.9942 0.0035 0.0003
.0.0010 0.9952 0.0029 0.0002
0.0008 0.9962 0.0023 0.0002
0.0006 0.9971. 0.0017 0.0001
0.0004 0.9981 0.0012 0.0001

As the temperature increases above the wetting temperature, the surface-phase transition
moves into the vapor single-phase region and at the appropriate value of the bulk chemical
potential there is a thin to thick thin-film transition. Figure 2(b) shows 8v/0u"(0) as
a function of x*(0) near the thin-film transition at 7' = 0.985. Here the singular point of
Figure 2(a) has disappeared aud this figure now has all the familiar properties of bulk liquid-
vapor phase transition. Again the coexisting film-states are those that satisfy the equation
O~v/0u"(0) = 0 and the equality of tension is equivalent to an equal-areas construction for
the van der Waals-type loop.

As the temperature is increased further the thin-film transition moves further and further
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TABLE 6

Properties of the thin to thick thin-film transition line from the mean field integral theory
with exponential interaction potentials and g = 0.5. The third column gives the length of
the thin-film transition line; the fourth column gives the distance from bulk coexistence.

4 Tw/T. (Tes — Tw)/Te [(tes = 1)/ kBT
~0.0650 0.3270 0.9800 0.6528
~-0.0700 0.4096 0.9017 0.5408
~0.0800 0.4776 0.8377 0.4856
—0.0850 0.5381 0.7808 0.4308
—0.0900 0.5942 0.7279 0.3768
~0.0950 0.6477 0.6774 0.3218
—0.1000 0.6996 0.6280 0.2677
—0.1050 0.7508 0.5788 0.2139
~0.1100 0.8024 0.5288 0.1602
—-0.1150 0.8558 0.4766 0.1067
~0.1200 0.9139 0.4192 0.0534
—0.1210 0.9267 0.4065 0.0427
-0.1220 0.9403 0.3929 0.0320
~0.1230 0.9552 0.3781 0.0213
~0.1240 0.9723 0.3610 0.0107
~0.1242 0.9762 0.3571 0.0085
—0.1246 0.9852 0.3481 0.0043
~0.1248 0.9907 0.3426 0.0021

away from the hulk L—V binodal and the two coexisting film states become more and more
similar in structure until a critical point is reached where these two states become identical.
This is the surface critical point (Tcs,5¢s). Figure 2(c) shows dv/9u"(0) as a function of
#"(0) near the surface critical point. The analogy with bulk critical point is again evident
though such analogy is incomplete due to a singularity at the wetting transition point.

2. Fuield-Density Phase Diagrams

Before discussing the global phase diagrams let us consider field variable—density phase
diagrams and field variable—field variable phase diagrams. For examples of such diagrams

see Cahn(1977) and Teletzke ei al. (19582a). Pigurc 3 is a section of a bulk flnid field
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IFigure 2a. The derivative of the surface tension: 9v/du"(0) as a function of the hard-sphere
chemical potential u?(0) at the interface. The interaction potential has parameter
values: f = 0 and W = 0.004. The solid-fluid interface is close to the first-order

wetting transition;
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Figure 2b. The derivative of the surface tcnsion: dv/9u*(0) as a function of the hard sphere
chemical potential z?(0) at the interface. The interaction potential has parameter
values: 3 = 0 and W = 0.004. The solid-fluid interface is close to the thin to thick
thin-film transition at T' = 0.985.
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Figure 2c. The derivative of the surface tension: 9v/0u*(0) as a function of the hard-sphere
chemical potential u*(0) at the interface. The interaction potential has parameter

values: # = 0 and W = 0.004. The solid-fluid interface is close to the surface critical
point.
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Figure 3. A schematic representation of a section.of a fluid field-density phase diagram.

variable—density phase diagram in schematic form showing three regions: liquid phase, vapor
phase, and a two-phase region where the two coexists. Wetting transitions occur on the bulk
coexistence line while thin to thick thin- film transitions occur ‘nside the single phase region.
Figure 4 pictures what happens at the solid- fluid interface depending on where the bulk
fluid is on the phase diagram and whether the wetting transition is second-order (Fig.4a)
or first-order (Fig.4b). The solid line inside the L=V two-phase region marks the wetting
transition. The four capsules on either sides of the diagram pictures the solid-fluid interface
depending on where the bulk fluid is on the phase diagram. The meaning for each of the
three patterns used inside the capsules are explained in the legend above the diagram. The
straight lines inside the two lower capsules measure the contact angle made by the .-V
aterface through the liquid phase.

Figure 4(a) shows that at a temperature T' < T, and near the vapor hinodal of the
two-phase region, a drop of liquid placed on the solid surface in the presence of its vapor
does not spread indefinitely and the contact angle made by the L=V interface at the solid
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Figure 4a. A schematic representation of a field-density (temperature-density) phase diagram
‘ for second-order wetting transition

surface is not zero so that the liquid is said not to wet the solid surface. At T 2 T, and
near the vapor binodal the contact angle goes to zero and, if enough of liquid is available,
a macroscopic layer of the liquid completely wets the solid surface. This transition between
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FFigure 4b. A schematic representation of a field-density (temperature-density) phase diagram
for first-order wetting transition.

nonwetting and wetting by the liquid is called the wetting transition (Heady and Cahn. 1972
(‘ahn, 1977). What is shown here is a second-order wetting transition which is distinguished
by the lack of thin-film transitions in the single-phase region.
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If the wetting transition is first-order (Fig.4b), then in the vapor single phase region of
the temperature-density phase diagram and above the wetting transition temperature there
exists a temperature-density path along which two different liquid-like thin films coexist.
The surface phase transition occurring when this path is crossed is known as the thin to
thick thin-film transition or prewetting transition (Cahn, 1977; Teletzke et al., 1982a). With
increasing temperature the thin-film coexistence curve on the bulk temperature- density
phase diagram eventually terminates at a critical point called the surface critical point.

For our global phase diagram it is convenient to represent wetting transitions and critical
points on field variable—field variable phase diagrams (Pandit et al. 1982). Figure 5 shows
the transformation. The top figure is a fleld-density phase diagram; it is equivalent to the
field-field phase diagram on the bottom left. In the figure on the bottom right the bulk
chemical potential has been subtracted from the vertical y-axis so that bulk coexistence line
is y = 0. Thus far both the field-density and field-field diagrams are for given values of
the interaction potential parameters (W, W3). In the next section we consider the effect of
changing these parameter values on the wetting transition and critical points.

3. Global Phase Diagrams

The dependence of the order of the wetting transition, the thin to thick thin-film
transition, and the surface multicritical points on interaction strength can be conveniently
displayed together in global phase diagrams whose coordinate axes are field variables which
include temperature, chemical potential, and an interaction potential parameter W where
W is the ratio of characteristic energy of two-body solid-fluid interaction to fluid-fluid
interaction. Three such diagrams were constructed for the following values of the three-body
interaction potential energy parameter: W3 = 1/3,1, and 3; corresponding to the three
phase diagrams of Nakanishi and Fisher (1982; hereafter designated as NF) who inferred the
diagram structure from scaling studies of a magnetic system. A comparison between the two
sets of results are given at the end of this section.

Figure 6 demonstrates the evolution of the field-field phase diagram as W increases for
the case W3 = 1. As the solid becomes more attractive to the fluid molecules, that is
W becomes more positive, the wetting transition goes from first-order on liquid side (top
two figures), to first-order on vapor side (lowest two figures). In between is the “special”
multicritical point. Putting these together we get Fig. 7, which is the global phase diagram
for W3 = 1. Figures 8 and 9 are the global phase diagrams for W3 = 1/3 and 3 respectively.

By describing the evolution of the field-field phase diagram as W increases we are actually
describing the cross sections of the global phase diagram given by equations W = constant.
We now consider in greater detail this and other cross sections that contain the multicritical
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Wx=1/3

Figure 8. Global phase diagram for Ws = 1/3.
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point located at (W, T, Ap) = (=B1/2,1,0), in which 7" = 1 is the bulk critical temperature,
for different values of 8 (or Wy), We also present our results on how the wetting transition,
thin to thick thin-film transition, and surface critical points scale in the vicinity of these
multicritical points and compare our espoucnts with those of N, The exponents thal we
obtain are combinations of the A and A exponents of NF.

We begin with the case = 1/2 or Wy = 1/3 (IMigure 8). The coordinate axes are:
the ratio of solid-fluid to fluid-Huid interaction energies W, temperature 7 in units of 7%
where T is the L=V eritical temperature, and chemical potential Ajiy ¢ g — pg# where p8
is the chemical potential al [~V coexistence, Therelore the half-plane delined by Ap =0
and 1" < s a L=V coexistence plane, On the L=V coexistence plane are points of first-
order wetting transition, points of second-order welting transition, two surface tricritical
points, and one multicritical point. The multicritical point has coordinates 7' = | and
W= —Au/2 = 0125 and is an “ordinary” multicritical point (sce e.g., Lubensky and
Rubin, 1975). The two other points on this plane that are symmetrically disposed in
1V oabout the multicritical point are surface tricritical points with coordinates given by
(Wiay They urg) = (0.2028,0.8538,0). The solid curves on the coexistence plane bounded
by the two surface tricritical points and passed through the multicritical point are points of
second-order wetting transition. T'he curves on the same plane that joins the tricritical points
at one end and proceedto very low temperatures are curves of first-order wetting transitions,
The “wing"-like structures are surfaces of thin to thick thin-filn transition. Facl individual
curve on these sirfaces is a line of thin-film transition which joins the coexistence plane at
a point of first-order wetling transition and terminates at the other end in a surface critical
point. Finally the surface critical points are joined together in a curve that forms the edge of
the two “wings” and joins the coexistence plane at the trieritical points. Therefore surface
tricritical points are the confluence points for the line of first-order wetting transitions, the
line of surface critical points, and the line of second-order wetting trausitions. The entire
diagram is symmetric aboul the line passing through the multicritical point and given by
the intersection of the planes W = —81/2 and Ay = 0 because lattice-gas model possesses a
symmetrical binodal, According to NI, near the multicritical point the distance between the
second-order wetting transition temperature Ty and the bulk critical temperature 7% shoula
scale with the distance from the “ordinary” multicritical point.

L= (Tw/Te) = (W + Bu/2) A0 = (W + Bu)2)?

wheve the exponent Ay = 1/2 for the “ordinary” multicritical point. In Figure 10 the
quantity 1 — (T'w/T¢) is plotted as a function of W + /2 for W + 51¢/2 > 0. The straight
line is the above scaling relation of NI' and the filled circles are our computed results; there
is good agreement belween the two over a wide range of parameters.

lrd

Figure 7 is the global phase diagram of # = 0 or W3 = 1. The multicritical point on
the L=V coexistence plane has coordinates T'= 1 and W = —f4u/2 = 0 and is called the
“special” multicritical point (Binder and Hohenberg, 1974; Kumar, 1974). All second-order
wetting transitions have now disappeared and the solid curves on the coexistence plane that
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Figure 10 Plot of the distance between the second-order wetting transition temperature Tw and
the bulk critical temperature T, as a function of the distance from the “ordinary”
multicritical point measured in terms of W + Bp/2. Here W is the ratio of solid-fluid
to fluid-fluid interaction energies; 8 = (1— W3)/(1+Ws), and p is the fluid chemical

potential.
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pass through the multicritical point are points of first-order wetting transition. The “wing”-
like structures are again surfaces of thin to thick thin-film transition. The edges of the two
“wings” are surface critical points which joined the coexistence plane at the multicritical
point. According to NF, near the “special” multicritical point the distance between the
first-order wetting transition temperature T, and the bulk critical temperature T, should
scale with the distance from the “special” multicritical point as (Bu = 0)

L= (Tu/Te) W~ WY,

where the exponent A; = 1 for the “special” multicritical point. The distance between the
surface critical point and the bulk critical point in terms of temperatures: 1—(T¢s/T;) should
scale in the same manner as that of the wetting temperature '

I - (TCS/TC) ~ W= ‘/VI/AI,

and the distance between the surface critical point and the bulk critical point measured in
terms of chemical potential Ajcs should scale as (Fp = 0)

Aftes = WAIAL ny 1y73/2,

where the exponent A = 3/2 so that A/A; = 3/2. In Figures 11-13 the above three scaling
relations are plotted together with our computed results. Again the scaling law holds over a
wide range of parameters.

Figure 7 is the global phase diagram for 8 = —1/2 or W3 = 3. The multicritical point
on the L—V coexistence plane has coordinates 7' = 1 and W = —fu/2 = —0.125 and
is called the “extraordinary” multicritical point (Lubensky and Rubin, 1975). The solid
curves on the coexistence plane that pass through the multicritical point are again points of
first-order wetting transition. The “wing”-like structures are again surfaces of thin to thick
thin-film transition. The edges of the two “wings” are surface critical points which joined
the coexistence plane at a point of higher temperature (7' > 1) than that of the multicritical
point. According to NF, near the “extraordinary” multicritical point the distance between
the first-order wetting transition temperature 7o, and the bulk critical temperature T, should
scale with the distance from the “extraordinary” multicritical point as (Su = 1/4)

L= (Tw/Te) = (W + Bu/2) 2 ~ (W + Bu/2)*>,

In Iigure 14 the above scaling relation is plotted with our computed results. There is
good agreement for W + fu/2 < 0.01, or, because the wetting temperatures are symmetric
about W = —/u/2, the above scaling relation is valid only for AW, = |W + Bu/2| < 0.01.
Furthermore, from the global phase diagram (Fig.9), the range in W over which the surface
critical point temperature exceeds the bulk critical temperature, i.e., Ty > T, is given by
at least AWey # |W + pp/2] < 0.06. Hence AW, is larger than AW,,. This differs from

the corresponding global phase diagram of NF in which the'reverse is portrayed.
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Figure 11. Plot the distance between the first-order wetting transition temperature Ty and the
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T. as a function of the distance W from the “special” multicritical point.
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Figure 15. Comparison between the global phase diagrams of(a) Nakanishi and Fisher (1982)

and (b) the present work (Figs. 7-9).
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Figure 15 shows the three global phase diagrams of NF and the corresponding diagrams
that we obtained by computation (Figures 7-9) with the model of Teletzke ef al. For
W3 = 1/3 and W3 = 1, which correspond to NF's v < 0 and v = 0, the diagrams agree
in all qualitative features. And we already saw that where comparisons can be made the
agreement in terms of critical exponents is also quantitative. For W3 = 3, which corresponds
to NF’s v > 0, there is agreement as to the exponent for the wetting temperature; however,
there are some discrepancies as to the range in W over which the critical exponent for the
extraordinary multicritical point remains valid relative to the range in W over which we have
T¢s > Te. In particular the NF diagram implies that the critical exponent still applies when
Tes < T, for all values of W3 > 1; however this does not agree with our result.

D. Conclusions

1. A generalization of the model of Teletzke et al. (1982b) to multicomponent systems is
presented in section B1l. With appropriate interaction potential parameter values the
multicomponent version is still solvable analytically.

2. A new method for locating first-order wetting transitions, thin to thick thin-film
transitions, and surface critical points is presented in section B3-4. At the core of
the method are sets of equations — which can be integral, differential, or algebraic
depending on the mean field model used — that govern the transitions and critical
points. The essential idea is to obtain the transition and critical points directly through
solution of these equations rather than indirectly through constructions of either the
adsorption isotherm (Teletzke et al., 1982a) or nonequilibrium surface tension as function
of adsorption (Evans and Tarazona, 1983). The price paid for this convenience is a larger
equation set. However the benefit is that the error incurred in locating the transition
and critical points inside global phase diagrams is easier to control.

3. The equations that govern the various transition and critical points of the van der Waals
model of Teletzke et al. (1982b) are shown in section B4. In this model the equations
reduce to algebraic equations. These equations are solved by Newton iteration and the
results presented in terms of global phase diagrams (T, Au, W) that show both bulk
phase conditions (7', ) and two-body interaction strength (W) for three different values
of a parameter W3 that measures three-body interaction strength: W3 = 1/3, 1, and 3.

4. The structure of such global phase diagrams was first inferred by Nakanishi and Fisher
(1982) from scaling studies. Our results are in accord with their critical exponents A
and A for the “ordinary,” “special,” and “extraordinary” multicritical points. However,
for W3 = 3 where the distance between the first-order wetting transition temperatures
Ty and the bulk critical temperature T, should scale with the distance from the
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“extraordinary” multicritical point as
L= ((Tw/Te) m (W + u/2)' 80 = (W + Bu/2)*/*

with 8 = (1 — W3)/(1 + W3) and g the fluid chemical potential, the range in W over
which the above scaling relation holds is not as wide as the diagram of Nakanishi and
Fisher would suggest.
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DENSITY DISTRIBUTION FUNCTIONS OF CONFINED
TONKS-TAKAHASHI FLUIDS

Synopsis

The density distribution functions of a confined one-dimensional fluid of particles
obeying the Tonks-Takahashi nearest neighbor two-body potential are reduced to simple
functions of the grand canonical enscmble partition function. The resulting formulas are
analogous to those found by Robledo and Rowlinson for a hard-rod fluid. [n the absence
of an external fleld the partition functions can be evaluated by the method of Laplace
transforms. The dependence of the pressure P on the separation L of the confining walls is
investigated for three model potentials: (1) hard-rod, (ii) square-well, and (iii) triangle-well.
P is an oscillating function of L in all three cases., The oscillations arise from the o1dering
effect of the repulsive forces between particles. The attractive interactions of the triangle-
well potential reinforces the ordering whereas those of the square-well potential diminishes
the ordering. Results for semi-confined and homogeneous fluids are also presented.

Theory

We consider the Tonks-Takahashi fluid, which is a one-dimensional fluid of particles
obeying the nearest neighbor two body potential (Lieb and Mattis, 1966).

u(zij) = oo, lzij| < a
=P(zi; —a), a<|rij] < aq
=0 , lw,-j(>a2, (1)

where a; < 2¢ and 1 is an arbitrary function of z;;. Suppose N particles are confined to
the box of length L = ¢ny41 — z, ~ a, as shown in Figure 1. The walls of the box are a
pair of particles fixed at z, and zny4+1 = L + a + 2, respectively. We assume there is also
an external potential v(z;) acting on each of the N particles.

The configuration partition function of the system can be expressed in the form

TN 41 TN Ty
ZN(:co,xN+1)=N!/ dmN/ d.?:N_l.../ dzy X
To Zo

Zo

e—'B Z.’i,’ u(z;—z;‘)e—ﬂ Z‘N v(:c.')e—ﬂu(:n——z,,)-ﬂu(xN+1~zN) (2)
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Figure 1. Tonks-Takahashi gas of N particles confined to a subregion L = #n41 — %o — @
by a pair of the same kind of particles fixed at positions z, and TN 41.

where zo < 7 < z3.. < ay < zy41 and = 1/8T. kis Boltzmann's constant and T is
the absolute temperature. Taking the functional derivative with respect to v(z), we find

1 62N IN+1 Th4a
T T 4) = =B ”6_‘,] e [ dopar

e—BU(EN41=2N) g=Bu(zhp1~2) o~ P PINPINICINET D DANREICIIN

z3
/ dwk 1 dwle—ﬂ“(z Th- l)e‘-ﬂu(zu—zu)x
Zo

Zi)j 1“("1) OATED

—Bu Zi-1(z0,%) Zn-k(TyTN41)
- _ Bu(z) k— 1 N~k +
Pe Z T (N =F) Q

The grand canonical ensemble partition function of the system is

_ ‘ X, eBNu
Z(zosTN+1) = WZN, (4)
N=0

where p is the chemical potential and A is the de Broglie thermal wavelength. The density
distribution n(z) can be computed from the formula

6€nE(mo,xN+1)
ov(z) (5)

n(z) = —kT

Substitution of Eq. (3) into this expression and use of the transformation of summations

oo N oo 00
SN fvekger =Y Y Fnegw (6)

N=1k=1 k'=0 N'=0
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lead to the result
0= eBlu=v(z)) _ B i
Fuga) (ForoN+1) = =B——p——E(z0, 2)E(@ TN 11), (7)

from which it follows that

eﬂ(p—-v(.‘t)) E(mo, Qj)E(.’L’, IN+1 )

nr) = —
( ) A :($0,$N+1)

The k-body density distribution function for the present system can similarly be shown
to be given bv

Bk =B 2 i, v(zk)

k
n'®(zy, .., z) = A E(za ona) E(xovxl)HE(Il—laxl)E(xk1mN+l)’ (9)
=2 :

where z, < z; < z2... < 2k € TN+1. Equations (7) and (8) are for the Tonks-Takahashi
model, an extension of the results derived earlier by Robledo and Rowlinson (1986) for
hard-rods (¢ = 0) in the absence of an external field (v == 0).

Although Eqgs. (7) and (8) represent closed form solutions for the density distribution
functions, one is still faced with the problem of ‘evaluating the grand canonical ensemble
partition function. This is not easy to do in general. However, in the special case that
the external potential is zero (v = 0) the Luplace transform can b/ used to evaluate the
partition function. With the variable change y; = z; — ja — 20,5 = 1,..., N + 1, the
canonical ensemble partition function of the Tonks-Takahashi gas becomes

YN +1 , N
Zn(yn+1) = N! / dyNe‘ﬂ"’(y”*“yN)/ dyN_le~ﬁ'/’(yN"yN'1)...x
Jo 0

Y3 ry2
/ dyge-ﬂw(ya-“).../ dyy e~ By =y1)=B¥(y1) (10)
0 0

Note that yy+1 = L — Na. Because Eq. (9) is in the form of an iterated convolution
integral, the metk .d of Laplace transform can be applied to obtain (Lieb and Mattis,
1966), Salsburg, et al. 1953) ‘

100+T,
N!
Zn(yn+1 =L~ Na) = 57— LN (K (s, N *1ds, (11)
- — 10047,
where 7, > 0 and
K(s) = /e"’y"ﬂ"’(y)dy, (12)
0
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Choosing a coordinate system such that zp = ~a/2 and ay4+1 = L + a/2, we obtain
the following results for the density distribution functions

eﬁu__ _ _
n(z) = T:L_I_%:x_% = - (13)
and .
Bku
¥ € —_ — —
n,(k;(xl,--.,wk) = I Eoy-2 Hax,_xl_l_a:[,_“._%, (14)
=L =2
where N
1004 To
o N@p (y—Na)s
o ¢ ¢ I N+1
Ey= ), X / s UK()] " ds. (15)
N=0 — 100+ To '

The pressure P of the confined fluid can be computed from the "rmula

P =kT(8InZ,/0L). (16)

Next let us consider a semi-confined fluid, which is defined as a bulk fluid in contact
with a wall at x¢. Ir this case, L — oo, EL—z—%/EL — e~ AP(z+3) and so

Bu o
n(z) = S-eTPPHRE, (17)

The pressure P of a bulk Tonks-Takahashi fluid at chemical potential x4 obeys the relation
(Lieb and Mattis, 1966).

