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Abstract

We investigate incomplete symbols, i.e. definite descriptions with
scope-operators. Russell famously introduced definite descriptions by
contextual definitions; in this article definite descriptions are intro-
duced by rules in a specific calculus that is very well suited for proof-
theoretic investigations. That is to say, the phrase ‘incomplete sym-
bols‘ is formally interpreted as to the existence of an elimination pro-
cedure. The last section offers semantical tools for interpreting the
phrase ‘no meaning in isolation’ in a formal way.

1 Introduction

According to Russell a definite description has the following form:

the so-and-so

where ‘the’ is in the singular and ‘so-and-so’ is a (possible) complex expres-
sion. According to Russell (also in earlier writings1) definite descriptions
do not belong to the category of singular terms.2 Russell introduces these

∗This research is supported by the Alexander von Humboldt Foundation.
1Especially On Denoting (1905), OD for short.
2That so-and-so can be a complex expression seems plausible from Russells considera-

tions in OD, p.479: “[...] ... a phrase such as any one of the following: a man, some man,
any man, every man, all men, the present King of England, the present King of France,
the centre of mass of the solar system at the first instance of the twentieth century, the
revolution of the earth round the sun, the revolution of the sun round the earth. Thus a
phrase is denoting solely in virtue of its form.
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by use of contextual definitions and claims that definite descriptions are in-
complete symbols, and having no meaning in isolation3. For him definite
descriptions occur in two contexts (in a more modern notation):

(1) B(ıxA(x))

(2) E!ıxA(x)

These formulas containing the definite descriptions are conceived as formal
counterparts of English sentences, e.g.:

(1′) The present King of France is bald.
(2′) The present King of France exists.

Russell was the first to notice that scope-operators allow to mark the oc-
currence of the negation-sign in a sentence with definite descriptions. Lets
take one of Russell’s infamous examples:

(3) The present King of France is not bald.

This sentence has two different readings:

(4) The present King of France is not bald.
(5) It is not the case that the present King of France is bald.

(4) and (5) are represented in the PM as:

(6) [ıxA(x)]¬B(ıxA(x))
(7) ¬[ıxA(x)]B(ıxA(x))

The logic of sentences as (3) is governed by a contextual definition, i.e.

(*14.01) [ıxA(x)]B(ıxA(x))↔ ∃x∀y((A(y)↔ x = y) ∧B(x))

According to (*14.01) both (6) and (7) are interpreted as:4

3As it will be seen later ‘incomplete symbol’ will be interpreted syntactically and ‘no
meaning in isolation’ semantically in our approach.

4In Russell (1905) speaking of a secondary respectively primary occurrence of a definite
description.
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narrow scope:

(8) [ιxA(x)]¬B(ιxA(x))↔ ∃x∀y((A(y)↔ x = y) ∧ ¬B(x))

and

wide scope:

(9) ¬[ιxA(x)]B(ιxA(x))↔ ¬∃x∀y((A(y)↔ x = y) ∧B(x))

Without scope-operators the distinction between would collapse:

(10) ¬B(ιxA(x))↔ ¬∃x∀y((A(y)↔ x = y) ∧B(x))

or

(11) ¬B(ιxA(x))↔ ∃x∀y((A(y)↔ x = y) ∧ ¬B(x))5

In addition to (*14.01) Russell licenses the transition from from (*14.01) to:

(*14.101) B(ιxA(x))↔ ∃x∀y((A(y)↔ x = y) ∧B(x))

This transition is licensed by a convention quoted below. But first of all we
present the contextual definition concerning definite descriptions in existen-
tial contexts:

(*14.02) E!ιxA(x)↔ ∃x∀y(A(y)↔ x = y)

The convention that allows to go from (*14.01) to (*14.101) is stated as
follows:

It will be found that, in most cases in which descriptions occur,
their scope is, in practice, the smallest proposition enclosed in
dots or brackets in which they are contained. Thus for example

[(ιx)(φx)].ψ(ιx)(φx).→ .[(ιx)(φx)].χ(ιx)(φx)

will occur much more frequently than

[(ιx)(φx)] : ψ(ιx)(φx).→ .χ(ιx)(φx).

5(10) and (11) are equivalent under the condition that ιxA(x) exists.

3



For this reason it is convenient to decide that, when the scope
of an occurrence of (ιx)(φx) is the smallest proposition, enclosed
in dots or other brackets, in which the occurrence in question is
contained, the scope need not to be indicated by “[(ιx)(φx)].”
[...] This convention enables us, in the vast majority of cases
that actually occur, to dispense with the explicit indication of
the scope of a descriptive symbol; and it will be found that the
convention agrees very closely with the tacit conventions of or-
dinary language on this subject. (PM, p.71)

This convention can (or could be) formalized in a suitable setting, however,
as it stands here, we think that it is something outside the formal system.
Clearly, after 100 years (or more) we now have a precise understanding
of object- and meta-language something that might have been not always
present in the PM.

It is rather tempting to think that (*14.101) can be added to first order
logic. In a review by Church (1963)6 he observes that this has been done by
Schock (1962). Schock wanted to treat definite descriptions as proper terms
and not introduced by contextual definitions. However, this approach leads
straightforwardly to contradiction – as Schock (1962) observes by letting
A be the negation of a logical truth and B be a logical truth. Church
notes (1963, p.105) that (a) this contradiction was known to Russell (among
others) and (b) that the equivalence expressed by (*14.101) (and viewed as
an axiom-schema) has to be replaced by a somewhat weaker principle.

