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1 Department of Neurology, Technische Universität München, Munich, Germany, 2 TUM-Neuroimaging Center, Technische Universität München, Munich, Germany,

3 Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany, 4 Department of Psychiatry, Jena University Hospital, Jena, Germany,

5 Department of Neurology, Jena University Hospital, Jena, Germany, 6 Department of Neuroradiology, Technische Universität München, Munich, Germany

Abstract

Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here
present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set
of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First,
we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian
mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in
the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For
validation, we used simulated data and MRI data of 27 healthy controls (age: 30+9; range, 20{58). We first observed robust
segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second,
simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of
simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate
nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian
inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
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Introduction

This work was motivated by the aim to analyze iron-related T2-

hypointensity automatically in a complex set of MRI data.

Increased iron content within deep gray matter (GM) regions

decreases the T2-weighted MRI signal. It has been demonstrated

in both normal aging and several neurodegenerative conditions

[1]. Therefore, GM T2-hypointensity may be a marker of early

neurodegeneration and has even been regarded of potential

predictive value in neurological diseases such as Multiple Sclerosis

[2]. Intriguingly, increased iron content goes not only along with a

remarkable signal loss in T2-weighted sequences (i.e. T2-

hypointensity) but also blurs the differences in signal intensities

between GM and white matter (WM) in T1-weighted sequences.

Our MRI data sets included three sequences: gradient-echo T1-

weighted and two different T2-weighted images. We decided to

include all three sequences as their information is complementary.

T1-weighted sequences are suitable for well established normal-

ization pipelines. Besides the sensitivity to T2-hypointensity, one of

the T2-weighted sequences was of high contrast but low image

definition (FLAIR), while the other was of low contrast but high

image definition (T2-weighted). Further, accessibility of these data

to scientific investigations has been desirable as this MRI protocol

has been used in routine clinical practice so that a still growing

data base, including several large patient groups, has been

available at our institution and cooperating institutions. Besides

the fact that initially non-Bayesian approaches had failed with

regard to both segmentation [3] and statistical analysis [4], we

decided to develop algorithms based on Bayesian inference as

some inherent features may be advantageous for preprocessing

and statistical analysis of structural neuroimaging data [5]. For

example, more realistic modeling of complex data is possible by

incorporation of prior knowledge, and results do not have to be

corrected for multiple statistical tests post hoc.

First, we developed a segmentation algorithm for the localiza-

tion of T2-hypointensities by using outlier detection based on

model checking techniques within a Bayesian mixture model. We

used Markov Chain Monte Carlo (MCMC) methods for both

model fitting and checking, as they allowed to incorporate not only

the uncertainty of the data but also the uncertainty of model

parameters, which often leads to results that are more realistic
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than those based on point estimates only [6]. The result of this

segmentation tool was validated by simulated data and by visual

inspection through relating segmented T2-hypointensities to

anatomical GM regions known to contain iron above average.

Second, we adapted a Bayesian voxel-wise regression model

that included spatial information during the estimation step via

smoothness priors to mitigate the necessity to smooth images

before statistical analysis. As in the mixture model and suggested

earlier [7,8], we also used MCMC methods for model fitting.

Here, we had to adapt and extend earlier approaches designed for

functional MRI (fMRI) data. Either those models [9,10] were

designed for first level analyses requiring an autoregressive

component of the data so that they could not be applied directly

to structural MRI data, or second level models did not account for

the spatial structure of voxels so that images still had to be

smoothed prior to statistical analysis. For validation, we used

simulated data and data from healthy controls. We compared the

results derived from our approach to those derived from standard

software using either frequentist or Bayesian inference.

Materials and Methods

Subjects
MRI scans were obtained from 27 subjects (female, 17; age in

years: range, 20–58; median, 29; mean standard deviation,

30:48+9:1) that had served as healthy controls in an MRI study

(Departments of Neurology and Neuroradiology, Technische

Universität München, Munich, Germany). Beforehand, written

informed consent was obtained after description of the study to the

subjects. The study was approved by the ethics committee of the

medical faculty of the Technische Universität München, Munich,

Germany, and performed in accord with the Declaration of

Helsinki.

Magnetic resonance imaging
All brain images were acquired on the same 3 Tesla scanner

(Achieva, Philips, Netherlands). A three-dimensional (3D) GRE

T1-weighted sequence (orientation, 170 contiguous sagittal 1 mm

slices; field of view, 240|240 mm2; voxel size, 1:0|1:0
|1:0 mm3; repetition time (TR), 9 ms; echo time (TE), 4 ms),

3D T2-weighted sequence (orientation, 144 contiguous sagittal

1.5 mm slices; field of view, 230|172 mm2; voxel size,

1:0|1:0|1:5 mm3; TR, 4000 ms; TE, 35 ms) and a 3D FLAIR

sequence (orientation, 144 contiguous axial 1.5 mm slices; field of

view, 230|185 mm2; voxel size, 1:0|1:0|1:5 mm3; TR,

104 ms; TE, 140 ms; inversion time, 2750 ms) were used.

