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Abstract

Recent work on the use of mRNA lipoplexes for gene delivery demonstrates the need for a mathematical model that
simulates and predicts kinetics and transfection efficiency. The small copy numbers involved make it necessary to use
stochastic models and include statistical analysis of the variation observed in the experimental data. The modeling
requirements are further complicated by the multi-level nature of the problem, where mRNA molecules are contained in
lipoplexes, which are in turn contained in endosomes, where each of these entities displays a behavior of its own. We have
created a mathematical model that reproduces both the time courses and the statistical variance observed in recent
experiments using single-cell tracking of GFP expression after transfection. By applying a few key simplifications and
assumptions, we have limited the number of free parameters to five, which we optimize to match five experimental
determinants by means of a simulated annealing algorithm. The models demonstrate the need for modeling of nested
species in order to reproduce the shape of the dose-response and expression-level curves.
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Introduction

Quantitative analysis of transfection is important for gene

therapy involving plasmid DNA and mRNA, as well as high-

throughput screening (HTS) and siRNA research [1–4]. For this

reason, it is important to know more about the kinetics and dose-

response relationship for delivery of genes and RNA-based nucleic

acid constructs and to understand the common principles that

underlie nucleic acid pharmacokinetics in any given cell type.

Many studies have collected quantitative data on the uptake and

pathway of gene carriers [5–10] and the physico-chemical

characterization of cationic lipoplexes and polyplexes has been

reviewed extensively [11–17]. In the last few years, first theoretical

considerations modeling the uptake and pharmacokinetics of

lipolexes using biochemical reaction kinetics have been undertaken

[18–20]. Some specialized models also address the spatial

distribution and active transport along microtubules [21]. The

stochastic nature of in the delivery process has been investigated

for nanoparticles [22] and for plasmid DNA [23]. The use of

movies for the analysis of single-cell tracking experiments has been

reviewed [24]. For modelling of biological systems in general,

there is an emerging set of tools in the context of systems biology,

including a new generation of computational methods, such as

process calculi and ‘‘executable biology’’ [25]. In fact, many

biological reactions require addition of stochastic modeling as well

as spatial aspects that go beyond reaction and diffusion [26]. For

example, endosomes contain lipoplexes and lipoplexes contain

mRNA molecules, and this can lead to a combinatorial explosion

in the number of variables and equations. The transfection process

requires the use of modeling techniques that have not been used

often, because substances can be contained in each other.

The problem of multi-level modeling has been treated in many

investigations and tools. Systems Biology Markup Language

(SBML) [27] and tools based on it, for example Cell Designer

[28] and Copasi [29], include the concept of compartments, which

contain species, but the compartments are only containers that

cannot support reactions of their own. First attempts to allow

modelling with compartments include the process calculus Pi

Calculus [30–35] and tools based on it, such as BioAmbients [36],

Beta-Binders [37–39] and the Stochastic Pi Machine SPiM [40].

In addition, the ‘‘rules-based’’ language BioNetGen Language

BNGL [41] and tools based on it, such as NFsim [42], contain

some very explicit methods for handling nested structures. One

example where these techniques were used is a model for the

uptake of nanoparticles is the work by Dobay et al. using SPiM

[43], which also demonstrates the need for multi-level modeling in

many situations involving nanoparticles.

Recently, we showed that quantitative analysis of transfection at

the single-cell level makes it possible to analyze the stochastic aspects

of transfection quantitatively [23,44]. The single cell exhibits time

courses that are characterized by a distinct delay time before the

onset of expression, a phase of GFP increase and finally a steady

state level. We showed that the distribution of steady-state levels was

related to the number of successfully delivered plasmids and well

described by an analytical model [23]. In the same spirit, we

analyzed the transfection of mRNA, which is more homogeneous
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and earlier compared to pDNA [45,46]. However, there is yet little

understanding regarding the kinetics of mRNA delivery. It is

generally accepted that mRNA lipoplexes are taken up via clathrin-

dependent endocytosis [47]. Existing models for RNA delivery

sometimes include a single ‘‘internalization’’ reaction, but that is not

sufficient for reproducing the data created by single-cell tracking

experiments. In particular, there is no kinetic model for the delivery

of mRNA that explicitly takes the compartments of the transfer

process into account.

Here we present a mathematical model, based on mass-action

kinetics, which describes the uptake of mRNA lipoplexes via

endocytosis and endosomal lysis. Our goal was to create a kinetic

model that reproduces experimental data, especially the distribu-

tion of time courses, and supports predictive modeling. While the

investigation of plasmid DNA [23] provides some background and

motivation, this model was based solely on the data published on

the experiment with mRNA [44]. We demonstrate that the uptake

kinetics is well described by a stochastic, mass action based model

that accounts for uptake of multiple lipoplexes. We solve the

problem of parameter estimation by choosing well-known rate

constants from literature and keeping five kinetic rates free, which

we optimize to meet the constraints of the experimental

transfection statistics and measured onset time distribution by

using a simulated annealing algorithm. As such, the model yields

uptake behavior that reproduces the experimental data and is

capable of predicting behavior beyond the experimental param-

eter regimes. The model also demonstrates the need for modeling

of nested species as well as modeling kinetic reactions in a

stochastic version in order to reproduce the shape of the dose-

response and expression-level curves, and the need to include the

maturation step in order to reproduce the variance of the onset-

time distribution. The benefit of predictive modeling and the

known limitations of the model are discussed.

