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Abstract. The deoxyribonucleic acid (DNA) of ● human

cell contains ●ll the information required for specifying

that cell, or indeed the whc4Q person, ●nd constitutes

the human genome. Programs ●re now undeway to

obtain genetic linkage maps and physical maps of

human chromosome containing the DNA, ●nd large

scale dforts will soon begin to provide detailed

soquoncos. Th@challmgos involved in ●ssembling thosa

data into a knowledge base ● re examined.

Computations will play a key role in ●nabling the

scientists to understand the information contairwd in

sequence data. Pattern recognition ●nd string matching

algorithms will be of particular importance. Recent

results in the use of adaptive networks for pattern

dotcction will b~ presmted.

L /NTROiWC770N AND SCOPE OF THE PROBLEM

DNA is a linear informational polymer. The monomers

that are joined together to form the polymer are called

nucleotides or bases and are of four diff~!rent kinds that

wc may abbreviate as A, C, G or T, Thus the base at any

pos~tion in the polymer can be specified by two bits. The

DNA in a human wII contains about 3 :x 109 bases from

each parent organized into 13 chromosomes including

one wx chromosome, It is possible that each
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chromosome contains ● single DNA molecule or more

precisely a single DNA double helix. consisting of two

complementa~ molecules. We may thus regard the

human genome as consisting of 46 bit strings (23 from

each parent) containing altogether about 1,2 x 10’0

bits.

It is now becoming technically feasible to sequence an

entire human genome, thereby obtaining the

information required to specify a human being, albeit in

highly encrypted form. A variety of workshops and

studies, starting with the Santa Fe workshop in March

1986 and including recently reported studies by the

Office of Technology Assessment and National Academy

of Sciences have examined the motivation, technology

requirements and costs of a project to sequence the

human genome. A consensus appeam to be emerging

that the project should be undertaken with initiai

emphasis on (1) obtain ir. g physical maps of

chromosomes, (2) improving and automating the

wquencing and mapping technology and (3) Informatics

- developing the computational tools for assembling,

organizing and a~~alyzing the sequence and map

information. Before con~idering physical map! and

in formatics, let us consider what sorts of information

may be found in the DNA.



At the outset we must recognize that no two individuals,

save identical twins, will have the identical DNA. On the

average, the DNA in unrelated individuals differs at

around one base in 500 [ 1], or overall at about 107 bases

out of 6 x 109. Thus while one may sequence an

arbitrary reference human genome, the study of genetic

heterogeneity at specific sites in the genome will

probably be a more interesting enterprise to most

investigators.

Information in the DNA carries many messages.

(1) Some of the DNA codes for proteins, which are also

linear polymers that may serve as catalysts (enzymes)

signaling or structural materials in a ceil. A segment of

DNA coding for a protein iscalled a gene. It is estimated

that a human ce!l has about 10s genes, ?hat is it can

make 105 diffarent kind$ of proteins. (2) Additional DNA

sequences rode for the regulation of gene expression.

Sometimes they do this by recognizing and binding

specific proteins that facilitate (or block) the reading of

the gene in the protein making process. (3) Some of the

DNA must be used in determining the structure of the

chromosomes and guiding the precisely equu’ allocation

of the chromosomes to two daughter cells in cell

division. Little is known about this structural DNA but it

does involve repetitive sequences. The DNA in a human

cell is about 2m in length yet it fits in the cell nucleus
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having a diameter of about 5pm. (4) Finally there is a

lot of DNA having no known function and sometimes

called “junk DNA. ” Some is probably parasitic. An

example is the “ALU sequence” in humans; about 300

bases in length and present in 3 x 105 copies it thus

takes up -108 bases or more than a percent of the

genome. Having no known function, it is probably

largely parasitic.

DNA THAT CODES FOR PROTEINS

Much is known about how DNA codes for proteins. The

monomers in proteins are called amino acids of which 20

different kirds are used in cells. A three letter code in

the DNA specifies an amino acid in the protein with a

complex series ~f intermediates, includim,’ ribonucleic

acids (RNA) and proteins being involved in the process.

The genetic code specifies which amino acid is encoded

by every three base combination (codon) and isshown in

Table !. The DNA code is first transcribed into a

complementary RNA copy in which U replaces T so the

table refefi to t{~ebases in RNA, A, C, G and U, Note that

three of the codons specify “stop” or tmd of message, A

long sequence of codons, uninterrupted by stop codons

is a candidate for a proton coding sequence and is called

an “open reading frarr.e” (C)RF). Translation is initiated

at the codcm ATG so location of this codon near the start

of an ORF further strengthens the case for protein
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coding. Note that a given base sequence can be read in

three different frames. Usually only one of these is used

for encoding a protein, though some viruses use

overlapping messages in different reading frames.