Preprocessing
In this section, we describe preprocessing steps of our data with

freely available software. SPM8 (http://www.fil.ion.ucl.ac.uk/

spm) and its VBM8 toolbox (http://dbm.neuro.uni-jena.de/

vbm) were used. An overview is given in Figure 1. First, T2-

weighted and FLAIR images are coregistered to the T1-weighted

images in the original (‘native’) space. These images are then

prepared for the segmentation of T2-hypointensities, which

includes correction of T2-weighted and FLAIR images for

magnetic field inhomogeneity by VBM8 (function ‘estimate and

write’, default option; output option, ‘bias corrected’ and ‘native

space’) and segmentation of T1-weighted images into the tissue

classes of GM, WM, and cerebrospinal fluid (CSF) (function

‘estimate and write’, default option) as this information is necessary

to segment hypointensities as explained in the next section. The

resulting images of segmented T2-hypointensity (T2-hypointensity

images) are normalized in two steps: First, T1-weighted images are

affine normalized and respective parameters applied to FLAIR

and T2-hypointensity images. Second, affine normalized T1-

weighted and FLAIR images of all subjects are used to produce

individual flow fields by high-dimensional warping as implement-

ed in SPM8 (‘DARTEL’, [11]). Each sequence was entered as one

class to improve normalization by simultaneously accounting for

information of both sequences and, hence, also accounting for

regional T2-hypointensity. The resulting normalized images of

segmented T2-hypointensity were analyzed for age-related effects

by our voxel-wise regression approach.

Segmentation of T2-hypointensity
This section describes the first objective of this study, namely the

segmentation of T2-hypointensities. It contains four subsections: 1)

Introduction of the Bayesian mixture model, 2) estimation of

model parameters by MCMC methods, 3) detection of T2-

hypointensities by Posterior Predictive Checks (PPC), and 4)

validation through simulated and real data.

Bayesian mixture model. Here we present a Bayesian

mixture model [12,13] that is used to fit the intensities of the two

T2-weighted sequences (T2-weighted and FLAIR). It is first

explained in general terms and later adjusted for the data at hand.

In a mixture model, it is assumed that the observed data y can

be divided into K unobserved classes. The components of the data

vector are vectors of dimension d, i.e. y~(y1, . . . ,yn) with

yi~(yi1, . . . ,yid ). In order to derive the likelihood for the data

conditioned onto the respective class, a class indicator

xi~(xi1, . . . ,xiK ) for each observation i~1, . . . ,n is introduced,

where the kth element of xi is set to 1 if voxel i belongs to class k.

In most applications, the indicators x0~(x1, . . . ,xn) are missing

and it is the purpose of a mixture model to estimate these missing

observations. Conditioned on the class indicator xi, the distribu-

tion of observation yi is given by

p(yi Dxi,h)~ P
K

k~1
f (yi Dhk)xik :

Commonly, it is assumed that the mixture components f are all

from the same parametric family and differ only by their

parameters h~(h1, . . . ,hK ), which is not a real restriction but

simplifies notation. For a given mixture distribution

l~(l1, . . . ,lK ) with lkw0,k~1, . . . ,K and
XK

k~1
lk~1, the

distribution of the unknown class indicators is a multinomial

distribution:

xi Dl*Multinomial(1; l):

Thus, the joint distribution of the observed data y and the

missing label indicators x can be written as

p(y,xDl,h)! P
n

i~1
P
K

k~1
(lkf (yi Dhk))xik :

In order to perform inference, prior distributions have to be

specified for l and the parameters in h. One possible choice for l is its

natural conjugate, that is a Dirichlet distribution with hyperpara-

meter a~(a1, . . . ,aK ) [14]. For a~(1, . . . ,1)’ this prior can be seen

as non-informative. The choice of priors for the parameters in h
depends on the choice of the mixture components f .

Bayesian Inference for Structural MRI
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In summary, the joint posterior distribution of all unknown

parameters is given by

p(x,l,hDy)!p(y,xDl,h)p(lDa)p(h): ð1Þ

This distribution is analytically not feasible but MCMC

methods can be used to simulate this posterior.

For the segmentation of our data, we adjusted the mixture

model as two different T2-weighted sequences were available,

which were either of high image definition but low contrast (T2-

weighted), or of low image definition but high contrast (FLAIR).

Aiming at the best possible segmentation of T2-hypointensity, we

Figure 1. Segmentation and normalization of T2-hypointensity. T2-weighted and FLAIR images are first coregistered to the T1-weighted
images and then prepared for the segmentation of T2-hypointensities, which includes correction of T2-weighted and FLAIR images for magnetic field
inhomogeneity by VBM8 and segmentation of T1-weighted images into the tissue classes of GM, WM, and CSF. These images are then used to
segment hypointensities. The resulting T2-hypointensity images are normalized in two steps: First, T1-weighted images are affine normalized and
respective parameters applied to FLAIR and T2-hypointensity images. Second, affine normalized T1-weighted and FLAIR images of all subjects are
used to produce individual flow fields by DARTEL; these flow fiields are then applied to T2-hypointensity images.
doi:10.1371/journal.pone.0068196.g001
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utilized both pieces of information in order to reduce the effect of

sequence-specific artifacts. Yet, as the tissue class of CSF is also

hypointense in FLAIR sequences, we excluded voxels representing

CSF according to the segmented images of the T1-weighted

sequence by VBM8, i.e. the number of classes K in our study is

two. Intriguingly, the distinction between GM and WM based on

T1-weighted images is problematic particularly in the areas of

interest in this study, namely T2-hypointense GM regions, since

they have an increased iron content, which increases the T1-

weighted signal and hence shifts its intensity from GM towards

WM [15]. Against this backdrop, we decided to model T2-

hypointensity for the two tissue classes of GM and WM separately

but to generate a single image of T2-hypointensity across both

GM and WM.

With the restrictions outlined above, the probabilities regarding

the brain tissue classes (GM and WM) are already known from the

segmentation of the T1-weighted images and can therefore used as

additional prior information. Let l̂l~(l̂l1, . . . ,l̂ln) with

l̂li~(l̂li,GM,l̂li,WM) denote these probabilities, then it is assumed

that the class indicators are multinomial distributed with

parameter l̂l. Note that VBM8 incorporates spatial prior

information of adjacent voxels into the segmentation estimation

by a Markov Random Field [16]. Therefore, we did not further

account for spatial correlation at this step. However, we will later

consider neighbouring information during outlier detection.

