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Subject-specific Bradley–Terry–Luce models with
implicit variable selection
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Abstract: The Bradley–Terry–Luce (BTL) model for paired comparison data is able to obtain a ranking
of the objects that are compared pairwise by subjects. The task of each subject is to make preference
decisions in favour of one of the objects. This decision is binary when subjects prefer either the first
object or the second object, but can also be ordinal when subjects make their decisions on more than two
preference categories. Since subject-specific covariates, which reflect characteristics of the subject, may
affect the preference decision, it is essential to incorporate subject-specific covariates into the model.
However, the inclusion of subject-specific covariates yields a model that contains many parameters and
thus estimation becomes challenging. To overcome this problem, we propose a procedure that is able
to select and estimate only relevant variables.
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1 Introduction

In paired comparisons, several objects are compared pairwise to obtain an overall
preference ranking of the objects. In many application fields, such as, marketing
research or psychometric experiments, objects are presented in a pairwise manner to
judges, or, as they are called here, subjects. Their task for each comparison is to make
a preference decision in favour of one of the presented objects according to specific
subjective criteria, for example, the fragrance of perfumes when two perfumes are the
objects being compared. Subjects can typically choose to prefer either the first or the
second object, so that the response is represented by a binary variable. Alternatively,
the subjects can make their preference decisions on more than two preference
categories, such as, preferring the first object strongly or weakly, preferring neither of
the objects, or preferring the second object strongly or weakly. This procedure yields
an ordinal response that allows for a more precise preference ranking of the objects
because it uses additional information about how strongly an object is preferred.

One of the most widely used models for paired comparisons with a binary
response is the model suggested by Bradley and Terry (1952). It is closely related
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to the choice axiom of Luce (1959) with the restriction of choices to between
two objects. Thus, the model is also known as Bradley–Terry–Luce (BTL) model.
Several extensions have been proposed in the literature to allow for responses
with more than two preference categories. The former approaches allowed only
a third category and were proposed by Rao and Kupper (1967) and Davidson
(1970). Later, ordinal BTL models that allow for any number of ordered response
categories were considered by Tutz (1986), Agresti (1992), Dittrich et al. (2004) and
Dittrich et al. (2007). Ordinal regression models, in particular the cumulative logit
model and the adjacent categories logit model, are in common use when an ordinal
response is present. The models presented in this paper assume independence among
all observations, so that pairwise ratings from the same subject are modelled as
independent. However, in some applications, including a dependence structure is
more realistic. In this context, Böckenholt (2001) introduced dependencies among
observations by including subject- and object-specific random components.

The main objective of this article is to develop a method that allows for variable
selection in a model that also contains subject-specific covariates. These covariates
are characteristics of the subject and are assumed to affect the decision of a
subject. Selection of relevant subject-specific covariates is very important because
subject-specific BTL models typically contain a large number of parameters, and
the estimation of all these parameters becomes challenging. Therefore, we focus on
detecting important characteristics that determine the preference of objects.

2 Paired comparison models

2.1 The binary BTL model

Let M be the number of objects that are being compared and let the pair (r, s) refer to
the comparison of object r and object s. The response connected to this comparison
is denoted by Yrs, where Yrs = 1 indicates the preference for object r and Yrs = 2
indicates the preference for object s. Let �

(r,s)
k

:= P(Yrs = k|(r, s)), with k = 1, 2 and
�

(r,s)
1 + �

(r,s)
2 = 1 denote the probability of whether object r (for k = 1) or object s (for

k = 2) is preferred. The binary BTL model can then be written as a logistic model

log
(

�
(r,s)
1

/(
1 − �

(r,s)
1

))
= �r − �s

= x
(r,s)
1 �1 + . . . + x

(r,s)
M−1�M−1

= (
x(r,s)

)�
���,

(2.1)

where the components of the vector
(
x(r,s)

)� =
(
x

(r,s)
1 , . . . , x

(r,s)
M−1

)
are defined as

x(r,s)
m =

⎧⎨
⎩

+1 if m = r

−1 if m = s

0 otherwise.
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Given the pair (r, s), the vector
(
x(r,s)

)� = (0, . . . , 1, 0, . . . , −1, 0 . . . , 0) has a 1 on the
rth position and a −1 on the sth position. The vector ��� = (�1, . . . , �M−1)� contains all
object parameters that are to be estimated, where each parameter �m reflects the worth
of object m. For model identifiability, we use the restriction �M = 0, that is, object M
is considered as reference object. The ranking of objects is based on estimated object
parameters, where estimation is carried out by maximum likelihood estimation for
ordinary logistic models (Turner and Firth, 2012).

2.2 Ordinal BTL models

In the binary BTL model, the subjects can prefer the first object or the second object
of a comparison. In more general settings, the subjects can make their preference
decisions on more than two preference categories. In this case, the binary response
is extended to a symmetric ordinal response Yrs ∈ {1, . . . , K}, where K denotes an
arbitrary number of response categories. In our notation, lower response categories
indicate the preference for object r. Thus, Yrs = 1 is the most favourable response
category for object r and Yrs = K is the most favourable response category for object s,
or, equivalently, the least favourable response category for object r. To ensure that the
comparison of the pair (r, s) yields the same result as the comparison of the pair (s, r),
the ordinal response is assumed to be symmetric, that is, Yrs = k ⇔ Ysr = K − k + 1
and therefore �

(r,s)
k

= �
(s,r)
K−k+1 (Agresti, 1992).