Model Description

Streamlined Model
We model mRNA transfection by a sequence of mass-action

type chemical reactions (shown in Figure 1), which can be divided

into the delivery of lipoplexes and the GFP expression via the

mRNA released.

The delivery phase is described by the following ODEs:

dLex

dt
~{kALex{kW Lex ð1Þ

dP

dt
~zkALex{kEP ð2Þ

dE

dt
~zkEP{kLE{dEE ð3Þ

dLin

dt
~zkLE{kU L{dLL ð4Þ

dM

dt
~z350kU Lin{dMM ð5Þ

Where Lex is the concentration of external lipoplexes, kA is the

rate at which lipoplexes attach to the cell surface, kW is the

washing rate, which is equal to zero at first and jumps to a high

value after the incubation time or normally one hour, P is the

concentration of clathrin-coated pits (i.e. number per cell), kE is the

rate of endocytosis, E is the concentration of endosomes (i.e.

number per cell), kL is the rate of lysis of endosomes, dE is the rate

of endosome degradation, Lin is the concentration of internal

lipoplexes, kU is the rate of lipoplex unpacking, dL is the rate of

degradation of lipoplexes, M is the concentration of mRNA, kU is

the rate of unpacking of lipoplexes, and dM is the rate of

degradation of mRNA. The degradation of endosomes is primarily

a model parameter to represent endosomes that are never

observed to lyse, and includes mRNA degradation in the

endosome.

The expression phase is described by the following ODEs, plus

equation (5), which includes mRNA degradation:

dG

dt
~zkTLM{kM G{dGG ð6Þ

Figure 1. Diagram of the streamlined transfection model. External (extracellular) lipoplexes attach to the surface of the cell, forming clathrin-
coated pits, which enter the cell via endocytosis, leading to the formation of endosomes, which either lyse or degrade. This puts the lipoplexes into
the cytosol, where they unpack, releasing the mRNA, which translates to unfolded GFP molecules, which then mature (folding and oxidation), to
produce active GFP. In addition to the endosomes, the lipoplexes, mRNA, immature and mature GFP are all degraded at set rates.
doi:10.1371/journal.pone.0107148.g001
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dG�

dt
~zkM G{dGG� ð7Þ

Where G is the concentration of immature (unfolded) GFP, kTL

is the rate of translation, kM is the rate of maturation (folding and

oxidation), dG is the rate of degradation of both immature and

mature GFP, and G* is the concentration of mature GFP. The

reaction rates are documented in Table 1.

This first model shows a very linear progression of single

lipoplexes attaching to and entering the cell, but we know from

experiment that endosomes can contain multiple lipoplexes, so we

need to address that and allow for endocytosis of multiple

lipoplexes per endosome. This means that we will have multiple

levels of containment.

Multi-Level Modeling
The solution to the complexity that arises from multiple levels of

structure is a key aspect of the model shown in Figure 2, so we will

describe it here in very general terms. For readers who are

interested in more detail, the File S1 contains the code of all

versions of the model.

The initial condition of external lipoplexes provides a first

example of this. In ordinary differential equations, we would use

the name of the lipoplexes (Lext or Lex) as a variable in the

equations. This variable refers to the concentration of lipoplexes,

or, equivalently, the number of particles in a given volume. In an

SBML-based [27] tool, this is also called a species. Now the

problem here is that the lipoplexes come in different sizes, based

on the number of mRNA molecules they contain. In the current

experimental situation we are modeling, the lipoplexes have a

mean diameter of 120 nm and a standard deviation of 10 nm.

This size was determined by fluorescence correlation spectroscopy

(data not shown). When we additionally take the packing density of

the lipoplexes into account, this size corresponds to a mean of 350

mRNA molecules per lipoplex and lipoplex sizes ranging from 270

to 445 mRNA molecules. See Supplementary data of Leonhardt

et al. [44] for a detailed description.

There are three solutions to this problem. First, we can use a

tool in which we can include a parameter for the size of the

lipoplex. In other words, we can write Lext(n), where n is the

number of mRNA molecules, and use that in the model. Second,

as an alternative, we can simply list all possible values of the size as

separate species, e.g. Lext270, Lext271 … Lext445. Finally, we

can apply a key simplification and assume that all lipoplexes

contain exactly 350 mRNA molecules.