Finally, because the marginal histograms of the two remaining

tissue classes are considerably skewed, we use two bivariate

mixture models for the mixture components and therefore

introduce the subclass indicators f’ik~(fik1,fik2) with

fikj~
1 if voxel i belongs to subclass j of class k,

0 otherwise:

�

In similarity to the class indicators, the subclass indicators fik

follow a multinomial distribution with mixture distribution

pk~(pk1,pk2), which leads to the following joint distribution for

the observed intensities and the missing class and subclass

indicators

p(y,x,fDl̂l,p,h)! P
n

i~1
P

k[fGM,WMg
(l̂likf (yi,fik Dpk,hk))xik ð2Þ

with mixture components defined as

f (yi,fik Dpk,hk)~ P
2

j~1
(pkjw(yi Dmkj ,

X
kj

))
fikj :

Here, w(:Dm,
X

) is the density function of the multivariate

(bivariate, in this case) normal distribution with mean m and

covariance matrix
X

and all subclass indicators are collected in

f’~(f1, . . . ,fn) with K|J~2|2 elements fi~(fi1,fi2).

Since the size of the data is quite large (over 1.1 million relevant

voxels for each brain), the influence of prior distributions on the

parameters of the mixture components as well as the mixture

distribution will be limited and the inference will be dominated by

the likelihood. We therefore choose non-informative flat prior

distributions for these parameters. In detail, we use independent

Dirichlet priors for the mixture distributions pk,k[f1,2g with

hyperparameters set to (1,1)’ and an independent Jeffrey’s prior

for mk and
X

k

, that is p(mk,
X

k

)!D
X

k

D{(dz1)=2. This does not

only reflect our lack of knowledge about these parameters but also

simplifies the MCMC algorithm. In summary, the joint posterior

distribution of all unknown parameters is given by

p(x,f,p,m,
X

Dy)!p(y,x,fDl̂l,p,m,
X

)p(pDa)p(m,
X

): ð3Þ

Parameter estimation. For the proposed model, all full

conditional distributions can be derived in closed form. As this part

is not crucial for understanding the general segmentation

approach, the reader may skip to the next subsection.

The full conditional distributions for the subclass indicators of

voxel i that belongs to class k can be derived from the joint

distribution of yi and fik:

p(fik Dyi,pk,hk,xi)

! P
J

j~1
(pkjw(yi Dmkj ,

X
kj

))
fikj

! P
J

j~1

pkjw(yi Dmkj ,
P

kj)PJ
m~1 pkjw(yi Dmkj ,

P
kj)

 !fikj

The last term is the core of a multinomial distribution with

parameters

p̂pikj~
pkjw(yi Dmkj ,

P
kj)PJ

m~1 pkjw(yi Dmkj ,
P

kj)
, j~1, . . . ,J: ð4Þ

Since the Dirichlet prior is the natural conjugate for the

parameters of a multinomial distribution, the full conditional for

the mixture distribution pk is a Dirichlet distribution with updated

parameters nk1za1, . . . ,nkJzaJ , where nkj is the number of

observations in subclass j of class k.

For given class and subclass indicators, the parameters of the

mixture components are updated for each class and subclass

separately. For
X

kj

the marginal posterior under the proposed flat

prior is an inverse Wishart distribution

X
kj

*InvWish(nkj{1,Skj):

Here, Inv{Wish(n,S) stands for the inverse Wishart distribution

with n degrees of freedom and scale matrix S. The matrix Skj is

the sample covariance matrix of the intensities in class k and

subclass j

Skj~
Xnkj

i~1

(ykji{�yykj)(ykji{�yykj)’: ð5Þ

The posterior for mk conditioned on
X

kj

is then a multivariate

normal distribution with mean equal to the mean of the intensities

Bayesian Inference for Structural MRI
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in class k and subclass j, �yykj , and covariance matrix
X

kj

=nkj .

In summary, the following Gibbs sampler can be used to

simulate distribution (3):

1. Initialize the class and subclass indicators x(0) and f(0).

2. For t~1, . . . ,nsim repeat the following steps:

N For current x(t{1) and f(t{1) calculate the sample covariance

matrix S
(t)
kj for k[fGM,WMg and j[f1,2g according to (5)

and draw
X(t)

kj

from an inverse Wishart distribution with

scale matrix S
(t)
kj and n

(t)
kj {1 degrees of freedom.

N For k[fGM,WMg and j[f1,2g draw m(t)
kj from a normal

distribution with mean �yy(t)
kj and covariance matrix

X(t)
kj

=n
(t)
kj .

N For k[fGM,WMg draw p(t)
k from a Dirichlet distribution

with parameters (n
(t)
k1za1,n

(t)
k2za2).

N For i~1, . . . ,n and k[fGM,WMg draw f(t)
ik from a

multinomial distribution with parameters p̂p(t)
ik ~(p̂p(t)

ik1,p̂p(t)
ik2)

according to (4).

N For i~1, . . . ,n draw xi from a multinomial distribution with

parameters l̂li~(l̂li,GM,l̂li,WM).

3. After discarding the realizations of an initial burn-in phase, the

remaining samples can be considered as dependent samples of

the joint posterior (3).