Bu = BPa—InK(BP) +InA. (18)

We can also derive an expression for the pair correlation function in bulk fluid by con-
sidering the limits that z, and L approach infinity, but r; — z; is finite. With the
aid of the properties n(z;) — n as z; — oo, n being the bulk phase density, and
E(z2,2N+1)/E(z1, TN 41) — ezp[~BP(z2 — 71)] as an41 — 00, we find

eBn

n(z)(xl,xz) = n—x—-e"ﬂp(“'”‘)'ﬁ,,_ﬁ_a. (19a)

Then, the pair correlation function, which is defined as ¢(*(zy — z;) = n®(xy,zy)/n?,
can be expressed as
§P(z; — 1) = n(as - 21 — a2, (19%)

where n(z) is given by Eq. (17).
While this manuscript was under review, the author received a preprint of an article
by Monson (1990). In the paper he presents the singlet densivy distribution functions for

a hinary mixture of square-well Tonks-Takahashi particles confined by nearest neighbor
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square-well particles of arbitrary strength. His work suggests an immediate generalization
of the results presented above.

Suppose the wall particles at o and 2y 41 interact with the fluid particles according
to the nearest neighbor potential :

u?(Jz]) =00, |2|<a
=9*(Jz| —a), a<|z|<ay
=0, |z|> a?, (20)

where a¥ < 2a. The wall particles at zo and 2y41 can in general be different from one
another. The k-body density distribution function can then be shewn to be given by

PR 5 B EX R 2
= =Yz HE Zi-1,2)=%(zk, T 21
AR Zwlw2(g, zniq) ( o’xl)l:2 (zi-1,21) (zk,xzN+1),(21)

n(k)(wl,...,mk) =

where = denotes the partition function for a Tonks-Takahashi fluid confined by wall parti-
cles that are the same as the fluid particles. In Z¥!(z; — z¢) the confining particle at zq is
a Tonks-Takahashi particle interacting with the fluid via the potential u*!(z; — zy). Sim-
ilarly, in Z%%(z4, zn+1) the wall particle at oy 41 interacts with the fluid via the potential
u*?(zn4; — ) and in E¥H¥2(zg, zy41) the walls at zp and zn+1 have the potentials u®!
and u"'2, respectively.

In the external field-free case, we obtain

Bku
e - _
n(k)(zl,...,xk)z—- Ww2 ;Ull__H...,zl —Z{- l—autlfzzb-—-la (22)
et 7
where
100+ 19
) Nﬁu e(y—Na 8
Zwi _ ~B¥¥(y) — Wi N =
=) =e Z / 5 (s)[K(s8)]Vds, 1=1and?2 (23)
—to00+To
and
100+ To
eNBu (L=Na)s
Swlhw?2 _ —A¥(L)¥ 4 ¢ 1 w2 N-1
=7 Z T / —5 KU K™ ()K ()] Vs, (24)
—100+To
where
o0
K¥(s) = /e"’"’ﬂww'(y)dy. ' (25)
0
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The partition function =, is given by Eq. (15).

The semi-confined fluid density profile for this case is given by

Bu . '
n(z) = ZA_e—ﬁP(r+7)E;U_l_i, (26)

where P is given by Eq. (18).
Applications

In this section we present comparisons of the confining pressure and the density profiles
for three one-dimensional model fluids in the external field-free case (v(z) = 0).

These are

(i) hard-rod fluid:
(y)=0, y>0 (28)

(12) square-well fluid: a; = 2a

=0, y>a (29)
(ii1) triangle-well fluid: a; = 2a

Y(y) =ely—a)/a, O0<y<a
)) =0, y > a. (30)
In terms of the full pair potential these models read u(z;;) = oo, |zi;| < a and (¢) u(z;) =

0, |zii| > a; (34) u(zi;) = —¢, a < |zi5] < 2a, u(zi;) =0, |vij| > 2a; and (447) w(z;;) =
(|lzij| — a)/a, a < |zij| < 2a, u(zij) =0, |zi;| > 2a.

The Laplace transforms of e~#¥ for the three models are

(i) K(s)= (31)
‘ eﬂe e—9a
(1) K(s) = — +(1-ef)— (32)
i B eﬂc — e™8a e—9a
(111) K(s)= 5T (Be/a) . (33)
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The equations of state (see Eq. (18)) of the homogeneous phases (L — o) of these
fluids are, respectively (Lieb and Mattis, 1966),

(1) Bu = BPa+ In(BPa)+ In(A/a), (34)
nl=a+ L (35)
5P’ |
(11) ‘ 5u=BPa+1n(ﬂPa)—h‘1{eﬂf+(l—eﬂ‘)e‘ﬂp“}-%—ln(A/a), (36)
1 1 a(l — efe)e~PPe
n ! —a+ﬁﬁ+eﬂf+(l~eﬁ‘)e"ﬁpa (37)
and
(1i3) Bu = BPa+ In[fPa(fPa+ Be)] — In[fPae’ + Bee=PP?) +1In(A/a), (38)
-1 28Pa + Be eBe — Pee=PPe ‘
nl = a+0Epr T (Be)(8Pa) | BPacht + fec PP (39)

P and n are the bulk pressure and density of the fluid at chemical potential 4 at temper-
ature T(8 = 1/kT). The density-pressure equation of state is derived from the chemical
potential-pressure equation with the Gibbs-Duhem equation, n=! = (0Bu)/(9BP). For
each of these models u and na are monotonic functions of APa, reflecting the well-known
fact that one-dimensional fluids of particles interacting with pair potentials of finite range
cannot experience a phase transition. The isotherms for these fluids for Be = 2 are shown
in Figure 2. The datum for the chemical potential is In(A/a). ‘

At sufficiently high SPa, the equations of state of the square-well and triangle well
fluids approach the hard-rod formulas. And as expected, at a given pressure, the density of
the hard-rod fluid is the lowest of the three Auids. Overall similarities among the equations
of state are more striking than the differences when compared with the behavior of the
corresponding three-dimensional fluids.

To see whether the similarities among the models persists in molecularly narrow pores,
we have inverted the Laplace transforms analytically, using the residue theorem, to calcu-
late Z, in the field free case v(z) = 0. The results are given in the Appendix. We chose
to compare confined fluids that are at equilibrium with homogeneous phases at nearly the
same bulk density, namely, na = 3 /4. In particular, we set Be = 2 and used the following
bulk phase properties:
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Figure 3. Pressure of confined fluids versus confining wall separation (“porewidth”™) L.
Be = 2.

(¢) hard-rod fluid

fPa =3, Bu = 4.0986, na = 3/4, (40)
(13) square-well fluid
BPa = 2.4, Bu = 1.3572, na = 0.7510 (41)
(431) triangle-well fluid
fPa=1.6, Bu = 0.8474, na = 0.7511. (42)

It seems to us more sensible to compare the behavior of confined fluids in equilibrium with
bulk phases at the same temperature and density instead of at the same temperature and
pressure or chemical potential. The choice, nevertheless, is somewhat arbitrary.

The dependence of pressure on pore width L is shown in Fig. 3. The behavior
is qualitatively similar to that of the confining pressures observed in real fluids.(Horne
and Israelachvili (1981)) In accordance with previous conclusions from computer simu-
lations,(van Megen and Snook, (1979)) the hard-rod model(Vanderlick et al.(1989)) and
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approximate molecular theories of three dimensional fluids, (Davis et al.(1987)) the oscilla-
tions in the pressure as a function of porewidth correspond to the degree of order (layering)
in the density distribution of the confined fluid. The pressure minima occur near integral
values of L/a. To see the qualitative pattern consider the density profiles shown in Fig. 4.
At the width L = 3.5a as many as 3 particles can occupy the pore, but the particles have
only a half a particle diameter of free volume (length) to distribute among themselves.
Thus, the density peaks are narrow and high, resulting in a relatively high pressure. At
L = 4a, however, there is still only room for three particles, but they now have a full
particle diameter of free volume to distribute among themselves. The result is the density
peaks are broader and shorter, resulting in a lower pressure. At L = 4.5qa, four particles
can occupy the pore but have only a half a particle diameter of free volume, and so again
the density peaks are sharper and the pressure higher.

It is interesting that the continuous triangle-well potential shifts the peaks in P to
smaller L but the discontinuous square-well potential shifts the peaks to larger L. This
coincides with the fact that the triangle-well potential increases the layering tendency
relative to the hard-rod potential whereas the square-well potential decreases the layering
tendency. This behavior is indicated in Fig. 4 by the magnitudes of the peaks in the
density profiles. The peaks, which represent strong ordering or layering, are largest for
triangle-well fluid and are smallest for the square-well fluid. Thus, it appears that the
square-well attraction competes with the excluded volume ordering effect and the triangle-
well attraction enhances the effect.

Consider the case of a semi-confined fluid, for which the density profile is given by
Eq. (17). The density profiles of the three semi-confined fluids at the bulk conditions of
Eqgs. (40)-(42) are shown in Figure 5. Relative to the hard-rod fluid, the triangle-well
attraction sharpens the density maxima and minima and shifts them towards the wall.
The square-well attraction has the opposite effect.

The extent to which the two confining walls sup. rimpose their effects on the density
profile can be seen by comparing Figures 4 and 5. At the separation L = 4.5a, the density
distributions between the walls and = = 1.5a are quite similar to those of a semi-confined
fluid. From z = 1.5¢ to the pore center at ¢ = 2.25a, the profiles of the confined fluid
differ greatly from those of the semi-co fined fluid. The effect of opposed walls on this
case is stronger for the square-well fluid than for the other fluids. The density profiles for
L = 3.5a are have a relatively flat region between z = a and z = 1.5a that does not occur
in the semi-confined fluid.

In closing we note that according to Eq. (19b) it follows that the pair correlation

function of homogeneous fluid as a function of particle separation follows immediately
from Fig. 5 by shifting the density profile to the right by amount a/2 and rescaling the
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Appendix: Evaluation of Eq. (15) for three models

(i) Hard-rod fluid:

=y Z (v~ Na)¥n(y - Na). (41)
(i1) Square-well fluid:

oo N+1 Nﬁﬂ (N-*—l!
= Z > WA N+1-—A)~.)1k:"’(N+"'°”’*(1 — e#)¥(y — Na — ka)"n(y — Na - ka),

=0 k=0
(A2)
(iii) Triangle-well fluid:
°° N+1
(N + 1)!
E Z Z N_Jr.-: ,k,fl( — Na - ka) (N+1~-k)[if><
N
‘ N! (k +]—-1) —(y—-Na—ka)o
—~Na—ka)N~— J ,
{ g ’ ’ “ N -yt (k=1) kI
=1 1 (N4 1
’ — L Yh—1 |
+Y‘ —1Y(y — Na — ka) -’(k 1T N aN+1E
s eNﬁM'HN-H)Bc
+ Z AN NI n(y — Na)(y — Na)¥ ¢~(y=Naa (43)
N=0 :

where o = fe/a. 1(y) is the Heaviside function, i.e., n(y) = 0 when y < 0 and = 1 when
y > 0.
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A COMPARISON OF INITIAL CONDITIONS
FOR CONTINUOUS-FLOW SYSTEMS

Synopsis

An initial condition, which sets the state of a system at a particular time, should
describe accurately the physics of the situation and should not create computational ar-
tifacts when the governing equations are solved numerically. Drawing on the example of
two-phase flow in porous media, we show that unphysical oscillations can mar a solution
should the initial condition violate an inflow boundary condition. Tracking these oscilla-
tions can increase by orders of magnitude the computer time needed to solve the equations
of change. At an internal boundary between two different media, an initial condition that
violates the steady-state equations of change produces features that might be equally un-
desirable. We propose a way to generate initial conditions that avoid these artifacts, viz.
by splicing together a solution of the linearized governing equations in the region of change
and solutions of the steady-state equations in regions of constancy. We demonstrate our
proposal using the situation of two-phase flow in porous media. Our findings are broadly
applicable because of the partial analogies among transport of mass, heat, and momentum.

Introduction

The analysis of continuous-flow situations requires the definition of a ‘system,’ which
is a region of particular interest, and the ‘surroundings,” which are the remainder of the
universe. Equations of change that describe the behavior of the system derive from laws
of conservation of mass, momentum, energy, and so forth and equally from constitutive
relations that represent material response. A boundary defines the region or domain of
interest by separating it from the rest of the universe. Boundary conditions must express
accurately the interaction between the system and its surroundings. In the case of a
dynamic, or evolving, system, the state of the entire system at a particular time must be
specified by an ‘initial’ condition. Together, boundary conditions and an initial condition
single out a particular solution of the equations of change.

Two earlier papers (Novy et al., 1990a,b) examine the issues of locating boundaries
and choosing boundary conditions; they also lay out a systematic way of proceeding should
a ‘synthetic’ boundary, i.e one that does not coincide with a physical boundary, be drawn.
The goals of this paper are, first, to show the computational difficulties that can follow
from initial conditions that do not satisfy all boundary conditions and steady equations of
change and, second, to propose a method for generating initial conditions that do. Because
an initial condition can be considered a ‘boundary’ condition in time, concepts discussed
in our first two papers are relevant here.

Closed-form solutions of equations of change often depend on initial conditions that
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do not satisfy all boundary conditions. For example, a condition at the boundary might
require a step change in the solution from its initial value, as does diffusion of heat or mass
from a well-stirred fluid into a semi-infinite slab, which admits a closed-form solution in
terms of an error function (see e.g., Crank, 1975, pp. 20-21). A survey of the books by
Crank (1975) and Carslaw and Jaeger (1959) reveals other situations in which there is a
step change at a boundary immediately after the initial state. Such abrupt changes can
be treated as limiting processes and pose no difficulty in cases where a solution is known
in terms of standard mathematical functions.

Digital computers now enable the study of systems that are described by equations
of change that do not have closed-form solutions so far as is known or expected. Two
schemes of computer-aided analysis in wide use are finite difference approximation and
Galerkin’s method with finite element basis functions, which is also known as the Galerkin
finite element method (GFEM). These methods are, however, sensitive to step changes in
couditions, and unphysical oscillations in space, or ‘wiggles,’ can result, signalling that the
discretization of space is too coarse to resolve developing gradients accurately, Wiggles can
appear in solutions computed with either finite difference schemes (Roache, 1972) or the
Galerkin finite element method (Gresho and Lee, 1981). One way to suppress wiggles is by
‘upwinding,’ which unphysically enhances dispersion in order to smooth abrupt changes.
Gresho and Lee (1981) argue against upwinding and recommend that wiggles should be
prevented by local refinement of the discretization of space. We point out another way
to avoid those wiggles that are associated with initial conditions which do not satisfy
all boundary conditions. Our method neither degrades the solution by adding artificial
dispersion nor requires an excessively fine discretization of space.

The context here is immiscible displacement of oil by a mixture of water and oil in a
one-dimensional porous medium, which is either homogeneous or composed of two media
with different flow properties. The homogeneous medium lets us show the artifacts that can
follow from incompatible initial and inflow boundary conditions. The composite medium
does likewise, but also illustrates what can happen when an initial condition violates the
steady equations of change downstream. Because two-phase flow in porous media can be
described in terms of convection and dispersion, the partial analogies among transport of
mass, heat, and momentum make our findings more broadly applicable.

Theory

In this section, we derive the equations of change, describe our porous media of inter-
est, specify inflow and outflow boundary conditions, and explain how to compute an initial
condition that avoids computational artifacts,

Equations of Change
Two-phase flow in a porous medium (see Figure 1) is described by the equation of
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continuity of each phase ¢

05,

= V. 1
and the linear constitutive equation cdlled Darcy's law, which relates the superficial low
velocity q; and the gradient of the mechanical potential (P; + p;gz) of phase ¢

k kri

¢

t

| = V|[Pi + pigz] . (2)
Flow in our examples is horizontal, so we ignore gravity. ¢(x) is the porosity or void
fraction of the bulk medium at position x, S; is the local saturation or fractional void
volume of phase ¢, t is time, k(x) is the absolute permeability of the medium, &i(S;)
is the relative permeability of phase ¢, and u is viscosity., In general, porosity, absolute
permeability, and even the relation between relative permeability and saturation can vary
with position. The two phases can be thought of as oil (o) and water (w).

WATER
+ OIL

AT

AYVANNOd OJILIHINAS

Figure 1. Displacement of oil in a porous medium with variation in one direction only,

Substituting Darcy’s law of each phase into its respective continuity equation and
then both subtracting and adding the results give a pair of partial differential equations.
These equations can be reduced to non-dimensional form as follows. Porosity and absolute
permeability are divided by suitable characteristic values so that ¢*(x) = @(X)/dehar
and A*(x) = k(X)/kehar. Capillary pressure Po(S,) = P, — Py, average pressure P, =
(Po 4+ Py)/2, and units of length Uy, time U7y, and pressure ‘U,) are so defined that

V = \7*/[]1 = C(l\/ (IJJrhar/;"'chwj v (3)
d)char
t=U,r = kr‘lar char
Uit qC'a\/ har/Behar T (4)

P = l]pP* = 0y ¢char/kchar' pP* (5)
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where Cla is the capillary number quy/dcnaro, ¢ is the total superficial flow velocity
(¢o + qw), o is the oil-water interfacial tension, and the asterisk denotes non-dimensional
quantities, The equations to be solved for the capillary pressure P} and the average
pressure P} then are

V* o (6 (Mo — k) V*PY] + :,12- V* [k (Mo + krw)V* P2]
, 0P*[dp*]™!
=% 5 [”&‘S‘] (6)
and 1
V* o [k*(Mkro + krw) V*PY] + 5 V" [k* (Mkpw = kew)V*PE] =0 . (7)

S = Sy nnd M is the viscosity ratio uy/pe. Equations (6) and (7) are usually called the
saturation equation and the pressure equation. Peaceman (1977) derived these equations
and alternative orms, including the so-called ‘velocity formulation,” which we use below,

Porous Media of Interest

Our first system of interest is a homogeneous porous medium, i.e, one in which poros-
ity, absolute permeability, and the dependence on saturation of the relative permeabilities
and capillary pressure do not vary with position. In this case, our choices of relative per-
meabilities k,;(S) and capillary pressure P}(S) allow the one-dimensional forms of Eqs.
(6) and (7) to have the closed-form solution derived by Yortsos and Fokas (1983). The
ratio of the relative permeabilities must obey

kruy(s) — S - SU’T,' (8)
kro(s) 1 - S - Saf‘ '
where S, and Sy, are the so-called ‘residual’ or ‘irreducible’ saturations of oil and water

in the porous medium. In general, Sy, < S <1-S,,. In one simple case, Eq. (8) implies
linear relative permeabilities, which are unrealistic but adequate for our purposes here:

1_5_‘50"

beol8) = 7220 9)
1'—S"‘Swr

bru(S) = 75— (10)

Integration of the derivative of capillary pressure dP?/dS used by Yortsos and Fokas
gives, to an additive constant C',

. o (M-1F (M -1)3
P(.‘ (S) - 1 _ Sor _ Swr (71[1 Sor - S] - M(l _ Sor _ S“’r) X
¢ - -
X In 1 M =5 =50 n[S - Syr]+ C . (11)
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Figure 2 shows the homogeneous porous medium and its capillary pressure curve,
which was computed with C =0, Syr = 0.05, Sor = 0.1, and M = 1.1.

Figure 3 depicts our second system of interest, which is a composite porous medium
made up of two different homogeneous media: one upstream, which has larger pores,
higher porosity, and higher absolute permeability, and one downstream, which has smaller
pores, lower porosity, and lower absolute permeability. Yortsos and Chang (1990) found, in
closed form, the steady-state profile of saturation in the case of a step change in absolute
permeability alone. Their solution extends easily, however, to the case of step changes
in both absolute permeability and porosity. To admit this closed-form solution at steady
state, the system may have any functions of relative permeability k.;(S) throughout, and
we choose for convenience the linear relations used in the entirely homogeneous medium,
i.e. Egs. (9) and (10). Capillary pressure, on the other hand, is allowed to vary with
position according to

P.(8;€) = 0J(S)v/3(E)/K(E) (12)
or, in non-dimensional form,

PI(S5:6) = J(S)/é*(£)/k*(¢ (13)

J(S) is the so- called ‘Leverett J-function.’ Leverett (1941) guessed from dimensional anal-
ysis that the function J of Eq. (12) might depend only on saturation. He found that
dividing values of measured capillary pressure by 0+/¢/k reduced data from several lig-
uid/liquid pairs in unconsolidated sands to a roughly common curve called J(S). Figure
3 shows the two capillary pressure curves of our composite porous medium, in which we
use the right side of Eq. (11) with C = 0.1 for J(S) throughout the medium and Eq. (13)
for P?(S) in each part.

Boundary Conditions

In order to have a unique solution. Eqgs. (6) and (7) require two boundary conditions
each in P! and P} and an initial profile of P*. We apply the same boundary conditions
to both the homogeneous medium and the composite medium.

At the injection boundary, a water-oil mixture with a volume fraction of water Fi"j

enters the porous medium with a superficial velocity ¢. Because the boundary cannot
accumulate mass,

gF = qu(0,7) | (14)
and o o
qF)™ =q(1—F1'L,"J) = ¢o,(0,7) . (15)

Substitution of Darcy’s law [Eq. (2)] for ¢, and ¢, and solution for the gradient of
capillary pressure [V*P} — V*P2] give one boundary condition at the injection face:
_Firi = fu(S) dP?

VIO = e T s

(S) (16)
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Figure 2. Homogeneous porous medium and its flow properties.
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Figure 3. Composite porous medium and its flow properties.
190



where f,,(9) is the fractional flow of water

Kruw
(S) = v 17
fu (S) Mkro + krw ( )
and D*(S) is the capillary dispersion coefficient
- *krokyw dPY
D*(S) = — Mk kroky (18)

" Mkyo + kyw dS

Figures 4 and 5 show how f,,(S) and D*(S) vary given our choices of relative per-
meabilities (Egs. (9) and (10)], residual saturations (Sor = 0.1; Sy, = 0.05), and viscosity
ratio (M = 1.1). The curves shown in Figure 4 are atypical, for most fractional flow curves
have an inflection point. Equation (16) can be rearranged to show that it is, in fact, a
mass balance across the injection boundary:

F.'p'” = fw(S'(O,T) - [D‘(S’)V‘S](O,r} ) (19)
1 T 1 T T
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Figure 4. Curves of fractional flow of oil and water used in all examples.

