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Who’s the Favourite? – A Bivariate Poisson Model for the UEFA

European Football Championship 2016

A. Groll ∗ T. Kneib † A. Mayr ‡ G. Schauberger §

July 22, 2016

Abstract Many approaches that analyze and predict the results of soccer matches are based on two independent
pairwise Poisson distributions. The dependence between the scores of two competing teams is simply displayed
by the inclusion of the covariate information of both teams. One objective of this article is to analyze if this
type of modeling is appropriate or if an additional explicit modeling of the dependence structure for the joint
score of a soccer match needs to be taken into account. Therefore, a specific bivariate Poisson model for the
two numbers of goals scored by national teams competing in UEFA European football championship matches is
fitted to all matches from the three previous European championships, including covariate information of both
competing teams. A boosting approach is then used to select the relevant covariates. Based on the estimates, the
current tournament is simulated 1,000,000 times to obtain winning probabilities for all participating national teams.

Keywords Football, EURO 2016, Bivariate Poisson Model, Boosting, Variable selection.

1 Introduction

Many approaches that analyze and predict the results of soccer matches are based on two independent Poisson
distributions. Both numbers of goals scored in single soccer matches are modeled seperately, assuming that each
score follows its own Poisson distribution, see, e.g., Lee (1997) or Dyte and Clarke (2000). For example, Dyte
and Clarke (2000) predict the distribution of scores in international soccer matches, treating each team’s goals
as conditionally independent Poisson variables depending on two influence variables, the FIFA ranking of each
team and the match venue. Poisson regression is used to estimate parameters for the model and based on these
parameters the matches played during the 1998 FIFA World Cup were simulated.

However, it is well-known that the scores of two competing teams in a soccer match are correlated. One of the first
works investigating the topic of dependency between scores of competing soccer teams is the fundamental article of
Dixon and Coles (1997). There it has been shown that the joint distribution of the scores of both teams cannot be
well represented by the product of two independent marginal Poisson distributions of the home and away teams.
They suggest to use an additional term to adjust for certain under- and overrepresented match results. Along these
lines, Rue and Salvesen (2000) propose a similarly adjusted Poisson model with some additional modifications.
After all, the findings in Dixon and Coles (1997) are based on the marginal distributions and only hold for models
where the predictors of both scores are uncorrelated. However, the model proposed by Dixon and Coles (1997)
includes team-specific attack and defense ability parameters and then uses independent Poisson distributions for
the numbers of goals scored. Therefore, the linear predictor for the number of goals of a specific team depends both
on parameters of the team itself and its competitor. Groll et al. (2015) pointed out that when fitting exactly the
same model to FIFA World Cup data the estimates of the attack and defense abilities of the teams are negatively
correlated. Therefore, although independent Poisson distributions are used for the scores in one match, the linear
predictors and, accordingly, the predicted outcomes are (negatively) correlated.
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These findings already indicate that up to a certain amount the dependence between the scores of two competing
teams can simply be displayed by the inclusion of the covariate information of both teams. For example, Groll
and Abedieh (2013) use a pairwise (independent) Poisson model for the number of goals scored by national teams
in the single matches of the UEFA European football championship (EURO), but incorporate several potential
influence variables of both competing teams in the linear predictors of the single Poisson distributions together
with additional team-specific random effects. Furthermore, in order to additionally account for the matched-pair
design, they include a second match-specific random intercept, following Carlin et al. (2005), which is assumed to be
independent from the team-specific random intercept. However, it turns out that this additional random intercept
is very small (< 1 · 10−5) and, hence, can be ignored. This provides further evidence that if highly informative
covariates of both competing teams are included into the linear predictor structure of both independent Poisson
distributions, this might already appropriately model the dependence structure of the match scores.

These results are further confirmed in Groll et al. (2015). Following Groll and Abedieh (2013), an L1-regularized
independent Poisson model is used on FIFA World Cup data. There, the linear predictors of the single independent
Poisson components include, in addition to team-specific attack and defense abilities, the differences of several
covariates of both competing teams. In an extensive goodness-of-fit analysis it is investigated if the obtained
dependence structure between the linear predictors of the two scores of a match represents the actual correlations
in an appropriate manner. For this purpose the correlations between the real outcomes and the model predictions
are compared and it turned out that the correlations within the linear predictors for both teams competing in a
match fully accounted for the correlation between the scores of those teams and that there was no need for further
adjustment. So one major objective of this article is to analyze if this type of modeling is appropriate or if an
additional explicit modeling of the dependence structure for the joint score of a soccer match needs to be taken into
account.