The present paper approaches this topic as follows: on the one hand,
this paper is inspired by Russell’s work on definite descriptions and it is
also set up to give formal interpretation of the famous Russell dicta that
definite descriptions are incomplete symbols and that they have no meaning
in isolation. Briefly, we understand the the phrase “incomplete symbol” as a
syntactic notion, i.e. definite descriptions (proper or not) can be eliminated;
and the phrase “no meaning in isolation” is interpreted as a semantical thesis
(more on this will follow below). On the other hand, definite descriptions
are seen as proper terms in the sense that they are not introduced by way
of contextual definitions.

The logic presented here is somewhat half-way between Church’s sugges-
tion to weaken the principle (*14.101) (seen as an axiom-schema) and Rus-
sell’s original proposal. We think that the presence of scope-operators allow
for distinctions that cannot be made without them and therefore decided

6The review in question is in Schock (1962).
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to develop a logic with scope-operators. In contexts where scope-operators
seem to be superfluous they can be considered as idle.

1.1 Related research and plan of this paper

In the following sections of this paper we shall develop a logic containing
ı-terms that is inspired by Russell’s ideas and insights on this matter.

As it is well known there is a huge amount of literature on definite de-
scriptions; and is therefore impossible to mention every single work done
in this field. It is sure worth mentioning that there are at least four big
strains in this area of philosophical logic: (1) Russell (and Russell-inspired
(this paper is in this strain)) theories (cf. eg. Kaplan (1972), Neale (1990),
Scott (1991), Grabmayer (et.al) (2011); also Oppenheimer & Zalta (1991),
(2011)–the 2011-article pointing towards computational metaphysics); (2)
theories that are inspired by the Fregean approaches to definite descrip-
tions (cf. e.g. Carnap (1960, p.35ff.), Kalish (et.al, 1980) (for Frege- and
Russell-like approaches)), (3) a Hilbert-Bernays (initial) approach (Hilbert
& Bernays (1934 & 1939)), i.e. a ı-term can only be introduced if the cor-
responding uniqueness conditions are (formally) provable in the theory in
question (cf, eg. Lambert (2003), (1999)). Last not least (4): theories that
have been developed in the framework of free logic(s); which are inspired
by all of the before mentioned (cf. eg. van Fraassen & Lambert (1967),
Bencivenga (et.al) (1986), Bostock (1997), for an application in philosophy
of science: Lewis (1970)).

Section 2 of this paper is devoted to developing a proof-theoretic approach
to definite descriptions. More specifically, we develop a Tait-calculus first,
this will be extended by equality, then by the ı-rule and finally (and option-
ally) with an existence-predicate. The main result is a version of Gentzen’s
Hauptsatz that ensures e.g. consistency of the respective logic(s).

A Tait-calculus is simply a truncated Gentzen-style sequent calculus. It
has the advantage (over a more standard sequent calculus) that the proof-
theoretic meta-results (e.g. cut-elimination theorem) are very quickly es-
tablished. Furthermore, given that we want to shed light on Russell’s dic-
tum that definite descriptions are “incomplete symbols” this version of the
Tait-calculus allows us to formulate a concise formulation of the elimination
procedure.

Grabmayer (et.al) (2011) tackled the Hydra-problem posed (most famously)
by Kripke (2005). Grabmayer (et.al) chose a term rewriting method. Our
approach in this paper, when it comes to the elimination of ı-terms (section
3) is more closely related to Kleene’s (2000) approach.
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2 Language and Logic

2.1 A language L: basic symbols

• Individual variables: v0, v1, v2, . . . (denoted by x, y, z, x1, . . . )

• Individual constants: c0, c1, c2, . . . (denoted by a, b, a1, . . . )

• ∧, ∨, ∃, ∀, ı

• Countably many predicate symbols: Pn
i with arity n (denoted by

P,Q,R . . . .)

Definition 1 (Atomic formulas, literals)

• An atomic formula is an expression Pn
i (t0, . . . , tn) where Pn

i is an n-ary
predicate symbol and t1, . . . , tn are individual variables or individual
constants.

• An expression of the form A, ¬A, where A is an atomic formula is
called a (positive, negative) literal.

Definition 2 (Simultaneous recursive definition of formulas and ı-terms)

(i) Every variable is a term and every literal is a formula.

(ii) If A, B are formulas then (A ∧B), and (A ∨B) are formulas.

(iii) If A is a formula then ∃xA, ∀xA are formulas and ıxA is a ı-term.

(iv) If ıxA1, ..., ıxAn are ı-terms and B is a formula then [ıxA1, . . . ıxAn]
B(ıxA1, . . . ıxAn) is a formula.

(v) Nothing else is a formula, a term or a ı-term.

We use s, t (with our without subscript) as syntactic variables ranging over
individual variables and individual constants, u,w as syntactic variables
ranging over ı-terms and A, B, . . . for formulas; ∗ for ∧, ∨ and Q for ∃,∀, ı.
Γ, ∆ are sets of formulas.

Informally, we understand formulas of the form [ıxA1, . . . ıxAn]B(ıxA1,
. . . ıxAn) as follows: apply a certain procedure (which will become clearer
later) to it such that ıxA1 is inB(ıxA1, . . . ıxAn) is analyzed as the procedure
prescribes; then proceed to the next ı-term etc. Whereas the left-most ı-
term in the scope-operator refers to the left-most ı-term in B. We say more
on notation in section 2.2.
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Definition 3 (Definition of the negation (neg(A)) of a formula A)

(i) If A is atomic then neg(A) := ¬A and neg(¬A) := A.

(ii) neg(A ∧B) := neg(A) ∨ neg(B), neg(A ∨B) := neg(A) ∧ neg(B).

(iii) neg(∀xA) := ∃xneg(A), neg(∃xA) := ∀xneg(A).