Water flows in bulk toward the boundary as part of a water-oil mixture and is carried
into the porcus medium by convection, which is represented by the fractional flow, and by
net capillary dispersion, which appears as would Fickian diffusion with a concentration-
dependent diffusion coefficient.

Substituting Darcy’s law for ¢, and ¢, in Egs. (14) and (15) and solving for the
gradient of average pressure [(V*Pg‘ +V*Pr)/ 2] give a second boundary condition at the
injection face:

F7 fo(S) + Fo™ fu(S) dPY

ViR (0,7) = 2D*(5) s

(5) (20)
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Figure 5. Curve of D*(S) used in each porous medium.

where fo(S) =1 — fu(95) is the fractional flow of oil. Relatively large gradients of average
pressure are needed to inject a mixture of mostly water (Firi large) into a region that
contains mostly oil (f, large), and vice versa.

Both the homogeneous medium and the composite medium studied here are taken to
be of such great extent that they are semi-infinite. Consequently, we mark the downstream
end of the computational domain with a so-called ‘synthetic’ boundary, i.e. an edge at which
there is no physical boundary, at a position £s and use the outflow boundary conditions
on P* and P} discussed in an earlier paper (Novy et al., 1990b). As described there,
the outflow boundary condition on capillary pressure is derived by solving the partial
differential equation that describes the flow with its coefficients evaluated at the saturation

far downstream, i.e. at Soo!

dpP; —(€s=fu(Seo)T/9")?
a3z CXP[ §D-Tsw)r/4{- }

DS 6 | SldSalle:|

V*P(£s,7) = - X [§ = Seo] - (21)

Finally, because only the gradient of average pressure appears in Egs. (6) and (7), a
pressure datum must be set. This is done at the synthetic boundary:

Pi(€s,7)=0 . (22)
Equation (22) acts as a Dirichlet boundary condition on average pressure.

In contrast to our study of synthetic boundary conditions (Novy et al., 1990b), we are
not concerned here with optimizing the location of the boundary to obtain at the lowest
cost a solution on a finite medium that is arbitrarily close to the solution on a semi-infinite
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‘medium. Instead, we locate the synthetic boundary so that moving it farther downstream
has a negligible effect on the solution in the regions of greatest interest.

Choice of Initial Condition

Specification of an initial profile of capillary pressure completes the problem statement.
One choice is a distribution of capillary pressure that is uniform:

P:(f,O) = :.0 . (23)

In the case of a homogeneous medium, this condition implies either no flow or a steady-
state flow such that the fraction of water in the injected liquid equals the total flux of
water throughout the medium. In the case of a composite or heterogeneous medium, the
capillary pressure can have a finite, uniform value only if there is no flow. This foreshadows
the fact that using Eq. (23) as an initial condition leads to computational difficulties, such
as wiggles, because the flow rate or, alternatively, the fraction of water in the injected
liquid increases immediately at 7 = 0% to its steady-state value. We show and discuss
the difficulties below. One way to avoid them is to raise stepwise ¢ or Fi"/, perhaps
linearly or exponentially, to its steady value over a small time interval. ‘Ramping up’ one
of these quantities, however, alters the situation under study. In addition, because time is
discretized, a ramp is in fact equivalent to a sequence of small jumps, each of which could
yet lead to artifacts. We propose instead a technique for generating initial conditions that
satisfy the boundary conditions and steady equations of change under the condition of flow
and thus avoid the above computational difficulties.

Initial Condition in Regions of Constancy

At small times, the capillary pressure (or saturation) and average pressure are chang-
ing only near the injection face. Accordingly, we compute the initial condition as follows.
First, we find the steady state at which the total flux of water (f, — D*V*S) at each
point in the medium equals the flux far downstream (fy o0). In the case of a homogeneous
porous medium, this implies S({) = Sw. Second, we compute in the region of change,
which is adjacent to the injection boundary, an approximate solution that satisfies the
inflow boundary condition. Third, we splice these two solutions together to get an initial

condition that does not cause oscillations in the evolving profiles. Figure 6 shows these
steps.

The profile of P¥ such that f,, ID*\"*S = f,, « everywhere and the associated profile
of P} are found by solving the equations of change and boundary conditions at a steady
state such that F!'" = fu oo

1
V- [k (Mkry = kruw) VP 4 597 - [k (Mkpo + ke )V PZ] =0 [from Eq. 6] (24)
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Figure 6. Generation of an initial condition that satisfies the inflow boundary condition
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V* - [k (Mkro + kro)V* P} + %v* - [E*(Mbvo — krw)V*P2] = 0 [from Eq. 7] (25)

V*PX(0) = 0 [from Eq. 16] (26)

v p0) =L ‘”(Swgf(; oJ:z)v(soo)] d;;g* (Seo) [from Eq. 20] (27)
P(€s) = Ploo (28)
PX(¢s)=0 [from Eq. 22] (29)

The value of S is that which satisfies f,(Seoc) = fw,co- A condition on the gradient
of capillary pressure at the outflow boundary would leave Egs. (24)-(25) with an infinity
of solutions. We use the Dirichlet boundary condition (28) instead.

In the case of a homogeneous medium, the desired solution of Eqgs. (24)-(29) is the
uniform profile of capillary pressure (or saturation)

P}(6) =Pl  [S(E) = Seo (30)
and the linear profile of average pressure

pi(g = LotSmll Sl B85y -6 (31)

In the case of a composite medium, we solve Egs. (24)-(29) by the Galerkin finite
element method. Figure 6 shows a typical profile of S in the case of a composite medium.
The shape of the profile of saturation near the interface between ‘porous medium A’
and ‘porous medium B’ (see Figure 3) can be explained as follows. At any particular
capillary pressure, the saturation of water in medium B is greater than that in medium
A. Because the capillary pressure must be continuous across the interface (otherwise flow
would instantly make it so), there is a jump in saturation from medium A to medium B.
This implies that f,,(S) immediately to the left of the interface is smaller than fu(S5) to
the right of the interface. To maintain a uniform total flux of water, the net dispersive flux
on the upstream side must assume a non-zero, positive value, i.e. the gradient of saturation
must be negative there. Upstream of the interface, the magnitude of this gradient decreases
to zero as the saturation of water increases to S, and the fractional flow of water increases
t0 fw.co. Should the capillary pressure curve of medium B lie below that of medium A, the
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prcfile of S would increase to a maximum at the interface between the media, rather than |
decrease to a minimum.

Initial Condition in Region of Change

What remains is to compute an initial condition on capillary pressure near the inflow
boundary, where there is change (see Figure 6). For this purpose, we use the so-called
velocity formulation of the situation, which has explicit convective and dispersive terms.
A different combination of the equation of continuity and Darcy’s law for each phase yields
in non-dimensional form (cf. Peaceman, 1977)

oS 0S 0 [ v, on0S
S)—a—g = bz[D (S)-gc—] ) (32)

where the prime denotes differentiation with respect to S. This equation is to be solved
approximately with the initial condition

S(€,0) = So (33)
and the boundary conditions
| 95 Firi — f,,(S
*éE(O,T) = ——Wg—)—(——) (0,7) | [from Eq. 16] (34)
%‘?(oo, T)=0 (35)

at a time 77 ¢, selected as the time of the ‘initial’ condition for the solution of the nonlinear
partial differential equations of change (6) and (7). The method of solving Eqs. (32)~(35)
must be immune to the difficulties caused by the incompatibility of the initial condition (33)
and the inflow boundary condition (34), i.e. the initial condition specifies a zero gradient
throughout but the right side of Eq. (34) is nonzero at S = 5.

We compute an approximate solution of Egs. (32)-(35) by evaluating the flow prop-
erties fu,(S), f,,(5), and D*(S) in Eqgs. (32) and (34) at a particular position and time
and then solving the resulting linear system. Expanding D*(S) in a Taylor series around
a position §; and a time 7, gives

D*(S(€,7)) = D*(S(Ei, ;) + [€ — 5,-]0*’5’(5(§i,rj))%-‘g(g,.,T,-)+
+[T‘TJ']D“(S(&,T;'))g—g(ﬁn,'rj)+--' : (36)

The series for f,,(S) and f],(S) are similar. Defining $* = S — Sy, inserting the Taylor
series for f,(S), fi,(5), and D*(S) into Eqgs. (32) and (34), and neglecting terms above
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zero order in position and time give a system that is linear in S*:

, 08 s . 8%5*
$" 5o +fw(5(€i,Tj))—a—£' =D (S(Ei,fj))“a—é; (37)
S5*(€,0)=0 . (38)
os* _ F,',',"j — fw(S) A
—a&—(O»T) =TT (0,75) (39)
os* |
5 (00,7) =0 . | (40)

Laplace transformation converts this system to a boundary-value problem of second
order that is readily solved for the Laplace transform of §*. At a particular time 7, we
invert the Laplace transform of S* at a set of positions £; by means of the computer
software routine INLAP of the International Mathematics and Statistics Libraries on a
CRAY-2 supercomputer.

One way to compute an initial condition on P (or S) in the region of change (see
Figure 6) is to choose a time 77.¢. and solve Egs. (37)—(40) once with 7; = 0, i.e. with
the flow properties evaluated at S = S;. A better way, which takes into account the
variation of f,(S) and D*(S) as the profile of saturation evolves, is to reach 7;.c. by
-solving Eqs. (37)-(40) at a sequence of N times {77.¢./N,271.c./N,...,71.c.}, using the
solution computed at time 7; to evaluate the flow properties for the system at time 741.
We call this scheme forward marching. The positions £; at which the solution is found are
fixed. The number of time steps, N, is raised until the computed solution at time 7;.¢.
changes by no more than a desired amount.

As 77.¢. increases, however, the final solution of the sequence of linearized equation
sets (37)-(40) diverges from the solution of the nonlinear set (32)—(35) because nonlinear-
ity becomes important. We judge whether or not a solution of the linear system (37)-(40)
approximates well the solution of the nonlinear system (32)—(35) by computing the mag-
nitude of the single nonlinear term that does not tend to zero as N — oc,i.e.as 7 — 7
at each time step. Inserting the Taylor series for f!,(S) and D*(S) into the nonlinear
equation (32) and letting £ -— & and 7 — 7; give

, 08 Losr s 8s*1*
¢ or + w(S(‘EiaTJ')) 86 - D (S(élaT]))"—a_éz_zD (S(glvTJ)) [—5—6—_] . (41)

On the left side are the terms of the linearized equation (37). On the right side is the
one nonlinear term that remains as N — oo. Computing the relative magnitudes of the

largest linear term and the nonlinear term, i.e.,
85*\*
D* , 42
1/ (m)} “2)

r= log[<max{

os°
or

I

o5\ | p. 925
wa£

D 5¢

¢*

)

k]
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allows us to assess qualitatively, at each position and time, the proximity of the solution
of the linear system to the solution of the nonlinear system. In the examples st1died here,
we find that keeping 7; ¢, small enough that r > 1.5 gives us an initial condition in the
region of change that differs from the closed-form solution of the nonlinear system by less
than 2% along the entire profile.

Table 1 summarizes the equations of change and boundary conditions that we solve
with an initial condition that represents either a flow or a no-flow situation. We use
Galerkin’s method with piecewise quadratic finite element basis functions and the adaptive,
fully-implicit time integration scheme of Gresho et al. (1980). Figures 2 and 3 show the
discretizations of space used. Details of the solution technique are not crucial to this paper.
Strang and Fix (1973) explain well the mathematical basis of the Galerkin finite element
method (GFEM), and Zienkiewicz (1977), among others, describes its use.

Results and Discussion

We compare solutions with an initial condition that either satisfies or violates the
inflow boundary condition upstream and the steady equaticns of change downstream.
Table 2 lists the parameters used in each type of porous medium. Injecting a mixture
of oil and water (Fi"/ = 0.8) into the composite medium leads to a steady state other
than a trivial, uniform distribution of water. We do not report the solutions of average
pressure because they do not alter the conclusions drawn from the profiles of saturation
and capillary pressure alone,

Homogeneous Porous Medium

In the case of a homogeneous porous medium (see Figure 2), Figure 7 shows a set of
four solutions that each use an initiai condition that satisfies the inflow boundary condition
(16). These initial conditions were computed by solving a sequence of linearized systems
(37)-(40) as explained above. To the right of each of the saturation profiles is the distribu-
tion of relative error, as compared to the closed-form solution of the nonlinear equations of
change given by Fokas and Yortsos (1982) and Yortsos and Fokas (1983). The error in the
‘initial’ condition falls with the time #; ¢ chosen for it. Figure 7 gives, in each case, the
lower bound on the value of r [defined in Eq. (42)], which equals the number of decades
that the one neglected nonlinear term is below the largest term in the linearized PDE
[see Eq. (41)]. In the examples shown here, we find that choosing t; ¢ so that r > 1.5
gives relative errors in the initial condition below 2%. As t; ¢, increases, the nonlinear
term that we neglect to compute the initial condition becomes more important, and as the
lower bound of r approaches 1, the relative error in the initial condition in the region of
change exceeds 10%. In each case of ¢ ¢, however, the error in the initial condition does
decay as the displacement proceeds. This may uot be true of other types of systems. An
analysis of sensitivity to initial data would be prudent should our method be applied to
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Table'l. Equations of Change, Boundary Conditions, and Choice of Initial Condition

Equations of Change

1

V(6 (Mbeo = k) VB3] + 5 9 [k (Mo + k) V°P] = ~26° 22 (6)

1

V- [6* (Mo + kpu) VP2 + = V™ [B* (M — kyoy)V*P2] = 0

2

Boundary Conditions

Fird — fu(8) dP

V*P0,7) = — D*(S) ds (S)
V*P;(0,7) = F"""’f"(ﬁ;'(ﬁ"’f‘““’ dﬁ (8)
dP;

VP (Es,7) = K(Es,7) X [S — Secl TE (5)

P(€s,7) =0
Initial Condition
P:(f,O) = PC*,O

or

(7)

(16)

(20)

[no flow] (23)

A computed initial condition P*(£,0) that satisfies both the inflow boundary condition

upstream and steady equations of change downstream.
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Table 2. Values of Parameters in Cases of Homogeneous and Composite Media

Parameter Symbol  Homogeneous Composite
Characteristic absolute permability kehar 100 mD? 100 mD
Characteristic porosity Gchar 0.19 0.19
Residual saturation of water Swr 0.05 0.05
Residual saturation of oil Sor 0.1 0.1
Fraction of water in injected liquid Finj 1 0.8
Fractior.al flow of water far downstream fw,co 0.0001 0.082
Tota! superficial velocity q 0.85 m/d 0.28 m/d
Oil-water intersacial tension o 72 mN/m 72 mN/m
Viscosity of water Pow 1cP 1cP
Viscosi*y of oil Lo 0.91 cP 0.91 cP
Capillary number Ca 7.2 x 1077 2.4 x 1077
Units of length [Eq. (3)] Uy 1m 3m
Units of time [Eq. (4)) U, 54h 48 h
Units of pressure [Eq. (5)] Up 1 bar 1 bar

i Darcy = 9.87 x 10713 m?

systems of different character.

We did attempt solu‘ion w. h the initial condition of uniform capillary pressure, which
implies no flow and violates the inflow boundary condition. The resulting shock at the
injection face, however, prevented convergence of the Newton iterations at the first time
step regardless of our initial guess. Fortunately, we were able to compute solutions with
the no-flow initial condition in the case of the composite medium.

Composite Porous Medium

Figure 8 shows the evolving profiles of saturation and capillary pressure in the case of
a composite porous medium (see Figure 3) with the initial condition of unifurm capillary
pressure, which implies a step change in saturation at the interface between the media
(see Figure 8a). This initial condition violates both the inflow boundary condition and,
at the internal interface, the steady egnations of change. The inflow boundary condition
(16) does not require an instantaneous change in saturation itself, but in the gradient of
saturation. This too is sufficient to cause computational artifacts. In Fig. 8d the capillary
pressure profile shows a large oscillation: it has fallen at the face but has soared one node
inward. This large wiggle decays over the next few time steps. By this time, however,
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a disturbance (more visible in the plot of capillary pressure) has begun to grow at the
interface between the media.

This disturbance appears because the initial condition does not satisfy the steady-
state equations of change at the internal interface when there is flow. The saturation
upstream of this interface is lower than the saturation downstream; thus, the fractional
flow of water, which is also the total flux of water because V*S = 0 on each side, is lower
on the left side than on the right side. To conserve mass, gradients form that cause a net
dispersive flux toward the interface from both sides. This feature can also be explained
in terms of what the equations of change require with the condition V*P* = 0. With a
uniform distribution of capillary pressure, the pressure equation (7) requires that

oP; c
8 = Mk +krw

k* (43)

where c is constant with respect to position and positive (flow is in the direction of in-
creasing £). Setting V*P* = 0 in the saturation equation (6) and applying Eq. (43) give

L 0S8 [Mkyo -k |
2¢ F-éz[m] ’ (44)
or, in terms of fractional flows,
2¢* 05 _ o Olfe — ful (45)

or o¢

The gradient on the right side of Eq. {45) is zero on each side of the interface between
the media. At the interface itself, however, this gradient is negative. Thus, the equations
of change demand a decrease in saturation, i.e. an increase in capillary pressure, at the
interface. Figures 8c—f show this.

The use of either coarse discretizations of space or upwinding might suppress the
growth of such a cusp in capillary pressure at a boundary between two porous media
that have different relations between capillary pressure and saturation. Modellers of flow
in fractured petroleum reservoirs (which have such boundaries) use initial conditions of
uniform capillary pressure but do not mention seeing any immediate changes at the internal
boundaries as shown in Figures 8c—f (see, for example, Douglas et al., 1989; and Gilman
and Kazemi, 1983).

The cusp in capillary pressure decays once injected water reachesit. Figures 8g,h show
the evolution of the profiles during this stage. Finally, Figures 8i,j depict the approach
to steady state, at which the total flux of water equals F}"/ throughout the medium.
Barely visible as dashed lines are the closed-form solutions of S(€) and P?(£) at steady
state, which are straightforward extensions of the work of Yortsos and Chang (1990). The
Galerkin finite element solution approaches the correct steady state.
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Figure 8. Computed profiles of saturation and capillary pressure in the composite
medium with an initial condition that violates tte inflow boundary condition
upstream and steady equations of change downstream. Profiles are plotted
after each time step.
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Figure 9 shows the evolving profiles of the same displacement, but with an initial con-
dition that was computed as shown in Figure 6 and detailed above. This initial condition
satisfies both the inflow boundary condition and the steady-state equations of change near
the interface between the media. The solution evolves without artifacts and approaches
the correct steady state. Because there are no abrupt changes or oscillations in capillary
pressure or saturation, the adaptive scheme of time integration sets larger time steps, and
accurate predictions of capillary pressure and average pressure allow the Newton iterations
at each time step to converge quickly. The total computer time needed to reach t =10 h
with the flow-compatible initial condition is 40% of that needed with the no-flow initial
condition (uniform P}) shown in Figure 8.

In both the homogeneous and composite media, using a smaller initial time step and
a finer discretization of space near the injection boundary can eliminate the oscillations
in saturation and capillary pressure caused by the initial condition of uniform P?* (see
Figure 8). One difficulty that remains, however, is permanent oscillation from one time
level to the next in the time derivatives of these quantities. These oscillations lead to poor
predictions of S and P} at each time level, and the adaptive predictor-corrector scheme of
time integration thus sets time steps that are unacceptably small. For example, in the case
of the composite porous medium, reducing the initial time step to 10% of the value used
in Figure 8 and adding 5 finite elements at the injection boundary eliminate the wiggles
in § and P} at the inlet. Because of the oscillations in the time derivatives of S and P},
however, the adaptive time step levels off at nearly 0.001 h. Thus, approximately 10,000
time steps would be needed to reach t = 10 h. Our initial condition (see Figure 9) required
36.

Conclusions

An initial condition, which sets the state of a system at a particular time, should
describe accurately the physics of the situation and should not create computational ar-
tifacts. Drawing on the example of two-phase flow in porous media, we have shown that
unphysical oscillations can mar a solution should the initial condition violate an inflow
boundary condition. Tracking these unwanted features significantly increases the amount
of computer time needed to solve the equations of change. In the case of a composite
medium, an initial condition that violates the steady-state equations of change under flow
conditions produces features in the solution that might be equally undesirable.

We have proposed and tested a way to avoid these ills by constructing an initial
condition that satisfies the inflow boundary condition upstream and the steady equations
of change downstream. In the region of change, the governing nonlinear equations are
linearized and solved (using a method immune to wiggles, such as Laplace transformation)
at a small value of time such that the solution is as close as desired to that of the nonlinear
equations. In the region of the system that is yet at a steady state, the steady equations
of change are solved with the appropriate boundary conditions. Splicing together the
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solutions in these two regions gives the desired initial condition. Computing the evolution
of a system from this initial condition is more efficient and free of artifacts.

Although we examined the particular case of two-phase flow in porous media, our
findings relate to a variety of situations in mass, heat, and momentum transport. Initial
conditions are a vital — but sometimes overlooked — component of the description of
continuous-flow systems.
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A COMPARISON OF SYNTHETIC BOUNDARY CONDITIONS
FOR CONTINUOUS-FLOW SYSTEMS

Synopsis

The analysis of continuous-flow situations requires identification of a ‘system,’ which is
the region of particular interest, and its ‘surroundings,’ which are represented by conditions
imposed at the boundary of the ‘system.” General procedures for choosing boundary
conditions at surfaces at which no phase boundary exists, i.e. ‘synthetic’ boundaries, seem
to be lacking. Drawing on the example of immiscible displacement of oil by water in a one-
dimensional, semi-infinite porous medium, we compare four types of synthetic downstream
boundary conditions — Dirichlet (first kind), Neumann (second kind), Robin (third kind),
and what is in essence none — to find which is the most efficient when predictions are to
be computed from the solution of the governing equation set. The Robin-type condition
proves best: it gives the most accurate solution at fixed cost or, alternatively, requires
the least work to achieve a given accuracy. To represent faithfully the physics of the
situation, the Dirichlet and Neumann conditions must be imposed farther downstream of
the region of interest than the Robin condition. In addition, we explore the behavior of a
‘pseudo-boundary condition,’ which is in fact not a proper boundary condition at all, but
discretization and truncation errors mask its redundant nature and allow it to perform
well in cases where there is little upstream signalling. Although our findings are drawn
from the displacement problem, they are more broadly applicable to analysis of transport
phenomena.