One possibility to explicitly model (positive) dependence within the Poisson framework is the bivariate Poisson
distribution. One of the first works dealing with this distribution in the context of soccer data is Maher (1982).
An extensive study for the use of the bivariate Poisson distribution for the modeling of soccer data is found in
Karlis and Ntzoufras (2003). There, the three parameters λ1, λ2 and λ3 of the bivariate Poisson distribution are
modeled by linear predictors depending on team-specific attack and defense abilities as well as team-specific home
effect parameters. In particular, it is illustrated how also the third parameter λ3, which represents the covariance
between the two scores, can be explicitly structured in terms of covariate effects (here: simply team-specific home
effects). We adopt this approach in the present work and extend the linear predictors of the three parameters λ1,
λ2 and λ3 of the bivariate Poisson distribution to include several covariate effects. We set up a specific bivariate
Poisson model for the two numbers of goals scored by national teams competing in EURO tournaments including
covariate information of both competing teams.

Note that in addition to the bivariate Poisson, also alternative approaches to handle the correlation of soccer
matches have been proposed in the literature. For example, McHale and Scarf (2006, 2011) model the dependence
by using bivariate discrete distributions and by specifying a suitable family of dependence copulas.

A second objective of this work is to provide predictions of the current EURO 2016. Therefore, the proposed
specific bivariate Poisson model is fitted to all matches from the three previous EUROs 2004 - 2012, including
covariate information of both competing teams. A suitable boosting approach is then used to select a small set of
relevant covariates. Based on the obtained estimates, the current EURO 2016 tournament is simulated 1,000,000
times to obtain winning probabilities for all participating national teams.

The rest of the article is structured as follows. In Section 2 we introduce the bivariate Poisson model for soccer
data. The boosting methodology for fitting the bivariate Poisson model for the number of goals is introduced in
Section 2.4. Next, we present a list of several possible influence variables in Section 3.1 that will be considered in
our regression analysis. Based on the boosting approach a selection of these covariates is determined yielding a
sparse model, which is then used in Section 4 for the prediction of the EURO 2016.

2 A Bivariate Poisson Model for Soccer Data

In the present section, we set up a specific bivariate Poisson model for the two numbers of goals scored by national
teams competing in EURO tournaments including covariate information of both competing teams.
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2.1 The Bivariate Poisson Distribution

In the following, we consider random variables Xk, k = 1, 2, 3, which follow independent Poisson distributions with
parameters λk > 0. Then the random variables Y1 = X1 + X3 and Y2 = X2 + X3 follow a joint bivariate Poisson
distribution, with a joint probability function

PY1,Y2
(y1, y2) = P (Y1 = y1, Y2 = y2) (1)

= exp(−(λ1 + λ2 + λ3))
λy11
y1!

λy22
y2!

min(y1,y2)∑

k=0

(
y1
k

)(
y2
k

)
k!

(
λ3
λ1λ2

)k
.

The bivariate Poisson distribution allows for dependence between the two random variables Y1 and Y2. Marginally
each random variable follows a univariate Poisson distribution with E[Y1] = λ1+λ3 and E[Y2] = λ2+λ3. Moreover,
the dependence of Y1 and Y2 is expressed by cov(Y1, Y2) = λ3. If λ3 = 0 holds, the two variables are independent and
the bivariate Poisson distribution reduces to the product of two independent Poisson distributions. The notation
and usage of the bivariate Poisson distribution for modeling soccer data has been described in detail in Karlis and
Ntzoufras (2003).

2.2 Incorporation of Covariate Information

In general, each of the three parameters λk, k = 1, 2, 3, in the joint probability function (1) of the bivariate Poisson
distribution can be modeled in terms of covariates by specifying a suitable response function, similar to classical
generalized linear models (GLMs). Hence, one could use, for example,

λk = exp(ηηηk) ,

with a linear predictor ηηηk = β0k + xTkβββk and response function h(·) = exp(·) in order to guarantee positive Poisson
parameters λk. The vectors xk = (x1k, . . . , xpk)T collect all covariate information of predictor k.

2.3 Re-parametrization of the Bivariate Poisson Distribution

In the context of soccer data a natural way to model the three parameters λk, k = 1, 2, 3, would be to include
the covariate information of the competing teams 1 and 2 in λ1 and λ2, respectively, and some extra information
reflecting the match conditions of the corresponding match in λ3. However, the covariate effects βββk, k = 1, 2, usually
should be the same for both competing teams. Then, one obtains the model representation

λ1 = exp(β0 + xT1 βββ) , λ2 = exp(β0 + xT2 βββ) , (2)

with x1 and x2 denoting the covariates of team 1 and team 2. In contrast, the covariance parameter λ3 could
generally depend on different covariates and effects, i.e.

λ3 = exp(α0 + zTααα) , (3)

where z could contain parts of the covariates x1 and x2, or their differences or completely new covariates. If instead
in the linear predictors in (2) the differences of the teams’ covariates are used, one obtains

λ1 = exp(β0 + (x1 − x2)Tβββ) , λ2 = exp(β0 + (x2 − x1)Tβββ) ,

or, with x̃ = x1 − x2, the simpler model

λk = exp(β0 ± x̃Tβββ) , k = 1, 2 .