2.2.1 The cumulative model
The cumulative BTL model for ordinal responses uses the cumulative proba-
bilities P(Yrs ≤ k|(r, s)) = �

(r,s)
1 + . . . + �

(r,s)
k

and P(Yrs > k|(r, s)) = �
(r,s)
k+1 + . . . + �

(r,s)
K ,

with P(Yrs ≤ k|(r, s)) + P(Yrs > k|(r, s)) = �
(r,s)
1 + . . . + �

(r,s)
K = 1. The model can be

formulated as a cumulative logit model (McCullagh, 1980) with the link function
g = (g1, . . . , gK−1)�, where

gk

(
�

(r,s)
1 , . . . , �

(r,s)
K

)
= log

⎛
⎝ �

(r,s)
1 + . . . + �

(r,s)
k

1 −
(
�

(r,s)
1 + . . . + �

(r,s)
k

)
⎞
⎠

links the considered probabilities to the linear predictor �
(r,s)
k

, so that

gk

(
�

(r,s)
1 , . . . , �

(r,s)
K

)
= �

(r,s)
k

= �k + (�r − �s)

= �k + (x(r,s)
1 �1 + . . . + x

(r,s)
M−1�M−1)

= �k + (
x(r,s)

)�
���,

(2.2)
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for all k = 1, . . . , K − 1 and with the threshold parameters −∞ = �0 < �1 < . . . <
�K−1 < �K = ∞. Because of the symmetric response, the thresholds need to be re-
stricted as follows (see Tutz, 1986):

(1) If K is odd

�k = −�K−k for k = 1, . . . , K−1
2 = ⌊

K−1
2

⌋
. (2.3)

(2) If K is even

�K/2 = 0 and �K/2−k = −�K/2+k for k = 1, . . . , K
2 − 1 = ⌊

K−1
2

⌋
. (2.4)

It can be seen that only q := ⌊
K−1

2

⌋
threshold parameters need to be estimated; the

other ones are determined by the symmetry constraints (2.3) and (2.4).

2.2.2 The adjacent categories model
Another model that also allows for ordinal responses is the adjacent categories BTL
model. It is based on the adjacent categories logit model using the link function
g = (g1, . . . , gK−1)�, with

gk

(
�

(r,s)
1 , . . . , �

(r,s)
K

)
= log

(
�

(r,s)
k

�
(r,s)
k+1

)
.

The model is then defined by

gk

(
�

(r,s)
1 , . . . , �

(r,s)
K

)
= �

(r,s)
k

= �k + (
x(r,s))����, k = 1, . . . , K − 1. (2.5)

Here, the same restrictions (2.3) and (2.4) are valid and allow for symmetric thresh-
olds (see Agresti, 1992). The adjacent categories BTL model can also be represented as
a log-linear model, which has been extensively discussed in the literature (see Agresti,
1992; Dittrich et al., 1998, 2004, 2007). When the response consists of K = 2 cat-
egories, the binary BTL model (2.1) is a special case of the cumulative BTL model
(2.2) and the adjacent categories BTL model (2.5). In this case, the cumulative BTL
model and the adjacent categories BTL model are equivalent.

It should be noted that the cumulative model and the adjacent categories model
for ordinal responses use the same set of linear predictors

�
(r,s)
k

= �k + (
x(r,s))����, k = 1, . . . , q. (2.6)

Therefore, the inclusion of subject-specific covariates for both models is obtained by
modifying the same linear predictors.
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3 Including subject-specific covariates

A very restrictive assumption for the models considered in Section 2.2 is that the
worth of an object is the same for all subjects. Therefore, the ranking of the objects is
the same for all subjects. However, in most applications it is to be expected that the
preference for an object and thus the ranking of all objects depends on characteristics
of the subject that makes the preference decision (Dittrich et al., 1998; Francis
et al., 2002). To explicitly model this heterogeneity, we introduce subject-specific
covariates xi,1, . . . , xi,P, which can be both categorical or continuous characteristics
of the subject. In this case, P reflects the number of characteristics and i refers to a
single subject. The object parameters are now assumed to be determined by these
characteristics, such that the object parameters vary across subjects. The resulting
object parameter for subject i is then specified by

�i,m = �m +
P∑

p=1
xi,p�m,p,

where �m is a parameter for object m that is independent of the characteristics of the
subject, and �m,p is a modifying effect for object m depending on the pth subject-
specific covariate. This means that �m,p is a subject–object interaction parameter. To
ensure model identifiability, we constraint the subject–object interaction parameters
by setting �M,p = 0, for all p = 1, . . . , P (Francis et al., 2002). Assuming that there
are i = 1, . . . , I subjects, the linear predictor �

(r,s)
k

from equation (2.6) can be replaced
by a more flexible linear predictor �

(r,s),i
k

that also considers subject-specific covariates
and has the form

�
(r,s),i
k

= �k + (�i,r − �i,s) = �k + (�r − �s) +
P∑

p=1
xi,p(�r,p − �s,p)

= �k +
M−1∑
m=1

x
(r,s)
m �m +

P∑
p=1

M−1∑
m=1

xi,px
(r,s)
m �m,p

= �k + (
x(r,s)

)�
��� +

P∑
p=1

(
x(r,s),i

p

)�
���p.

Here, the vector
(
x(r,s),i

p

)�
=
(
xi,px

(r,s)
1 , . . . , xi,px

(r,s)
M−1

)
contains all subject–object in-

teractions that belong to the pth subject-specific covariate and ����
p = (�1,p, . . . , �M−1,p)

is the corresponding vector of subject–object (interaction) parameters, such that �m,p

refers to the mth object and the pth subject-specific covariate.
In the absence of subject-specific covariates, that is, xi,p = 0, for all i, p, one

obtains an ordinal BTL model as described previously. The model that considers
subject-specific covariates is more flexible and accounts for heterogeneity between
subjects but suffers from the large number of parameters. This is because one has to
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estimate M − 1 subject–object parameters, namely, ����
p = (�1,p, . . . , �M−1,p), for each

additional subject-specific covariate (that is, when p increases by 1). To overcome
this problem, we present a component-wise boosting algorithm that implicitly selects
the influential variables.