Introduction

The analysis of continuous-flow situations requires the definition of a region of partic-
ular interest, which is commonly termed ‘the system,’ and the remainder of the universe,
which is traditionally called ‘the surroundings.” Equations of change that describe the be-
havior of the system derive from laws of conservation of mass, momentum, energy, charge,
and so forth and equally from constitutive relations that represent material behavior. A
boundary, i.e. an idealization that consists of a closed mathematical surface, defines the
region or domain of interest by separating it from the rest of the universe. Boundary
conditions must both single out a particular solution of the equations of change within the
system and, more importantly, express accurately the interaction between the system and
its surroundings.

In some simple cases, the solutions of the equations of change of a particular sys-
tem can be written in terms of standard mathematical functions. These systems usually
have regular domains, e.g. of rectangular, cylindrical, spherical, or other symmetry, and
transport coefficients that do not vary with location. Moreover, they usually are not com-
plicated by nonlinear coupling of the transport of one quantity, e.g. heat, with the transport
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of another, e.g. momentum. Digital computers now enable the study of systems of greater
complexity that are described by equations that do not have closed-form solutions so far
as is known or expected. Two schemes of computer-aided analysis in wide use are finite
difference approximation and Galerkin’s method with finite element basis functions.

Even though all real continuous-flow situations are finite, the current tools of
computer-aided analysis usually limit the size of the region that we can study in detail.
To mark tle region of interest where there are no phase boundaries, so-called ‘synthetic
boundarie.’ are often drawn. How to select the most efficient boundary conditions at
surfaces that do not coincide with phase boundaries is a vital, and largely uncodified,
issue.

In an earlier paper (Novy et al., 1990), we explored this issue in the context of the
transport of a chemical species in a continuous-flow reactor, i.e. the celebrated problem
of Danckwerts (1953), who ignited debate by suggesting the outflow boundary conditions
that now bear his name (see especially Wehner and Wilhelm, 1956; Pearson, 1959; and
Bischoff, 1960, 1961). We concluded that the lengths of finite entrance and exit sections
that abut a reactor can have an impact on predictions of reactor behavior: for example,
using the solution of Danckwerts (or, equivalently, of Wehner end Wilhelm) to predict
reactant conversion at steady state in a perfectly-mixed reactor equal in length to its
entrance section leads to an error of over 15%. Also, we proposed and tested two boundary
conditions for the synthetic boundary at the downstream end of the exit section, namely
instant mizing and instant remowval, which bracket the range of concentration gradients
that may be imposed in the transient situation.

The goal of this paper is to compare four types of synthetic boundary conditions —
Dirichlet (first kind), Neumann (second kind), Robin (third kind), and what is in essence
none — and to find which yields the most accurate solution at a given computational
cost. A Dirichiet condition sets the value of the unknown function itself, whereas a Neu-
mann condition sets the gradient of the function in a direction normal to the boundary.
Named after the 19th century French mathematician Gustave Robin, whose researches
included distribution of electrostatic potential in unbounded regions (Robin, 1886), the
Robin boundary condition sets the value of a combination of the unknown function and its
normal gradient that is linear in the unknown function (e.g. Iordanidis, 1973). A Robin-
type condition on temperature arises in the transport of heat across the interface between
a solid and a moving fluid: at the solid/fluid boundary, the conductive flux of heat in the
solid, which is proportional to the gradient of temperature in the solid, must equai the
convective flux of heat in the fluid, which, from Newton’s law of cooling, is proportional
to the difference between the temperature at the boundary and the ambient temperature
of the fluid. In his celebrated treatise on the transport of heat, Fourier (1822) equated
these fluxes and may have been the first to derive a boundary condition of the third kind.
In fact, hydrogeologists, among others, name the boundary condition of the third kind in
honor of Fourier, not Robin (de Marsily, 1986).
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The context here is immiscible displacement of oil by water in a one-dimensional
porous medium that is long enough to be considered semi-infinite and thus requires a
synthetic boundary downstream. The particular equation set that we study has a closed-
form solution (Fokas and Yortsos, 1982; Yortsos and Fokas, 1983), which makes comparison
easy. In addition to comparing synthetic boundary conditions in the case of a flow with
planar symmetry, we propose Robin boundary conditions that are suite’.le for cylindrically
and spherically symmetric flows. Although we draw on the example of two-phase flow in
porous media, the pariial analogies among transport of mass, heat, momentum, and charge
make our findings more broadly applicable.

Theory

Two partial differential equations that are often used to describe two-phase flow in a
porous medium can be derived from the equation of continuity of each phase ¢

- =-V-q; (1)

and the linear constitutive equation called Darcy’s law, which relates the superficial flow
velocity q; and the gradient of the pressure P; of phase i:

kkri
Hi

qi = — VPF; . (2)

¢ is the porosity or void fraction of the bulk medium, §; is the saturation or fractional
void volume of phase 7, ¢ is time, k is the absolute permeability of the medium, k.i(S;) is
the relative permeability of phase 7, and p is viscosity. In this paper, the two phases can
be thought of as oil (¢) and water (w) in a porous medium that is preferentially wet by
water.

Substituting Darcy’s law of each phase into its respective continuity equation and
then both subtracting and adding the results give a pair of partial differential equations.
Defining the capillary pressure P.(Sy) = P, — Py, the average pressure P, = %(Po + P,),
and the units of length, time, and pressure such that

V = Cav/é/k V* (3)
¢

t= L Volk T (4)

P=o+\/¢/k P* ’ (5)

where Ca is the capillary number qu,, /o, g is the total superficial flow velocity (g, + qu ),

o is the oil-water interfacial tension, and the asterisk denotes non-dimensional quantities,
yields the final equations to be solved for the saturation of water S = §,, and the average

i
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LB
pressure Py

* wps] | Lo dP; . oS
V ' [(Mkro - krw)v Pa] + §v ¢ [(M’Cro + k,-w)—d—s—— V S] = —257—_- (6)
V* ¢ [(Alkra + krw)v*P;] + %V* ¢ [(Mkro + k,-w)d(f; V*S] = 0 . (7)

M is the viscosity ratio py/po. We use M = 1.1 in all of our examples. Equations (6) and
(7) are usually called the saturation equation and the pressure equation. Peaceman (1977)

gives derivations of these equations and alternative forms, including the so-called ‘velocity
formulation,’ which we use below.

Our choices of relative permeabilities kri(S) and capillary pressure P}(S) are those
that are necessary in order for Eqgs. (6) and (7) to have the closed-form solution derived
by Yortsos and Fokas (1983). The ratio of the relative permeabilities must obey

Eru(S) S — Sur
FS) 1=5m -9 | (8)

where S,, and Sy, are the residual saturations of oil and water in the porous medium.
In general, Syr < S <1~ Sor. We use the values Sopr = 0.15 and Sy, = 0.0375 in all of
our examples. In one simple case, Eq. (8) implies linear relative permeabilities, which are
unrealistic but adequate for our purposes here. Integration of the derivative of capillary
pressure dP*/dS used by Yortsos and Fokas gives, to an additive constant C,

* (M= 1) _ o (M —1)
P(8)+C= g5 nfl — S, — 8] TR o
M@ = Sor = S)+ S = Sur (M —1)?
e - = QDwrf >
x fn T M 50— 5o n[S ~ Sur] . (9)

The value of C is irrelevant here, for only the derivative of P*(S) appears in the set of
governing equations. Figure 1 depicts the capillary pressure curve with C = 0, Syr =
0-0375, Sor = 0-15, and M = 1v1. »

Figure 2a shows our region of interest. To displace oil, water is injected through an
open face into a homogeneous, isotropic porous medium of great extent. We are interested
in computing accurately and efficiently the evolution of the profiles of saturation and
average pressure.

Equations (6) and (7) require two boundary conditions each in S and P and an initial
saturation profile. Choosing the boundary conditions at the injection face is straightfor-
ward. At this face, only water is flowing, i.e. qw/¢ = 1. This implies that the gradient
of pressure in the oil is zero at the injection face. Using this fact, one can deduce from
Darcy’s law (Eq. 2) for water and from the definition of capillary pressure the following
condition on saturation:

(10)

R
V*S(0,7) = [k,.,, i ]

ds

210



Q.1

*
¢

0.08
0.06
0.04
0.02

CAPILLARY PRESSURE P

-0.02
-0.04
-0.08
-~0.08
-0.1 i I A fod
0 02 04 *X) 08 1

SATURATION OF WATER S,

Figure 1. Capillary pressure curve of Yortsos and Fokas with Sy, = 0.0375, S,, = 0.15,
M = 1.1, and additive constant C' = 0.

The boundary condition on average pressure derives similarly from Darcy’s law for water
and the definition of average préssure:

V*P*(0,7) = -%l : (11)

Selecting two more boundary conditions is not as easy. The medium can be regarded
as semi-infinite, because the downstream boundary is distant. Yet we do not have the
resources to study the entire domain: a synthetic boundary is needed downstream. Because
only the gradient of average pressure appears in Egs. (6) and (7), a pressure datum must
be set. This is done at the synthetic boundary:

Pi(ls,7)=0 . (12)

Equation (12) acts as a Dirichlet boundary condition on average pressure.

A second boundary condition on S is needed. Table 1 lists three types of conditions
that can be chosen at a synthetic boundary. Systematic comparisons of the effects of these
boundary conditions on computed solutions are few. Bixler (1982), in his research on
slot and knife coating flows, con .1nded that a Robin-type boundary condition provides the
greatest accuracy per unit computational cost. Basaran (1984) reached the same conclusion
in his study of the statics and stability of charged drops. In general, the synthetic boundary
must be placed farther downstream with the Dirichlet and Neumann conditions than with
the Robin condition. The constant of proportionality i of the Robin condition and an
estimate of where to locate the synthetic boundary can often be obtained by solving the
governing equation set in the asymptotic regime far downstream.

Instead of using Eqgs. (6) and (7) for this purpose, we employed the boundary condition
obtained from the so-called velocity formulation of this problem, which has convective and
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Table 1. Three Types of Synthetic‘Boundary Conditions

TYPE CONDITION MEANING
‘ AT THE SYNTHETIC BOUNDARY...
DIRICHLET S =S S has reached its asymptotic value
NEUMANN %—?— =0 S has attained some final state downstream
ROBIN %% = K(S — So) | S tends to S at the asymptotic rate

dispersive terms familiar to engineers. A different combination of the equation of continuity

and Darcy’s law of each phase yields in dimensional form

oS . 85 0 aS
o 5 +1f'(9) 52 = 2 [D(5) 32 | (13)
where of J "
! = = I |__Tw
fs)= dS — dS [Mkm + krw] : (14)
is the derivative of the fractional flow of water f and
D(S) = — k' Mkyokrw dP:. (15)

Uy Mkyo + krw dS

is the capillary dispersion coefficient. Evaluating the saturation-dependent functions at
the value of saturation far downstream, i.e. S, gives the linear equation

8s ... .08S 9%S |
¢ 5 taf (Soo)a; = D(Soo)'a—x—j (16)
which is to be solved with the single condition
S(o0,t) = S . (17)
Defining a translating coordinate X = # — ¢f'(Sw )t/ leads to the dispersion equation
oS 0%S
2 = et \
at D(SOO) 0;\,72 \ -

which can be solved. with the single boundary condition (17) [using the combination of

variables X//4D(S)t/¢ (Carslaw and Jaeger, 1959)] to relate S and its gradient at

locations far downstream of regions of change:

e _(I'“(]fl(soo)t/d))?
Qf _ cxp[ VA4AD(Se)t]) ¢ } X [S = Soo] (10a)
O\ /xD(Sm)t] ¢ exfec {_\71 SIENTRY
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In terms of the units of length, time, and pressure given in Egs. (3)-(5), the non-dimensional
form of Eq. (19a) is *

—(6=1'(Se)7)?
8S exP[ VAD* (S)r ]

€ = — = X [S — Seo) (19b)
* E—f'"(Seo)T

‘\/TI'D (Sco)T erfc[m]

where the non-dimensional capillary dispersion coefficient is

__Mkyokyy  dP?
MK, + krw dS

D*(S) = (20)

Equation (19) is a Rebin-type condition that can be used at a downstream synthetic
boundary. Manipulating Egs. (6) and (7) gives the same result, but only after several more
steps.

An appropriate location of the synthetic boundary can be obtained from Eq. (19a).
The constant of proportionality in Eq. (19a) is insensitive to moving the boundary farther
downstream if the argument of the complementary error function is larger than some
number H, for which 3 or 4 is typically suitable. Smaller values of H yield boundaries
that are too close to the region of change for the asymptotic solution to be adequate there,
and larger values of H increase the extent of the domain beyond the size necessary for
accurate and efficient computation. A justifiable location zs of the downstream synthetic
boundary is thus

zs = qf'(Swo)t/ + H+/4D(Sc0 )t/ (21a)

or, in non-dimensional form,

€s = f'(Soo)T + H\/4D*(Soo)T (21b)

The terms on the right side are the contributions of convection and dispersion, respectively,
to the motion of the advancing region of change. In this sense, H weighs the influence
of dispersion on £s. As 7 increases, the downstream synthetic boundary must be moved
farther downstream in order to retain the sarhe level of accuracy at all 7. The position of
the synthetic boundary can be advanced in time according to Eq. (21), but in our solutions
we set €5 to its value at the maximum time desired.

Equation (19) is a Robin boundary condition that is appropriate to one-dimensional
planar flow, such as accomnpanies uniform injection of fluid into a porous medium through
an open face (see Figure 2a). Another common flow pattern, injection through a well
(Figure 2b), is cylindrically symmetric. A third, less common, flow scheme is injection
through a point (Figure 2c), which is spherically symmetric. Table 2 lists the dimensional
convection-dispersion equations that are valid far downstream of the region of greatest
change in the cases of flows with planar, cylindrical, and spherical symmetries.
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To our knowledge, only the planar case admits a closed-form solution, and so allows us
to write both a Robin boundary condition and an estimate of the location of the synthetic
boundary. Under certain conditions, however, the influence of convection relative to that
of dispersion can be ignored far downstream.

In the case of planar flow, the convection-dispersion equation (13) can be written

05 | 4f'(Se) 85 _ D(Sw) 85 5
¢5t+ ts Ox % Ox? (22)

where x is distance measured in units of zg, i.e. the length of the domain of interest.
Should 95/8x and 8%25/9x? be of the same order of magnitude, the criterion of negligible
convection would be

¢f'(Swo)zs

D(Sc)

The non-dimensional group is a Peclet number. This criterion, however, conflicts with
the idea that moving the synthetic boundary farther downstream (increasing zs) should
improve both the validity of the boundary condition there and thus the quality of the
solution in the region of interest. Increasing rg leads to a violation of (23), whatever the
values of ¢, f'(Se), and D(S«). Convection cannot be neglected far downstream if it is
important in the region of interest. Fortunately, we can solve the convection-dispersion
equation and thus derive a Robin boundary condition that includes convection in the case
of planar flow.

<1 . (23)

In the cases of cylindrically and spherically symmetric flows, in which @ and r denote
radial distance, the velocity of flow falls as wand r? respectively, and there are useful crite-
ria of negligible convection. The convection-dispersion equation in the case of cylindrically
symmetric flow (see Table 2) can be written

85+ Q f(Sx) 1 3S D(S«) 1 6[ 85} (24)

"ot mE =l xox~ =% x ox|¥ox

where ) is distance measured in units of wg. Should the gradient and Laplacian of S be
of the same order of magnitude, the criterion of negligible convection would be

f(Sw) @ (25)

1> B0 anh

which is independent of the location of the synthetic boundary. Following the same pro-
cedure in the case of spherically symmetric flow gives the criterion

o [52) Q

D(Sw) ir (26)

Here, moving the synthetic boundary farther downstream eventually allows a convection-
free description regardless of the values of @, f'(Ss), and D(Se). Table 3 summarizes the

216




Table 3. Criteria of Negligible Convection in Regions Far Downstream

- SYMMETRY
OF FLOW

CRITERION

f'(Se0)
75 > ey ()
PLANAR

g = Total velocity of flow

'"(Se0)
1> fb (5e) E%
CYLINDRICAL

Q@ = Volumetric rate of injection
h = Thickness of medium

SPHERICAL rs > Lig=) &

(1) Violates the principle that enlarging the region of interest should
improve the validity of a boundary condition derived from the situation
far downstream. Use boundary condition of Table 2.

conditions under which the dispersion equation adequately describes transport in regions
far downstream:.

Where the influence of convection is slight in the cases of cylindrically and spherically
symmetric flows, we can solve the dispersion equation to derive a Robin boundary condi-
tion. Table 4 gives (in dimensional form) the dispersion equation in the simple geometries
and the associated Robin boundary conditions, which follow from solving the dispersion
equation with combination of variables and applying the downstream condition (17).

One remaining issue is where to locate the synthetic boundary in cases where disper-
sion dominates convection far downstream. To get an idea of where to place the synthetic
boundary at any particular time ¢, we superpose the distances that convection and disper-
sion carry the region of change. In the case of cylindrically symmetric flow, the argument
in the Robin boundary condition that results from the dispersion equation (see Table 4),

l.e.

v = d (27)

V4D(Sc0)t/ ¢

becormnes
_m- Qf (Seo)t/ (21 how)
V4AD(Sxo )t/ ¢
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Following the reasoning that precedes Eq. (21), setting v = H and solving the quadratic
equation given in Table 4, which has one positive root, yields wg. Similarly, superposing
convection and dispersion in the case of spherically symmetric flow yields

r— Qf'(Swo)t/(4mgr?)

V4D(Soo)t/ ¢

(= (29)

Setting ( = H and solving the cubic equation given in Table 4, which has one real root in
cases of physically meaningful coeflicients, gives rg.

Although we report Robin boundary conditions in the cases of flows with planar,
cylindrical, and spherical symmetries, our comparison of boundary conditions is restricted
in this paper to planar flows. We believe that our conclusions apply equally well to cylin-
drically and spherically symmetric flows.

Specification of an initial saturation profile completes the problem statement. One
choice is a medium filled uniformly with oil, but resolving accurately the development of
the saturation front near the injection face at small times would require special considera-
tions that are not of interest here. Fortunately, Fokas and Yortsos (1982) and Yortsos and
Fokas (1983) reported a closed-form solution to a one-dimensional, semi-infinite, immiscible
displacement for particular but realistic relative permeability and capillary pressure func-
tions. We use their solution not only to facilitate the comparison of our computer-aided
solutions, but also to generate initial saturation profiles.

Equations (6) and (7) and their associated initial and boundary conditions we solved
using Galerkin’s method with piecewise quadratic finite element basis functions and the
time integration scheme of Gresho, Lee, and Sani (1980). Most details of the solution
technique are not crucial to this paper, but Strang and Fix (1973) explain well the math-
ematical basis of Galerkin’s finite element method, and Zienkiewicz (1977), among others,
describes its use.

One detail of the solution method that is important is that the Dirichlet-type boundary
condition on P; at the synthetic boundary is enforced by replacing the pressure equation
(Eq. 7) there by Eq. (12). The discarded information that the pressure equation represents
(viz. incompressibility) can be used to write a ‘pseudo-boundary condition’ on S at the
synthetic boundary: ‘

14 (Mkyo + Ky )V* P2

V*S =
L (Mkyo — kyu)dPr/dS

(30)

This is not a proper boundary condition because it provides no new constraint to
single out a particular solution from a family of general solutions. The condition of incom-
pressibility is used already at the injection face in the form of Eq. (11). In spite of this
objection, however, we report below that enforcing this pseudo-boundary condition at the
synthetic boundary sometimes works. Setting V*S with Eq. (30) is in essence solving the
prcblem minus one boundary condition.
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Results and Discussion

The first set of results compares the solutions with Dirichlet, Neumann, and Rebin
boundary conditions (see Table 1) in 12 cases that pair 4 different capillary numbers Ca
and 3 different pesitions of the synthetic boundary as set with the parameter H through
Eq. (21b). The capillaryy number measures the relative strengths of convection and dis-
persion; lower capillary numbers imply weaker convection or stronger dispersion and more
upstream signalling (elliptic character). Thus, we expect the influence of the condition at
the synthetic boundary to extend farther upstream the smaller the value of Ca. We do not
report the solutions of average pressure, because they do not alter the conclusions drawn
from the saturation profiles alone. Also, at a given capillary number, the size of each finite
element, and thus the discretization error of the solution, are the same among cases of
different domain lengths.

Figure 3 shows the computed saturation profiles and closed-form solutions of all cases
of Ca and H. Profiles in cases of higher capillary numbers have steeper gradients. In
Figure 3(d), a solution satisfying a Dirichlet condition was beyond reach: the adaptively-
sized time step became too small for the solution at ¢ = 12 hr to be attained with a
reasonable amount of computational effort. This is symptomatic of solutions that vary
irregularly from one time level to the next. In all cases, moving the synthetic boundary
farther downstream gave more accurate solutions because whatever asymptotic behavior
sets the boundary condition becomes more realistic. Larger domains entail greater costs,
however, because more basis functions are needed to obtain a solution of given accuracy on
an enlarged domain. The Dirichlet condition is unrealistic on the smaller domains because
the region of change reaches the boundary, and the Robin condition appears to be superior
to the Neumann condition.

Figures 4 and 5, which are plots of relative error along the domain, show that the
Robin condition is most accurate. Visible are node-to-node oscillations, or ‘wiggles,’ in
the convection-dominated case of Ca = 107%. Wiggles are caused by an inadequate dis-
cretization (Gresho and Lee, 1981), which is more likely should an inappropriate boundary
condition, such as the Dirichlet or even the Neumann, demand the formation of a boundary
layer, or end layer, upstream of the outflow boundary. The minor, longer-range oscillations
apparent in Figure 5(a,b,ef,1,j) result from trying to resolve abrupt changes in saturation
with the levels of discretization used. An adaptive discretization scheme, such as that of
Benner et al. (1987) or, more recently, Yeckel and Scriven (1990), would concentrate nodes
to resolve bet*er these sharp changes. Clearly, the Robin boundary condition provides the
most accurate solution at a given cost.