This allows to re-parametrize the bivariate Poisson probability function from (1) in the following way:

PY1,Y2
(y1, y2) = P (Y1 = y1, Y2 = y2) (4)

= exp(−(γ1(γ2 + γ−1
2 ) + λ3))

(γ1γ2)y1

y1!

(γ1γ2 )y2

y2!
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with λ1 = γ1γ2, λ2 = γ1
γ2

. The new parameters γ1, γ2 are then given as functions of the following linear predictors:

γ1 = exp(β0) ,

γ2 = exp(x̃Tβββ) ,

with x̃ = x1 − x2 denoting the difference of both teams’ covariates.
As before, we set λ3 = exp(α0 +zTααα). In the current analysis, we base the linear predictor of λ3 in general on the

same covariate differences. However, as we generally don’t want to prefer any specific direction of these differences,
we use their absolute value and set λ3 = exp(α0 + |x̃|Tααα), where |x̃| = (|x11 − x21|, . . . , |x1p − x2p|)T .

2.4 Estimation

We apply a statistical boosting algorithm to estimate the linear predictors for γ1, γ2 and λ3. The concept of
boosting emerged from the field of machine learning (Freund and Schapire, 1996) and was later adapted to estimate
predictors for statistical models (Friedman et al., 2000; Friedman, 2001). Main advantages of statistical boosting
algorithms are their flexibility for high-dimensional data and their ability to incorporate variable selection in the
fitting process (Mayr et al., 2014a). Furthermore, due to the modular nature of the algorithm, they are relatively
easy to extend to new regression settings (Mayr et al., 2014b). The aim of the algorithm is to find estimates for
the predictors

exp(η̂γ1) = exp(β̂0) = γ̂1 , (5)

exp(η̂γ1) = exp(x̃T β̂ββ) = γ̂2 , (6)

exp(η̂λ3) = exp(α̂0 + |x̃|T α̂αα) = λ̂3 (7)

that optimize the multivariate likelihood of L(Y1, Y2, γ1, γ2, λ3) := PY1,Y2(y1, y2) with PY1,Y2(y1, y2) from Equa-
tion (4), leading to the optimization problem

(η̂γ1 , η̂γ2 , η̂λ3) = argmax
(η̂γ1 ,η̂γ2 ,η̂λ3 )

E [L(Y1, Y2, exp(η̂γ1), exp(η̂γ2), exp(η̂λ3))] .

The algorithm cycles through the different predictors and carries out one boosting iteration for each. In every
boosting iteration, only one component of the corresponding predictor is selected to be updated, leading to auto-
mated variable selection for the covariates. For more on boosting for multiple dimensions see Schmid et al. (2010)
and Mayr et al. (2012). Let the data now be given by (y1i, y2i, x̃

T
i ), i = 1, . . . , n. Then, the following cyclic boosting

algorithm is applied:

(1) Initialize

Initialize the additive predictors with starting values, e.g. η̂
[0]
γ1 := log(ȳ1); η̂

[0]
γ2 := 0; η̂

[0]
λ3

:= log(0.0001).
Set iteration counter to m := 1.

(2) Boosting for γ1

Increase iteration counter: m := m+ 1

If m > mstopγ1 set η̂
[m]
γ1 := η̂

[m−1]
γ1 and skip step (2).

Compute u[m] =
(

∂
∂ηγ1

L(y1i, y2i, exp(η̂
[m−1]
γ1 ), exp(η̂

[m−1]
γ2 ), exp(η̂

[m−1]
λ3

))
)
i=1,...,n

Estimate β̂0
[m]

for u[m] by β̂0
[m]

= ū[m].

Update η̂
[m]
γ1 with β̂

[m]
0 := β̂

[m−1]
0 + ν · β̂[m]

0 , where ν is a small step length (e.g., ν = 0.1)

(3) Boosting for γ2

If m > mstopγ2 set η̂
[m]
γ2 := η̂

[m−1]
γ2 and skip step (3).
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Compute u[m] =
(

∂
∂ηγ2

L(y1i, y2i, exp(η̂
[m]
γ1 ), exp(η̂

[m−1]
γ2 ), exp(η̂

[m−1]
λ3

))
)
i=1,...,n

Fit all components of x̃ separately to u[m], leading to β̂
[m]
1 , . . . , β̂

[m]
p .

Select component j∗ that best fits u[m] with

j∗ = argmin
1≤j≤p

n∑

i=1

(u
[m]
i − β̂[m]

j xj)
2

Update η̂
[m]
γ2 with β̂

[m]
j∗ = β̂

[m−1]
j∗ + ν · β̂[m]

j∗ , keeping all other components fixed.