4 Boosting

4.1 Basic concept of boosting

Before introducing the boosting algorithm for ordinal BTL models, we will first il-
lustrate the concept of boosting on a linear regression model and then proceed to
boosting for ordinal BTL models.

Assume the linear regression model with C covariates and J observations. In matrix
representation, the model can be described as

y = Xˇ̌̌ + ���,

with the vectors y = (y1, . . . , yJ)�, ��� = (�1, . . . , �J)�, ˇ̌̌ = (ˇ0, . . . , ˇC)� and the design
matrix X = [x0, x1, . . . , xC] that contains the components xc = (x1,c, . . . , xJ,c)� for
c = 0, 1, . . . , C. The structure of a generalized linear model (GLM) is determined
by �j = E(yj|xj) = h(�j), where h is a known response function and g = h−1 is the
link function that links the conditional expectation E(yj|xj) to the linear predictor
�j = ∑C

c=0 xj,cˇc. Using the vectors ��� = (�1, . . . , �J)� and ��� = (�1, . . . , �J)�, we can
also write ��� = h(���) and g(���) = ���. The linear model above can be incorporated within
the framework of GLMs by using the identity function as the link function, that
is, �j = g(�j) = �j = h(�j). For a large number of covariates C, it is of interest to
estimate the model using only influential variables. There are several methods that
perform well in such high-dimensional settings while offering a sparse model; one
of these methods is boosting (see Bühlmann, 2006). Boosting has its origin in the
machine learning community (see Schapire, 1990; Freund, 1995, 1997) and can be
formulated within the framework of statistical modelling as iteratively fitting parts of
the model using the residuals of the previous iteration as the response of the current
iteration (Friedman et al., 2000; Friedman, 2001). The basic concept of boosting is
to use a set of so-called base learners f (·) and combine them to gain a strong learner.
A base learner can be a function of a set of covariates or even a single covariate. In
this article, we will consider only linear base learners that are able to express a linear
effect of the considered covariate(s). In the linear model, a single linear base learner
for the cth component is, for example, f (xc, ˇc) = xcˇc.

Tutz and Binder (2006) introduced likelihood-based boosting for GLMs. Instead of
the iteratively refitting of residuals, they used the linear predictor ���(b−1) of the previous
iteration (b − 1) as an offset that adds up to the linear predictor ���(b) of the current
iteration b. We describe a component-wise boosting algorithm, where component-
wise means that in each iteration only a single component is considered at a time.
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Component-wise Boosting

Step 1: Initialization

Fit the intercept model ���(0) = h(���(0)) = h(x0ˇ0), with x0 = (x1,0, . . . , xJ,0)� =
(1, . . . , 1)� by maximizing the likelihood to obtain the estimated intercept ˆ̌ 0.
Initialize

ˆ̌̌̌ (0) = ( ˆ̌ 0, ˆ̌ 1, . . . , ˆ̌
C)� = ( ˆ̌ 0, 0, . . . , 0)� and �̂��(0) = x0 ˆ̌ 0.

Step 2: For each boosting iteration b = 1, 2, . . . , bstop

(a) Estimation: Fit the models

��� = h(�̂��(b−1) + f (xc, ˇc))

for all components c = 0, . . . , C by one-step Fisher scoring, where �̂��(b−1) is used
as an offset. This yields the one-step Fisher scoring estimates ˆ̌

c for the corre-
sponding cth component. In general, the Fisher scoring algorithm is an iterative
estimation procedure and uses the Fisher-matrix and the score function (for more
details, see Tutz and Binder, 2006).

(b) Selection: From the models fitted in (a), choose the component c∗ that yields the
best fit with respect to some criteria (e.g., the model with the lowest deviance,
Akaike information criterion (AIC) or Bayesian information criterion (BIC)) and
set

ˆ̌̌̌
c∗ = (0, . . . , 0, ˆ̌

c∗, 0, . . . , 0)�.

(c) Update:

�̂��(b) = �̂��(b−1) + X ˆ̌̌̌
c∗ , with X = [x0, x1, . . . , xC]

ˆ̌̌̌ (b) = ˆ̌̌̌ (b−1) + ˆ̌̌̌
c∗

4.2 Boosting ordinal BTL models

The boosting algorithm described in this section is a component-wise boosting pro-
cedure based on the pomBoost algorithm (Zahid and Tutz, 2013), which has been
developed for the cumulative logit model. It allows for ordinal responses and can
be extended to the adjacent categories logit model by modifying the link function
g = (g1, . . . , gK−1)� to obtain the adjacent categories logit model (see Section 2.2).
We will use a specific feature of the pomBoost algorithm, which allows to split the
parameters into two groups to distinguish between obligatory parameters that have
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to be included in the model and optional parameters that might be of relevance
and where a variable selection is applied. In our context, the object parameters
���� = (�1, . . . , �M−1) are considered as obligatory and the subject-specific parameters
����

p = (�1,p, . . . , �M−1,p), for all p = 1, . . . , P are considered as optional. To be more
flexible, one can divide the P optional subject-specific covariates into two disjoint
sets Vgrouped and Vsingle, with Vgrouped ∪ Vsingle = {1, . . . , P}. This will allow selection
of two different types of covariates, namely,

1. Vgrouped: subject-specific covariates, for which all the associated subject–object
interactions should be selected simultaneously and

2. Vsingle: subject-specific covariates, for which all associated subject–object inter-
actions should be selected separately.

The reason for distinguishing these two groups is that for some subject-specific
covariates, it might be interesting for the practitioner to have the possibility to select
the respective subject–object interactions simultaneously or separately (we refer to
the application section for an illustrating example). The subject–object interaction
parameters that are associated with the pth subject-specific covariate are given by
the set of parameters �1,p, . . . , �M−1,p. If the subject-specific covariate is considered
as being from Vgrouped, the parameters are included as a set or left out, which yields
variable selection in terms of the subject-specific covariates. However, if the subject-
specific covariate is considered as being from Vsingle, only single parameters from the
set are included or left out, which yields selection of subject–object interactions.