The second set of results compares the solutions with the Robin and ‘pseudo’ boundary
conditions (Egs. 19 and 30) in the two extreme cases of capillary number, i.e. Ca = 10~°
and 1079, and a single position of the synthetic boundary. Figure 6 shows the saturation
profiles. Both boundary conditions provide good solutions in the convection-dominated
case, even allowing the region of change to pass through the boundary with little error —
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the mark of the ideal synthetic boundary condition. The pseudo condition gives slightly
more accurate solutions than the Robin condition (see curves at £ = 10 hr). In the
dispersion-dominated case, however, the solution with the pseudo condition drifts off course
badly; the Robin condition is inappropriate too, but this is to be expected in the light of
the value of H that corresponds to this position of the boundary (H = —0.6).

Figure 7, which depicts the history of the relative error at the boundary, is a better
indicator. In the convection-dominated case, the pseudo condition performs very well, but
the kink just after t = 9 hr contrasts with the smooth behavior of the Robin condition.
Trouble with the pseudo condition is clear in Figure 7(b), the dispersion-dominated case.
Just past ¢ = 100 hr, the quality of its solution decays abruptly.

The behavior of the pseudo boundary condition follows from its not being, in fact,
a proper boundary condition at all; that is, it leaves the equations with an infinity of
solutions. This condition works to a degree because discretization and truncation errors
are large enough to mask its redundancy. A symptom of the basic singularity, however, is
the poor rate of convergence of the Newton iteration process used to solve the non-linear
algebraic equations produced by the Galerkin finite element method. In work not shown
here, we successively refined the discretization near the synthetic boundary, reducing the
discretization error there, and the convergence of the Newton iterations and the quality of
the solutions decayed — behavior opposite that of a well-posed problem.
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Figure 7. History of relative error (S—Sciosed form )/ Scioacd form at the synthetic bound-
ary with the Robin and ‘pseudo’ boundary conditions.

The pseudo boundary condition performs better for convection-dominated flows be-
cause its influence does not extend far upstream. The character of the solution upstream
of the boundary asserts itself and keeps the entire solution near the desired branch. In
contrast, the entire profiles of the dispersion-dominated case are largely controlled by the
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downstream boundary condition, and when the solution strays from the proper course,
there is little influence from upstream to restore it.

Although the pseudo boundary condition can give smaller errors than the Robin
boundary condition, it is more expensive compntationally because of the poor rate of con-
vergence of the Newton iterations. Even if codr were not a concern, the unpredictability of
this boundary condition disqualifies it. Thus, our conclusion is that the Robin boundary
condition is the best of those considered here for getting the most accurate solution at fixed
cost. We infer that the Robin condition would also provide at the lowest cost a solution
of desired accuracy.

Conclusions

An accurate mathematical description of any system depends on realistic boundary
conditions, which describe the interaction of that system and its surroundings. The se-
lection of boundary conditions in continuous-flow situations is often difficult because the
boundaries of finite computational domains do not coincide with phase boundaries, and
are thus synthetic.

Using the example of two-phase flow in a one-dimensional, semi-infinite porous
medium, we have compared solutions that each satisfies one of four types of synthetic
boundary conditions: Dirichlet (first kind), Neumann (second kind), Robin (third kind),
and ‘pseudo,’” which is in essence none. The Robin boundary condition gives the most
accurate solution at fixed computational cost, and, we believe, the lowest cost at fixed
accuracy. Dirichlet and Neumann conditions require larger domains and are more apt
to produce wiggles in solutions with little upstream signalling by creating non-physical
boundary layers that may not be resolvable by the discretization adopted. The pseudo
boundary condition provides satisfying results in systems with little upstream signalling,
allowing fronts to pass through the synthetic boundary, but its redundant nature inhibits
the convergence of the Newton iterations, which increases computational costs. The lack
of reliability of the pseudo boundary condition makes it a poor choice in any event.

Although we examined the particular case of two-phase flow in porous media, our

findings surely relate to a variety of situations in mass, heat, and momentum transport.
We believe that Robin-type boundary conditions deserve more widespread use.
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- DIRECT IMAGING OF SURFACTANT MICELLES, VESICLES, DISCS
AND RIPPLE PHASE STRUCTURES BY CRYO-TRANSMISSION
ELECTRON MICROSCOPY

Synopsis

Surfactant microstructures in dilute aqueous solutions and dispersions — globular,
swollen and cylindrical or wormlike micelles, discoid and ripple phase structures, and uni-
and multi-lamellar vesicles — can be seen at high resolution by cryo-transmission elec-
tron microscopy (cryo-TEM) of thin vitrified sample films. Sample films are prepared
within a ¢! ~mber where temperature and chemical activities of the surrounding vapor are
controlled, thereby preventing evaporation and temperature changes that could alter the
microstructure in the labile systems. The thin liquid films are quenched by rapidly plung-
ing them into liquid ethane. The resulting vitrified samples are mounted into a cold-stage
and transferred into a TEM for direct observation. Monophasic solutions of cetyltrimethy-
lammonium bromide (CTAB) show globular micelles that swell with added toluene or
styrene to form swollen micelles. Wormlike micelles form in CTAB-NaBr solutions. Dilute
mixtures of dipalmitoylphosphatidylcholine (DPPC) and diheptanoylphosphatidylcholine
(DHPC) show discoid structures above the main transition temperature of DPPC and A
and A/2 ripple structures of the Py phase at temperatures below the main transition
temperature. A new model is proposed for the A structure and the ripple structures
are shown to exist as single bilayers. Biphasic dispersions of sodium 4-(1'-heptylnonyl)-
benzenesulfonate (SHBS) show spheroidal and tubular vesicles, and complex encapsulated
vesicles and coiled tubules. Vesicle-like microstructures of SHBS persist at 90°C. At the
relatively low SHBS concentrations studied there is no evidence of the constant spacing
characteristic of the lamellar phase at higher concentrations, suggesting that the structures
observed may result from unbinding fluctuations that disrupt lamellar phases.

Introduction

Surfactants in dilute aqneous solutions and in dispersions assemble into a variety of mi-
crostructures: micelles, microemulsions, vesicles and liquid crystalline structures. These
microstructures are characterized by sheet-like surfactant regions (a few nanometers in
thickness) across which composition changes rapidly. Such systems are of biological and
technological importance, e.g., in detergency, drug delivery, catalysis, enhanced oil re-
covery, ultrafiltration, and nanoscale particle production. The macroscopic properties —
rheology, surface tension and conductivity — of these systems depend markedly on the
way the surfactant is organized in three dimensions. The microstructures are often diffi-
cult to elucidate because of size, composition, etc. Conventional techniques like radiation

scattering, although useful, provide indirect evidence of microstructures and to interpret
the results requires a model.
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Figure 1. Schematic oil-water-surfactant phase diagram with artistic models of microstruc-
tures depicted. (Redrawn from Davis et al.1987 with two added models).
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Figure 1 is an idealized ternary phase diagram in which are illustrated severs
the equilibrium fluid microstructures that have been identified in solutions of surfact;
with water and/or oil. Solutions of globular, or “spherical,” and tubular, or “cylindric
micelles and of their inverted analogs are well documented, as are lyotropic liquid crysta
phases with lamellar, hexagonal and cubic symmetries. However, the local shapes of
sheet-like zones the aggregated surfactant forms and the role and importance of molec
fluctuations and bending and stretching motions of the sheet-like zones in micellar solut
and liquid crystals are unsettled issues that are the subjects of much current research
Davis et al.1987). Here we describe how microstructures whose morphological scales ¢
the range from the local curvature of the surfactant sheet-like zones in equilibrium mice
microemulsions and non-equilibrium vesicles to the supramolecular organization of f
assemblies in liquid and cubic crystalline phases, as well as the structural transitions
occur between different microstructured states, can be imaged directly by means of rece
developed electron microscopy techniques.

Transmission electron microscopy is an attractive way to study microstructure:
cause it directly produces images at high resolution. However, surfactant microstrucs
cannot be casily imaged with TEM because: 1) the high vapor pressures of the surfac
solutions make them incompatible with the low pressures (< 1079 torr) in TEM; 2)-
trons induce chemical reactions in surfactant solutions that can change microstructurel
3) often there is insufficient contrast between the microstructures themselves and their
roundings. Various sample preparation techniques, e.g., chemical fixation, stainingl
drying have been used to overcome these problems, but each technique has introd
new problems, e.g., microstructural rearrangement due to composition changes, leag
of membrane components, drying stresses, etc. Sample preparation affects the structif
the sample. often radically enough to obscure the original microstructure. A new sae
preparation technique that solidifies the sample so quickly as to vitrify, rather than cry
lize, liquid water has overcome many of these limitations, and opened a window on d,
high resolution images of virtually the original microstructure of surfactant systems.

Two important advances have been made. The first is the ability to cool beloe
glass transition temperature of the sample at atmospheric pressure so quickly that crs
do not form. This is achieved by plunging thin films of water or other liquid or semi-H
materials into cryogens like liquid ethane or propane at their freezing point (Adrit
al.1984). The cooling rate is so fast (10* to 10° K/sec; Costello et al. 1982) tha-
ter vitrifies, i.e., water molecules do not rearrange into a crystalline form as they
at slower cooling rates. Vitrification of water is an important indicator of micros-
tural integrity. If water molecules do not rearrange appreciably during cooling, then ir
molecules like surfactants and supramolecular aggregates like micelles are not likely to-
range appreciably. Vitrification avoids the artifacts of crystallization, diffraction cornt,
and excessive radiation damage seen in micrographs of CTAB micelles reported recy
by Ness and Moth (1988), and allows a better view of the sizes, shapes and connecy
of the microstructures. This fast-freezing, cryo-TEM technique was used by Dulet
et al.(1984) to study droplet packing in water-diluted samples of so-called glass-foig
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microemulsions, and by Talmon (1986) to study microstructures in surfactant dispersions.
The latter found, however, that preparing thin films of sample in the open air subjected
them unavoidably to evaporation and temperature change, which induced artifacts — mi-
crostructure not present in the original liquid.

The second advance is the means for preparing the thin films in an environmental
chamber where they can be kept at the controlled temperature and chemical activities of
the surrounding vapor until a few milliseconds before they are vitrified (Bellare et al.1986a,
1988; Bellare 1988). In this way artifacts caused by temperature or concentration changes
can be prevented, as demonstrated in studies of vesicles, spherical and cylindrical micelles,
and hexagonal liquid and cubic crystals (Bellare et 2l.1986a&b, Burns and Talmon 1987,
Vinson 1988, Vinson et al.1989, Siegel et al.1989).

The results of the cryo-TEM study of surfactant microstructures in aqueous disper-
sions and solutions we report here illustrate the current capability of cryo-TEM. Sections
2 and 3 describe the sample preparation and systems studied. Section 4 presents a series
of micrographs of vesicles and globular, cylindrical, and swollen micelles showing some
structures that have never been seen previously.

Sample preparation

Samples were prepared in the controlled environment vitrification system, or CEVS
(Figures 2, 3), which is described in detail elsewhere (Bellare et 2l.1988). In the CEVS,
temperature was controlled to within £ 0.1°C by controlling the current to a 600 Watt
halogen-quartz lamp. An insulated reservoir mounted on the outside rear wall of the CEVS
could be charged with refrigerant if a heat sink was required. The chemical activities of
the vapor were controlled by saturating the chamber with the volatile components present
in the sample. This was accomplished either with porous sponges extending upward from
liquid reservoirs or with a sparger system. The air inside the chamber was recirculated

across the sponges or through the sparger to reduce temperature and composition gradients
in the vapor.

In the studies reported here, thin films of sample were formed by placing a drop of the
liquid on a holey polymer support film which had been coated with carbon and mounted
on the surface of a standard TEM grid (Vinson 1987). The drop was blotted with filter
paper so that thin (< 1 pm) films of the sample remained, and these spanned the holes in
the support film. The entire assembly was then vitrified by rapidly plunging it through a
synchronous shutter at the bottom of the environmental chamber and into liquid ethane
situated immediately beneath.

The vitrified samples were examined in a JEOL 100CX analytical electron microscope,
operated at 100 kV in the conventional TEM mode. To do this they were transferred from
liquid ethane to liquid nitrogen, in which they were then transported, and mounted onto a
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Figure 2 . The controlled environment vitrification system (CEVS) used to prepare sam-
ples for cryo-transmission electron microscopy. Parts of the system are labelled
as follows: (A) environmental chamber; (B) cryogen reservoir; (C) stereomicro-
scope; (D) illuminator; (E) double-cable release; (F) digital thermometer; (G)
temperature controller; and (H) meter to display relative humidity measured by
a sensor located in the environmental chamber.
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Figure 3. Schematic of sample preparation procedure with the CEVS.
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modified JEOTL EM-Specimen Cooling Holder using a cold-stage transfer module (Perlov
et al.1983). The sample holder temperature was maintained below -165°C during imaging.
Images were recorded on Kodak SO-163 film and developed in Kodak D-19 developer
(undiluted) for 12 min. Images were recorded at 3.9 pum underfocus of the microscope
objective lens to provide phase contrast, which is mainly responsible for gradients of optical
density in the images. Images were recorded at 20,000-33,000x (£5%) and further enlarged
threefold to tenfold when printed. Prints were made on Agfa Brovira Speed paper of
contrast grades 3 to 5. Unsharp masking, a form of background subtraction to compensate
for the relatively narrow dynamic range of printing papers (Guettler et «l.1987), was used
to print negatives that had a large range of optical densities.

Systems studied

Cetyltrimethylammonium bromide, or CTAB, was obtained from Fluka (Ronkonkoma,
NY) and used without further purification. Dipalmitoylphosphatidylcholine (DPPC) and
diheptanoylphosphatidylcholine (DHPC) were obtained from Avanti Polar Lipids, Inc.
(Birmingham, AL). Dry mixtures of the lipids were prepared by removing the organic
solvent (chloroform) under a stream of nitrogen gas followed by evacuation to 50 um Hg
for 12 hours. Sodium 4-(1'-heptylnonyl)benzenesulfonate, or SHBS, was synthesized at
the University of Texas, Austin by Dr. W. H. Wade and purified as described by Franses
(1979). The surfactants were dissolved or dispersed in distilled water further purified
by lon-exchange. Solutions and dispersions were made by pouring water into weighed
quantities of surfactants, and repeatedly inverting the container by hand at 0.5 Hz for
about 10 minutes. Swollen micelles were prepared by adding the swelling agent (toluene
or styrene) to the surfactant solution and stirring for 10 h on a magnetic stirrer rotating
at about 2 Hz.

Cryo-TEM samples of monophasic CTAB solutions at temperatures ranging from 24
to 26°C were prepared at concentrations below (0.01 wt%), at and above (1.0 wt%) the
critical micelle concentration range, or cme, which is about 0.036 wt% at 25°C (Ekwall et
al.1971). Micelles of CTAB (1 wt%) were swollen with toluene (0.4 wt%) and cryo-TEM
samples were prepared from the solution at 27°C. Swollen CTAB (1 wt%) micelles were also
formed by adding styrene (0.6 wt%) that contained 0.1 wt% azoisobutyronitrile (AIBN),
a polymerization initiator. Cryo-TEM samples were prepared at 27°C from solutions that
had not been exposed to ultraviolet irradiation and from solutions that had been exposed
to 254 nm ultraviolet irradiation for 1 hour. Cylindrical micelles formed in CTAB (0.37
wt%)-sodium bromide (3.0 wt%) solutions at 35°C were examined. Aqueous mixtures of
the lipids were prepared at 20 mM DPPC (1.47 wt%) and 5 mM DHPC (0.24 wt%) and
examined at 45°C and 28°C. Aqueous dispersions of SHBS were examined at 2 wt% and
25°C, where the phase diagram (Franses et al.1980) shows the system to be biphasic, and
at 0.1 wt% and 90°C, where the pliase diagram shows the system to be monophasic.
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Results and discussion

Contrast in unstained surfactant samples comes mainly from gradients in the phase
of electron waves traversing samples that have spatially varying electron-refractive indices.
The phase gradients arise because electrons are scattered by different amounts in different
parts of the sample. The objective lens of the microscope can be defocused to add a
contribution to the phase shift of the scattered electrons. This allows the microscopist
control over interference of scattered electrons with unscattered electrons, which is the basis
of phase contrast. Because the phase shifts of the electrons also depend on the structure
from which they are scattered, some spatial frequencies are enhanced by the interference
while others are attenuated. A nominal defocus of 4 um accentuates spatial frequencies
corresponding to about 5 nm, but attenuates spatial frequencies corresponding to smaller
real space distances. Therefore, this defocus is appropriate for imaging supramolecular
structures like micelles and bilayers that are typically 4-5 nm in diameter or thickness,
as computer simulations of phase contrast images indicate (Bellare 1988). In general, the
optimal defocus is determined by the object size or periodicity being imaged. Objects
containing a wide range of spacings may require several images to be taken at different
amounts of defocus.

Amplitude, or mass thickness, contrast is a second, but often negligible contribution
to the contrast of surfactant microstructures. Amplitude contrast arises when scattered
electrons are prevented from contributing to the image by the objective aperture. Regions
of the image from which more electrons are removed appear dark. Total electron scatter-
ing depends on the atomic numbers of the elements encountered and the sample thickness
traversed. Amplitude contrast from unstained surfactant microstructures is usually negli-
gible because the regions of surfactant typically sampled by the electrons are small (a few
nanometers), and the majority of the elements (C, H, O) present in the microstructure do
not differ significantly in atomic number from the aqueous or oleic matrix.

Figure 4a is a micrograph of monophasic CTAB (0.01 wt%) solution below the cme. As
expected, inspection of Figure 4a shows no discernible microstructure within the vitrified
film. The surfactant is in molecular solution or submicellar aggregates which caunot be
resolved. The structured appearance of the surrounding polymer film (seen more readily
in Figures 6, 10 and 11) is the result of electron-beam induced free radical reactions at
the polymer/vitreous ice interface (Talmon 1987). The dark round objects (marked C' in
Figure 4a) are crystalline ice formed from moisture that has condensed onto the surface of
the sample. The crystalline ice appears dark because the crystal planes diffract electrons
at angles large enough that the electrons are removed by the objective aperture and do not
contribute to the image. The ice crystal is surrounded by a bright fringe called a Fresnel
fringe. This fringe stems from interference between unscattered electrons and electrons
scattered from the discontinuity that exists at the periphery of the ice crystal where it
meets the vitreous ice, 1.e., at the vacuum-ice crystal-vitreous ice line of contact. The
appearance and intensity of the fringe are determined by the defocus condition and the
local contact angle the ice crystal makes with the vitreous ice.
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Figure 4 (a). Monophasic solutions of CTAB (0.01 wt%) below the cme show no discernible
microstructure within the vitrified film (A) of solution spanning the hole in the
polymer support film (B). The dark spots (C) are surface contamination, (b)
CTAB (0.03 wt%) solutions near the cme show a few structures (A) that may
be micelles or sub-micellar structures. (¢) CTAB (1.0 wt%) solutions above the
eme show globular micelles (A) of 5-7 nm diameter. Chain-like structures that
appear to comprise several spherical micelles are infrequently seen (B). Again,
contamination (C) can be scen on the sample surface.
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Figure 4b is of an aqueous CTAB (0.03 wt%) solution near the cme and shows a
few micelles 5-6 nm in diameter and also smaller, possibly submicellar, aggregates. The
surfactant structures in this micrograph, and also in Figures 5, 6, 10 and 11 are found near
the surrounding polymer film. Surface tension makes the sample film, which spans a hole
in the support film, take on a biconcave shape, The sample thickness near the center of a
hole can range from submicellar dimensions to hundreds of nanometers depending upon the
size of the hole in the polymer film and the amount of sample that remains after blotting.
The thickness, which can be as much as a micrometer, is greatest near the edge of a hole.
The thickness gradient can cause microstructures to segregate by size. Size-segregation is
commonly observed when imaging larger vesicular structures as in Figure 10. However,
micelles may be absent from the central portion of the biconcave sample film of micellar
solution as a result of micellar partitioning driven by the film thickness dependence of the
disjoining potential. ‘

Aqueous solutions containing 1 wt% CTAB are above the cmc and show globular,
perhaps spherical, micelles 5-7 nm in diameter as seen in Figure 4c¢. This is in agreement
with the hydrodynamic radius of 3.2 nm reported by Dorshow et al.(1982) from dynamic
light scattering at low ionic strengths and 25°C, The image is a two-dimensional projection
of a three-dimensional sample; therefore, the measured sizes can be affected by overlapping
projections from two or more micelles, Because the TEM has a large depth of field and the
sample thickness can be much greater than the diameter of a micelle, the spacings between
micelles in the projected images are small. Figure 4¢ demonstrates that the micelles are
not confined to the edge of the biconcave film if the sample is sufficiently thick.

Figure 5a shows CTAB (1 wt%) micelles swollen with toluene (0.4 wt%). Diameters
of the swollen micelles measured from the micrographs range from 6-9 nm. The aggrega-
tion number of the micelles rises to accommodate the larger surface area of the swollen
micelle. Higher resolution images would provide better size estimates which can be used
to calculate aggregation numbers for comparison with aggregation numbers measured by
- other experimental techniques, e.g., fluorescence quenching, light scattering, etc.

Figure 5b shows CTAB (1 wt%) micelles swollen with styrene (0.6 wt%) that con-
tained 0.1 wt% AIBN. Measured diameters of the swollen micelles range from 9-10 nm.
Micrographs of samples prepared from solutions that were exposed to ultraviolet light (254
nm) to initiate polymerization show swollen micelles with diameters from 8-9 nm as seen
in Figure 5¢. The difference between the diameters of the unpolymerized and polymerized
micelles may be attributable to the 10% volume reduction of styrene upon polymeriza-
tion. However, the experimentally measured size changes of the micelles are not larger
than the resolution (about 2 nm) in the micrographs. Although further experiments are
needed, it appears that polymerization of the swollen micelles in the absence of emulsified
styrene preserved the styrene inventory within the micelles without the latter coalescing
or aggregating.
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Figure 5 (a) CTAB (1.0 wt%) micelley swollen with toluene (0.4 wt%) are 6-8 nm
in diameter. Note size increaser unswollen micelles (Figure 4¢). (b) CTAB
(1.0 wt%) micelles swollen wityrene (0.6 wt%) are 9-10 nm in diameter. (¢)
Swollen CTAB (1.0 wt%) mic with a polymerized styrene (0.6%) core have
diameters ranging from 8-9 npmpare with Figure 5b).