Next, we need to consider the endosomes. Our experience with

both experimental data and modeling shows us that each

endosome can only contain a small number of lipoplexes, and

we are safe when we set this to an arbitrary maximum of 10. In

addition, each of those lipoplexes can contain anywhere from 270

to 445 mRNA molecules. In order to list all of these cases, we

would need more than 17510 different variables (or species),

something that is clearly impossible.

The key simplification in this paper, assuming that all lipoplexes

have the same size, along with listing all possible endosome sizes,

makes it possible to formulate the model in SBML and use Copasi

to run the simulations. We have also evaluated the use of other

tools and present those results here, for the benefit of experts in

those tools and modeling techniques in general. The second

implementation uses Pi-Calculus-based SPiM and preserves full

Table 1. Rates.

A parameters, fitted (optimized) and fixed

role goal (exp.) streamlined with
slow maturation

multiple-lipoplex
with fast maturation

multiple-lipoplex with
slow maturation

literature

kA (attach) fitted .03 0.26 0.27 0.006–0.5 [20,21,59]

kE (endocytosis) fitted .8 0.73 0.81 0.16–0.5 [20,21,59]

kL (lysis) fitted .065 0.10 0.11 0.001–0.96 [20,21,59]

kM (maturation) fitted or
fixed

5.5 9.23 5.5 0.5–9.23 [48,60–63]

dE (endosome degradation) fitted 0.65 0.60 0.67 n.a.

kU (unpack) fixed 1e+06 1e+06 1e+06 n.a.

dL (lipoplex degradation) fixed 1e–06 1e–06 1e–06 n.a.

kTL (translation) fixed 170 170 170 170 [44]

dM (mRNA degradation) fixed 0.062 0.062 0.062 0.062 [44]

dG (GFP degradation) fixed 0.056 0.056 0.056 0.056 [44]

B experiment vs. simulation

TE (transfection efficiency) target 40 44 36 38

LC (lipoplexes on cell) target 6 6.43 6.02 6.03

maxGFP target 7.09e+5 4.32e+5 4.91e+5 5.34e+5

t0-mean target 3.14 3.36 3.49 3.23

t0-width target 1.54 1.72 2.05 1.65

A) The table shows the rate constants used by the simulation. During optimization, kA, kE, kL, and dE were varied, and kM was varied in one case. Column ‘‘streamlined
with slow maturation’’ is the streamlined model with kM = 5.5 fixed. Column ‘‘multiple-lipoplex with fast maturation’’ is the multiple-lipoplex model with kM = 9.23 fixed
to the value from literature. Column ‘‘multiple-lipoplex with slow maturation’’ is the multiple-lipoplex model with kM varied (optimized). The literature values are
described in more detail in the File S1. B) The last 5 rows are the experimental data used as a goal in optimization.
doi:10.1371/journal.pone.0107148.t001

mRNA Delivery Model

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107148



complexity, except that we used a smaller width for the lipoplex

size distribution in order to keep the code smaller. The variable

sizes of the lipoplexes are kept throughout their lifetime, and the

variable sizes of pits and endosomes are represented by listing all

possible values, due to limitations in formulating reactions of

parameters in SPiM (as opposed to processes). The third version

uses the rule-based language BioNetGen Language (BNGL) in the

tool NFsim, and exposes a limitation that prevents us from using a

parameter (such as the number of mRNA molecules in a lipoplex)

in a reaction without setting it to an explicit value.

Multiple-Lipoplex Model
The multiple-lipoplex model (Figure 2) follows the lines of the

streamlined model (heavy arrows), but also includes the formation

of clathrin-coated pits that include multiple lipoplexes.

The delivery phase is described by the following ODEs:

dLex

dt
~{kAX Lex{

X9

i~1
kAX LexPi{kW Lex ð8Þ

dPi

dt
~zkAX Lex{kAX LexPi{kEPi ð9Þ

dPiz1

dt
~zkAX LexPi{kAX LexPiz1{kEPiz1

i~1:::9

ð10Þ

dEi

dt
~zkEPi{kLEi{dEEi

i~1:::10

ð11Þ

dLin

dt
~z

X10

i~1
ikLEi{kU Lin{dLLin ð12Þ

and equation (5) from above, where Pi is the concentration of

clathrin-coated pits of size i, i.e. containing i lipoplexes, Ei is the

concentration of endosomes of size i, and the new rate of

attachment is kAX calculated by dividing kA by the number of pits

plus one, in order to assure a constant rate of attachment even

when the number of pits increases. All other symbols are the same

as in the streamlined model.

The expression phase is described by the same ODEs as in the

streamlined model, (5), (6), and (7).

This model, in contrast to the streamlined model, includes

different-sized lipoplexes, with their sizes preserved through all

reactions up to unpacking. This seemingly easy extension allowing

variable lipoplex sizes and variable endosome sizes leads to a

severe combinatorial explosion of species and reactions. For the

analysis included in this paper, we have avoided a large part of this

issue by assuming that all lipoplexes have the same size. This is a

very significant simplification, but nevertheless allows fairly good

simulation results, and makes it possible to run simulations both

deterministically and stochastically, and also to run parameter

estimation.