For each subject, three parallel chains of length 1500 were

calculated by the Gibbs Sampler described above. Class and

subclass indicators were initialized at random. Figure 2 shows

trace plots of such a chain for one randomly chosen subject. The

left panel displays the components of mGM,1 and the right panel

those of
X

GM,1

. As it can be seen, mixing of chains is quite good and

label switching [13] does not occur. For the calculation of T2-

hypointensities, we discarded the initial 500 draws and kept every

second sample. For the remaining draws we calculated Gelman

and Rubin’s potential scale reduction factor [17] for the mean of

the parameters of the mixture components and the mixture

distributions. In all cases, the value was nearly indistinguishable

from 1 indicating that the simulation converged to the target

distribution [17].

Posterior predictive checks. Fitting the model will yield

nsim realizations of the posterior distribution. Denote these samples

by h(t),t~1, . . . ,nsim. Those samples can be used to perform PPC

in order to check the fit of the model [18,19] or to identify outliers,

as explained next. The basis for PPC are replicated samples (‘fake’

data) yrep of the observed data y according to the posterior

predictive distribution (PPD):

p(yrepDy)~

ð
p(yrepDh)p(hDy)dh: ð6Þ

To generate samples yrep,(t),t~1, . . . ,nsim out of this distribu-

tion, one proceeds as follows: For each realization of the unknown

parameters generate n samples according to the likelihood. In the

case of the mixture model explained above, we generate n
(t)
kj

samples (according to the actual label configuration x(t),f(t)) of a

bivariate normal distribution with parameters m(t)
kj and

X(t)
kj

.

Figure 3 illustrates this procedure for a randomly chosen subject.

The first row shows a slice of the observed T2-intensities followed

by three simulated slices. The last panel in the first row displays the

mean and standard deviation of the simulated intensities. The

second row displays the same information for the same slices of the

FLAIR-image. In both cases it can be seen that hypointense

structures visible in the observed images are not present in the

calculated mean images. This illustrates that we can detect T2-

hypointensities by comparing the replicated images to the

observed image.

In general, once the replicated data sets are available, they can

serve to measure the discrepancy between the model and observed

data by analyzing test quantities, or general discrepancy measures

T(y,h). This discrepancy measure is calculated for the observed

and replicated data. It can be any kind of scalar summary of the

data. The calculated discrepancies may be displayed graphically to

perform visual model checks or by using Bayesian posterior

predictive p-values [6]. For segmentation, we record if the

replicated intensity of voxel i is greater or equal than its observed

intensity, hence, we choose T(yi,h) to be the intensity value itself.

Figure 2. Trace plots for the Gibbs sampler of the mixture model for T2-hypointensity segmentation of one randomly chosen
subject. Components of mGM,1 (left) and of

X
GM,1

(right). See text for details.
doi:10.1371/journal.pone.0068196.g002
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We denote this by

T(yi,h
(t))~I(yi,FLAIRvy

rep,(t)
i,FLAIR ^ yi,T2vy

rep,(t)
i,T2 ):

Based on this information, we iteratively build the hypointensity

score hi for each voxel i by applying the following formula

h
(t)
i ~

(t{1)h
(t{1)
i

z1

t
, if T(yi,h

(t))~1

(t{1)h
(t{1)
i

{1

t
, otherwise:

8><
>: ð7Þ

In this form, the final hypointensity score is simply the mean of

minus and plus ones, where plus one results if the replicated

intensity is greater than the observed one. Thus the intensity score

takes values between 21 and 1 with positive voxels indicating

more hypointensity and negative values less hypointensity. To

account for spatial dependencies between adjacent voxels, we

expand equation (7) to

h
(t)
i ~

(t{1)h
(t{1)
i

z(h
(t)
Ni ,pos

)1=d

t
, if T(yi,h

(t))~1

(t{1)h
(t{1)
i

{Dh(t)
Ni ,neg

D1=d

t
, otherwise:

8>><
>>:

Here, hNi ,pos is the mean of all neighboring intensity scores that

are positive. Likewise, hNi ,neg is the mean of all neighboring

intensity scores that are negative. The parameter d controls the

influence of neighboring intensity scores on h
(t)
i .

The last row in Figure 3 displays positive values of h
(t)
i for three

different iterations and the final segmentation along with its

standard deviation. According to the validation, the parameter d
was set to 1.4. See next paragraph for details.

Validation. First, we validated our segmentation procedure

by a simulation study. Accounting for the lack of a commonly

accepted gold standard, we manually labeled hypointense regions

that are visible in the mean FLAIR images of our healthy controls.

Before averaging, images were normalized by the use of the

deformation field derived from standard normalization of T1-

weighted images as implemented in VBM8. We then added this

binary label as an extra class to BrainWeb’s (http://brainweb.bic.

mni.mcgill.ca/brainweb/) discrete anatomical model [20] and

simulated T1-weighted, T2-weighted and FLAIR images by

BrainWeb’s MRI simulator [21]. Selected slices of the simulated

T2-weighted and FLAIR images without and with T2-hypointen-

sities as well as of the binary label are shown in Figure 4. We

applied our algorithm to the simulated images with values of d
ranging from 1 to 4 with an increment of 0.05 and determined the

optimal value by calculating the Dice coefficient (DC, [22,23]). We

also considered the influence of different values for the binary

threshold ranging from 0 to 1 with an increment of 0.05 for each

value of d. Beyond the simulation study, we biologically validated

the algorithm by visually comparing the segmented T2-hypoin-

tensity images with both the T2-weighted images and the FLAIR

images. To evaluate the effect of the incorporation of both T2-

weighted sequences (T2-weighted and FLAIR) into the segmen-

tation by the mixture model, we repeated segmentation of T2-

hypointensity with an adapted version of the model twice after

having subjected either only the T2-weighted or only the FLAIR

images.