Figure 6 shows that aqueous CTAI3T wt%) solutions with added NaBr (3.0 wt%)
contain cylindrical or wormlike micellesh diameters of about b nm and lengths of sev-
eral micrometers. The micelles changm spherical to cylindrical because the added
electrolyte alters the surface charge der and reduces head-group repulsions (Lindman
and Wennerstrom 1980, Missel et al.1; this change decreases the effective area per
head -group and allows the geometricareferred structure of lower mean curvature to
form. The cylindrical micelles may fan entanglement network; they are heing fur-
ther investigated with stercomicroscop obtain three-dimensional information about
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the shape of the micelles aud the intermicellar interactions, It is interesting to note that a
branched micelle has been observed only once (¢f. Vinsen 1988). In Figure 6 a hole is scen
in the central portion of the sample fili, where the sanple thickness is so small that the
micelles have been pushed toward the edge of the vitrified filn, Also seen is o tear in the
sample film extending from the hole to the sample edges, Tears may arise from mechanical
damage that occurs during sample transfer and then grow into holes as the vitreous matrix
flows to relieve stresses wlhen it is irradiated by electrons.

100 nm

+

‘ o,‘-h.

Figure 6. Wormlike micelles (A) with diameters of 5 nm and lengths of several micrometers
are seen in CTAB (0.37 wt%) solutions containing added electrolyte (NaBr, 3.0
wt%). That the micelles interact is evident from the area marked B, where two
micelles are intertwined. Holes (C) and tears (D) are occasionally seen in the
vitrified sample films. Prepared from 35°C. Reproduced from Proc. 1988 EMSA,
vol. 46, ©1989 San Francisco Press, Inc., by permission.

Figure 7 shows discoidal structures, thought to be oblate spheroids, in aqueous mix-
tures containing 20 mM DPPC (1.47 wt%) aud 5 mM DHPC (0.24 wt%) prepared from
45°C. The DHPC, which forms spherical micelles in the absence of DPPC, may be more
concentrated at the edges of the discs where the mean curvature is higher. The discoidal
structures are also seen when DPPC is replaced by sphingomyelin (Vinson 1990). The discs
are seen at various orientations with respect to the electron beamn. When the axis of revo-
lution is parallel to the beam the projection of the structure is a cirenlar image about 20 to
30 nm in diameter with weak contrast. When the axis of revolution is perpendicular to the
beam the projected image is a dark line about 5-7 nm wide. The line appears dark because
its width is in the range accentuated by phase contrast. The contribution from amplitude
contrast is larger than normal hecause the electrons travel a longer distance (20-30 1)
through the dises than in the parallel orientation (~5-7 mn). However, phase contrast is
still the major contributor, as is indicated by the lack of contrast hetween the ends and

239



middle of a line; contrast is expected if ample contrast is the major contributor, At
orientations between parallel and normal, the ected images appear somewhat elliptical
as expected. Disclike models have been projl for bile salt-lecithin mixed micelles by
Small (1967) based largely on X-ray diffracticidies of the hexagonal liquid crystalline
phase, and by Mazer et al.(1980) based on sielastic light-scattering, Fromherz and
Riippel (1985) have inferred the formation oes about 3.3 nm thick by 26 nm in di-
ameter from negatively stained and dried TEyecimens of mixtures of egg lecithin and
taurochenodesoxycholine. However, this spea preparation technique has been shown
to give rise to artifacts and can lead to unreliimages of surfactant microstructures (cf.
Talmon 1983, Kilpatrick et «l.1985, Vinson a'almon 1989),

Figure 7. DPPC and DHPC mixtures at 45°0w discoid structures. The discs appear
to be oblate spheroids and are see various orientations with vespect to the
clectron beam: (A) Axis of revolutiarallel to beam gives circular image 20-30
nm in diameter, (B) Axis of revoluperpendicular to beain gives line 5-6 nm
in diameter, and (C) Axis of revoluat other angles gives elliptical shapes.

When the temperature of the DPPC/D} mixture is dropped to 28°C (below the
chain melting or main transition temperatularge rippled bilayers, as seen in Figure
8, coexist with the discoidal structurcs ane evidently formed from lipid previously
contained within the discs. It is not knowrhe bilayers are equilibrium structures at
this composition and temperature. The rip structures are bilayers of the Py phase,
which is known to exist in the DPPC-watcrem at temperatures between the L, and
Ly phases. X-ray diffraction studies indicatt the lipid hydrocarbon chains pack into
a regular hexagonal lattice (Janiak et al.107

Sackmann et l.(1980) found that the phase exhibits two characteristic ripple
structures, called the A and A/2 structures. A/2 structure has a short wavelength and
a single ripple amplitude, whereas the A strre has a longer wavelength and two ripple

j O]



Figure 8. DPPC and DHPC mixtures at 28°C show A (A) aud A/2 (B) ripple structures
of the Pge phase,
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amplitudes. Freeze-fracture transmission electron microscopy of dimyristoylphosphatidyl-
choline (DMPC) in water revealed an asymmetric modulation of 12-13 nm wavelength in
the A/2 structure and a symmetric modulation which produces line spacing periodicities of
22-24 nm in the A structure (Sackmann et l.1980, Riippel and Sackmann 1983, Zasadzin-
ski and Schneider 1987, Zasadzinski et al.1988). Zasadzinski and Schneider determined
that the widths of the large and small ripples of the A structure are 18 nm and 4 nm,
respectively. From the shadowing of freeze-fracture replicas, Zasadzinski and Schneider
estimated that the amplitudes of the large and small ripples are at least 9 nm and 2 nm,
respectivelv. Zasadzinski et al.(1988) estimated the ripple amplitude of the A/2 structure

at 4.5 nm from scanning tunneling microscopy of freeze-fracture replicas.

DPPC ripple structures have been studied less than their DMPC counterparts. Freeze-
fracture results of Pinto da Silva (1971) show ripple spacings hroadening from approxi-
mately 20 to 38 nm within a liposome. Luna and McConnell (1977) found periodicities of
13 to 17 nm in DPPC liposomes. Low-angle x-ray diffraction data of Janiak et al.(1976)
suggest that the ripple wavelength shortens witl increasing water concentration, from 162
A at 21% water to a minimum of 140 A at 25% water. Watts et al.(1978) have reported
line spacing periodicities in freeze-fracture images of dimyristoylphosphatidylglycerol and
dipalmitoylphosphatidylglycerol of 215 4 20 A and 295 & 20 A, respectively.

The structures imaged in Figures 8 and 9 are probably single bilayers (as determined
from their contrast) rather than stacks of bilayers (liposomes) as in the previous freeze-
fracture and x-ray studies. This is the first strong evidence that these rippled structures
can exist as individual bilayers. The bilayers are relatively rigid because the temperature
is below the hydrocarbon chain melting temperature. So they probably do not easily bend
during sample preparation and, in the thin liquid sample, orient nearly parallel to the
grid (perpendicular to the electron beam). This circumstance is advantageous because it
eliminates the need to compensate for bilayer tilt.

Figure 8 displays both the A/2 and A structures, the A structure being more promi-
nent. The line spacing periodicities of the A/2 and A structures measured from Figure 8
are 11-12 nm and 21-24 nm, respectively. The A structure produces an alternating pat-
tern of parallel thick (4-6 nm) dark lines and thin faint lines superimposed on a lighter
background. The distance separating two dark lines is 17-18 nm. These measurements are
in accord with the periodicities determined in DMPC ripple structures by freeze-fracture
transmission electron microscopy (Zasadzinski and Schneider 1987, Zasadzinski et al.1988).

Figure 9 shcws images and schematics of defects found in ripple structures. Figure
9a shows a +1/2 disclination in a A structure. In this image the line width changes from
the dark 4 nm line to the thin faint line, suggesting that the large and small peaks merge
around the point defect. Figure 9b shows a 120° bend, which is a fingerprint of a -1/2
disclination. This is a common defect owing to the hexagonal packing of the hydrocarbon
chains.



Figure 9. Micrographs and schematics of defects in A ripple structures in DPPC and DHPC
mixtures at 28°C. (a) A +1/2 disclination which shows merging of large and small
amplitude ripples. (b) 120° bend.
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As discussed above, the phase contrast produced by a defocus of 4 um enhances sizes
and periodicities of about 5 nm. Phase contrast requires that there be gradients in the
projection of the potential distribution of the specimen onto a plane perpendicular to the
electron beam, r = (r,y), i.e. that the integral of the potential distribution in the z-
directi 1 be nonuniform in the (x,y)-plane (Lenz 1971). This means that there must be
composition gradients, thickness gradients, or both. In an underfocused condition such
as that used here, domains of higher potentials appear darker than domains of lower
potentials. The mean potentials for water, the lecithin tail-group, and the lecithin head-
group are 5.81, 6.98, and 7.65-9.08 volts, respectively (Bellare 1989). This means that
regions appear darker where electrons traverse greater lengths of the bilayer.

We propose the structure diagrammed in Figure 10a to explain the phase contrast
produced by the A structure. This is a sinusoidal arrangement with an extra peak, 4 nm
in width, superimposed at each maximum and minimum. In the model shown in Figure
10a, the 4 nm peak in the A structure produces a single dark line. The small peak could
give rise to two dark lines at less underfocus, but at 4 pm defocus the information from
the two sides of the 4 nm peak, where the electron path through the bilayer is longest, is
not resolved and images as a single line. The two lines of inflection points on either side of
the large peak are the loci of greatest inclination and produce faint lines because these are
where the electron path through the bilayer is greatest. The wavelength or period of this
model is twice the line spacing periodicity, or about 42-48 nm. This model does account
correctly for the pattern seen in freeze-fracture images, provided the amplitude of the large
peak is great enough to prevent shadowing of the small peak in the trough region. An
alternative model that produces the correct phase contrast is similar to the model shown
in Figure 10a, but has the small peaks turned away from the midplane of the lamellae
rather than toward the midplane. However, this model can be discounted because it does
not account correctly for the pattern in freeze-fracture images.

A model previously suggested for the A structure as seen in freeze-fracture replicas
is “W” shaped, i.e., a small peak in the center of a deep trough (Sackmann et al.1980,
Zasadzinski and Schneider 1987). Such a structure would not produce the phase contrast
seen in Figures 8 and 9. Were its minima and maxima rounded, it would instead produce a
pattern in which two adjacent dark lines are separated by two thin faint lines (Figure 10b).
Furthermore, if the features of the “W’ model were unrounded, i.e. angular (cf. Figure 11
of Sackmann et 2l.1980), and the incline of the bilayer everywhere were the same, then
the model would not produce any contrast because there would not be any gradients in
the projected specimen potential. If the incline of one peak were greater than that of the
other, the image produced by phase contrast would show parallel dark lines superimposed
on a uniforin background as shown in Figure 10c.

The model proposed in Figure 10a is more symmetric than the “W” models in Figures
10b and 10c, in which there is an extra peak only at each minimum.

Figure 11 shows spheroidal and tubular vesicles, and complex encapsulated vesicles
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Figure 10. (a) Proposed model for A ripple structure imaged in Figures 8 and 9. The small
peaks give rise to dark lines and the inflection points of the large peaks produce
faint lines. (b) and (c) “W” shaped models with rounded and angular features,
respectively. These models were suggested on the basis of freeze-fracture results,
but do not produce the phase contrast observed in Figures 8 and 9.
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Figure 11. Biphasic dispersions of SHBS (2 wt%) prepared from 25°C show (A) spherical and
(B) tubular vesicles, and (C) complex encapsulated vesicles and (D) coiled tubes
within larger vesicles. Also seen are tubules frozen apparently while undulating

(E).
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coiled tubules in samples prepared from SHBS (2 wt%) dispersions at 25°C. The
neters of the tubes vary somewhat regularly along their length, giving direct visual
lence of membrane undulation. Over the size range imaged by this technique (5-2000
| there is no evidence for the existence of lamellar phase with the bilayer spacing
30 A ) characteristic of more concentrated dispersions (> 10 wt%, Miller et al.1984).
- vesicular structures seen here may be characteristic of the unbinding fluctuations that
upt lamellar phases (Lipowsky and Leibler 1986).

Aqueous SHBS (0.1 wt%) mixtures held at elevated temperatures (90°C) for one week
tain a variety of microstructures. Inspection of Figure 12 shows small { ~ 10 nm )
cles, nodular tubes, and tubes of more complex topography, including ‘wart’-like pro-
iions from tubes of varying diameter. The thickness of the wart membrane in some
1s appears to be less than that of the tube membrane. Perhaps the warts exist due
iteric repulsive forces strong enough at this high temperature to disrupt the bilayer
orm monolayers. An alternative explanation is that the apparent membrane thickness
ends on the curvature components of the membrane along the viewing direction. The
ictures have the appearance of a foam in certain regions. These structures were not
orted in previous high temperature studies (Franses et al.1980).

That swollen and wormlike micelles can be imaged is an encouragement to microemul-
1research. Although microemulsions have been imaged recently by fast-freezing followed
fracturing and replication (Jahn and Strey 1988; Bodet et al.1988), direct cryo-TEM
.ges have been elusive. We have found that radiation damage by the electron beam
cures the structure of microemulsions that contain about equal volumes of oil and wa-

Low-dose imaging techniques with high voltage electron microscopes may prevent
rostructural changes and allow reliable imaging of midrange microemulsions. We are
rently trying this procelure.

mmary

Direct, high resolution images of surfactant microstructures have been obtained by
o-transmission electron microscopy of vitrified hydrated samples that had not been
mically stained, dried, or replicated. The labile microstructures were imaged without

deleterious effects of phase-change or radiation damage. Surfactant solutions below,
ir, and above the critical micelle concentration range (cmc) have been investigated as
1 as systems containing swollen micelles. Wormlike, or “cylindrical” micelles that form
»n addition of electrolyte were also imaged. These form what appear to be entanglement

works; however, stereomicroscopy must be brought to bear on visualizing the three-
1ensional structure.

Aqueous mixtures of short and long chain lipids show the first reliable images of dis-
dal microstructures at temperatures above the hydrocarbon chain melting temperature.
low the chain melting temperature single bilayers exhibiting the A and A/2 structures
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Figure 12. SHBS (0.1 wt%) at 90°C shows small (~ 10 nm) vesicles (A), nodular tubes
(B), and tubes of more complex topology, including ‘wart’-like protrusions from
tubes of varying diameter. The thickness of the wart membrane in some areas
(C, D) appears to be less than that of the tube membrane (E). Reproduced from
J. Electron Microsc. Tech., vol. 10, ©1988 Alan R. Liss, Inc., by permission.
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of the Py phase were observed. A new model has been proposed for the A structure to
explain the image contrast.

Dilute biphasic dispersions showed uni- and multi-lamellar vesicles. The multi-lamellar
vesicles imaged did not have the constant lamellar spacing characteristic of the lamellar
phase at higher SHBS concentrations. Vesicular tubules were imaged that appear to have
been captured while undulating to form spheroidal vesicles. Complex microstructures seen
in dilute SHBS dispersions at 90°C indicate that a high temperature state of vesicle-like
aggregation exists even though the solution appears to be monophasic by other techniques
(Franses et al.1980). The observation of surfactant microstructures, as illustrated here,
affirms the importance of direct visualization in colloidal research.
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A LOW COST ANIMATION SYSTEM APPLIED TO
RAY TRACING IN LIQUID CRYSTALS

Synopsis

Animated movies of scientic graphics can be recorded on film with the low cost sys-
tem of hardware and softwere described here. The hardware consists of a 16mm camera, a
stepper motor, and a simple camera-motor controller. The software is designed to produce
bitmaps from graphical data, combine bitmaps into composite frames, and record frames
onto film. The camera is fully controlled by the same graphics workstation that is used to
display the images, so fades and dissolves can be performed in software with a camera not
equipped for such special effects. The graphical data, generated on a supercomputer, is
subsequently transferred to the workstation where it is stored and recorded frame by frame
according to a configuration file. A variant of the software, which operates across local
and wide area networks, makes use of network computing software to send computation-
ally intensive tasks to a remote supercomputer or to other workstations in a -distributed
computing environment. We have used the system to simulate polarized light microscope
images of liquid crystals according to a single-scattering ray-tracing theory.

Introduction

Scientific research today often involves simulation of time dependent phenomena
wherein the dynamical equations underlying the physical process are solved by super-
computers. Examples include studies of fluid flow in porous media, molecular dynamics
of rigid rods, diffusion and aggregation of colloids, and chemical reaction dynamics. The
results of such simulations are often best presented as a sequence of graphical output cast
in the form of an animated movie.

Equally amenable to animation are results of simulating a process where it is not time
but some other parameter that is progressing. The parameter may be a rotation angle, a
reaction extent, a volume fraction or mean curvature. In this chapter the simulation of
interest is image formation in polarized light microscopy of liquid crystals. Animation of
the images, as objects rotate and deform, is valuable as a guide to image interpretation.
We first review the theory of image formation in optical microscopy and then describe the
animation system we developed to present the results as a movie,

Ray Tracing in Liquid Crystals
A microscope image is the intensity distribution on a viewing plane of a light beam

transmitted through the specimen. Thus, simulation of microscope images is equivalent
to ray tracing through the specimen. In polarized light microscopy a plane polarized
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beam of light passes through the specimen and then through an analyzer, after which it
forms an image on a viewing screen. Polarized light microscopy is widely used to study
the microstructure of crystals, liquid crystals and other optically anisotropic specimens.
Ray tracing through ordinary crystals is straight forward because Maxwell's equations
describing the transmission of light through such media can be solved with relative ease.
Ray tracing through liquid crystals is not easy because their symmetries are complex and
the interaction of light with their varied shapes results in complex equations and boundary
conditions.

We have recently shown (Bellare, et al.1989) that with a single scattering approx-
imation the intensity distribution ¢(z,y) of a beam of unit incident intensity that has
passed through a polarizer with polarization direction e,, through a specimen of thickness
(2far — Znear) and of local electric susceptibility X, and through an analyzer with analyzer
direction e, is

Zfar 2
Pz, y) = U (I+ C2X) : epeq,dz (1)

where I is the unit dyadic and X, the electric susceptibility, is a dyadic whose eigenvalues
Xi=(n?-1),1 =1,2,3 depend on the three principal refractive indices n; of the specimen.

The equilibrium microstructure of lamellar lia»id crystals consisting of elongated
molecules is the structure with the lowest ‘ree energy. The free energy is lowest when
the lamellae are a parallel family of surfaces with zero mean curvature or equivalently, a
family of parallel planes of infinite extent. Although there are numerous zero mean cur-
vature surfaces that are multiply connected and curved,(Anderson et 4l.1989) they do not
form parallel families. Lamellae of finite size have edges, i.e., crystalline boundaries, which
have higher free energy, and so such materials must have closed forms without edges if
the edge energy is to be minimized. The competition between zero mean curvature and
zero edge energy leads to a compromise between planes and closed forms. Local regions
of a material with large mean curvatures are called defects. Defects are not favored be-
cause they contribute relatively large free energy per unit volume of the material. Maxwell
(1869) showed that theré is only one family of parallel surfaces without surface defects.
This is the family of Dupin cyclides. Such a family has two line defects: one is an ellipse
or parabola, the other a confocal hyperbola or parabola. A surface of a Dupin cyclide is
the envelope of a variable sphere tangent to three fixed spheres (Dupin 1822).

Our goal was to calculate images from liquid crystals in the shape of Dupin cyclides,
spheroids and ellipsoids, and to illustrate how the images change as the objects rotate
in space relative to the polarizer and analyzer. The images change when the objects
rotate because the orientation of the electric susceptibility, i.e., its eigenvectors, rotate
with respect to the laboratory viewing frame in which Eq. (1) is defined. Thus our
simulation evaluated Eq. (1) for the various shapes as they were rotated. Details of
the simulation technique are given in (Bellare et al. 1989). The simulation results were
gray-scale graphical images that were animated into a movie with the system described
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next.

The Animation System

Although there has been much progress in video based animation systems for record-
ing scientific graphics, (Johnston, et al., 1087 Johnston. et ul, 1988) we chose film as a
recording medium. The chief deterrent to film-based animation has been the high cost of
commercial film recorders. Hence we elected to build a low-cost systern based on a stan-
dard 16mm camera coupled to a simple controller, The idea was to aim a tripod-mounted
camera at a graphics workstation screen, display a bitmap to be animated and shoot one
or more frames of film. The movie was made by shooting a sequence of bitmaps. The
camera and computer screen were enclosed in a light-roof chamber assembled from an
adjustable frame covered by dark material. The system was built from standard com-
ponents for $1500, including a camera, controller, light-proof chamber, and tripod. The
only additional hardware required was the personal computer or workstation on which the
graphics were displayed.

Why Film?

Even with the current electronic imaging revolution, traditional silver halide based film
remains superior to video as a recording medium. Whereas video has advantages of instant
gratification and reusability of media, film beats video on four counts: resolution, dynamic
range, single-frame indexing, and longevity. Resolution is the ability to distinguish fine
detail. Video tape in the popular NTSC format is limited in resolution to about 300 lines,
whereas film can resolve more than 3000 lines. Most graphics workstations have 10242
pixels, so they can display more detailed images than video can record. Dynamic range
is the ratio of maximum to minjmum intensities that can be faithfully recorded. A large
dynamic range is desirable because i1 is possible to record tonal variations both at low and
high intensities. Video is limited to a dynamic range of 23 whereas film has a dynamic
range of 27. A graphics workstation with 24 bits per pixel (eight bits per primary color) has
a dynamic range of 28, While there are better video formats in vogue (and newer ones are
being planned), none yet exceed the resolution or dynamic range of film. Furthermore, the
equipment for the better video formats is priced beyond the budget of many researchers.
Because standard video recording equipment has no means of indexing to a single frame,
special expensive equipment is required for frame-by-frame animation. Film is invariably
sprocketed; so it is routinely exposed frame-by-frame in every camera. Videotape is not
an archival recording material because its magnetic fields fade with time. When properly
processed, film is archival: it is generally expected to last over a hundred years without
special care.