We created 3 implementations of the model. The first is written

in SBML, was run in Copasi, and assumes a very significant

simplification (all liposomes have the same size); it was used for the

analysis in this paper. The second is written in Pi Calculus and was

run in the Stochastic Pi Machine (SPiM), and includes a limited

example of variable-sized lipoplexes. The third is written in BNGL

and was tested in NFSim.

Parameter Optimization
In order to compare the model to the experimental data, the

best values need to be found for the five parameters that have been

left free, such as the rate of endocytosis. This requires adjusting the

model to best fit the five experimental determinants, such as the

dose-response relationship. However, since the experimental data

Figure 2. Diagram of the multiple-lipoplex transfection model. This includes the same processes as in the streamlined model, except that
here the clathrin-coated pits and the endosomes can contain multiple lipoplexes.
doi:10.1371/journal.pone.0107148.g002
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is based on single-cell tracking, it includes the variance of the

distributions of multiple time courses. As a result, each attempt to

find a better value for the parameters requires two steps: First, it is

necessary to run the simulation many times (typically 1,000–5,000)

and second, to compare the distributions with the experimental

data. In all cases where we compare simulation data to

experimental data, we use the same analytical model for the

expression phase and the same fitting procedures for both data

sets, in order to make a good comparison between simulation and

experiment, as reported in [44].

Since we are optimizing a stochastic model, we have chosen to

use the simulated annealing algorithm. This algorithm chooses a

new set of values for the parameters, based on random numbers,

then runs the two steps of simulation and analysis described above,

and compares the results with the experimental data. The

comparison involves the current value of a ‘‘temperature’’ variable

and the Boltzmann function in order to allow the algorithm to

move away from local optima that may not be globally optimal.

The first two parameters in the model are the initial

concentration of external lipoplexes and the incubation time (time

until the cells are washed). These parameters are not part of the

optimization process, since they are determined by experiment,

but they do appear in the plots we have created of the dose-

response relationship and incubation dependency, which we also

compare with experimental data. In addition, we have varied these

parameters as part of predictive modeling.

The parameters in the optimization process are the rates of

attachment, endocytosis, and lysis, along with the rate of

endosome degradation, plus the rate of GFP maturation. We

optimize these five parameters to match five data points from the

experimental data: The number of lipoplexes that attach to the cell

surface (4–8), the dose-response curve (transfection efficiency vs.

dose), the mean and variance of the onset time of GFP expression

are as reported in [44], and the mean maximum GFP expression

level. This gives us a good estimate of these five parameters.

The remaining parameters that need optimization are thus the

rates of lysis and unpacking. Currently, we don’t have a way to

distinguish between delays caused by lysis vs. unpacking, so we set

unpacking to be immediate. In addition, we assume no negligible

degradation of lipoplexes, so we set that rate to a small number.

The values of all parameters, both fixed and fitted, are

documented in Table 1. Due to the significant simplifications

involved in the model, and the inherent ‘‘sloppiness’’ of models

with this many parameters, we do not consider the parameters to

be accurate measurements of the real values. The value of the

model is demonstrated more by its overall performance and

matching with the experimental data.

Model Implementations
The formulation of the SBML implementation of the model is

based on reactions, and is a very straightforward step from the

reactions documented here. The only difference is the fact that

some species are listed, such as End1…End10, instead of the

subscripted notation Endi i = 1…10 used in the documentation.

The Pi Calculus implementation is discussed in the File S1. This

implementation of the model, which was run in SPiM, deals with

the variable lipoplex size by including the size as a parameter in

the process. It is an implementation of the model in Pi Calculus

where the number of lipoplex sizes (the width of the lipoplex size

distribution) is restricted to 11, even though 175 is required. This

model was run and produced the same data as the Copasi model

with only 1 lipoplex size.

The BNGL implementation is discussed in the File S1. This is a

prototype of an implementation of the model written in BNGL

and run in NFSim. This implementation does not cover enough of

the model to produce useful data.

Results and Discussion

Time Courses
Since we are dealing with low copy numbers in the first parts of

the transfection process, we need to account for the stochastic

nature of them, and see how that compares with a more traditional

solution to the equations. Figure 3 shows time courses created by

deterministic simulation, i.e. by numerical solution of the

differential equations in the green dotted line, and a typical

example of time courses created by stochastic simulation, i.e. using

Monte Carlo simulation via the Gillespie algorithm in the red full

line. The important message in this figure is the very significant

difference between deterministic and stochastic simulations. Due

to the low copy numbers involved (except for GFP), the

deterministic plots are not good representations of the biological

reality, and they do not necessarily represent the average behavior

of the stochastic simulations. However, they are sometimes useful

for running early steps in the parameter estimation task. Figure 3A

shows the number of lipoplexes attached to the cell surface, which

grows rapidly until the cells are washed after 1 hour of incubation,

and then decays exponentially as they enter the cell. Figure 3B

shows the number of lipoplexes in endosomes, which demonstrates

how they enter and leave the endosomes. Figure 3C shows the

number of mRNA molecules, where our example of a stochastic

simulation shows that 1 lipoplex (containing 350 mRNA

molecules) has entered the cell; this can vary from 0 to about 5.