(iv) neg([ıxA, . . . ]Bt(ıxA)) := ∀x∃yneg((At(y) ↔ x = y) ∧ [. . . ]Bt(x))
(where the number of ı-terms of ∀x∃yneg((At(y)↔ x = y)∧[. . . ]Bt(x))
< neg([ıxA, . . . ]Bt(ıxA))).

Corollary 1 neg(A) is a formula; neg(neg(A)) = A.

The set of free variables of an expression E, FV(E), is defined as usual. Let
X be a set of expressions: FV(X) :=

⋃
{FV(E) : E ∈ X}. If A and A′ only

differ in their names of the bound variables then A and A′ are identified.

Substitution A substitution is a mapping σ : Vars −→ T with dom(σ)
:= {x ∈ Var : σ(x) 6= x}. The updates σty(x) := (i) t, if x = y, (ii), σ(x)
otherwise. (x1/t1, . . . , xn/tn) denotes the substitution σ with σ(x) is (i) ti
if x = xi or (ii) x otherwise. If σ = (x1/t1, . . . , xn/tn) and E is an expres-
sion then Eσ denotes the result of simultaneously substituting the terms
t1, . . . , tn for the variables x1, . . . , xn respectively.

Definition 4 A rule r is closed under substitution (of individual constants
and individual variables) iff the following holds for every r-inference I =

Γ0 . . .Γn−1
Γ

: If σ is a substitution such that (Eig(I) = {x} ⇒ xσ ∈ Var

\ FV(Γσ)), then Iσ =
Γ0σ . . .Γn−1σ

Γσ
is also an r-inference.7

Definition 5 (Rank of formulas and terms) The rank of a formula A
or a term u is the maximum length of a branch in its construction tree.
Formally, this is defined by simultaneous recursive definition was follows:

(r1) |A| = 0 if A is a literal.

(r2) |A ∗B| = max(|A|, |B|) + 1 for binary operators ∗, i.e. ∧,∨.

7Definitions 3, 4, and 5 are all taken from Buchholz (2002/03), p.1ff - with minor
modifications.
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(r3) | ∗A| = |A|+ 1 for unary operators ∗, i.e. ∀x,∃x, ıx.

(r4) |[ıxA]B(ıxA)| = |B|+ |A|.

The number of ı-terms occurring in a formula A (not counting its scope) is
called the ı-weight of A, ı|A|.

This is to say, the ı-weight of a formula A is encoded in this definition.
E.g., |[ıv1P 1

1 (v1), ıv2P
2
2 (v1, v2)]P

2
1 (ıv1P

2
2 (v1), ıv2P

2
1 (v1, v2))| = 2 which is

also (in this case) its ı-weight. Furthermore, the clause (r4) states formally
that the scope does not increase the rank of the formula.

The clause (r4) reflects that the scope-operator does not add to the rank
of a formula. The scope-operator serves as (in this approach) as an indicator
of how to analyze formulas of the form [ıxA1, . . . ıxAn]B(ıxA1, . . . ıxAn).

Officially there is no biconditional in the language L. However, we think
of a biconditional of the form A↔ B as defined as: (¬A ∨B) ∧ (¬B ∨A).

Definition 6 (cut-rank, height (of a derivation))
The cut-rank of a derivation d is crk(d) := sup{rk(C) + 1 : C cut-formula
of d}. A derivation d is called cutfree if crk(d) = 0.
The height of a derivation d – hgt(d) – is recursively defined as follows: hgt(d)
:= supi<n(hgt(di) + 1) where d0, . . . dn−1 are the immediate subderivations
of d (0 ≤ n ≤ 2). The last inference of d is denoted by last(d).8

2.2 On notation

Our main targets are expressions of the form:

[ıx1A
1, ıx2A

2, . . . , ıxnA
n]B(ıx1A

1, ıx2A
2, . . . , ıxnA

n)

As we have said before, the scope of this expression, i.e. [ıx1A
1, ıx2A

2, . . . ,
ıxnA

n], does not add to the logical complexity (or rank) of a formula. It is
merely a syntactical device to indicate several things:

(a) The scope indicates the occurrences of ıxiA
i in B. Granted that there

are ı-terms, ıxiA
i and ıxjA

j with i = j in the scope, then ıxiA
i and

ıxjA
j refer simply to different occurrences in B. (Example below.)

(b) The (natural) number n might not be identical with number of ı-
terms occurring in it. This is so because ı-terms may have a very
complex structure. An example for this is (possibly slightly outdated

8cf. Buchholz (2002/03), p.2f.
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and old-fashioned): ‘The first born child of its father inherits the fa-
therly farm.’ This sentence can be formalized as: R(ıxQ(x, ıyP (x, y)),
ızS(z, ıyP (z, y))). In section 2.4 we extend the language with an
existence-predicate: similar remarks apply to this extension.

(c) The scope is a syntactic device that allows for unique readability of the
formula in question. For example and informally speaking, consider
this formula: [ıxP (x), ıxS(x)]Q(ıxP (x), ıxP (x)). This will be inter-
preted as: apply some rules to the leftmost ı-term (occurrence) in the
formula that follows the scope.

(d) Last not least: The scope also serves as indicator for wide and narrow
readings (as mentioned in the introduction).

(e) We do make use of α-conversion.