Figure 3. Simulation and outlier detection of T2-hypointensity. Images were derived from a randomly chosen subject. On the left, a
normalized T2-weighted (top) and a normalized FLAIR (bottom) image is shown (only gray and white matter). Three examples of respective simulated
images and their means and standard deviations are shown in the middle and on the right, respectively. In the lower row, respective positive values
of the hypointensity score, derived from both T2-weighted and FLAIR images, as well as their final image and standard deviation are shown and gray-
scaled according to the bar in the lower left. See text for details.
doi:10.1371/journal.pone.0068196.g003

Bayesian Inference for Structural MRI
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Bayesian voxel-wise regression with smoothness priors
This section describes the second objective of this study, namely

the adaption of a voxel-wise linear regression model. It contains

four subsections: 1) introduction of the model, 2) parameter

estimation, 3) calculation of posterior probability maps, and 4)

validation.

Description of the model. It is still a challenging question in

neuroimaging, how to handle spatial correlations in the data,

alongside the ideas that we expect effects of interest to occur in

clusters of voxels and that models accounting for these dependen-

cies are likely to be more robust. Existing frequentist methods use a

combination of pre-smoothing and spatial statistics based on

Random Field Theory. However, these frequentist approaches

rely on the subjective selection of a number of parameters, such as

the amount of spatial smoothing to impose, and the choice of

cluster forming thresholds. Of note, Bayesian inference offers the

possibility of a solution to these problems via the integration of the

dependency among adjacent voxels into the regression model itself

[5]. Those approaches were formulated previously in the context

of first level fMRI analyses [7,8] but not for second level analyses

as necessary for structural MRI data so that we had to adopt

previously proposed approaches.

Let yi denote the m|1 vector of responses of voxel

i,i~1, . . . ,n, for the m subjects, the regression model for the ith
voxel can be written as

yi*N(gi,k
{1
i Im)

where gi denotes the linear predictor, Im the m|m identity matrix

and ki the unknown precision parameter, i.e. the inverse variance.

The linear predictor has the form

gi~x’1bi1z . . . zx’pbip:

In this notation, the m|1 vector xk,k~1, . . . ,p collects the

values of the kth covariate for all subjects and bik represents the

Figure 4. Segmentation of simulated T2-hypointensities. Manually delineated T2-hypointensities were added as an extra class to BrainWebs
discrete anatomical model. This way, T1-weighted, T2-weighted and FLAIR images were simulated. Hypointensities were then segmented from the
simulated images.
doi:10.1371/journal.pone.0068196.g004

Figure 5. Trace plots of the voxel-wise regression model. Precision parameters (left) and main effect of age for two selected voxels (right).
Corresponding MNI coordinates are {16,{63,{36 (top) and {18,38:5,7 (bottom).
doi:10.1371/journal.pone.0068196.g005
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corresponding unknown regression coefficient. In most applica-

tions, the first covariate is x1~1m and thus bi1 is the intercept in

the model for the ith voxel. In the study presented here the linear

predictor consists of an intercept and main effects of age and sex.

By defining y~(y’1, . . . ,y’n)’ and bk~(b1k, . . . ,bnk)’ for

k~1, . . . ,p, the mn|n matrix

Xk~In6xk

and the mn|n diagonal precision matrix

Qy~diag(k1, . . . ,kn)6Im

the complete model can be written in compact matrix notation as

y*N(g,Q{1
y )

Figure 6. Segmented T2-hypointensity. A) Axial slices of normalized mean images (T2-weighted and FLAIR) are shown. B) Corresponding axial
slices of segmented T2-hypointensity are shown (upper row, based on both T2-weighted and FLAIR images; middle row, based only on T2-weighted
images; lower row, based only on FLAIR images). C and D) Information of a randomly chosen subject is given in analogy to panels A and B; for better
illustration, normalized images are shown, although the algorithm operates in the original (native) space. See text for details.
doi:10.1371/journal.pone.0068196.g006
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with

g~X1b1z . . . zXpbp: ð8Þ

We use independent Gaussian Markov Random Field (GMRF,

[24]) priors for the regression coefficients as they are commonly

used in neuroimaging in order to account for the spatial structure

of images, see for example [25], [10] and [26]. We therefore have

p(bk Dlk)! expf{lk

2
b’kKbkg:

Here, lk is a precision parameter (inverse variance) and K is a

structure matrix. Whereas lk operates as a smoothness parameter

that is estimated by the data, the matrix K accounts for spatial

dependencies between the regression coefficients. The elements of

K are

Kil~

{1 if i*l,

ni if i~l,

0 otherwise,

8><
>:

where the number of voxels in the neighborhood of voxel i is denoted

by ni and i*l stands for all voxels l that share a common border with

voxel i, that is we use a first order neighborhood consisting of the six

nearest neighbors. One advantage of such a prior is that it acts like a

smoothness prior. To show this, the full conditional of bik, given all

the other values of bk, can be written as

bik Db{ik*N
1

ni

X
l*i

blk,
1

nilk

 !
:

Thus, the conditional prior corresponds to a normal distribution

with expectation equal to the mean of the effects of neighboring

voxels and precision proportional to the number of neighboring

voxels and precision lk.

To perform fully Bayesian inference, priors for the precision

parameters ki,i~1, . . . ,n and lk,k~1, . . . ,p have to be chosen.

We chose independent Gamma distributions with hyperpara-

meters ay and by for the precisions of y and al and bl for the

precisions of the regression coefficients. By adopting small values

for the hyperparameters, for example 0.1, 0.01 or 0.001, one

obtains ‘diffuse’ priors for the precision parameters.