Figure 3D shows the number of GFP molecules, which first

increases after mRNA molecules appear and begin to translate,

then decreases due to degradation of both mRNA and GFP.

Now that we have set our focus on stochastic simulation time

courses, we would like to see how they compare with the

experimental data. Figure 4 is another visualization of the GFP

time course presented earlier. Figure 4A shows the simulation

data. The clustering of the absolute height of the curves results

from the fact that mRNA molecules are delivered in ‘‘packets’’, i.e.

lipoplexes of size 350. We consider this to be a result of the

simplification where we assumed all lipoplexes to contain exactly

350 mRNA molecules, even though the range (within one

standard deviation) goes from 270 to 445. This clustering behavior

was not observed in the experimental data. The horizontal axis

clearly shows the variation in the onset time, and the vertical axis

shows the variation in expression level (maximum GFP concen-

tration). These two distributions will be examined in more detail

below. Figure 4B shows the experimental data. In the plots, it

appears as though the absolute level of GFP expression differs by a

factor of 4. However, the value used for parameter optimization

was the mean of the maximum GFP expression level, and that is

7.16105 in the experiment and 5.46105 in the simulation. The

other values used for optimization varied much less (see Table 1).

The time for reaching a peak value in Figure 4B is not easy to see,

so we calculated the mean and variance of both distributions, and

found that both peak at about 20 hours with a standard deviation

of about 5.5 hours.

Simulation vs. Experiment
In order to compare simulation with experiment, probability

distributions of some of the key parameters are shown in Figures 5

and 6. In all cases, the experimental data refers to the data

published in [44]. Figure 5 shows the onset time of GFP

expression, which is defined as the first time where GFP can be

detected, and we have measured it by fitting the analytic solution

mRNA Delivery Model
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of the expression kinetics to the experimental data and the

simulations using the same technique as in the original paper [44].

This makes it unnecessary to use an arbitrary threshold for GFP or

to use the simple slope of the curve to determine onset time. The

maturation reaction was not included in the original analysis in

[44], which means that the maturation delay was included in the

onset time there. The green dashed line kM = 9.23 (fitted

parameters 3.5 mean and 2.1 width), from literature [48], and

solid red line kM = 5.5 (fitted parameters 3.2 mean and 1.6 width),

as determined by our parameter optimization. The dotted blue

lines show the onset times of the experimental data (fitted with 3.1

mean and 1.5 width). The reason for the difference lies in the fact

that all reactions have a small copy number, and thus a large

stochastic variation, except for the maturation reaction. We know

that, for Poisson processes, the mean is proportional to the number

of reactants, and the width is proportional to the square root of the

number of reactants, and this number is on the order of 1–100 for

endocytosis, 1–100 for lysis, 1–100 for unpacking, 300–2000 for

Figure 3. Simulation Time Courses. Green dotted (red full) line: deterministic (stochastic) simulation. A) Number of lipoplexes attached to the cell
surface. B) Number of lipoplexes contained in endosomes. C) Number of mRNA molecules in the cell. D) Number of GFP molecules in the cell.
doi:10.1371/journal.pone.0107148.g003

Figure 4. GFP expression: simulation vs. experiment. A) Computer simulation. B) Experimental time courses.
doi:10.1371/journal.pone.0107148.g004
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translation, and 200,000–5,000,000 for maturation. In order to

match the experimental results, our optimization routine found a

maturation rate of 5.5 h21 or 11 min delay. In contrast, the rate of

kM = 9.23 (6.5 min) from literature produces a distribution that is

too wide. Maturation delays of 20 or 30 minutes also match the

experimental data well. This is within the range of published

EGFP maturation rates, which vary widely and go as high as a few

hours due to the time required for oxidation (more details in File

S1). This figure was created in the multiple-lipoplex model, but the

streamlined model shows exactly the same behavior, i.e. it is

capable of reproducing the experimentally-measured onset time

distribution, but also needs the maturation reaction to do so.

Now that we have seen the comparison of simulation and

experiment for the onset time of GFP expression, we need to look

at how much GFP is created in the cells. Figure 6A shows the

distribution of the maximum number of GFP molecules, as

determined by fitting the analytical solution of gene expression

(translation and degradation) to the data of simulation and

experiment. This is the value that we use to determine the level of

expression, and, along with the degradation rates, it uniquely

determines the time course of GFP expression. The dashed green

lines are from a simulation of the streamlined model (fitted with

4.3*105 mean and 0.47 width). The solid red lines are from a

simulation of the multiple-lipoplex model (fitted with 5.3*105

mean and 0.69 width). The dotted blue lines show the

experimental data (fitted with 7.1*105 mean and 1.1 width). We

can see that the simulation of the streamlined model misses the

experimental results significantly, which we attribute to the fact

that the streamlined model never transports more than one

lipoplex per endosome. In contrast to the streamlined model, the

multiple-lipoplex model allows a better match to the expression

level data. The use of lognormal curves to fit the simulation and

experimental data in Figure 6A is more than a convenient guide

for the eye; they provide a good representation of the data, since

the GFP expression is the result of multiple random processes.