The boosting algorithm below uses the design matrix for paired comparisons
X = [Q, X0, X1, . . . , XP], where Q contains the components for the thresholds, X0
contains the components for the objects and X1, . . . , XP contain the components
for the subject-specific covariates (for more details on the multivariate structure, see
Appendix A). Specifically, all matrices Xp, with p = 1, . . . , P, have M − 1 columns,
where each column is denoted by xp,m and reflects a single subject–object interaction
between the pth subject-specific covariate and object m. Thus, these matrices have
the form Xp = [

xp,1, . . . , xp,M−1
]
. The algorithm proposed is the following:

BTLboost

Step 1: Initialization

Fit the intercept model ���(0) = h(���(0)) = h(Q���) by maximizing the likelihood in
order to obtain estimates for the threshold parameters ��� = (�1, . . . , �q)�. Initialize

ˆ̌̌̌ (0) = (�̂��
�

, �̂���, �̂���
1 , . . . , �̂���

P ) = (�̂1, . . . , �̂q, 0, . . . , 0)� and �̂��(0) = X ˆ̌̌̌ (0)
.

Step 2: For each boosting iteration b = 1, 2, . . . , bstop
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Step 2.1: Update of threshold and object parameters

1. Estimation: Fit the model ��� = h
(
�̂��(b−1) + Q��� + X0���

)
by one-step Fisher

scoring, where �̂��(b−1) is used as an offset. One obtains the estimates �̂��
� =

(�̂1, . . . , �̂q), �̂��� = (�̂1, . . . , �̂M−1) and defines

ˆ̌̌̌ �
0 = (�̂��

�
, �̂���, �̂���

1 , . . . , �̂���
P ) = (�̂1, . . . , �̂q, �̂1, . . . , �̂M−1, 0, . . . , 0).

2. Update:

�̂��(b) = �̂��(b−1) + X ˆ̌̌̌
0

ˆ̌̌̌ (b) = ˆ̌̌̌ (b−1) + ˆ̌̌̌
0

Step 2.2: Update of parameters for the optional covariates

(a) Estimation: For each subject-specific covariate p = 1, . . . , P, fit the models

��� =
{

h(�̂��(b) + Xp���p) if p ∈ Vgrouped

h(�̂��(b) + xp,m�m,p), ∀m ∈ {1, . . . , M − 1} if p ∈ Vsingle

,

where �̂��(b) is used as offset. The estimated parameters �̂��p and �̂m,p are ob-
tained by one-step Fisher scoring.

(b) Selection: From the models fitted in (a), choose the model that maximally
improves the fit with respect to some criteria (e.g., deviance, AIC or BIC)
and set Xbest = xp∗,m∗ if the (p∗, m∗)-th subject–object interaction yields the
best fit or Xbest = Xp∗ if the set of subject–object interactions associated
with the p∗-th subject-specific covariate yields the best fit. This yields the
estimated parameter vector

ˆ̌̌̌ �
best = (�̂��

�
, �̂���, �̂���

1 , . . . , �̂���
P ) =

{
(0, . . . , 0, �̂p∗,m∗, 0, . . . , 0) if Xbest = xp∗,m∗

(0, . . . , 0, �̂���
p∗, 0, . . . , 0) if Xbest = Xp∗

.

(c) Update:

�̂��(b) = �̂��(b) + X ˆ̌̌̌
best

ˆ̌̌̌ (b) = ˆ̌̌̌ (b) + ˆ̌̌̌
best

Within each boosting iteration, the algorithm switches between two stages. The
first stage (Step 2.1) considers only the object parameters along with the thresh-
old parameters for an update, so that these parameters will always be part of the
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paired comparison model. In the second stage (Step 2.2), we consider the subject-
specific covariates that might enter into the paired comparison model. If the associated
subject–object interactions are to be selected simultaneously (p ∈ Vgrouped), the full
subject-specific parameter vector ���p is updated. If they are to be selected separately
(p ∈ Vsingle), only a single subject–object interaction parameter �p,m from the full
subject-specific parameter ����

p = (�1,p, . . . , �M−1,p) is updated within each boosting it-
eration. This procedure is repeated until a predefined number of boosting iterations
bstop is reached. In the next section, we discuss how the optimal number of boosting
iterations can be obtained.

4.3 Stopping criteria

The number of boosting iterations bstop is the main tuning parameter in boosting.
Typically, a sufficiently high number of iterations is chosen; the optimal number of
iterations b∗

stop is then determined afterwards. Common choices for determining b∗
stop

are either information criteria, such as, the AIC or BIC, or cross-validation. In this
paper, we consider only the two information criteria mentioned earlier, which are
known measures for the trade-off between goodness-of-fit and model complexity.
The computation of both criteria is based on the deviance Dev(�̂��(b)) and the degrees
of freedom df(b) after b boosting iterations.

The AIC and BIC after b iterations are given by

AIC(b) = Dev(�̂��(b)) + 2 · df(b)

and

BIC(b) = Dev(�̂��(b)) + log(n) · df(b),

where n is the number of observations, or, in our case, the number of comparisons
that are made by all subjects, namely, n = (

M
2

) · I. The penalty term, which is 2 for
the AIC and log(n) for the BIC, controls the model complexity, so that, in general,
higher values for the penalty term result in sparser models.

Since the boosting algorithm is an iterative procedure, the true degrees of freedom
df(b) after b boosting iterations are unknown and need to be approximated. In the
literature, it is often suggested to use the trace of the hat matrix after b boosting
iterations as an approximation for the degrees of freedom (Tutz and Binder, 2006;
Bühlmann and Hothorn, 2007a). Thus, a possible approximation of the degrees of
freedom df(b) is given by

dftrace(b) = trace(Hb),

where Hb is the approximate hat matrix after b iterations. A detailed derivation of
the formula for this hat matrix can be found in Zahid and Tutz (2013).