TABLE I
THE GENETIC CODE

‘irst Second Third
‘osition Position* Positior

UCAG

u Phe Ser Tyr Cys u

Phe Ser Tyr ‘cys c
Leu Ser Stop Stop A

Leu Ser stop Trp G

c ~eu Pro His Arg U

Leu Pro His Arg C

Leu Pro GIuN Arg A

Leu Pro GIuN Arg G

A Ileu Thr AspN Ser U

Ileu Thr AspN Ser C

Ileu Thr Lys Arg A

Met Thr Lys Arg G

G Val Ala Asp Gly U

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala ~lu Gly G

example “Phe~ stands for phenylalanine.

In all multicellular creatures, called eukaryotes and

including people, there is much additional complexity in

the f~enes, namely there are long segments of DNA that
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are never expressed in the translated protein. These

segments are called introns or intervening sequences as

distinguished from exons or expressed sequences.

Introns must be precisely excised from the RNA copy of

the DNA, by a series of enzymatic steps, before the RNA

copy is translated into the protein. The structure of a

typical enkaryote gene is shown in Fig. 1. Some genes

contain tens of exons. Although a qualitative

description of the base sequence identifying an intron-

exon boundary can be given in terms of a “consensus

sequence, ” this is not good enough for a useful

algorithm.

Removed During RNA
Processing

Translated To Protein

Figure 1
Structure of Typical Eukaryote Gene
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//. THE DATABASE -- KNOWLEDGE BASE

PROBLEM

The current database of DNA sequences is GenBank [2]

assembled by the Los Alamos National Laboratory and

the European Molecular Biology Laboratory and

distributed by Intelligenetics [3]. It currently contains

sequences totaling about 2 x 107 bases of which about

2 x 106 are from humans. Soon the rate of data entry

will exceed ICGper month and it will likely be at least ten

fold higher within five years. In addition to sequence

data, GenBank contains annotation as to source,

function, relation to other sequences, etc. Nearly every

sequence in GenBank is related to other sequences; they

may overlap, they may be alternative forms of the same

gene or related genes. These relationships are vital parts

of the database and are now entered by people,

annotators, associated with the database.

The increasing rate of data entry is forcing GenBank to

move toward a system in which most of the data will be

submitted in electronically readable form, automatically

checked for format and consistency and entered into the

database. A relational format with the SYBASE

management system is being used. Additionally,

annotation of their data entries by the original

investigators in electronically readable standard formats

will besought. This will require the provision of friendly
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if not seductive annotation software to the data

originators.

As sequences are obtained in the human genome

program, little or nothing will be known about the

function of most. A program of automatic annotation

should be developed to scan incoming sequences for

0%%, intron-exon boundaries, putative protein coding

sequences, repetitive seq~ences having structural or

parasitic propef ties and any other features. The findings

should be entered in the database. Matreover, any

significant similarities of the new sequence to other

sequences should be noted. In this way one will begin to

assemble a “knowledge base” for genetic sequences.

Problems of pattern and similarity recognition are noted .

in the next section.

The sequence database, currently represented by

GenBank, is only part of tne genetic knowledge b~se.

There are othw related databases, inciuding the Protein

Information Resource [4] in which the sequences of all

known proteins are assembled and also the Human

Gene Mapping Library [5] in which the chromosomal

locations of many human genes and other markers are

given. These locations, which are based on genetic

recombination frequencies, const~tute a genetic linkage

map of the human chromosome [1]. A listing of still
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other molecu!ar biology databases [6] has been

prepared.

In the next few years, another important type of map

will be determined, namely physical maps of human

chromosomes, and other genomes. In a physical map,

the distance between markers is propofiional to the

number of base’ between them and not necessarily to

the rec~mbination frequency. Several laboratories are

undertaking physical maps of various genomes,

including E. CoIi, yeast and nematode and of human

chromosomes. The method has been to cut the genome

with restriction enzymes into a large number of

ovedapping and potentially clonab!e fragments. The

fragments are then cloned and each done is then

partially characterized, for example by its binding to a

number of random probes or by its pattern of lengths on

further restriction enzyme digestion. Thus for eac[)

clone one determines a number of characteristics, and

by assuming that clones overlap if they have a sufficient

number of characteristics in common, one attempts to

arrange the clones in linear order along the

chromosome. This is a non-trivial computational

exercise. For a chromosome of length 108 bases and a

cosmid clone of length 4 x 104, one ne~ds >2.5 x 103

clones to cover the chromosome. It isexpected that -2 x

104 clones will probably be required for reasonably
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coverage. Repetitive DNA, nonclonable fragments and

ambiguous signatures will complicate the assignment of

fragment order. One will need to consider a range of

possible orders and to design additional experiments to

determine the correct alignment.