Consider the formula [ıxP (x), ıxP (x)]Q(ıxP (x), ıxP (x)) as an example for
our logic (and later on elimination procedure (section 8)):

[ıxP (x), ıxP (x)]Q(ıxP (x), ıxP (x))

is – following our notational conventions – formally interpreted as:

∃x′∀y((P (y)↔ x′ = y) ∧ [ıxP (x)]Q(x′, ıxP (x)))

and this is in turn formally interpreted as:

∃x′∀y((P (y)↔ x′ = y) ∧ ∃x′′∀y′((P (y′)↔ x′′ = y′) ∧Q(x′, x′′)))

However, ∃x′∀y((P (y) ↔ x′ = y)) and ∃x′′∀y′((P (y′) ↔ x′′ = y′)) are
notational variants of each other. So, finally the following equivalence should
hold:

[ıxP (x), ıxP (x)]Q(ıxP (x), ıxP (x))
↔

∃x∀y((P (y)↔ x = y) ∧Q(x, x))

In the course of the paper some further notational conventions will be made;
mainly in order to achieve easy readability.
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2.3 Logics

We develop the calculus Tı in a piecemeal fashion. First, T is introduced,
which is simply a first order logic without equality; second, the equality-
predicate is added with its respective rules,T=. And, finally, we present the
calculus, Tı, which includes the ı-rule. The language of Tı is a restriction
of L, i.e. L without ı-terms.

Definition 7 (A first order Tait-calculus: T)

(Ax) Γ, A,¬A if A is a literal

Γ, A0 Γ, A1(∧)
Γ, A0 ∧A1

Γ, Ak(∨) (k ∈ {0, 1})
Γ, A0 ∨A1

Γ, A
(∀) x 6∈ FV(Γ)

Γ, ∀xA
Γ, Ax(t)

(∃)
Γ, ∃xA

Γ, C Γ,¬C
(Cut)

Γ

Lemma 1 (Substitution) The rules of Tı are closed under substitution
of simple singular terms: Tı `km Γ⇒ Tı `km Γσ.

Lemma 2 (Weakening) Tı `km Γ & Γ ⊆ Γ′ ⇒ Tı ` Γ′.9

Lemma 3 (Full, Inversion) The following rules are height-preserving in-
vertible:

(Full) Tı ` Γ, C,¬C for all C.

(I∨) If then T `km Γ, A0 ∨A1, then then T `n Γ, Ak; k ∈ {0, 1}.

(I∧) If T `km Γ, A0 ∧A1, then T `n Γ, A0 and then T `n Γ, A1.

(I∀) If T `km Γ,∀xA, then T `n Γ, Ax(t).

Lemma 4 (Cut-lemma) T `km Γ, C, T `lm Γ,¬C =⇒ T `k+l
m Γ

Theorem 1 (Cut-elimination) Cut is eliminable from T.10

9The proofs of both lemmata are as in Buchholz (2002/03).
10More detailed proofs of the cut-lemma, and Cut-elimination are stated below.
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From this follows naturally the following consistency (cf. Tait (1968), p.209)
of T:

Corollary 2 (Consistency)
Every derivable set of atoms includes an axiom.

In order to deal with equality we extend the formal language in the usual way,
and say the s = t is a formula of the formal language in question. Following
Gentzen (1934/35) we could add further equality axioms to the sequent
calculus and then obtain a version of Gentzen’s erweiterter Hauptsatz. The
equality axioms for Tı have the form:

(Eax1) Γ, t = t (Eax2) Γ,¬(s = t),¬Px(s), Px(t)

In (Eax2) P is an n-ary atomic predicate. From these axioms symmetry of
equality is easily derivable:

s = s ¬(s = t),¬(s = s), t = s

¬(s = t), t = s

However, the cut cannot be avoided.

In analogy to the work of Negri/von Plato (2001, ch. 6, esp. 138ff.) and
Negri/von Plato (1998, p.429f.) we extend our Tait-caluculus not with ax-
ioms but with rules for equality. Thereby, a cut on equality formulas can be
avoided. The rules for equality have the following form:

Definition 8 (T with equality, T=)

Γ,¬(t = t)
(E1)

Γ

Γ,¬(s = t),¬Px(s), Px(t)
(E2)

Γ,¬(s = t),¬Px(s)

Where the last rule (E2) is formulated for each (atomic) predicate P .

From (E1) and (E2) we can prove (by induction on the rank of A) the
following:

Γ,¬(s = t),¬Ax(s), Ax(t)

Γ,¬(s = t),¬A(s)
(fullRepl)
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The rule (fullRepl) enables us to prove the Replacement schema: Γ,¬s =
t,¬Ax(s), Ax(t)

So without further ado, we can state the following theorem:

Theorem 2
Cut is eliminable from T=.

Finally, we want to add the ı-rule; we thereby allow for the equality predicate
to be flanked with ı-terms.

Definition 9 (A Tait-calculus with ı-terms: Tı)

Γ, ∃x∀y((A(y)↔ x = y) ∧B(x))
(ı)

Γ, [ıxA(x)]B(ıxA(x))
†

† The number of ı-terms is zero in ∃x∀y((A(y)↔ x = y) ∧B(x)), and Γ.

Theorem 3 Tı ` Γ, C,¬C for all C with ı|C| > 0, |C| > 0.

Proof. The first part of proof where ı|C| = 0, is completely analogous to
the standard case. There are two main cases to consider: (1) ı|C| = 1,
(2) ı|C| > 1. Instead of writing ∃x∀y((A(y) ↔ x = y) ∧ B(x)) we allow
ourselves the notational abbreviation: ∃1xAB(x); and instead of writing
∀x∃y¬((A(y)↔ x = y) ∧B(x)) we use ¬∃1xAB(x).