An alternative, computationally simpler method proposed by Bühlmann and
Hothorn (2007b) uses the size of the active set, which corresponds to the number
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of non-zero parameters in the bth boosting iteration, in order to approximate the
degrees of freedom df(b). In this case, the number of non-zero coefficients until the
bth boosting iteration is given by

dfactset(b) = q + (M − 1) +
∑
m,p

I(�̂ (b)
m,p /= 0), (4.1)

where q is the number of threshold parameters, M − 1 is the number of object param-
eters, �̂

(b)
m,p are all non-zero subject–object parameters of the bth iteration, and I(·) is

the indicator function, such that I(·) = 1 if the expression (·) is true, else I(·) = 0. To
limit the computational burden, we use this more convenient method to approximate
the degrees of freedom in the simulation and application section.

The optimal stopping iteration b∗
stop is chosen from among the iterations b =

1, . . . , bstop as the one yielding the best (=lowest) AIC or BIC, respectively. Thus,
one has to compute the AIC or BIC for all iterations. The optimal stopping iteration
is then determined afterwards using

b∗
stop = b ⇔ AIC(b∗

stop) = min
b=1,...,bstop

AIC(b),

when the AIC is chosen as stopping criterion or

b∗
stop = b ⇔ BIC(b∗

stop) = min
b=1,...,bstop

BIC(b),

when the BIC is chosen as stopping criterion, respectively.

5 Simulation

5.1 Simulation set-up

We investigate the performance of the boosting algorithm for different simulation
settings with 100 simulations for each setting. For the simulated data, we generate 20
subject-specific covariates denoted by p = 1, . . . , 20 from the following distributions
X1, . . . , X10 ∼ B(1, 0.5) and X11, . . . , X20 ∼ N(0, 1) and use M = 6 objects that have
to be compared by I = 200 subjects. We use K = 3 response categories, so that each
simulated subject has the possibility to prefer the first object, neither of the objects
or the second object. In all settings, the ordinal response is computed by assuming an
underlying cumulative BTL model with the linear predictor

�
(r,s),i
k

= �k +
M−1∑
m=1

x(r,s)
m �m +

P∑
p=1

M−1∑
m=1

xi,px(r,s)
m �m,p, k = 1, 2,
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using the threshold parameters �1 = −�2 = −0.8 and the object parameters ��� =
(�1, . . . , �M−1)� = (1.5, 1.1, 0.7, −0.7, −1)�. The settings are organized as follows.

Setting 1: Only the subject-specific covariates p = 1, 2, 11, 12 are influential
(parameter values can be obtained from Table 1), while all other subject-
specific covariates are non-influential. For each subject-specific covariate,
the associated subject–object interactions are selected simultaneously, that is,
Vgrouped = {1, . . . , 20} and Vsingle = ∅.

Table 1 Influential subject–object interaction parameters.

�m,p p = 1 p = 2 p = 11 p = 12 p = 3 p = 4 p = 13 p = 14

m = 1 0.56 −0.39 −0.48 0.49 −0.48 0 0 0.45
m = 2 −0.66 0.29 −0.44 −0.48 0 −0.48 −0.32 0
m = 3 −0.58 0.34 −0.43 0.44 0 0.44 −0.38 0
m = 4 −0.68 0.31 0.5 0.46 0.5 0.46 −0.35 0
m = 5 0.69 −0.22 0.43 0.3 0.43 0.3 0 0.4

Source: Authors’ computation.

Setting 2: Only the subject-specific covariates p = 3, 4, 13, 14 are influential
(parameter values can be obtained from Table 1). For each subject-specific
covariate, the associated subject–object interactions are selected separately, that
is, Vgrouped = ∅ and Vsingle = {1, . . . , 20}.

Setting 3: In this setting, we consider a miss-specified model. That is, after com-
puting the ordinal response using the influential subject-specific covariates p =
1, 2, 3, 4, 11, 12, 13, 14 with the associated parameter values from Table 1, some
influential subject-specific covariates were removed from the simulated data set:

(a) The covariates p = 3, 4, 13, 14 were removed and the boosting algorithm
was applied as in Setting 1, that is, the subject–object interactions for
each subject-specific covariate were selected simultaneously, so that all
considered covariates are from Vgrouped.

(b) The covariates p = 1, 2, 11, 12 were removed and the boosting algorithm
was applied as in Setting 2, that is, the subject–object interactions for each
subject-specific covariate were selected separately, so that all considered
covariates are from Vsingle.

Setting 4: Same as Setting 1, except that only one subject-specific covariate, p = 1,
is considered as influential.

Setting 5: Same as Setting 2, except that only one subject-specific covariate, p = 3,
is considered as influential.

As variable selection criterion in each boosting iteration, we use the deviance,
which often yields the fully saturated model when the stopping iteration is sufficiently
high, i.e., bstop → ∞ (see Bühlmann and Yu, 2003). Therefore, there is a need for
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determining the optimal number of iterations b∗
stop using a stopping criterion that

chooses the best model among all iterations. In the next section, we compare the
results when the AIC and BIC are used as stopping criteria. The degrees of freedoms
for the computation of the AIC and BIC are approximated as in equation (4.1).

5.2 Results

To investigate the performance of the algorithm, we compute the hit rate

HR =

P∑
p=1

M−1∑
m=1

I(�m,p /= 0) · I(�̂m,p /= 0)

P∑
p=1

M−1∑
m=1

I(�m,p /= 0)

,

which represents the percentage of correctly identified influential subject–object in-
teractions, and the false alarm rate

FAR =

P∑
p=1

M−1∑
m=1

I(�m,p = 0) · I(�̂m,p /= 0)

P∑
p=1

M−1∑
m=1

I(�m,p = 0)

,

which represents the percentage of non-influential subject–object interactions that
are mistakenly identified as influential subject–object interactions. The closer the hit
rate to 1 and the closer the false alarm rate to 0, the better, because then the model
contains many influential subject–object interactions and few non-influential subject–
object interactions at the same time.