In our study, response values of the voxel-wise regression model

are the segmented hypointensities. Besides an intercept and the

effect of age, sex is included as a dummy-coded factor (0 = male,

1 = female) yielding the model

gi~bi1zage:bi2zsex:bi3 ð9Þ

for voxel i. Here, age and sex are the vectors of age and sex,

respectively.

Parameter estimation. To obtain samples from the joint

posterior

p(b1, . . . ,bp,k,lDy)!p(yDb1, . . . ,bp,k) P
n

i~1
p(ki) P

p

k~1
p(bkDlk)p(lk)ð10Þ

a Gibbs sampler can be used. As this part is not crucial for

understanding the adoption of our voxel-wise linear regression

model, the reader may skip to the next subsection.

Figure 7. Estimated regression coefficients of the simulated data. Posterior mean image for unsmoothed data of the approach proposed in
this paper is shown in the upper left corner. Results of SPM’s frequentist and Bayesian implementation are shown in the second and third column for
unsmoothed (upper row) and smoothed (lower row) data, respectively. The true parameter image is shown in the lower left corner. The approach
proposed in this paper performs best as demonstrated by the MSE and by visual inspection.
doi:10.1371/journal.pone.0068196.g007
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To obtain the full conditionals for bk, let ~yy~y{g{k, where

g{k is the linear predictor (8) without the kth term. Then, the full

conditional for bk is given by

p(bkD:)!p(yDb,k)p(bk Dlk)

! expf{1

2
(~yy{Xkbk)’Qy(~yy{Xkbk){

lk

2
b’kKbkg

! expf{1

2
(b’k(X’kQyXkzlkK)bk{2b’kX’kQy~yy)g:

By completing squares, we obtain

bk*N(mk,Q{1
k ) ð11Þ

with

Qk~X’kQyXkzlkK and mk~Q{1
k X’kQy~yy: s ð12Þ

The full conditional for smoothness parameter lk are obtained by

Figure 8. Effect of age on T2-hypointensity. Increasing T2-hypointensity with increasing age is projected onto the mean normalized FLAIR
image. Axial slices are indicated in the upper row. Significance is color-coded according to the T -value (Panels A and B) and posterior probability
(Panel C) as indicated by the bars on the right. A–B) Results derived from the frequentist approach as implemented in SPM8 are shown after
application of different statistical thresholds (Panel A, false-discovery rate v0.05; Panel B, uncorrected p-value v0.05) and different smoothing
kernels (upper rows, 4 mm; lower rows, 8 mm. C) Fully Bayesian inference could not only identify the globus pallidus, substantia nigra, and red
nucleus but also the dentate nucleus. This result was largely independent of smoothing although more voxels were identified after smoothing with 4
mm.
doi:10.1371/journal.pone.0068196.g008
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p(lk Dbk)!p(bkDlk)p(lk)

!l
rk(K)=2
k expf{lk

2
b’kKbkgl

al{1

k expf{bllkg

~l
alzrk(K)=2{1

k expf{(blz
1

2
b’kKbk)lkg:

Thus, the full conditional for lk is a Gamma distribution with

updated parameters

~aal~alz
rk(K)

2
and ~bbl~blz

1

2
b’kKbk: ð13Þ

With a similar calculation, it can be shown that the full

conditional for the precision parameter of voxel i, ki, follows a

Gamma distribution with updated parameters

~aay~ayz
m

2
and ~bby~byz

1

2
(yi{gi)’(yi{gi) ð14Þ

thus, the precision parameters k1, . . . ,kn can be updated for each

voxel independently.

1. Initialize the precision parameters k
(0)
1 , . . . ,k(0)

n and

l(0)
1 , . . . ,l(0)

p as well as the regressions coefficients b(0)
1 , . . . ,b(0)

p .

2. For t~1, . . . ,nsim repeat the following steps:

N For current k(t{1) calculate Q
(t)
k and m(t)

k for k~1, . . . ,p

according to (12) and draw b(t)
k from a multivariate normal

distribution with mean m(t)
k and precision matrix Q

(t){1
k .

N For i~1, . . . ,n draw k
(t)
i from a Gamma distribution with

shape and rate parameters according to (14).

N For k~1, . . . ,p draw l
(t)
k from a Gamma distribution with

shape and rate parameters according to (13).

3. After discarding the realizations of an initial burn-in phase the

remaining samples can be considered as dependent realizations

of the joint posterior (10).

By sampling bk from its full conditional, we make use of the

independence structure that is imposed by the voxel layout. To be

more precise, we split all voxels in two sets of independent voxels

according to the first order neighborhood. This has the advantage

that, conditioned on each other, the precision matrix of the full

conditional for each set is diagonal. Thus, calculating the

corresponding Cholesky triangle is not necessary anymore and

sampling of bk becomes feasible while still considering the full

covariance structure [24].

Hyperparameters for the precision and smoothness parameters

are set in accordance with [7] to ay~0:001 and by~0:001 and to

al~1 and bl~10.

To fit model (9) to the data, three parallel chains of length 1500

were calculated. Starting points were generated randomly in the

interval ½0,1� for precision parameters and in the interval ½{1,1�
for regression coefficients. Trace plots of the precision parameters

l1,l2 and l3 of one chain are shown in the left panel of Figure 5

and of two selected voxels of b2 in the right panel of this figure.

MNI coordinates of voxels are {16,{63,{36 (top) and

{18,38:5,7 (bottom). As for the mixture model, the initial 500

draws were discarded and additional 500 draws of each chain were

saved. Again, we calculated Gelman and Rubin’s potential scale

reduction factor for the mean of the precision parameters. In all

cases, it can be assumed that the simulation converged to the

target distribution.