Along with the maximum amount of GFP expressed, we are

also interested in seeing how the amount of GFP compares with

the dosage of lipoplexes, i.e. the concentration presented to the

cells. Figure 6B shows the dose-response relationship, defined as

transfection efficiency, i.e. percentage of cells that successfully

express GFP vs. concentration of mRNA. The green open

triangles are from the simulation of the streamlined model, and

the dashed green line is a single-Poissonian fit (fitted parameter

1.1). The open red circles are from the simulation of the multiple-

lipoplex model and the solid red line is a double-Poissonian fit

(fitted parameters 1.9 and 0.6). The solid blue squares are from the

experimental data and the dotted blue line is a double-Poissonian

fit (fitted parameters 1.1 and 0.9). In Figure 6B, we can see that

the simulation of the streamlined model is much too straight and

significantly misses the shape of the experimental results, which we

attribute to the fact that the streamlined model never transports

more than one lipoplex per endosome. In fact, the good fit of a

single Poissonian to the streamlined model is a clear indication

that one of the Poissonian processes, representing the number of

lipoplexes per endosome, is missing in this model. This process is

referred to as Leff in the original paper, and the process that is

included in the streamlined model is referred to as Neff [44], File

S1. The dose-response relationship for the multiple-lipoplex model

shows a reasonable fit to a double Poissonian and to the

experimental data, and is a big improvement over the streamlined

model.

Figure 5. Onset time of GFP expression (Simulation vs.
Experiment based on time courses shown in Figure 4). The
curves are Gaussian curves based on mean and variance of the full
distribution data (shown as a histogram). The dashed green lines show
the onset times for simulation with a maturation rate (kM) of 9.23 taken
from literature. The solid red lines show the onset times for simulation
with a maturation rate (kM) of 5.5. The dotted blue lines show the onset
times of the experimental data.
doi:10.1371/journal.pone.0107148.g005

Figure 6. GFP expression (Simulation vs. Experiment based on
time courses shown in Figure 4). A) Expression Level. Maximum
number of GFP molecules with histograms of the distributions and
lognormal fits of the histograms as curves. The dashed green lines are
from a simulation of the streamlined model. The solid red lines are from
a simulation of the multiple-lipoplex model. The dotted blue lines show
the experimental data. B) Dose-Response Relationship. Transfection
efficiency (TE) is the percentage of cells that exhibited a successful
transfection, based on GFP expression. The curve was determined by
varying the dosage (mg/ml) in the experiment, and the initial
concentration of lipoplexes in the simulation (Lex). The green open
triangles are from the simulation of the streamlined model, and the
dashed green line is a single-Poissonian fit. The open red circles are
from the simulation of the multiple-lipoplex model and the solid red
line is a double-Poissonian fit. The solid blue squares are from the
experimental data and the dotted blue line is a double-Poissonian fit.
doi:10.1371/journal.pone.0107148.g006
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We can summarize these differences by observing that the

streamlined model is capable of reproducing the delay and

variance of the onset time of GFP expression, but the multiple-

lipoplex model is required to reproduce the dispersion of the data.

In other words, multi-level modeling is necessary for reproducing

the dispersion of the data, because it is the only model that

includes the second Poisson process discussed in the experimental

paper.

Predictive Modeling
The power of mathematical modeling is its capability to predict

the behavior of systems before running experiments. It is

instructive to test the outcome of our simulation for various

scenarios of practical relevance in our lab work. In the following,

the red circles show the transfection efficiency (percentage of cells

transfected) and the green triangles show the maximum GFP

expression level.

For determining the dosage presented to the cells, the

incubation time, i.e. the time until the cells are washed, plays an

important role. Figure 7A shows the transfection efficiency (TE)

and the maximal number of eGFP expressed (GFP) as a function

of incubation time. The model predicts a strictly linear relation of

incubation time and transfection efficiency. This outcome is due to

the fact that the model assumes a constant concentration of

lipoplexes in bulk and hence a constant diffusion-limited flux. Yet

we expect this dependence to be only observable in a very limited

time window avoiding saturation of the uptake capacity of the cells

as well as the depletion of the lipoplex pool. Most importantly,

however, the model does not account for increasing toxic side

effects that come with increasing dose.

In this model, the endosome degradation rate is a catch-all for

any kind of degradation that occurs before endosomal lysis,

especially mRNA degradation, so a small endosome degradation

rate should show the benefit of improved mRNA stability.