Table 2 shows the averaged number of boosting iterations, as well as the averaged
hit rates and false alarm rates over all 100 simulations in each setting. As the model
complexity is supposed to be penalized stronger by the BIC, one sees an earlier stop-
ping of the boosting algorithm when using the BIC instead of the AIC. Except for
Setting 2 and Setting 3 (b), the hit rates for the AIC and BIC are very similar and close
to 1, that is, the boosting algorithm was always able to identify all (or almost all when
using the BIC in Setting 5) influential covariates for Settings 1, 3 (a), 4 and 5. How-
ever, at the same time, using the BIC yields a much lower false alarm rate suggesting
that using the BIC is more appropriate. In Setting 2, we have a slightly higher hit rate
when the AIC is used (the difference in the hit rates is 0.9967 − 0.9592 = 0.0375).
However, the false alarm rate is almost five times higher when the AIC is used in-
stead of the BIC (0.2572 compared to 0.0517). Using the AIC in Setting 3 (a) yields a
higher hit rate, where the difference in the hit rates is 0.975 − 0.7858 = 0.1892. At
the same time, the false alarm rate is much worse (0.3860 for the AIC and 0.0615 for
the BIC). Thus, the question of whether the AIC or BIC should be used depends on
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Table 2 Average of the HR, the FAR and the number of boosting iterations.

Setting Stopping criterion Stopping iteration HR FAR

Setting 1
AIC 68 1.0000 0.1831
BIC 47 1.0000 0.0119

Setting 2
AIC 103 0.9967 0.2572
BIC 44 0.9592 0.0517

Setting 3 (a)
AIC 69 1.0000 0.3042
BIC 40 1.0000 0.0167

Setting 3 (b)
AIC 115 0.9750 0.3860
BIC 30 0.7858 0.0615

Setting 4
AIC 29 1.0000 0.1747
BIC 17 1.0000 0.0200

Setting 5
AIC 39 1.0000 0.1507
BIC 16 0.9967 0.0273

Source: Authors’ computation.

whether one is interested in identifying most of the influential subject–object inter-
actions (then the AIC might be more appropriate) or in identifying many influential
subject–object interactions and few non-influential subject–object interactions at the
same time (then the BIC might be more appropriate). In all settings, the false alarm
rate is much higher when the AIC is used instead of the BIC. This suggests that more
non-influential subject–object interactions are included in the final model determined
by the AIC.

To measure the discrepancy of the parameter estimates with the true parameter
values, we use the Mean squared error (MSE). Before computing the MSE for the final
model, a final refitting step using the selected subject–object interaction parameters is
done. Figure 1 displays the MSE for all simulations and suggests that for the selected
subject–object interaction parameters the BIC performs better than the AIC because
of smaller MSEs in all settings. It can also be seen that in Setting 3, where a miss-
specified model is considered, the MSEs are much larger for the object parameters
than for the selected subject–object interaction parameters as compared to the other
settings.

Figure 2 illustrates an exemplary coefficient build-up of the estimated parameters
for one out of the 100 simulations of Setting 1 and Setting 2. Within each boosting
iteration of Setting 1 (left figure), the set of subject–object interaction parameters as-
sociated with a single subject-specific covariate are updated. Therefore, the norm of a
single subject-specific parameter vector ||�̂���

p || for each of the p = 1, . . . , 20 covariates
is plotted against the norm of the parameter vector containing all subject–object pa-
rameters ||(�̂���

1 , . . . , �̂���
20)

�||. Conversely, in Setting 2 (right figure) only the parameter
of a single subject–object interaction is updated within each boosting iteration. There-
fore, the estimates for a single subject–object interaction parameter �̂m,p are plotted
against the norm of the parameter vector containing all subject–object parameters
||(�̂���

1 , . . . , �̂���
20)

�||. The coefficient paths show that the non-influential subject–object
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Figure 1 Box plots of MSEs for object and subject–object interaction parameters.
Source: Authors’ computation.

interaction parameters (dashed gray lines) enter the model in higher boosting iter-
ations and their parameter estimates are small because they are either selected and
updated in higher boosting iterations, or they are updated only a few number of times.
Since the AIC determines a higher optimal boosting iteration than the BIC, the figure
confirms that the final model based on the AIC criterion contains more non-influential
subject–object interactions than the final model based on the BIC criterion.

6 CEMS data

To illustrate how the variable selection method works, we use the Community of
European management schools (CEMS) data from Dittrich et al. (1998), which was
collected in a survey of 303 students of the Vienna University of Economics. The
aim of the study was to investigate the preferences of students for studying at least
one semester abroad in one of six different universities (London, Paris, Barcelona,
St.Gall, Milan and Stockholm) and to establish an overall ranking of these universi-
ties. For each of the

(
M
2

) = (6
2

) = 15 comparisons of universities, the students could
either prefer the first university, none of both universities or the second university.
Additionally, the data contains P = 8 subject-specific different characteristics of the
students (subject-specific covariates). An overview is given in Table 3.
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A model that includes all these subject-specific covariates has a total number of
40 subject–object interaction parameters. To identify only influential subject-specific
covariates, we apply the BTLboost algorithm with two different settings.

In the first setting, we use Vgrouped = {STUD, WOR, DEG, SEX} and Vsingle =
{ENG, FRA, SPA, ITA}. Therefore, subject-specific covariates containing information
about the knowledge of a specific language are included in the set Vsingle and are

Table 3 Description of subject-specific covariates.