Thus the knowledge base for human genetics will soon

include genetic linkage maps, with resolutions - 10b

bases, physical maps, with resolutions -104 bases and

finally the sequence data. All of these data sets need to

be accessible to users throughout the world,

simultaneously and in a transparent manner. For

example, a scientist studying the gene for cystic fibrosis

can identify on the genetic map its approximate

chromosomal location, can search the physical map for

clones that may include the gene and examine the

sequence for possible protein coding and reg :Iatory

sequences that may be hallmarks of the disease. The

tasks for developers of this knowledge base are to

assemble and organize the data from a multitude of

sources so that it can be easily accessed and analyzed

and so that the results of the analysis can in turn be

incorporated into the knowledge base and retrieved by

othem. If due credit is given to those who conduct the

analysis, citaticms in and growth of the knowledge base

may become an accepted form of publication.
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///. PATTERN DETECTION AND SEQUENCE

S/MUAR/TY SEARCHING

Molecular biologists wc ,.i’-f love to be able to deduce the

structure and function c a protein from its amino acid

sequence or better yet horn the DNA sequence of the

encoding gene. As uxplained by R. Jernigan in an

accompanying talk this is not possible at present.

Nevertheless it is a!ways of interest to compare a new

sequence with knnwn ones in order to detect possibly

significant similarities which suggest function for the

new sequence In this way it was found that cancer

causing genes often resemble naturally occurring cell

growth factors or their receptors and many surprising

relationships between genes have been found.

Inasmuch as exons may be elementary units of evolution

[7], a given exon may be shared by many genes. For

example, a particular exon may code for a membrane

binding portion of a protein and be shared by genes for

a variety of proteins having in common only that they

bind membranes.

The quantitative characterization of similarity, i.e., the

determination of distances between sequences, is

complex inasmuch as the significance of, say, a base

change iscontext dependent and non-local, In a protein

coding sequence, the effect of a base change on the

12



amino acid sequence can be se~n from the genetic code,

provided that the reading frame isknown. But the same

change in a~ intron or regulatory sequence maybe quite

different. lnse~ion or deletion of one or more bases is

also common and must be allowed for. Evidently

insertion or deletion of a base in a coding sequence will

shift the subsequent reading frame and may thus have a

large effect on the protein sequence, whiie the same

change in an intron may have no effect at all.

Given a set of weights for base changes, insertions, and

deletions, an efficient algorithm was devised by !

Needleman and Wunsch [8], for finding the best

alignment between two sequences and the di?tance

between them when optimally aligned. For a recent

review see [9], Be~ause of the length of the comparison

strings, eg. 2 x 107 for GenBank and 3 x 109 for a

human genome, considerable effort has gone into

optimizing algorithms for current supercomputers,

using “hash” tables and/or the vector processing

capabilities of CRAY supercomputers, As usual,

substantial increases in speed can be gained at the

experose of completeness,

Evidently sequence comparison, as all text searching, is

intrinsically parallel. Chips designed for text searching

are now being considered for similarity comparisons

[10], They may be more useful in searching for precisely
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defined patterns rather than for general similarity

comparisons.

Another general computational problem is that of

detecting sigmficant patterns in sequences of unknown

function. As noted earlier, a pa~icular problem is that

of distinguishing protein coding from non-coding

sequences and finding the reading frame. ORFS offer

clues and because codons are used with unequal

frequencies, protein coding sequences show distinctive

non-random patterns [11, 12] that can be detected in a

long DNA sequence. Considerable success has been

found [13] using an adaptive neural network approach

that has successfully identified unsuspected protein

coding regions and reliably gives the reading frame. The

neural network is trained by exposure to a set of known

coding and non-coding sequences and adjusts “synaptic

weights” as it learns. While these networks may reach

impressive levels of discrimination, they d~ not directly

reveal what patterns they have learned to detect.

Perception

Stormo [14]

learning algorithms have been used by

in an attempt to locate ribosomal binding

sites in an RNA library, but were found to have only

limited predictive capabilities. By combining perception

algorithms with discriminant analysis, DeLisi et al. [15]
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were able to predict exon/intron boundaries with

around 85% reliability.

[n general it has proved difficult to devise algorithms

that reliably detect functionally significant patterns in

DNA. Neural networks may help. But how do proteins

reliably detect these sites while computers fail? One

possibility is that deviations of the DNA from its ideal

Watson-Crick double helix are recognized by DNA

binding proteins [16]. Such deviations may involve local

variations of the base sequence but also non-local

effects such as the degree of twisting or supercooling of

the helix. Several models for predicting the helical

structure of DNA have been proposed (17,18] but have

shown only limited predictive capability. More exact

calculational approaches are rendered difficult by the

large sizes of the molecules (three bases in the double

helix have around 600 electrons), by the aqueous

environment in which the molecules are found (so that

hydrophobic effects are important), and by the

importance of electrostatic forces that are difficult to

treat accurately [19].

Experimentaiists can produce DNA molecules having

virtually any desired sequence that can in turn be

studied for function, such as the binding of regulatory

proteins, There is thus great motivation not only for

understanding these results but for developing the
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capability to predict DNA structure and interaction with

proteins.
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