Case 1, ı|C| = 1:

∃1xAB(x), ¬∃1xAB(x)

[ıxA(x)]B(ıxA(x)), ¬∃1xAB(x)

[ıxA(x)]B(ıxA(x)), ¬[ıxA(x)]B(ıxA(x))

Case 2: As in case and by the use of the IH, i.e. the theorem holds for
n−1 ı-terms; we proceed by the left-most ı-term. In order to avoid to much
notational mess, we allow ourselves some conventional ease: instead of writ-
ing [ıx1A

1, ıx2A
2, . . . , ıxnA

n]B(ıx1A
1, ıx2A

2, . . . , ıxnA
n), we simply write:

[ı1, ı2, . . . ın]B; furthermore, instead of writing: ∃x∀y((A1(y) ↔ x = y) ∧
[ıx2A

2, . . . , ıxnA
n]Bt(x, ıx2A

2, . . . , ıxnA
n)), we write: ∃1x(A1(x)∧[ı2, . . . ın]B).

Similarly for ¬∃x∀y((A1(y) ↔ x = y) ∧ [ıx2A
2, . . . , ıxnA

n]Bt(x, ıx2A
2,

. . . , ıxnA
n), we write: ¬∃1x(A1(x) ∧ [ı2, . . . ın]B).
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∃1x(A1(x) ∧ [ı2, . . . ın]B),¬∃1x(A1(x) ∧ [ı2, . . . ın]B)

[ı1, ı2, . . . ın]B,¬∃1x(A1(x) ∧ [ı2, . . . ın]B)

[ı1, ı2, . . . ın]B,¬[ı1, ı2, . . . ın]B

What this theorem shows is that the ı-weight is reduced when following
a derivation from the conclusion up to its premisses. This fact will be of
particular importance in the cut-elimination theorem—and is stated in the
following corollary:

Corollary 3 (ı-weight reduction)

(a) If Tı `n Γ, [ı1, ı2, . . . ın]B with ı-weight of [ı1, ı2, . . . ın]B is r and ı1
is the principal ı-term, then Tı `n−1 Γ,∃1x(A1(x) ∧ [ı2, . . . ın]B), where
ı|∃1x(A1(x) ∧ [ı2, . . . ın]B)| < ı|[ı1, ı2, . . . ın]B|.

(b) If Tı `n Γ,¬[ı1, ı2, . . . ın]B with ı-weight of ¬[ı1, ı2, . . . ın]B is r and ı1
is the principal ı-term, then Tı `n−1 Γ,¬∃1x(A1(x) ∧ [ı2, . . . ın]B), where
ı|¬∃1x(A1(x) ∧ [ı2, . . . ın]B)| < ı|¬[ı1, ı2, . . . ın]B|.

Theorem 5 and its corollaries will prove their importance in the elimination
of (Cut).

The characteristic theorems
The characteristic theorems of Russell’s original proposal are deducible in
Tı which is seen by the following derivations:

∃1xAB(x),¬∃1xAB(x)

[ıxA(x)]B(ıxA(x)),¬∃1xAB(x)

¬∃1xAB(x), ∃1xAB(x)

¬[ıxA]B(ıxA), ∃1xAB(x)

The inversion lemma holds also for the extended calculus.

Lemma 5 (Cut-lemma) Tı `km Γ, C, Tı `lm Γ,¬C =⇒ Tı `k+l
m Γ.

Proof by induction on k + l. Assume d `km Γ, C and e `lm Γ,¬C.

Again, instead of writing ∃x∀y((A(y) ↔ x = y)) we allow ourselves the
notational abbreviation: ∃1xAB(x); and instead of writing ∀x∃y((A(y) ↔
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x = y)) we use ¬∃1xAB(x). We follow Buchholz (2002/03, p.5) and have
to distinguish the following cases. 1. C is not a principal formula of last(d),
respectively symmetric to last(d), ¬C is not a principal formula of last(e).
2. C is a principal formula of last(d), ¬C is a principal formula of last(e).
2.1 C is a literal, i.e. {C,¬C} ⊆ Γ ∪ {C} and {C,¬C} ⊆ Γ ∪ {¬C}, so
{C,¬C} ⊆ Γ and `k+l

m Γ.

2.2 C = ∃xA, then ¬C = ∀x¬A. By i.h.: `k−1m Γ, C,Ax(t) and `l−1m

Γ,¬C,¬A, the following derivation gives the required result:

`k−1m Γ, C,Ax(t)

`lm Γ,¬C
`lm Γ,¬C,Ax(t)

`k−1+l
m Γ, Ax(t)

`km Γ, C

`km Γ, C,¬Ax(t)

`l−1m Γ,¬C,¬A
`l−1m Γ,¬C,¬Ax(t)

`l−1+k
m Γ,¬Ax(t)

`k+l
m Γ

2.2′ C = ∀xA,A0 ∧ A1, A0 ∨ A1 are analogous to 2.2. The next case (2.2′′),
where C = [ıxA]B(ıxA) and ¬C is ¬∃1xAB(x), is also treated similar to 2.2.

2.2′′: C = [ıxA]B(ıxA) and ¬C is ¬∃1xAB(x).

`k−1
m Γ, C, ∃1xAB(x)

`lm Γ,¬C

`lm Γ,¬C, ∃1xAB(x)

`k−1+l
m Γ, ∃1xAB(x)

`km Γ, C

`km Γ, C,¬∃1xAB(x)

`l−1
m Γ,¬C,¬∃1xAB(x)

`l−1
m Γ,¬C,¬∃1xAB(x)

`l−1+k
m Γ,¬∃1xAB(x)

`k+l
m Γ

We assumed–tacitly–that both the ı-weight of ∃1xAB(x) is strictly smaller
than the ı-weight of [ıxA]B(ıxA) and ı-weight of ¬∃1xAB(x) is strictly
smaller than the ı-weight of [ıxA]B(ıxA). In more general terms this means
that instead of the usual tuple (with a slight abuse of notation) 〈crk, hgt〉
the induction proceeds on a triple 〈crk, hgt, ı〉; then the following holds:
〈crk, hgt, ı〉 < 〈crk′, hgt′, ı′〉 iff (i) (crk < crk′) or (ii) (crk = crk′ and
hgt < hgt′) or (iii) (crk = crk′ and hgt = hgt′ and ı < ı′). This is a well
ordering on N3.