Calculation of posterior probability maps. Results for the

regression coefficients can be displayed in different ways. In order

to compare the results with those derived from an already existing

implementation, we calculated posterior probability maps. Usual-

ly, this is achieved by computing p-values based on the analytical

marginal posterior distributions [27]. Here, we estimate the

probability p-values of a positive or negative effect of the predictors

by the proportion of the corresponding MCMC draws that lie

above or below zero, respectively.

Validation. First, we validated our voxel-wise regression

model by a simulation study. In accordance with Penny et al.

[10], we generated a two-dimensional 50|50 pixel image of

regression coefficients that contains Gaussian blobs. It was created

by placing circular effect patterns with heights ranging from {5 to

z5 on seven different locations. Radii of effects ranged from 1 to

4 pixels. Gaussian blobs were obtained by smoothing these effects

individually with Gaussian kernels having different full width at

half maximum (FWHM) ranging from 1 to 8 pixels. In order to

simulate observation images, we generated values for one metric

covariate at random between 0 and 1 and multiplied the

coefficient image with those values. Finally, we randomly

generated a precision parameter for each pixel using a gamma

distribution with shape and scale parameters set to 2. Gaussian

noise with precision set to these parameters was added to the

multiplied images of regression coefficients. This way, we

generated 30 ‘fake’ observations. The parameter image was

estimated by the presented approach and by SPM8 (both standard

frequentist and Bayesian implementation) after smoothing the

observation images with Gaussian kernels of 0 and 4 pixels. Results

were compared by visual inspection and by calculating the mean

squared error (MSE) between the true and the estimated

coefficient images.

Second, we biologically validated our model by analyzing our

normalized segmented T2-hypointensity images for age-related

effects. This validation is justified as it is commonly accepted that

the loss in the T2-weighted signal within the most T2-hypointense

GM areas is due to an increased iron content, which is not only

related to neurodegeneration but also to normal aging [15,28,29].

We compared the results derived from our approach to those

derived from SPM8. Yet, we will not report the results of the

Bayesian approach implemented in SPM8, which yielded implau-

sible results. This could be replicated with simulated data by

drastically increasing the ratio between voxels without an effect

and those with an effect. We reported this problem, which is

intended to be fixed. To compare our approach to the frequentist

approach in SPM8 we applied different smoothing kernels, namely

a Gaussian kernel of 0, 4, and 8 mm FWHM. As significance

thresholds, we chose a posterior probability of 0.95 or,

correspondingly, a false discovery rate (FDR) of 0.05 [27]. In all

cases, the effect size threshold was set to zero. We restricted our

analyses to voxels with a mean hypointensity score of greater than

0.25.

Software
We implemented both presented approaches in pure MATLAB

(http://www.mathworks.de/products/matlab/) code. Segmenta-

tion of one subject took about 20 minutes with a 3.2 GHz

processor. On the same machine, one chain for the voxel-wise

regression model could be obtained within six hours requiring

about 20 GB RAM.
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Results

Segmentation of T2-hypointensities
Visual inspection of the segmented T2-hypointensities of

simulated data showed that T2-hypointense regions were reliably

detected. Spurred false positives occurred at the border to CSF.

The highest DC value (0.754) was observed for a d of 1.4 and for

the binary threshold of 0.45. This excellent similarity measure

[30,31] was robust as indicated by DC values greater than 0.7 after

changing d[½1:2,1:65� and the binary threshold in ½0:1,0:65�.
Selected slices of the hypointensity score for the simulated images

and d~1:4 are shown in Figure 4. For further analyses, we chose a

d value of 1.4.

Segmentation of T2-hypointensities in healthy controls is

displayed in Figure 6. The first five rows show the mean images

derived from the whole group, the last five rows show the images

derived from a randomly chosen subject. Structures known to be

T2-hypointense are clearly visible, that is the globus pallidus,

substantia nigra, red nucleus, and dentate nucleus. Further, the use

of both T2-weighted sequences (T2-weighted and FLAIR) resulted

in more accurate segmentation than the use of only one sequence.

Voxelwise regression model
Estimated regression coefficients of our simulated data are

shown in Figure 7. The approach proposed in this paper performs

best as demonstrated by the MSE and by visual inspection. While

all blobs of the true coefficient image are visible in our estimation,

both SPM’s frequentist and Bayesian implementation fail to detect

smaller effects.

Within the GM of our healthy controls, we observed only T2-

hypointensity that increased with increasing age. The results

derived from different multiple linear regression models yielded

different results, which will be described in correspondence to the

number of identified voxels from low to high. The conventional

frequentist approach did not yield any meaningful results neither

at the pre-defined significant threshold nor at the voxel threshold

of 0.05 family-wise error corrected (Figure 8, Panel A). Only after

relaxing the voxel threshold to 0.05 uncorrected, we observed all

expected GM regions, namely globus pallidus, substantia nigra,

red nucleus, and dentate nucleus (Figure 5, Panel B). By the use of

our fully Bayesian approach, we could not only identify the globus

pallidus, substantia nigra, and red nucleus but also the dentate

nucleus. This result was largely independent of smoothing

although more voxels were identified after smoothing with 4

mm (Figure 5, Panel D).

Discus ion

In this work, we have developed and validated algorithms based

on fully Bayesian inference to preprocess and statistically analyze

structural MRI data. Separately for preprocessing and statistical

analysis, we will discuss the rationale, realization and validation of

our approaches. We will also acknowledge limitations of our work

and outline room for improvement.