Covariate Description Coding

STUD Main discipline of study 0 = other, 1 = commerce
ENG Knowledge of English 0 = good, 1 = poor
FRA Knowledge of French 0 = good, 1 = poor
SPA Knowledge of Spanish 0 = good, 1 = poor
ITA Knowledge of Italian 0 = good, 1 = poor
WOR Full-time employment while studying 0 = no, 1 = yes
DEG Intention to take an international degree 0 = no, 1 = yes
SEX Gender 0 = female, 1 = male

Source: Authors’ computation.
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selected interaction-wise, so that the final model does not necessarily contain all
subject–object interactions that are associated to a specific language. In contrast
to this, the set Vgrouped contains subject-specific covariates that are selected along
with all associated subject–object interactions. This distinction was chosen because
language-specific covariates may interact stronger with one university. For example,
students with poor knowledge of Italian may have a lower tendency to prefer the
university of Milan.

In the second setting, we use Vsingle = {STUD, WOR, DEG, SEX, ENG, FRA, SPA,
ITA} and Vgrouped = ∅. Thus, for each subject-specific covariate only the associated
subject–object interactions are considered. For both settings, we apply the BTLboost
algorithm to the cumulative BTL model using the AIC and BIC as stopping crite-
ria. The estimated parameters after a final refitting step with bootstrapped standard
errors can be found in Table 4 and Table 5. Because the BIC performed better in the
simulation study, both tables show only the estimated parameters when using the BIC
as stopping criterion. The optimal number of iterations when using the BIC was 34
in the first setting and 30 in the second setting.

The results show that the ranking of objects (here universities), which is based
on ordering the estimates for �̂��, is the same for both settings. Milan has the greatest
estimate (e.g., �̂Milan = 1.978 from Table 4) and thus the most preferred university
is Milan, followed by London, Barcelona, Paris, St.Gall and the reference univer-
sity Stockholm, for which �Stockholm = 0. However, the ranking changes for different
values of the subject-specific covariates. For example, if we consider students who
are employed full-time while studying (WOR = 1), the ranking is based on �̂�� + �̂��WOR
yielding a different university ranking for those students.

The estimates �̂London,ENG, �̂Paris,FRA, �̂Milan,ITA and �̂Barcelona,SPA are all negative val-
ued, and therefore they indicate that students with poor knowledge of English, French,
Italian and Spanish have a lower tendency to prefer the universities in London, Paris,
Milan and Barcelona, respectively.

Table 4 Estimates for selected subject–object interaction and object parameters after a final refitting step for
Setting 1. The figures in brackets reflect standard error estimates based on 1000 bootstrapped samples.

Setting 1 (DEG, SEX, STUD, WOR grouped)

�̂��DEG �̂��SEX �̂��STUD �̂��WOR �̂�� ITA �̂��ENG �̂��SPA �̂��FRA �̂��

Milano −0.076 −0.447 0.033 1.141 −1.613 0 0 0 1.978
(0.147) (0.139) (0.152) (0.39) (0.187) (0.064) (0.047) (0.076) (0.231)

London −0.259 −0.344 0.285 0.447 0 −0.258 0 0 1.959
(0.161) (0.149) (0.166) (0.404) (0.051) (0.087) (0.029) (0.087) (0.261)

Barcelona −0.11 −0.315 0.105 1.205 0 −0.366 −1.421 0.248 1.938
(0.142) (0.13) (0.149) (0.422) (0.02) (0.119) (0.182) (0.101) (0.221)

Paris −0.036 −0.323 0.824 1.544 0 0 0 −1.192 1.246
(0.152) (0.143) (0.165) (0.436) (0.078) (0.097) (0.044) (0.156) (0.313)

St.Gall 0.399 −0.058 −0.293 0.002 0 0.178 0 0 0.494
(0.146) (0.137) (0.144) (0.383) (0.024) (0.094) (0.042) (0.071) (0.187)

�̂1 = −�̂2 = −0.276 (0.013)

Source: Authors’ computation.
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Table 5 Estimates for selected subject–object interactions and object parameters after a final refitting step for
Setting 2. The figures in brackets reflect standard error estimates based on 1000 bootstrapped samples.

Setting 2 (single)

�̂��DEG �̂��SEX �̂��STUD �̂��WOR �̂��ITA �̂��ENG �̂��SPA �̂��FRA �̂��

Milano 0 −0.256 0 0.999 −1.576 0 0 0 1.832
(0.057) (0.088) (0.06) (0.228) (0.174) (0.044) (0) (0.06) (0.195)

London 0 0 0 0 0 −0.283 0 0 1.81
(0.055) (0.039) (0.041) (0.237) (0.031) (0.07) (0.009) (0.069) (0.215)

Barcelona 0 0 0 1.041 0 −0.366 −1.424 0.204 1.794
(0.041) (0.025) (0.046) (0.26) (0.009) (0.105) (0.173) (0.07) (0.19)

Paris 0 0 0.742 1.356 0 0 0 −1.235 1.114
(0.05) (0.041) (0.14) (0.34) (0.038) (0.073) (0.025) (0.148) (0.217)

St.Gall 0.493 0 −0.391 0 0 0.175 0 0 0.463
(0.116) (0.052) (0.118) (0.22) (0.008) (0.082) (0.005) (0.054) (0.143)

�̂1 = −�̂2 = −0.275 (0.013)

Source: Authors’ computation.

The main difference between Setting 1 and Setting 2 is that the subject–object in-
teractions associated with the subject-specific covariates STUD, WOR, DEG and SEX
were selected simultaneously in Setting 1 and separately in Setting 2. Nevertheless,
all subject–object interactions that are highlighted in boldface in Table 4 were also
identified in Setting 2. These subject–object interactions are the ones with the largest
absolute value within the associated subject-specific parameter. Thus, the model from
Setting 2 was able to identify the subject–object interactions from Setting 1 with the
strongest effect.