Figure 7B shows the transfection efficiency (TE) and the maximal

number of eGFP expressed (GFP) as a function of endosome

degradation rate. The solid red and green lines are exponential

fits. The exponential increase of transfection efficiency with

decreasing degradation rate clearly shows the (expected) benefit

of increasing the stability of mRNA. It is interesting to note that

the averaged eGFP per expressing cell exhibits a steeper

dependence than the fraction of transfected cells (transfection

efficiency). When we extrapolate the exponential fits to the point

where the endosome degradation rate is zero, we can see that the

model predicts approximately 100% transfection efficiency and

1,000,000 maximum GFP for the case of perfectly stable mRNA.

Extrapolation to an infinite degradation rate (absolutely unstable

mRNA) predicts approximately 0% transfection efficiency as

expected. However, this is only approximately 0%, and maximum

GFP expression is only calculated for successfully transfected cells,

so when we extrapolate to an infinite degradation rate, we see

500,000 GFP molecules per cell, but this is an artifact of the

analysis. We should also recall that our model was optimized to an

average of 6 lipoplexes adhering to each cell.

In order for the lipoplexes to reach the cytosol and be expressed,

they first need to escape from the endosomes, which we have

modeled in the endosomal lysis rate. Figure 7C shows the

transfection efficiency (TE) and the maximal number of eGFP

expressed (GFP) as a function of the lysis rate. The solid red line is

an exponential fit while and the solid green line is a linear fit. The

increase of transfection efficiency with increasing lysis rate

demonstrates the (expected) improvement of transfection with

increasing lysis, or endosomal escape [4,9,49–52]. We expect a

similar effect when changing the attach rate via the use of

magnetofection [8].

The size of the lipoplexes may have an important influence on

their uptake. Figure 7D shows the transfection efficiency (TE) and

the maximal number of eGFP expressed (GFP) as a function of the

lipoplex size. We can see that the model predicts a higher

percentage of cells transfected when the lipoplexes are smaller (but

total mRNA concentration kept the same), and a higher total

amount of GFP when the lipoplexes are larger. This opposing

Figure 7. Predictive Modeling. All plots show a parameter vs. transfection efficiency (TE, red circles) and protein expression (GFP, green triangles).
The lines are linear or exponential fits. A) Incubation time. B) Endosome degradation rate. C) Lysis rate. D) Lipoplex size.
doi:10.1371/journal.pone.0107148.g007
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effect occurs because we assume a constant uptake rate

independent of size and smaller lipoplexes mean a larger number

of them, which increases the probability of successful transfection,

while larger lipoplexes are capable of transporting more material.

A size-independent uptake rate, however, is taken with a very big

caveat. In fact, the dependence of uptake on size has been shown

in experiment for gold nanoparticles [53–56]. Yet, there is some

value to the finding that in case of variation of experiments focused

on an optimal lipoplex size, in which case the size dependence

might be weak, transfection efficiency and GFP expression react in

the opposite direction.

Conclusions and Outlook

We have presented a kinetic model for mRNA delivery via

transfection of lipoplexes. The model consists of a chain of transfer

events including lipoplex attachment, endocytosis, endosomal lysis,

unpacking, translation and maturation. It was shown that

parameter estimation allows direct comparison to the outcome

of a single-cell transfection analysis. The model provides a kinetic

model that reproduces both the delay and dispersion of the onset

time and also the dose-response relationship. The delay can be

reproduced using the streamlined model, but the multiple-lipoplex

model, which is based on multi-level modeling, is necessary in

order to reproduce the dispersion of the data. The key findings are

that in order to achieve the observed level of GFP expression, as

expressed in the maxGFP distribution, we need to use the

multiple-lipoplex model. A multiple-lipoplex model achieves the

correct width (stochastic variance) of the probability distribution

for the onset time of GFP expression if the maturation reaction is

included. A hallmark of the multiple-lipoplex model is its

combinatorial manifold, which exceeds the capacity of ordinary

modeling platforms. We showed that a reduction of the

combinatorial space to a limited variance was able to approximate

the shape of the dose-response relationship.

Extensions of the model that might be necessary as more refined

data become available are more explicit rate equations that

include cooperative behavior (Hill kinetics) or e.g. enzyme limited

reactions (Michaelis Menten type kinetics). Furthermore, degra-

dation processes could be broken down into specifically known

pathways. Yet the most important uncertainty concerns the uptake

process itself. The fact that we used a single, uniform rate of

attachment of lipoplexes to clathrin-coated pits and that the rate of

endocytosis in our model does not depend on the size of the pit is

first of all due to missing quantitative data. We have assumed that

endosomes first undergo lysis, then the lipoplexes are unpacked,

and then the mRNA can begin translation and degradation.

However, unpacking might occur within the endosome before lysis

and, as mentioned earlier, mRNA degradation might begin in the

endosome before lysis. Furthermore, we don’t currently have a

way to distinguish between a delay caused by lysis and delay

caused by unpacking, so we have simplified the model to treat

unpacking as an immediate reaction.