In the first part of our study, we developed a tool for

segmentation of T2-hypointensity, which, to the best of our

knowledge, is the first that utilizes PPC for outlier detection in the

context of neuroimaging. The concept of PPC derives its flexibility

from the possibility that any scalar summary of the data can be

chosen for the discrepancy measure T and that it can be applied to

every model that has been fitted in a fully Bayesian way. In

principle, simulation based model checking techniques can also be

applied in the framework of non-Bayesian estimation methods

[32] given that (asymptotic) distributions of model parameters can

be obtained, for example, by standard errors of parameters.

However, commonly used iterative algorithms, such as the

expectation maximization algorithm, need to be extended to

estimate standard errors, which has been regarded technically

challenging [33]. Therefore, we decided to address the segmen-

tation problem by PPC based on a fully-Bayesian approach. The

resulting segmentation algorithm was fully automatic and operated

across the whole brain. Influence of adjacent voxels during

segmentation can be controlled by the d-parameter. Further, no

thresholds had to be chosen and user-defined regions of interest

did not have to be defined. Moreover, the flexibility of the

proposed mixture model enabled the incorporation of two

different T2-weighted sequences, which clearly improved the

precision of T2-hypointensity segmentation. As a result, all GM

regions known to be T2-hypointense in healthy subjects were

segmented reliably and almost exclusively in both simulated data

and real data even at the single subject level. As T2-hypointense

GM areas display an increased T1-weighted signal similar to that

of WM, we were unable to clearly attribute T2-hypointensity to

one of the two tissue classes through our model. Therefore, we

included all brain parenchyma, namely GM and WM, in our

segmentation. Accordingly, our tool also segmented WM areas.

These areas, primarily the corpus callosum and frontal forceps, are

known to contain tightly packed fibers so that segmentation of

these WM areas can be attributed to the lowest T2-weighted WM

signal of these regions [34]. Hence, segmentation of WM is

inherent to our approach and biologically plausible. Moreover, the

proposed mixture model may be extended in many further ways.

For instance, different distributions can be chosen for the mixture

components to obtain a better fit to particular structures of the

intensity distribution. Further, prior information for the location of

T2-hypointensity may be constructed and used within the

segmentation step. Although our tool accounts for the information

of three different MRI sequences, the approach is still hierarchical

as information of the T1-weighted image constitutes the basis for

the segmentation of the two T2-weighted images. However, a truly

multimodal segmentation that simultaneously accounts for all

available information is likely to be advantageous over our

algorithm.

In the second part of our study, we adapted a voxel-wise linear

regression model through Bayesian inference. In contrast to

SPM8, which applies global shrinkage priors [27], our approach

accounts for the spatial dependency of voxels within the estimation

procedure by the use of GMRF priors. Further, smoothness

parameters are estimated from the data at hand by MCMC

methods. We expected our approach to be advantageous over

conventional frequentist and available Bayesian approaches for

three reasons. First, eliminating the necessity for post hoc correction

for multiple comparisons should increase statistical power com-

pared to conventional frequentist approaches. Second, accounting

for the spatial dependency of voxels within the estimation

procedure mitigates the necessity to smooth images in order to

increase the signal to noise ratio [10]. The spatial dependency of

voxels has not been included in available frequentist approaches

(apart from smoothing) and only in some available Bayesian

approaches. For example in SPM8, the spatial dependency of

voxels is considered within the estimation procedure for analysis of

fMRI time series at the first level [10] but not for analyses at the

second level [27]. Yet, we did not expect our results to be

completely independent of smoothing, since it also compensates

for imperfect coregistration. Third, more accurate approximation

of posterior distributions by MCMC methods should increase both

sensitivity and specificity compared to available Bayesian ap-

proaches. Of note, all three assumptions comply with the results of
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our validation through simulated data. Further, biological

validation by analysis of age-related T2-hypointensity yielded

plausible results. Compatible with increasing iron content with

increasing age [35–37], we found increasing T2-hypointensity

with increasing age exclusively, but in all T2-hypointense GM

regions (globus pallidus, substantia nigra, red nucleus, dentate

nucleus). The striking pronunciation of age-related increase in T2-

hypointensity within the dentate nucleus is well explained by the

different kinetics of age-related iron accumulation across different

GM areas given that the age of our subjects ranged between 20

and 58. In the basal ganglia and thalamus, a significant increase in

iron content was observed only after the age of forty [38], while a

considerable increase in iron content beginning as early as the age

of 20 years was observed in the dentate nucleus [36]. Of note, our

approach identified age-related T2-hypointensity better than both

the conventional frequentist approach as implemented in SPM8

whereas the Bayesian approach did not work properly. The

frequentist approach did not yield meaningful results at the pre-

defined statistical threshold of FDR v0.05. Age-related changes of

T2-hypointensity could only be visualized at unacceptably liberal

statistical thresholds up to an uncorrected p-value of 0.05. Even

though our results showed that the simple GMRF prior clearly

improves the estimation of regression coefficients, we note that the

specified prior for the regression coefficients can have troublesome

features [39] and alternative strategies may be more effective.

Moreover, the proposed voxel-wise regression model can be

extended in various ways. For example, better edge preserving

properties may be achieved by introducing spatially adaptive

interaction weights between adjacent voxels [8]. Further, spatial

and non-spatial prior information can be combined in order to

separate the control over the variance and the effect of

neighboring voxels [40]. The use of Diffusion-based spatial priors

[41] may also improve the estimation. With regard to possible

non-linear relations, more realistic modeling can be achieved by P-

Splines [42] or alternative distributional assumptions for the

response variable.

In summary, we have demonstrate that fully Bayesian inference

can successfully be applied for preprocessing and statistical analysis

of structural MRI data.
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