Theorem 4 (Cut-elimination) Cut is eliminable from Tı:

If Tı `km+1 Γ, then Tı `2
k

m Γ.
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Proof (as in Buchholz (2002/03), p.5) by induction on k: let d `km+1 Γ and

asstume that last(d) =
Γ, C . . .Γ,¬C

Γ
with |C| = m. If `k−1m+1 Γ, C and

`k−1m+1 Γ,¬C, then by induction hypothesis `2k−1

m+1 Γ, C and `2k−1

m+1 Γ,¬C, then

by Lemma 6 `2k−1+2k−1

m Γ

Definition 10 (Sub-formula and sub-term property of Tı)
B is a subformula/subterm of A, if B can be obtained from A by finitely
many steps of the kind

• QxA 7→ Ax(t), Q is ∃, ∀, or

• A0 ∗A1 7→ Ai, or

• [ıxA, . . . ]B(ıxA) 7→ ∃x∀y((A(y)↔ x = y) ∧ [. . . ]B(x)).

Corollary 4 (Subformula, subterm property)
Let d be a cut-free derivation of Γ in Tı then every formula is a subformula
or a subterm (i.e. a ı-term) of some A of Γ.

2.4 Existence as E!

Although the main vein of this paper is not on existence, we could nonethe-
less develop a logic that includes an existence-predicate. We do not want
to enter here the philosophical debate whether existence is predicate or not;
we adopt Russell’s position (here) that the existence-predicate can only be
applied to to (definite) descriptions and not to individual constants or indi-
vidual variables.

For this end E! is introduced as an additional logical predicate to L and
add to the simultaneous recursive definition the following clause: If u is
an ı-term, then E!u is a formula. We add to definition 3: neg(E!ıxA) :=
∀y∃xneg(A(y) ↔ x = y). Corollary 1 extends also to the augmented lan-
guage. As a notational device we let ∃1xA abbreviate ∃x∀y(A(y)↔ x = y)
and ¬∃1xA abbreviate ∀x∃y¬(A(y)↔ x = y).

Without further ado, we go on and define TE!
ı as an extension of Tı as

follows:

Definition 11 (A Tait-calculus with ı-terms and E!: TE!
ı )

Γ, ∃x∀y(A(y)↔ x = y)
(E!)

Γ, E!ıxA
†

15



† The number of ı-terms is zero in ∃x∀y(A(y)↔ x = y), and Γ.

The next already familiar theorem holds also for TE!
ı .

Theorem 5 TE!
ı ` Γ, C,¬C for all C with ı|C| > 0, |C| > 0.

Proof. We only state the new cases.

Case 1, ı|C| = 1:

∃1xA, ¬∃1xA
E!ıxA, ¬∃1xA
E!ıxA, ¬E!ıxA

Case 2: As in case and by the use of the IH, i.e. the theorem holds for n− 1
ı-terms; we proceed by the left-most ı-term. Again, we use some notational
relief. We write ∃1xA(x, ı2, . . . , ın) instead of ∃x∀y(A(y, ı2A

2, . . . , ınA
n));

similarly for its negation.

∃1x1A(x1, ı2, . . . , ın),¬∃1xA(x, ı2, . . . , ın)

E!ı1A
1(x, ı2, . . . , ın),¬∃1xA(x, ı2, . . . , ın)

E!ıx1A
1(x1, ı2, . . . , ın),¬E!ı1A

1(x, ı2, . . . , ın)

The remaining parts of lemma 3, the lemmata on weakening and substitution
are proved as above.

Corollary 5 (ı-weight reduction)

(a) If TE!
ı `n Γ, E!ıx1A

1(x1, ı2, . . . , ın) with ı-weight of E!ıx1A
1(x1, ı2, . . . , ın)

is r and ıx1A
1 is the principal ı-term, then TE!

ı `n−1 Γ, ∃1xA(x, ı2, . . . , ın),
where ı|∃1xA(x, ı2, . . . , ın)| < ı|[E!ıx1A

1(x1, ı2, . . . , ın)|.

(b) If TE!
ı `n Γ,¬E!ıx1A

1(x1, ı2, . . . , ın) with ı-weight of ¬E!ıx1A
1(x1, ı2, . . . , ın)

is r and ı1 is the principal ı-term, then TE!
ı `n−1 Γ,¬∃1xA(x, ı2, . . . , ın),

where ı|¬∃1xA(x, ı2, . . . , ın)| < ı|¬E!ıx1A
1(x1, ı2, . . . , ın)|.
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The characteristic theorems
The characteristic theorems of Russell’s original proposal are deducible in
TE!

ı which is seen by the following derivations:

∃1x1A(x1, ı2, . . . , ın),¬∃1xA(x, ı2, . . . , ın)

E!ı1A
1(x, ı2, . . . , ın),¬∃1xA(x, ı2, . . . , ın)

¬∃1xA(x, ı2, . . . , ın)),∃1xA(x, ı2, . . . , ın)

¬E!ı1A
1(x, ı2, . . . , ın),∃1xA(x, ı2, . . . , ın)

The Cut-lemma also holds for TE!
ı :

Lemma 6 (Cut-lemma) TE!
ı `km Γ, C, TE!

ı `lm Γ,¬C =⇒ TE!
ı `k+l

m Γ.

We outline only the crucial case.