Once recorded on film, a movie is easily transferred to video if required for distribution.
This indirect route to video—a standard technique in commercial studios for quality TV
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programming—is superior to direct recording on tape because film compresses the dynamic
range of the original graphics so that subsequent transfer to tape does not as greatly exceed
its dynamic range. Moreover, 16mm cameras are easily available for a fraction of the cost
of a video tape recorder with a single frame controller, New and used 16mm cameras
are reviewed and advertised for sale in the publications American Cinematographer and
Shutterbug,

Animation Hardware

The animation system consists of a 16mm movie camera, a stepper motor, and a
camera-motor controller, We used a Bolex H16 camera. This camera is designed to be
driven by an internal spring, but it also has a shaft extending to the exterior that can be
driven by a motor. The shaft not only advances the film but it also opens and closes the
shutter. As the shaft rotates at constant angular velocity, the shutter opens, stays open
for a certain time interval, then closes, and the film advances. One clockwise turn (360°)
of the shaft advances and exposes eight frames. If the shaft is rotated in the opposite
direction, the film is exposed as it is rewound, and so if double exposure is desired it can
easily be accomplished. E '

The shaft is connected to a stepper motor (Vexta model PH265-02B) which rotates
by 360° when 200 state transitions are applied to its windings in a particular order known"
as the drive sequence (Fig. 1). Thus 25 state transitions expose and advance one frame
of the film. If the drive sequence is reversed, the motor rotates in the opposite direction.
The motor is driven by a camera-motor controller, which in turn is driven by the graphics
workstation. The fillm is advanced or rewound by toggling the state of Data Terminal
Ready (DTR, pin 20) on the RS-232C serial port of the workstation. The camera-motor
controller is edge triggered. A transition from off to on moves the camera motor one step,
and a transition from on to off also moves the motor one step. Whether the film advances
or rewinds depends on the logic state of Data Set Ready (DSR, pin 6). If DSR is off, the
film advances; if on, it rewinds. To summarize, DTR from the workstation is connected to
the camera-motor controller, which converts each DTR transition into a drive sequence to
rotate the stepper motor connected to the camera.

The camera-motor controller (CMC) consists of electronic components that 1) con-
dition the input DTR and DSR signals; 2) produce a drive sequence for the motor by
means of control logic; and 3) switch the motor coils, Major componenis of the CMC
are a line receiver (Motorola, Phoenix, AZ, Part Number MC1489P), a binary up-down
counter (Texas Instruments, Dallas, TX, Part Number SN74191N), an exclusive-OR. gate
(National Semiconductor, Santa Clara, CA, Part Number DM7486N), a buffer (National
Semiconductor DM7404N), and four very high gain power Darlington transistors (General
Electric, Auburn, NY, Part Number D40C7) used as coil drivers. These are all connected
as shown in Fig. 1.
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Figure 1. (a) Circu’t diagram of the camera-motor controller and the step sequence it ap-
plies to the stepper motor windings.

The DTR signal from the workstation is connected to the line receiver of the CMC,
which converts the RS-232C voltage levels to TTL. The control logic is provided by the
binary up-down counter, which outputs a bidirectional four step sequence. By enabling
DSR, which is connected to the down-up input of the counter, the step sequence and the
motor direction are reversed. The exclusive-OR gates decode each of the four states into
a drive sequence which is buffered to provide the output current capability required to
toggle the coil drivers. When coils A and C of the motor are energized, they attract the
north pole of the permanent magnet rotor. Since current through coils B and D is in
the opposite direction, they attract the south pole of the rotor. As the drive sequence
progresses, the coils are sequentially energized and the rotor turns in steps. An astable
timer (National Semiconductor, Part Number LM555CN) is uced in place of the DTR
signal to provide a drive signal for mechanically advancing the motor independent of the

workstation. Manual-mechanical advancement is useful while lrading and unloading film,
and while advancing film between scenes.

Power is provided by a precision regulated 13.8 VDC power suppiy (Tripp Lite Division
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Figure 1. (b) Printed circuit layout for the controller. The top and bottom conducting foils
of the double-sided hoard are shown in black.

of Trippe Manufacturing Company, Chicago, IL, model PR-3a) modified to +5 VDC for
the control logic and +12 VDC for the motor coils. The +5 volts is obtained by the
addition of a series voltage regulator (National Semiconductor, Part Number LM7805C).

To expose one frame, eight DTR transitions, 7ms apart, are output to the CMC. This
moves the camera drive train enough to open the camera shutter from a starting position,
but not enough to advance the film. The film is exposed for the desired amount of time
by suppressing DTR transitions for that period. Then 17 DTR transitions are output.
This closes the shutter and advances the film to the next frame. Thus, the speed of film
movement, the direction of film travel, and the exposure of the film are under direct control
of the workstation. This permits animation software to fade scenes in and out, to dissolve

between scenes, to animate periodic events from one period, and to effect slow motion,
time lapse and time reversal.

Animation Software

The animation hardware can be used with any workstation or computer that can
control signals on an output port via software, because all the CMC needs is at least one
signal that can be switchad on and off. The signal can come from a RS-232C serial port as
described above, or it can come from a parallel port or from a bidirectional port. We have
even used a Commodore 64 computer successfully to make animations by controlling a pin
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~on its user port. However, our principal animation software was developed for the Apollo

family of graphics workstations. The computer animation system software has three main
programs:

1. Make_Bitmap, converts a numerical-data representation of an image into a bitmap
compatible with Apollo Computer's DN580 or DN590 color workstations
Make_Frame, creates the image captured on film by merging text and bitmaps created
by Make Bitmap into a 1280 by 1024 frame buffer.

3. Umn.Mouvie, uses the bitmaps created by Make Frame or Make Bitmap to make a
movie scene by repeatedly placing bitmaps on the computer screen and signaling the
movie camera to advance one or more frames.

9

Make_Bitmap

Make Bitmap opens a data file that describes an image, creates a bitmap, and then
saves the bitmap to disk. Currently two different data-file formats are supported. The first
format represents a two-dimensional array of gray-scale data. The first line contains the X
and Y dimensions of the input array (which are also the dimensions of the output bitmap).
The rest of the file is a list of numbers between 0 (bleck) and 1.0 (white) representing
the two-dimensional array stored in row major form. The second format 15 an SRL file
produced by Movie.byu (Christiansen, et al., 1987) The first line of an SRL file contains the
background color’s red, green, and blue components. The remaining lines contain scanline
descriptions with the following format: Y-value, starting X-value, ending X-value, starting
red value, ending red value, starting green value, ending green value, starting blue value,
and ending blue value. The red, green, and blue values are linearly interpolated across
the given X interval. Make Bitmap takes as input a file containing data-file types (0 for
grayscale and 1 for SRL files), data file names, and bitmap file names each on a line by
themselves. For example, an input file that reads two grayscale data files, two SRL files,

and creates four bitmap files (saved as bitmapl through bitmap4) looks like this:
0

grayscalel
bitmap1
0

grayscale2
bitmap2

1

srll
bitmap3

1

srl2
bitmap4

The following is the general algorithm in a pseudo-pascal syntax:
program make_bitmap;

BEGIN
open(input file);
initialize graphics_mode;
while not end of file(input file) do
read(input file,data_file_type);
read(input file,data file_name);
read(input_file,bitmap file_name);




ne

open(data_file name);
open.bitmap file(bitmap file_name);
if (data.file.type = 0) then
create bitmap from grayscale data
else
create bitmap from SRL file
end if;
close_bitmap file(bitmap-file_name);
close(data.file.name);
end while;
END.

Make_Frame

This program takes the bitmaps saved by Make_bitmap and places them on the screen
at coordinates supplied by the user. The user can then interactively add text anywhere in
the frame buffer by using the mouse and keyboard. At the end of the program the screen
is saved on the disk drives as a 1280 by 1024 bitmap file. Make Frame opens and reads
a configuration file which describes the bitmap locations, and defines several constants
used to fill the color map. Line One contains the red, green, and blue components of the
background color, Line Two contains the maximum and minimum color map indices, and
the maximum and minimum intensities, Line Three has the number of bitmaps to place on
the screen, and the rest of the file has the name of the bitmap on a line by itself followed
by the X and Y components of the upper left corner of the bitmap. The algorithm for this
program is as follows:

program make frame;

BEGIN
open(config file);
read(config.file,background red background.green, bacl\grounrl_blue),
read(config_file light,dark,max_intensity, min.intensity);
read(config file, no_of_bltma.p.))
for i:=1 to no-of_bitmaps do
read(config file,bitmap namel(i});
readgconﬁg.ﬁle bltmapJocatlonf] x,bitmap.Jocation[i].y);
end for;
1mt1ahze.graph1cs_mode;
fill color map;
place bitmaps at given locatlons,
repeat
get mouse location;
read text from keyboard;
place text on screen at mouse location;
until done adding text;
save bitmap to disk;
END.

Umn. Movie

Umn.Movie is a program to capture bitmaps produced by Make Frame or Make Bitmap
on 16mm film. Currently this program optionally fades in on a display, shoots a series film
frames, then optionally fades out. As do the other programs, this one reads configuration
data from an input file of the following format: Line One contains the number of frames
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to fade in (can be zero), the number of frames to expose for this bitmap, the number of
frames to fade out (also can be zero), the length of time (in seconds) to expose each frame,
the background red, green, and blue components, the maximum and minimum gray indices
(between 0 and 255), the maximum and minimum intensities (between 0 and 1.0), and the
number of bitmaps used to create the display. The rest of the file is made up of bitmap
file names on a line by themselves with the next line containing the X and Y coordinates
and an origin flag (-1 means X and Y are the center of the bitmap and 0 means X and Y
are the upper left corner).

Consider the following Umn.Movie example: you have four 200 by 200 pixel bitiaps
(called bl, b2, b3, b4) that you want to fade in from black, display for ten seconds, then
fade out to black. The following configuration file will do this with 5 fade in frames, 240
full intensity frames, 5 fade out frames, an exposure time of 1.0 second, a blue background,
gray levels ranging from 255 to 0, maximum intensity of 1.0 and a minimum intensity of 0:

524051000 25525501.00.04
b1l

100 100 0

b2

400 100 0

b3

100 400 0

b4 4

400 400 0

In summary, Umn.Movie puts a picture on the screen, opens the camera shutter by
cycling DTR on the serial port, leaves the shutter open for the exposure length of time,
and then closes the shutter by cycling DTR. A shell script can be used to call Umn.Movie
with different configuration files to make a movie scene. The general algorithm is:

program umn.movie,

procedure shoot frame(no-of frames);

begin
or frame._counter := 1 to no.of frames do
for step counter := 1 to 8 do {open the shutter}
set_dtr(high);
wait 0.007 seconds;

set.dtr(low); {this generates a square wave with}
wait 0.007 seconds; {a. 14ms period}
end for;

wait exposure length of time;
for step_counter := 1 to 17 do {17 steps to close the shutter }

set_dtr(high); {and advance the film one frame}
wait 0.007 seconds;
set._dtr(low);
wait 0.007 seconds;
end for;
end for;
end;

BEGIN
open(config.file);
while not end_of file(config_file) do
read(config file fade_in frames per_bitmap, fade_out,exposure_time,
background.red background green ,background blue,
lightest_gray,darkest_gray,maximum_.ntensity, minimum.ntensity,
no_of_bitmaps);
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for i:=1 to noof.bitmapsdo
read conﬁg_ﬁle.bitmap_name[l]); ‘
read conﬁg_ﬁle,bitmap.location[i].x.bitmap.location[i].y,origin_ﬁag[i]);
end for; '
init_graphics.mode;
open_serial line:
set.dtr(low);
original.max_intensity := maximum.intensity;
original.min_intensity := minimum.ntensity;
original_background.red := background.red;
original_background green := background_green;
original_background blue := backgroundblue:
{ FADE IN THE DISPLAY IF NEEDED }
if (fadedin ; 0) then
max_slope := original max_intensity / faden:
min.slope := original_min_intensity / fade.n;
for i:=0 to fade.n do
maximum.ntensity := 1 ¥ maxslope;
minimum.intensity := i * minslope;
background red := i * original.background.red / fade.in;
background.green := i * original background-green / fade_in;
background.blue := i * original .background.blue / faledn;

fill color_map; {using the intensity data to scale map va.lues}
place bitmaps on screen at given locations;
shoot frame(1); {advance one camera frame}
end for;
end if
place bitmaps on screen at given locations;
shoot_frame(frames_per_bitmap);
if (fade.out ; 0) then
max.slope := -original max_intensity / fade.out;
minslope := -original_min.ntensity / fade.out;
for 1:=0 to fade_out do
maximurn_intensity := i * maxslope + original_max_intensity;
minimum_ntensity := i * min.slope + original_min.intensity;
background.red := i * (-original_background.red / fade.out)
+ original.bac%:ground_red;
background.green := i * (-original_background green / fade_out)
+ original background_ green;
background blue := i * (-original_background.blue / fade_out)
+ original background.blue;

fillcolor .map; {using the intensity data to scale map values}
place bitmaps on screen at given locations;
shoot_frame(1);
end for;
end if;
end while;
END.

An animated movie is made by generating a series of frames and calling Umn.Movie
to film the series in sequence. Each frame can consist of one or more bitmaps. Several
sequences (“scenes”) can be specified in one configuration file with fades and dissolves.
Thus, one call to Umn.Movie can film the entire movie specified in a configuration file
without any need for further human intervention.




Network Computing

The animation systemn described above has one major limitation. Each bitmap is
a 1280-by-1024 array of 24-bit integers (3.75 Mb. of data). So one second of film (at 24
frames per second and 3 frames per bitmap) can require as much as 30 Mb. of disk storage.
This is a worst-case example and storage requirements can he reduced by not saving the
background data or by using various data compression techniques (Johnston, et al.1088).
To have a system which makes a movie of arbitrary length without humar intervention
would require an unreasonable amount of disk storage. A solution to this problem was
found by using Apollo Computer’s Network Computing System (NCS) (Apollow Computer
Inc. 1987). NCS is made up of two components: the network interface definition language
(NIDL) compiler, and the network computing kernel (NCK). An interface definition is
written in NIDL syntax and passed through the NIDL coimpiler to create several include
files and stub procedures for distributed applications. Stub procedures are the routines
that make remote procedure calls look almost local. With NIDL, programers do not have
to handle details like data format conversions across a heterogeneous network of computers.
NCK is the run-time library that finds resources on the network by using a location broker.

Without NCS, the computationally intensive procedures (which create the numerical-
data representations of an image) are done on a supercomputer and saved on magnetic
tape. The tapes are then restored on the Apollo disk drives until available free space
is exhausted. That portion of the data is run through Make Bitmap, Make Frame, and
Umn.Movie and thus recorded on film. The old bitmaps and data files are then deleted
and replaced with data for the next run (this step requires human intervention).

With NCS a remote procedure call is made to the supercomputer to generate the
data needed for one workstation display. Those data are then processed by Make Bitmap,
Make Frame, and Umn.Movie and the whole process repeated for the next display. In this
way very few data files and bitmaps need to be saved (and can be saved as temporary

files).

Results and Discussion

Figure 2 shows one frame of the animated movie, which was recorded on Kodak 7292
with a 25mm f/1.4 Switar lens exposed for 2 sec at f/16 per frame and 3 frames per
computer image. The Apollo version of the software and the movie (recorded in color
on 16mm film and 3/4" U-matic (NTSC) or 1/2"” VHS (NTSC) videotape format), are
available for loan from the authors. The figure shows polarized microscope images from a
variety of objects selected to illustrate different possible shapes of liquid crystals: oblate
spheroids, prolate spheroids, ellipsoids, fused spheres of equal diameters, fused spheres of
unequal diameters, ring torus, spindle torus, and three types of Dupin cyclides. The movie
clearly depicts the changes in the images as the objects are rotated, thereby providing a
guide for interpreting images from polarized light microscopy.
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Figure 2. One frame of the movie generated using the animation system. It depicts liquid
crystals of different shapes and the results of a special case of ray tracing through
them. The special case is that of orthogonal polarizer and analyzer, which makes
the ray tracing results simulations of cross-polarized optical microscope images of
the objects. The objects are shown in perspective view along the same viewing
direction as the images depicted below the object. The objects are (in left-to-
right and top-to-bottom order) oblate spheroid, prolate spheroid, ellipsoid, fused
spheres of equal diameters, fused spheres of unequal diameters, ring torus, spindle
torus, horned Dupin cyclide, ring Dupin cyclide, and spindle Dupin cyclide.
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The animation system permits recording of graphics at high resolution on film with
equipment that costs about an order of magnitude less than equivalent video equipment.
The system is so flexible that it can be used with any computer that can toggle an output
pin. Because the speed and direction of film transport can be controlled by the software,
special effects can be generated easily. The success of the system is, we believe, clearly
demonstrated in the movie we made. When used in a distributed computing environment
with network computing software, it becomes a powerful yet affordable tool to produce
animations of supercomputer simulations efficiently.
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SURFACES OF CONSTANT MEAN CURVATURE WITH
PRESCRIBED CONTACT ANGLE

Synopsis

A Galerkin weighted residual formulation of the Surface Divergence Theorem is used
with finite element basis functions to compute geometric models of foam and emulsion
structure. The models are surfaces of coustant mean curvature arranged on a simple
cubic lattice so that they meet the boundary planes of the unit cells at prescribed contact
angles. Surfaces are computed for a variety of coutact angles and mean curvatures, With
contact angle between 5° and 133°, the structure inverts as the mean curvature decreases,
whereas with contact between 134° and 180°, the structure fills the unit cell as the mean
curvature decreases, passes through a turning point, and then increases. Tlie models have
implications to mercury porosimetry.

Introduction

The relationships between the structures and properties of foams and emulsions are
not yet fully understood. An emulsion or a foain is defined in general terms as a reasonably
stable dispersion of one fluid phase in another, immiscible, fluid phase. Various additives
may prevent the dispersion from separating for a period of time yet it is not thermody-
namically stable. The relationships between physical structures and physical properties
of such dispersions are of practical as well as theoretical interest. These relationships can
be computed from three-dimensional models of the structures. At volume fractions below
some critical value, there is an ‘internal’ phase that is dispersed in a continuous ‘external’
phase and the former’s form can be modeled as undistorted spheres. At volume fractions
approaching unity, the ‘internal’ phase forms polyhedral structures and the ‘external’ phase
is limited to thin films between polyhedral faces and channels at the polyhedral edges. At
intermediate volume fractions, there are structures that are not well characterized, 1auch
less well understood. Physical properties cannot be accurately simulated without adequate
model structures.

Lissant and coworkers (1966, 1970, 1973, and 1974) modeled monodispersed emulsions
with simple geometric structures. Spheres were packed in unit cells of regular lattices: sim-
ple cubic, tetrakaidecahedral, and rhomboidal dodecahedral. The spheres were undistorted
until the volume fraction of the internal phase reaclied the critical volume fraction, namely
that at which the spheres first touched their neighbors. As the volume fraction was raised
further, the spheres were either rearranged to form a more relaxed packing on a different
lattice or they were distorted at constant volume. The distortion was characterized by
the point of contact between the spheres growing to form a circular disk of thin film. The
remaining curved surfaces were assumed to retain spherical shapes as the volume fraction
of the internal phase increased. Such an assumption required the contact angle between
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the curved surface and the film to change as the volume fraction of the internal phase was
expanded and the film was compressed,

Princen (1979) and Princen, et al. (1980) recognized that the curved surface would
have constant mean curvature, the contact angle between it and the thin film would not
change as the volume fraction is raised, and the thin films would not be circular. Princen
(1080) suggested that advanced numerical tecliniques might be employed to find constant
mean curvature surfaces that meet unit cell boundaries at a specified contact angle,

The situation of a constait mean curvature surface separating two immiscible fluids
and contacting boundary planes at o coutact angle other than zero arises elsewhere than in
foam and emulsion structures. Mercury porosimetry is a technique by which a distribution
of pore sizes is deduced from the amount of mercury that enters an evacuated porous
medium as a function of pressure applied to the mercury, Mercury makes contact angles
with solids in the range of 130 — —140° (Heimenz, 1986) and is therefore a partially wetting
liquid, A complex three-dimensional pore structure is often modeled as an idealized array
of cylindrical capillaries of various diameters, The curvature of the mercury-gas surface,
and therefore the diameter of the capillary invaded, is proportional to the injection pressure
relative to ambient, AP, according to the Young-Laplace equation, AP = 2H v, where H is
the mean curvature (the reciprocal of capillary diameter in the model), and o is the surface
tension. Real pore space is not a bundle of simple tubes and the model does not account for
such events as mercury being forced into grooves and corners without necessarily invading
new pores as the pressure is increased. When a porous medium is occupied by two fluid
phases, the grooves and corners, regions of high wall curvature, are the first to fill with
wetting liquid when its content is increased, The flow channels these regions form when
they are connected are the chief routes by which more of the wetting liquid can enter or,
alternatively, can leave as the content of wetting liquid is decreased.

Examples that have been examined include wetting fluid being displaced by nonwet-
ting fluid in toroidal pores with grooves in the wall (Roof 1970), in square capillaries
(Lenormand et ol 1984, Arriola et al. 1983, Legait 1083, and Gauglitz et al. 1987), and
in triangular capillaries (Singhal and Somerton 1970). To a first approximation, the con-
nected channels are covered by menisci of constant mean curvature. To a second approx-
imation, they have sinall gradients of mean curvature and often can be approximated by
the assumption that curvature in the axial direction is sinall (Ransohoff and Radke 1988).

Anderson et al. (1990) developed a method to construct smooth constant mean cur-
vature surfaces that are periodic in three dimensions, i.e., that have the symmetries of a
r . ) . ' ' . [
space group. The method consists of computing the surface in a single primitive cell of the
corresponding point group, the walls of which are symmetry planes and so they are nec-
essarily intersected by the surface at right angles. The full surface can then be assembled

from rotated, reflected, and translated replicas of the primitive cell.

In this work, the same method was used to construct constant mean curvature surfaces
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of simple cubic symmetry that meet the walls of the unit cell, a cube, at a prescribed contact
angle. The algorithm developed by Anderson et «l, (1090), see also Anderson (1986), was
modified, as described below, to compute the surface in the primitive cell, one of the walls
of which is not, in general, a symmetry planc,

Computational method

Within a single unit cube, the constant mean curvature surface divides space into an
internal domain and an external domain (see IMigure 1), The internal domain lies between
the center of the unit cell and the curved surface; the external domain lies between the
surface and the edges and corners of the cube. On each wall of the cube, there is a region
contained in the interior of the surface. These regions are referred to as flat films because
in a physical system the liquid oceupying the internal domain forms a film along the cube
wall.

¢

Figure 1. Single simple cubic unit cell. Flat films are shown on the boundary planes of the
unit cell.