7 Concluding remarks

Boosting is a technique that addresses the estimation problems in high-dimensional
settings and provides variable selection when using component-wise boosting. In this
article, we proposed a new estimation procedure for ordinal BTL models based on this
technique. The simulation results showed that the method performs well concerning
the identification of influential covariates. In the application section, the selected
subject–object interactions are similar to those from the final model of Dittrich et al.
(1998), although they used a different model and a variable selection approach based
on forward selection and backward elimination. In the algorithm proposed here, the
variable selection is carried out during the fitting process. Thus, it can also be applied
in cases where the maximum likelihood estimate does not exist, for example, when
the data contains more subject-specific covariates than observations.

The model estimation for ordinal BTL models is computed with the ordBTL pack-
age (Casalicchio, 2013), which is implemented in the statistical software R (R Core
Team, 2013). The package is able to fit models with any number of response categories
and implements the BTLboost algorithm. The data used in Section 6 is also available
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in the package. Other packages for model estimation, which can handle responses
up to 3 categories but have no built-in variable selection procedure, are prefmod
(Hatzinger and Dittrich, 2012) and BradleyTerry2 (Turner and Firth, 2012).
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Appendix A: Matrix representation

The representation used here is that of a multivariate generalized linear model, which
has, in terms of paired comparisons, the following basic form

g
(
���(r,s),i) = ���(r,s),i = X(r,s),iˇ̌̌, (A.1)

where g is a (K − 1)-dimensional link function, ˇ̌̌ is the vector of coeffi-

cients, ���(r,s),i =
(
�

(r,s),i
1 , . . . , �

(r,s),i
K

)�
is the vector of response probabilities, ���(r,s),i =(

�
(r,s),i
1 , . . . , �

(r,s),i
K−1

)�
is the subject-specific linear predictor, and X(r,s),i is the design

matrix for the pair (r, s) and subject i. If the design matrix and the link function g
is specified, the Fisher scoring algorithm for multivariate maximum likelihood esti-
mation can be used to obtain the parameter estimates (see Fahrmeir and Tutz, 2001;
Tutz, 2012).

Before describing the design matrix in more detail, we first let ���� = (�1, . . . , �q),
with q = ⌊

K−1
2

⌋
, denote a vector containing all threshold parameters that have to be

estimated and �̃̃�̃�
� = (�1, . . . , �K−1) denote a vector containing all threshold parameters

in the model, including those that are restricted by the symmetry constraints from
equations (2.3) and (2.4). For each pair (r, s) and each subject i, we define the matrix
Q(r,s),i of dimension (K − 1) × q, such that

Q(r,s),i��� = �̃̃�̃� (A.2)

satisfies the symmetry constraints and ensures that the thresholds will be symmetric.
Thus, the matrix can be seen as a so-called constraint matrix (for more details, see
Yee, 2010).
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To obtain the general structure of Q(r,s),i, we use the null vector 0�
q = (0, . . . , 0) of

length q and the matrices

Iq×q =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1
. . .

...

...
. . .

. . . 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

and Jq×q =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 −1
... . .

. −1 0

0 . .
.

. .
. ...

−1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

The matrix Q(r,s),i satisfying equation (A.2) is a block matrix that has the same form
for each pair (r, s) and each subject i, namely,

Q(r,s),i =
⎡
⎣

Iq×q

0q
�

Jq×q

⎤
⎦ if K is even and Q(r,s),i =

[
Iq×q

Jq×q

]
if K is odd.

The subject-specific design matrix used in equation (A.1) is given by

X(r,s),i =
[
Q(r,s),i, 1K−1 ⊗ (

x(r,s))�︸ ︷︷ ︸
X(r,s),i

0

, 1K−1 ⊗
(
x(r,s),i

1

)�

︸ ︷︷ ︸
X(r,s),i

1

, . . . , 1K−1 ⊗
(
x(r,s),i

P

)�

︸ ︷︷ ︸
X(r,s),i

P

]
,

where the vector 1K−1 = (1, . . . , 1)� has the length K − 1.
In a complete paired comparison experiment, we have

(
M
2

)
comparisons for each

subject, where
(

M
2

) = M!
2!(M−2)! denotes the binomial coefficient representing the num-

ber of all distinct pairs when comparing M different objects, namely,

(1, 2), (1, 3), . . . , (r, s), . . . , (M − 1, M), for all r < s.

The complete design matrix X contains information about all possible compar-
isons made by any subject and has therefore I · (M

2

)
rows. It can be written
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as a block matrix of the form

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(1,2),1

...

X(M−1,M),1

...

X(1,2),I

...

X(M−1,M),I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(1,2),1 X(1,2),1
0 X(1,2),1

1 . . . X(1,2),1
P

...
...

...
...

Q(M−1,M),1 X(M−1,M),1
0 X(M−1,M)

1 . . . X(M−1,M),1
P

...
...

...

Q(1,2),I X(1,2),I
0 X(1,2),I

1 . . . X(1,2),I
P

...
...

...
...

︸ ︷︷ ︸
Q

Q(M−1,M),I ︸ ︷︷ ︸
X0

X(M−1,M),I
0 ︸ ︷︷ ︸

X1

X(M−1,M),I
1 . . . ︸ ︷︷ ︸

XP

X(M−1,M),I
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Q is the matrix for the thresholds ���, X0 is the matrix for the object parameters
��� and X1, . . . , XP are matrices for the subject-specific parameters ���1, . . . , ���P.

The linear predictor��� =
(
���(1,2),1�

, . . . ,���(M−1,M),1�
, . . . ,���(1,2),I�

, . . . ,���(M−1,M),I�)�

contains all comparisons made by any subject and has the form ��� = Xˇ̌̌, with the
vector ˇ̌̌ = (����,����,����

1 , . . . , ����
P ) containing all parameters that have to be estimated,

that is, all q threshold parameters, all M − 1 object parameters and all M − 1
subject–object interaction parameters for each of the P subject-specific covariates.
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