`k−1m Γ, C,∃1xA
`lm Γ,¬C

`lm Γ,¬C,∃1xA
`k−1+l
m Γ, ∃1xA

`km Γ, C

`km Γ, C,¬∃1xA
`l−1m Γ,¬C,¬∃1xA
`l−1m Γ,¬C,¬∃1xA

`l−1+k
m Γ,¬∃1xA

`k+l
m Γ

This establishes the Cut-theorem:

Theorem 6 (Cut-elimination) Cut is eliminable from TE!
ı :

If TE!
ı `km+1 Γ, then TE!

ı `2
k

m Γ.

2.5 Conservativity

Definition 12 A theory/logic T is conservative over a theory/logic T ′ with
respect to Γ iff if T ` Γ then T ′ ` Γ.

Theorem 7 (Conservativity)

(a) If TE!
ı ` Γ, where Γ is E!-free, then Tı ` Γ.

(b) If Tı ` Γ, where Γ is ı-term-free, then T= ` Γ.

(c) T= ` Γ, where Γ is =-free, then T ` Γ.

(c) is well known (cg. Troesltra/Schwichtenberg (2000, p.134f.)). Proof (of
(a) – the proof (b) is analogous to that of (a)) by induction on the length of
a derivation. Suppose that
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Γ, ∃1xA
Γ, E!ıxA

is the topmost instance in a given derivation. If Γ, ∃1xA is an axiom and
∃1xA is not a literal, so Γ (without ∃1xA) is an axiom and also its conclusion,
i.e. Γ (without ∃1xA) is an axiom. From this facts we obtain a trivial
derivation of Γ. Now suppose that the premiss of (E!)-inference comes from
a one- or two-premiss rule, say:

Γ′′, ∃1xA
(R)

Γ′,∃1xA
(E!)

Γ, E!ıxA

This derivation can be transformed into:

Γ′′,∃1xA
(E!)

Γ′, E!ıxA
(R)

Γ

Now, since the the height of the premiss of the (E!)-inference is of lower
degree the inductive hypothesis is applicable and the required result is ob-
tained. If the inference is (E!)-inference with E!ıxA as its principal formula,
then the height of the derivation of its premiss is shorter, the inductive hy-
pothesis is applicable and result is obtained.

3 Elimination of ı-terms

For this end we define inductively a function ∗ as follows:

Definition 13 (Inductive definition of ∗)
The inductive definition proceeds on the ı-weight, i.e. the number of ı-terms,
of a formula.

(i) If ı|C| = 0 then C∗ is C.

(ii) If ı|C| > 0 then:

(ii.i) If C is of the form [ı1, ı2, . . . ın]B, where ı1 is the leftmost ı-term and
B is not of the form ¬C, then C∗ is ∃1x(A1∗(x) ∧ [ı2, . . . ın]B).
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(ii.ii) If C is of the form ¬[ı1, ı2, . . . ın]B, where ı1 is the leftmost ı-term,
then C∗ is ¬∃1x(A1∗(x) ∧ [ı2, . . . ın]B).

(ii.iii) If C is of the form [ı1, ı2, . . . ın]¬B, where ı1 is the leftmost ı-term,
then C∗ is ∃1x(A1∗(x) ∧ [ı2, . . . ın]¬B).

(iii) The other cases, eg. C is of the form D ∨ E, D ∧ E, ∃xD, and ∀xD
are not treated explicitly.

Theorem 8 (Elimination theorem)
If Tı ` Γ, C with ı|C| > 0 then there is a formula C∗ such that Tı ` Γ, C ↔
C∗ and Tı ` Γ∗, C∗, where ı|Γ| = 0 and T is defined as Tı but without (ı),
the language of Tı is modified accordingly.

The proof is established by the following procedure.

A terminating elimination procedure

By hypothesis there is a derivation of Γ, C in Tı.

Case 1 : ı|Γ| = ı|C| = 0; then T ` Γ, C.

Case 2 : ı|C| > 0, ı|Γ| = 0:

Stage a If C is of the form [ı1, ı2, . . . ın]B, where ı1 is the leftmost ı-term
and with the conditions as described in definition 13 (ii.i) then Tı

` Γ, [ı1, ı2, . . . ın]B ↔ ∃1x(A1(x) ∧ [ı2, . . . ın]B), where ı|∃1x(A1(x) ∧
[ı2, . . . ın]B)| < ı|[ı1, ı2, . . . ın]B|. If ı|∃1x(A1(x)∧[ı2, . . . ın]B)| > 0 then
repeat stage a or go stages b or c, else go to case 1.

Stage b If C is of the form ¬[ı1, ı2, . . . ın]B, where ı1 is the leftmost ı-term
and with the conditions as described in definition 13 (ii.ii) then Tı `
Γ,¬[ı1, ı2, . . . ın]B ↔ ¬∃1x(A1(x)∧ [ı2, . . . ın]B), where ı|¬∃1x(A1(x)∧
[ı2, . . . ın]B)| < ¬[ı1, ı2, . . . ın]B|. If ı|¬∃1x(A1(x) ∧ [ı2, . . . ın]B)| > 0
then repeat stage b or go stages a or c, else go to case 1.

Stage c If C is of the form [ı1, ı2, . . . ın]¬B, where ı1 is the leftmost ı-term
and with the conditions as described in definition 13 (ii.iii) then Tı `
Γ, [ı1, ı2, . . . ın]¬B ↔ ∃1x(A1(x) ∧ [ı2, . . . ın]¬B), where ı|∃1x(A1(x) ∧
[ı2, . . . ın]¬B)| < [ı1, ı2, . . . ın]¬B|. If ı|∃1x(A1(x) ∧ [ı2, . . . ın]¬B)| > 0
then repeat stage b or go stages a or c, else go to case 1.
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Case 3 : ı|C| > 0, ı|Γ| > 0. The procedure starts with the formula C
and follows the procedure of case 2, stages a—c but without the else-parts.
The procedure is continued with the leftmost formula F of Γ with ı|F | > 0
unless F is the only formula of Γ with ı|F | > 0. Let G be the next formula
in Γ with ı|G| > 0; then again this procedure is continued as in case 2,
stages a—c (without the else-parts). Continued applications of this routine
eventually ends with the rightmost formula H of Γ with ı|H| > 0; the routine
is continued with case 2, stages a—c.