The simple cubic unit cell was subdivided by its planes of reflective symmetry into
forty-eight primitive cells, tetrahedrons, as shown in Figure 2a. The portion of the con-
stant mean curvature surface contained within a primitive cell was mapped onto a two-
dimensional domain. The desired surface was then computed as a solution to a form
of the Surface Divergence Theorem in which the surface itself is unknown. Surface area
and volume fractions were computed from the solution. The surface was drawn in three-
dimensional representation by the reverse process: the two-dimensional ‘computational’
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domain was mapped into the primitive cell, the primitive cell was reflected in the symme-
try planes to recreate the unit cell, and, when desived, the corresponding periodic surface
was created by translations of the unit cell,

CUBIC UNIT CELL ‘ TETRAHEDRAL CELL

Figure 2. Reduction of unit cell to tetrahedral primitive cell.

The surface patch within a single tetraliedron was mapped onto a two-dimensional
domain in the way adopted by Anderson (1986) to take advantage of the geometry of
the tetrahedron (see Figure 2): two opposed edges, L; and Ly, of the tetrahedron are
orthogonal and never intersect. L; is a segment of a line connecting the center of the unit
cell to the center of a neighboring cell. Ly, is a segment of an edge of the unit cell. The
variable u was defined to vary from zero to one ou the length of Ly the second variable, v,
was defined to vary from zero to one on the length of Ly, In cartesian coordinates, the line
segments were L1 (0,4/2,0) and Ly(1/2.1/2,¢/2). The surface is the locus of intcisections
of the surface and line segments drawn from L (w) to La(v):

X(uyv) = Ly(u) 4+ w(u, v)(Le(v) = Ly(u)). (1)
The variable w(u,v) is simply the fractional distance from Lj(u) to the intersection Thus,
each point on the surface maps onto a unique point on the two-dimensional (u,v) domain
provided the line segment Lo(v) — Lj(u) intersects the surface once and only once; other-
wise, the mapping fails.

With this representation, the unknown surface X was computed from the surface
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divergence theorem, in which it occurs as an unknown (Weatherburn 1927):

//VS . F d‘A = V Fds - // 2H N F dA. (2)
S Hs S

Here S is the curve that bounds the surface S, Vg is the surface divergence operator, F is
an arbitrary vector field, V is the unit vector locally normal o 08 outwardly pointing, and
tangent to the surface, and N is the unit vector normal to the surface, and H is the mean
curvature. The mean curvature was used as a constant in this work but can be chosen as
an arbitmry function of position. Anderson’s (1086) choice of the vector fleld is the key:
F = qS '(u,v) = (La(v) = Li(uw) )i, v), where o'(u, v) is any member of the set of basis
functlons in which the unknown surface is to represcuted. The scalar product V - F is a
function of the angle between the surface and, in succession, the boundary planes of the
primitive cell. On the symmetry planes it vanishes and on the plane that is a wall of the
unit cell it is
0X

V.F=V. —0—1-0-45‘ = |Lg(v) — Li(u)| @' cosy siny ‘ (3)

where -y is the specified contact angle and 7 is the computed angle between the surface
tangent vector and F.

Eq. 2 was solved by the Galerkin method with finite element basis functions. The
two-dimensional (u,v) domain was subdivided into 20 x 20 square elements. The unknown
variable w was approximated by 441 bilinear basis functions, i.e, w = 3. a;dd(u,v).
With F chosen as above, the surface divergence theorem then yields 441 weighted residual
equations, 1 = 1 to 441, for the 441 unknown coefficients, «;:

e ffon G-,

The finite element representation of the surface enters through the derivatives of X with
respect to u (Xy) and v (X,), and their appearance in Vg, d4, ds, and N:

oX
ow

dicosy siny ds + // 2HAN - —g%(:—qﬁ' dA =0. (4)

(Xo X)Xy = (X X)Xy 0 —(Xy X)Xy +(Xy - X)Xy 0

v + — =  (®
TR o xXoexf o
dd = | Xy x X,|dudv (6)
ds = |Xy|du + |Xy|dv (7)
and X X
u x v
VRO ®

The system of nonlinear algebraic equations, Eq. 4, was solved for the unknown aj's
by Newton’s method, The first surface computed was the Schwarz surface of zero mean
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curvature and 90° contact angle. The Schwarz surface divides space evenly, one-half of
space on one side, one-half of space on the other. The initial estimate of a; = 0.5 for
all j was used for the Schwarz surface. Initial estimates were generated by first-order

continuation in mean curvature when families of surfaces with the same contact angle were

being computed. The first-order continuation was used as described by Anderson (1986).
Zeroth-ordey continuation in contact angle was used when families of surfaces with the
same mean curvature but different contact angles were being computed. Newton’s method
was iterated until the solution, w, was within as specified tolerance: ||w*+! —w*|| < 10-8
wl. re k i1s the number of iterations. The computations were performed on a Cray-2
supercomputer.

The total surface area that was computed was tlie area of the curved constant mean
curvature surface plus the area of the six flat films at the walls of the cube (see Flgule 1):

_48// X 0

The volume fraction was defined as the ratio of internal domain volume to the volume of

1 2
(Izz.dv+48/ Y~ . (9)
, 8

" the unit cube:

V= (z,y,z w? ﬁ
48/ // ———~——-—~—a o) dudvdw -48// ( 3 > dudv. (10)

Eq.s 9 anc 10 were computed from the solution of Eq. 4 by Gaussian quadrature with four
quadrature points per element.

The unit of length throughnut the computations was the edge length a of the cubic
unit cell. Thus the reported mean curvatures are dimensionless products of mean curvature
and edge length. Likewise, surface area are in units of a2.

Results and discussion

Surfaces of broad ranges of mean curvature and contact angle were computed. The
algorithm was first tested by computing simple surfaces for which surface area and volume
fraction can be found from mensuration fermulas.

A sphere centered in a cube intersects the walls if its diameter exceeds the cube’s edge
length. The angle at which the portion of spherical surface within the cube contacts the
walls is v = cos™!(—H/2). The mean curvature, H, of the spheri.al surface is simply the
reciprocal of the sphere radius. The total surface area within the cube is the surface area
of the sphere less that of the six caps that lie outside plus that of the six flat circular films
on the walls:

—d4m 3 T 5 \
Total Area = —— (7 — —H + 6l =tan®~y 1. 11
Tlie fraction of the cube valume that lies within that surface is
T 1 s
Volume fraction = — — (9H — 8) — —, 12
3 H3 ( ) 4 (12)
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A comparison of surface areas computed by mensuration formula of Eq. 11 to those com-
puted by Eq. 9 from solutions of Eq. 4 by Galerkin’s method with 441 bilinear basis
functions is listed in Table 1. A comparison of volume fractiotit computed by mensura-
tion formula of Eq. 12 to those computed by Eq. 10 from solutin=s of Eq. 4 by Galerkin’s
method with 441 bilinear basis functions is listed in Table 2.

The limiting case 1s the inscribed sphere, which has mean curvature 2 and makes
180° with the walls at the points of contact: the surface area is n volume fraction is /6.
The surface area computed by Eq. 9 is in error by 8.65%; the volume fraction computed
by Eq. 10 is in error by 12.9%. The sphere is tangential to the walls of the unit cube;
the edge of the surface at the cube wall is a single point. The primitive tetrahedral cell
(Figure 4.2) used in the mapping »f surfaces contains a three-sided surface patch. As a
consequence, the mapping of Eq. 4.1, which maps a .our-sided surface patch to a two-
dimensional computational region, fails.

The computed surface with 170° contact angle and H = 1.9696 has error in total
surface area of 4.33% and error in volume fraction error of 6.3%. The mapping of this
surface is close to failing because the edge of the surface at the cube wall is very small
compared to the other three surface edges in the primitive tetrahedron. The radii of the
circular films on the cube walls is 0.09a where « is the edge length of the unit cube. At
180° contact angle, the surface edges on the other three walls of the primitive tetrahedral
cell have radi of 0.5a.

The length of the surface edge at the cube walls increases as contact angle decreases.
The radius, r, of the circular films is related to contact angle as r = —0.5a tan v. The errors
in computed total surface area of surfaces with contact angle between 160° and 140° were
less than 0.1%. The errors ia computed volume fraction of the surface with 160° contact
angle was 0.13% while the errors of surfaces with contact angle between 155° and 140°
were 0.04% or less. The accuracy of the computations increased as the contact angle was
decreased because the length of the surface edges at the cube walls increased. Spherical
surfaces that make contact angles with the unit cube walls less than 135° are disjoint
within the cube, i.e., they are confined to the eight cube corners. Again, the primitive
tetrahedral cell co; ains three-sided surface patches and the mapping at Eq. 1 fails.

Two other surfaces were used for tests. One surface is a polyhedral structure com-
posed of squares at the six walls of the unit cube and a total of eight equilateral triangles
connecting the squares (see Figure 4.5 lower right). This surface has 125.26° contact an-
gle with the cube walis and H = 0. The surface area is /3 and the volume fraction of
the internal domain is 5/6. The computed surface area is 1.7245, in error by 0.44%; the
computed volume fraction is 0.8345, in error by 0.14% The Schwarz surface has zero mean
curvature and makes 90° contact angle with the walls (Schwarz 1865; see Figures 4.6 up-
per and lower right). The surface area, 2.3453, and volume fraction, 0.5000, computed by
this method were withun 0.01% and 0.00%, respectively, of the values 2.3451 and 0.5000
reported by Schoen (1970).
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Table 1

TOTAL AREA
H ¥ FORMULA COMPUTED ERROR
AREA AREA %
2.0000 180.0 3.1416 3.4132 8.65
1.9696 170.0 3.2381 - 3.3782 4.33
1.8794 160.0 3.5384 3.5371 0.04
1.8126 155.0 3.7744 3.7768 0.06
1.7320 150.0 4.0760 4.0784 0.06
1.6383 145.0 4.4522 4,4543 0.05
1.5321 140.0 4.9140 4.9156 0.03
Table 2
VOLUME FRACTION
H ~ FORMULA COMPUTED ERROR
VOL. F. VOL. F. %
2.000( 180.0 0.5230 0.5910 12.87
1.9696 170.0 0.5476 0.5821 6.30
1.8794 160.0 0.6209 0.6201 0.13
1.8126 155.0 0.6764 0.6767 0.04
1.7320 150.0 0.7439 0.7442 0.04
1.6383 145.0 0.8208 (0.8211 0.04
1.5321 140.0 0.9002 0.9004 0.02
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Comparisons of surface areas and volume fractions computed by mensuration formulas
to those computed by Galerkin's method with different numbers of bilinear basis functions
are listed in Table 3. The error in total surface area of the computed surfaces with 180°
contact angle increased from 7.09% for 121 basis functions to 9.01% for 961 basis functions.
The error in volume fraction of these same surfaces increased from 10.26% for 121 basis
functions to 13.50% for 961 basis functions. The use of more basis functions actually
decreased the computational accuracy. The error in total surface area of the computed
surfaces with 150° contact angle decreased from 0.25% for 121 basis functions to 0.02%
for 961 basis functions. The error in volume fraction of these same surfaces decreased
from 0.70% for 121 basis functions to 0.01% for 961 basis functions. The use of more
basis functions increased the computational accuracy. 441 basis functions were used in
subsequent calculations.

Table 3
H ~ BASIS TOTAL ERROR VOLUME ERROR
FUNCTIONS AREA % FRACT. %

2.0000 | 180.0° FORMULA 3.1416 Kok K 0.5236 oA K
121 3.3643 7.09 0.5773 10.26
256 3.3999 8.22 0.5873 12.17
441 3.4132 8.65 0.5910 12.87
676 3.4204 8.87 0.5930 13.25
961 3.4248 9.01 0.5943 13.50

1.7320 | 150.0° FORMULA 4.0760 *rAAK 0.7439 HRAAK
36 4.1161 0.98 0.7491 0.70
121 4.0862 0.25 0.7452 0.17
256 4.0804 0.11 0.7445 0.08
441 4.0784 0.06 0.7442 0.04
676 4.0775 0.04 0.7441 0.03
961 4.0770 0.02 0.7440 0.01

A series of surfaces with 180° contact angle were computed. Four surfaces with 180°
contact angle are shown in Figure 3. The surface with H = 2 and 180° contact angle
corresponds to an undistorted sphere. As the curvature is increased, the point of contact
between the sphere and the cube wall flattens to form a circular film. However, as the
curvature is increased further, the film loses its circular shape and the curved surfaces are
no longer spherical. The surface distorts to fill into the edges of the cube. Consequently,
the volume fraction of the internal domain approaches one and the total surface area
approaches six, the surface area of the cube. During this distortion, the surface remains
continuous, which means the external domain also remains continuous as narrow channels
along the cube edges. Surfaces of 180° contact angle were computed with mean curvature
up to H = 100. The surface areas of the curved constant mean curvature surfaces as
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functions of mean curvature and contact angle are shown in Figure 9. Volume fractions
of the internal domain are shown as functions of mean curvature and contact angle in
Figure 10. Surface areas and volume fractions of constant mean curvature surfaces are
listed in tables of Appendix B.

Another series of surfaces was computed but with 150° contact angle. Four surfaces
with 150° contact angle are showu in Figure 4. Again, the surface distorts to fill the unit
cell as the mean curvature is increased from the curvature of a sphere. In this case, the
sphere had a mean curvature of 1.732 and extended beyond the walls of the cube. Surfaces
of 150° contact angle were computed with mean curvature up to H = 100. As the mean
curvature is decreased from 1.732, the volume fraction of the internal domain decreases
from 0.742 (Figure 10). At H = 1.691, a turning point is encountered and the curvature
then increases while the volume fraction continues to decrease to a minimum of 0.436
H = 2. The volume fraction increases as H increases until H = 2.035 where the surface
begins to self-intersect. That is to say, for the surface to satisfy Eq.4, it passes through or
intersects itself. At the point of self-intersection, the mapping of Eq. 1 fails. The surface
area of the curved constant mean curvature surface increases from 2.77 at H = 1.732,
reaches a local maximum of 2.78 at H = 1.75, decreases to 2.74 at H = 1.94, and then
increases to 3.04 at H = 2.04 (Figure 4.9)

Surfaces with contact angle between 180° to 134° distort to fill the cube as mean
curvature is increased. Surfaces with contact angle less than or equal to 133° do not distort
to fill the unit cube. Three surfaces with 120° contact angle are shown in Figure 5. The
surface with 120° contact angle and H = 2.04, self-intersects. The internal domain volume
fraction decreases as the mean curvature is decreased from H = 2.04 until a minimum
volume fraction is reached at H = 1.9. The velume fraction increases as mean curvature is
decreased further until the surface becomes disjoint at H = —0.415; the surface is confined
to the corners of the unit cube and is no longer continuous along the cube edges. When
the surface becomes disjoint, the mapping of Eq. 1 fails. As mean curvature decreases
from H = 2.04 to H = —0.415, the surface area of the curved surface decreases from 3.0
to a local minimum of 2.34 at H = 1.72, increases to a local maximum of 2.45 at H = 1,
decreases to a local minimum of 1.66 at H = —0.25, and increases to 1.92 at H = —0.415.

Anderson (1986) computed a series of surfaces with 90° contact angle. Four surfaces
with 90° contact angle are shown in Figure 6. At H = 2 and H = -2, the surfaces self-
intersect and the mapping of Eq. 4.1 fails. Anderson (1986) reported that surfaces with
90° contact angle invert as the mean curvature is changed from positive to negative. As
mean curvature is decreased from H = 2 to H = -2, the volume fraction decreases from
0.465 to a minimum of 0.25 at H = 1.8, increases to a maximum of 0.75 at H = —1.8, and
decreases to 0.535 at H = —2. The area of the curved surface decrcases from 2.9 at H = 2
to a minimum of 2.0 at H = 2 (below a turning point at H = 2.13), increases to a
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Figure 3. Four surfaces with 180° contact angle, (upper left) H = 2, (upper right) H = 3,
(lower left) H = 5, and (lower left) H = 10.

275



R LR Y IR e M gy s -

Figure 4. Four surfaces with 150° contact angle, (upper left) H = 2, (upper right) H = 1.7,
(lower left) H = 2, and (lower left) H = 6.
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Figure 5. Three surfaces with 120° contact angle, (upper left) H = 2, (upper right) H =0,
(lower left) H = —0.4. Shown in (lower right) is the surface with contact of
125.26° and H = 0, which corresponds to portions of octahedra centered at the
corners of the unit cell.
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Figure 6. Four surfaces with 90° contact angle, (upper left) H = 2, (upper right) H = 0
the Schwarz surface, (lower left) H = —2. Shown in (lower right) are four unit
cells connected to illustrate the periodicity of the three-dimensional structure,
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Figure 7. Four surfaces with 60° contact angle, (upper left) H = 2.2, (upper right) H =

(lower left) H = —2, and (lower right) H = —-3.2.

=0,
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Figure 8. Two surfaces with 30° contact angle, (upper left) H =0, (upper right) H = =3;
and two surfaces with 5° contact angle, (lower left) H = —0.4, and (lower right)
H = -3. ‘
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Figure 9. Area of curved constant mean curvature surface as a function of mean curvature
for contact angles of 180°, 150°, 120°, 90°, 60°, 30°, and 5°.
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Figure 10. Volume fraction of internal domain as a function of mean curvature for contact
angles of 180°,150°,120°,90°,60°,30°, and 59.
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Figure 11.

GEOMETRIC FACTOR A/V**
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Geometric factor (4/V?/%) as function of volume fraction of deformed spheres
in simple cubic (SC), rhomboidal dodecahedral (RDH), and tetrakaidecal edral
(TKDH) packings as well as constant mean curvatures surfaces of 180° contact
angle.
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Figure 12. Geometric factor (A/V?2/%) as function of volume fraction for constant mean cui-

vature surfaces of 180°,150°,120°,90°,60°,30°, and 5°.
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local maximum of 2.34 at H = 0, decreases to 2.0 at H = 2, and increases to 2.9 at H = 2
(above a turning point at H = ~2.13).

A series of surfaces of 60° contact angle were computed between the limits of H = 2.06
and H = —3.09. Four surfaces of 60° contact angle are shown in Figure 7. The surface
with 60° contact angle and H = 2.00, self-intersects. The internal domain volume fraction
decreases from 0.453 as the mean curvature is increased to a turning point at H = 2.21 and
then decreased to H = 1.85 where & minimum volume fraction of 0.166 is reached. The
volume fraction increases to 0.686 mean curvature is decreased further until H = —2.85,
As the mean curvature is decreased further, the volume fraction decreases to 0.420 at

= —3.09 where the surface self-intersects. As mean curvature is decreased from H = 2.06
to H = —2.85, the area of the curved surface decreases from 2.86 to a minimum of 1,73 at
H = 2, increases to a local maximum of 2.46 at H = —1.1, decreases to 2.30 at H = 2.7,

and increases to 3.55 at H = —3.09.

A series of surfaces of 30° contact angle were computed between the limits of H = 0.70
and H = —4.02, Two surfaces of 30° contact angle are shown in Figures 4.8 upper left
and right. The surface with 30° contact angle and H = 0.70, self-intersects. The internal
domain volume fraction decreases from 0.46 at H = 0.7 to 0.24 at H = 0.40, increases to
a maximum of 0.65 at H = —3.4, and decreases to 0.26 at H = —4 wlere the surface self-
intersects. As H is decreased from 0.7 to -4, the area of the curved surface decreases from
5.68 to 2.77 at H = —3.2, and increases to 4.8 at H = —4 where the surface self-intersects.

A series of surfaces of 5° contact angle were computed between the limits of H = —0.49
and -3.8. Surfaces with H = —0.49 and H = —3.8 self-intersect. Two surfaces of 5° contact
angle are shown in Figures 4.8 lower left and right. The internal domain volume fraction
increases from 0.26 at H = —0.49 to 0.64 at H = —3.6, and decreases to 0.46 at H = —3.8.
As H is decreased from -0.49 to -3.8, the area of the curved surface decreases from 5.7 to
a minimum of 3.4 at H = ~3.5, and increases to 4.4 at H = —3.8.

Lissant (1966) defined a dimensionless geometric factor as the total surface area of
the internal domain divided by the two-thirds power of the internal domain volume. This
geometric factor removes particle size dependence from the surface area. A filled unit cube
has a geometric factor of A/V?/3 = 6. Lissant calculated geometric factors of rhomboidal
dodecahedral (RDH) and tetrakaidecahedral (TICDH) surfaces. These geometric factors
as functions of volume fraction are shown in Figure 4.11 along with the geometric factors
from simple cubic spheres and surfaces of constant mean curvature and 180° contact angle.
For a given volume fraction, the surface with the lowest geometric factor has the lowest
surface area. Spheres of RDH or TKDH arrangements pack more tightly than do spheres
of simple cubic arrangements. Packed simple cubic spheres occupy 52% of volume, packed
TICDH spheres occupy 68% of volume, and packed RDH spheres occupy 74% of volume.
The geometric factor of RDH spheres, is lowest, that of TI(DH spheres are next, followed
by thet of simple cubic spheres. As the curvature of the spheres is increased, the spheres
deform but the ranking of the geometric factors remains the same until volume fraction
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of 94% when the geometric factors of RDH and TKDH switch ranks. The constant mean
curvature surfaces of 180° contact angle have lower geometric factors than deformed simple
cubic spheres of the same volume fraction, i.e., the 180° surfaces have less surface area
than deformed simple cubic spheres of the same volume fraction. However, constant mean
curvature surfaces of 180° contact angle have higher geometric factors and surface areas
than deformed RDH and TIKDH spheres of the saine volume fraction. Geometric factors
of constant mean curvature surfaces as functions of contact angle and mean curvature are
shown in Figure 4.12. Surface with contact angle of 180° have the lowest geometric factor
for a specified volume fraction. Surfaces of contact angle less than 180° have higher surface
areas and, therefore, higher geometric factors.

Summary

A Galerkin weighted residual formulation of the Surface Divergence Theorem is used
with finite element basis functions to compute geometric models of foam and emulsion
structure. The models are surfaces of constant mean curvature arranged on a simple cubic
lattice so that they meet the boundary planes of the unit cells at prescribed contact angles.
Surfaces are computed for a variety of contact angles and mean curvatures. With contact
angle between 5° and 133° , the surface inverts as the mean curvature decreases, whereas
with contact angle between 134° and 180°, the surface fills the unit cell as the mean
curvature decreases, passes through a turning point, and then increases.
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