A key aspect of this investigation is multi-level modeling, which

leads to a combinatorial explosion of variables and reactions, but

this could be solved more elegantly by a computational system that

copes with it directly. However, this does not make the

combinatorial explosion disappear; the burden is simply trans-

ferred from the user to the tool in the form of dynamic creation of

species. The basis for this already exists in SBML, Copasi, SPiM,

BioNetGen, NFsim, and ML-Rules, which introduces the concept

of nested species [57,58], meaning that one species, such as

mRNA molecules, can exist and exhibit behavior within another

species, such as a lipoplex or endosome. This would make it

possible to formulate the model in a more elegant way, which

would be easier to understand. As a second benefit, it would make

it possible to remove a significant limitation of today’s model,

which assumes that all lipoplexes have the same size and leads to a

clustering of GFP expression levels visible in Figure 4, and it would

be possible to model explicit unpacking of lipoplexes and

degradation of mRNA within endosomes, instead of resorting to

an endosome degradation reaction, as shown in the fully nested

model (Figure 8). Finally, it would also make it possible to use

species as building blocks to create new ones; for example,

chemical reaction networks could be used to build organelles,

which could be used to build cells, etc. This type of model is often

required for nanoparticle transport in general, and should provide

a basis for more predictive modeling in that area.

Beside all well-founded shortcomings of the current model

limitations, there is substantial value added by comparison of

modeling and experimental data. The fact that data are

reproduced by a set of parameters that is optimized by the same

number of experimental determinants justifies our assertion that

the model has significant predictive power. We have done

predictive modeling by analyzing the effect of varying parameters,

and the results either agree with existing experimental data (e.g.

dose-response), confirm known aspects (e.g. importance of

endosomal escape), or predict new effects, such as the effect that

decreasing the size of the lipoplexes has on transfection efficiency

and GFP expression.

With appropriate modifications, this model should be useful for

new experimental work. The key parameters include the rates of

attachment, endocytosis, lysis, unpacking, and the size-dependen-

cy of those rates; as new data on these parameters becomes

available, this should lead to a significant improvement in the

quality of the model.

Supporting Information

File S1

Code S1. Script for automated simulation of dose-
response relationship.
Code S2. script for automated simulation of lipoplex
size dependency.
Code S3. C# source code for program to set parameters
in Copasi model.
Code S4. C# source code for program to run Copasi
model multiple times and analyze results in Igor Pro.
Code S5. C# source code for program to run TFC.exe
and optimize via simulated annealing algorithm.

Figure 8. Key aspect of the fully nested transfection model. In
addition to the processes in the multiple-lipoplex model, the fully
nested model includes unpacking of lipoplexes and degradation of
mRNA within endosomes.
doi:10.1371/journal.pone.0107148.g008
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Code S6. C# source code for program to run Copasi
streamlined (reduced) model multiple times and ana-
lyze results in Igor Pro.
Code S7. C# source code for program to run TFRC.exe
and optimize via simulated annealing algorithm.
Code S8. Igor Pro procedure for analyzing results of
Copasi model (TFC.cps and TFC.cps).
Code S9. Perl script for running SPiM model.
Code S10. Igor Pro procedure for analyzing results of
SPiM model.
Code S11. Igor Pro procedure for creating figures.
Dataset S1. Dose-response data (Figure 6).
Dataset S2. GFP data (Figure 4).
Dataset S3. Lipoplex size data (Figure 7).
Dataset S4. Max GFP experiment (Figure 5B).
Dataset S5Max GFP reduced model (Figure 5B).
Dataset S6. Max GFP (Figure 5B).
Dataset S7. Onset time experiment (Figure 5A).
Dataset S8. Onset time reduced model (Figure 5A).
Dataset S9. Onset time (Figure 5A).
Dataset S10. Time courses (Figure 3).
Model S1. Copasi model for deterministic simulation of
multiple lipoplex model.
Model S2. SBML model for deterministic simulation of
multiple lipoplex model.
Model S3. Copasi model for stochastic simulation of

multiple lipoplex model.
Model S4. SBML model for stochastic simulation of
multiple lipoplex model.
Model S5. Copasi model for deterministic simulation of
streamlined (reduced) model.
Model S6. SBML model for deterministic simulation of
streamlined (reduced) model.
Model S7. Copasi model for stochastic simulation of
streamlined (reduced) model.
Model S8. SBML model for stochastic simulation of
streamlined (reduced) model.
Model S9. SPiM model.
Model S10. Version 1 of BNGL (BioNetGenML) model
for NFSim.
Model S11. SBML model for BNGL.
Text S1. Detailed model description.
Text S2. ODEs as created by Copasi in TeX format.
Text S3. ODEs imbedded in LaTeX document file.
Text S4. ODEs in PDF format (from LaTeX).
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