This establishes both soundness and completeness of Tı via soundness
and completeness of T.

Conjecture 1
We conjecture that the order of elimination (granted that it is uniquely
specified) does not matter; i.e. given two (separable) elimination procedures
E1 and E2 then the outcomes CE1 and CE2 of a formula C (of some specified
formal language L) are logically equivalent.

Cut-elimination via T
Theorem 8 establishes an indirect cut-elimination theorem for Tı via the
cut-elimination theorem of T. Suppose—as for the elimination theorem—
that Tı ` Γ, C with ı|Γ| > 0, and ı|C| > 0; then by theorem 8 there is a
derivation of Γ∗, C∗ in T with ı|Γ∗| = ı|C∗| = 0. By the cut-elimination
theorem for T there is a cut-free derivation of Γ∗, C∗ in T.

Furthermore, we know that each formula G∗ of Γ∗ and C is provably
equivalent (in Tı) with the corresponding formula G of Γ and C. Trivially,
there is also a cut-free derivation of Γ∗, C∗ in Tı. By replacing each G∗ of
Γ∗ with its corresponding G of Γ and C∗ with C in the sequent Γ∗, C∗ (the
end-sequent of the derivation) a new (and provably equivalent) end-sequent
Γ, C is obtained.

4 “No meaning in isolation” — Semantics

We said earlier in this paper that the formal system Tı is not closed under
substitution of ı-terms. This holds also for TE!

ı .
We follow Russell’s intuition on definite description. For Russell a = a is a

theorem of, say, predicate logic with equality, but he claims that ıxA = ıxA
is not; and its truth depends contingently on the world (or rather model).

We would have an arbitrarily chosen but fixed object in domain (for each
model) that would act as a denotation for empty ı-terms. However, by doing
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so, formulas of the form ıxA = ıxA would come out as logical truths – and
this is not what Russell had in mind.

We can put this more formally, by stating a semantics for first-order pred-
icate logic (as e.g. is done by Shoenfield (1998, p.18f.)) including ı-terms.
An interpretation = consists of a tuple 〈D,ϕ〉 that satisfies the following
conditions: (i) D is a non-empty set; (ii) ϕ is a function such that for each
individual constant c of L, ϕ(c) ∈ D and ϕ(Pn) ⊆ Dn for each n-ary pred-
icate of L. As usual we state a definition of truth – but in order to so, we
add a new constant cd for each element of D in L, this ensures a proper
treatment of the quantifiers:

(=1) ϕ(Pn(u1, . . . un)) = 1 iff 〈ϕ(u1), . . . , ϕ(un)〉 ∈ ϕ(Pn).

(=2) ϕ(u = v) iff ϕ(u) = ϕ(v).

(=3) ϕ(¬A) = 1 iff ϕ(A) = 0.

(=4) ϕ(A ∨B) = 1 iff ϕ(A) = 1 or ϕ(B) = 1.

(=5) ϕ(A ∧B) = 1 iff ϕ(A) = 1 and ϕ(B) = 1.

(=6) ϕ(∃xA) = 1 iff there is a d ∈ D such that: ϕ(Ax(cd)) = 1.

(=7) ϕ(∀xA) = 1 iff for all d ∈ D such that: ϕ(Ax(cd)) = 1.

(=8) ϕ([ıxA]B(ıxA)) = 1 iff {there is exactly one d ∈ D such that ϕ(Ax(cd)) =
1 and for all d ∈ D holds: if ϕ(Ax(cd)) = 1, then ϕ(Bx(cd)) = 1}.

If the full language is taken into account, i.e. a language that includes E!,
then we have to add the following condition:

(=9) ϕ(E!ıA) iff there is exactly one d ∈ D such that ϕ(A(cd)) = 1.

The definitions of model, valid, logical consequence, are defined standardly.
As we mentioned above it is now easily seen that formulas of the form
ıxA = ıxA are not valid.

Theorem 9 (Soundness)

(a) Tı is sound.

(b) TE!
ı is sound.

The proof is routine.
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Conjecture 2
Tı and TE!

ı are complete with respect to the above semantics.

The proof of completeness typically requires some more technical apparatus;
so, this work has to be carried out in a different paper.

5 Concluding remarks

We developed logics with ı-terms in a Russellian spirit and proved the Haupt-
satz for them. On the logical side there are still some open issues that could
be addressed in future research: we mentioned already a completeness result,
but furthermore it would be interesting if other metalogically celebrated re-
sults are obtainable for these logics, e.g. interpolation and Beth-definability.
Especially the last one could possibly be fruitfully put to use if it comes to
the analysis of theoretical terms.

Contrary to what has been developed in this paper it is rather possible
that Russell’s philosophical ideas on definite descriptions would be more
suitably carved up as contextually defined expressions—as Russell originally
suggested. In this case a definite description would be seen a metalinguistic
expression that is context-definitionally equivalent to some other expression.
Kaplan (1972) proposed the view Russell is especially vague if it come to
incomplete symbols (cf. eg. Grabmayer (et.al) (2011, p.367ff.), however, a
modern up-to-date study of contextual definitions and definite descriptions
introduced by contextual definitions might still be a fruitful philosophical
endeavor.
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