(4) Boosting for λ3

If m > mstopλ3
set η̂

[m]
λ3

:= η̂
[m−1]
λ3

and skip step (4).

Compute u[m] =
(

∂
∂ηγ2

L(y1i, y2i, exp(η̂
[m]
γ1 ), exp(η̂

[m]
γ2 ), exp(η̂

[m−1]
λ3

))
)
i=1,...,n

Fit all components of |x̃| separately to u[m], leading to α̂
[m]
0 , . . . , α̂

[m]
p .

Select component j∗ that best fits u[m] with

j∗ = argmin
0≤j≤p

n∑

i=1

(u
[m]
i − α̂[m]

j zj)
2.

Update η̂
[m]
λ3

with α̂
[m]
j∗ = α̂

[m−1]
j∗ + ν · α̂[m]

j∗ , keeping all other components fixed.

Iterate steps (2) to (4) until m ≥ max (mstopγ1 ,mstopγ2 ,mstopλ3)

Note that the presented algorithm reflects the structure for our re-parametrization of the bivariate Poisson
distribution, but could also be easily adapted to estimate η̂λk corresponding to the original parameters λk, k = 1, 2, 3.
Furthermore, we focused on linear predictors in our approach, however, the algorithm’s structure stays the same if
non-linear base-learners are applied to estimate additive predictors.

The main tuning parameters of the algorithm are the stopping iterations for the different predictors. They display
the typical trade-off between small models with small variance and larger models with higher risk of overfitting.
The best combination of stopping iterations (mstopγ1 ,mstopγ2 ,mstopλ3

) is typically chosen via cross-validation or
resampling procedures or by optimizing the underlying likelihood on separate test data. The specification of the
step length ν is of minor importance as long as it is chosen small enough, it mainly affects the convergence speed
(Schmid and Hothorn, 2008). The algorithm is implemented with the R add-on package gamboostLSS (Mayr et al.,
2012; Hofner et al., 2016).

3 Application

In the following, the proposed model is applied to data from the previous EUROs 2004-2012 and is then used to
predict the UEFA European championship 2016 in France.

3.1 Data

In this section a description of the covariates is given that are used (in the form of differences) in the bivariate
Poisson regression model introduced in the previous sections. As most of these variables have already been used in
Groll and Abedieh (2013) a more detailed description is found there. Several of the variables contain information
about the recent performance and sportive success of national teams, as it is reasonable to assume that the current
form of a national team at the start of an European championship has an influence on the team’s success in the
tournament, and thus on the goals the team will score. Besides these sportive variables, also economic factors,
such as a country’s GDP and population size, are taken into account. Furthermore, variables are incorporated
that describe the structure of a team’s squad. Note that several of these variables exhibit a substantial amount
of correlation. The corresponding correlation matrix for all considered (differences of) covariates is presented in
Table 5 in Appendix A.
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Economic Factors:

• GDP1 per capita. The GDP per capita represents the economic power and welfare of a nation. Hence,
countries with great prosperity might tend to focus more on sports training and promotion programs than
poorer countries. The GDP per capita (in US Dollar) is publicly available on the website of The World Bank
(see http://data.worldbank.org/indicator/NY.GDP.PCAP.CD).

• Population2. In general, larger countries have a deeper pool of talented soccer players from which a national
coach can recruit the national team squad. Hence, the population size might have an influence on the playing
ability of the corresponding national team. However, as this potential effect might not hold in a linear
relationship for arbitrarily large numbers of populations and instead might diminish (compare Bernard and
Busse, 2004), the logarithm of the quantity is used.

Sportive Factors:

• Home advantage. There exist several studies that have analyzed the existence of a home advantage in soccer
(see for example Pollard and Pollard, 2005; Pollard, 2008; Brown et al., 2002, for FIFA World Cups or
Clarke and Norman, 1995, for the English Premier league). Hence, there might also exist a home effect in
European championships. For this reason a dummy variable is used, indicating if a national team belongs to
the organizing countries.

• ODDSET odds. The analyses in Groll and Abedieh (2013) and Groll and Abedieh (2014) indicate that
bookmakers’ odds play an important role in the modeling of international soccer tournaments such as the
EURO as they contain a lot of information with respect to the success of soccer teams. They include the
bookmakers’ expertise and cover big parts of the team specific information and market appreciation with
respect to which teams are amongst the tournament’s favorites. For the EUROs from 2004 to 2012 the 16
odds of all possible tournament winners before the start of the corresponding tournament have been obtained
from the German state betting agency ODDSET.

• Market value. The market value recently has gained increasing attention and importance in the context of pre-
dicting the success of soccer teams (see, for example, Gerhards and Wagner, 2008, 2010; Gerhards et al., 2012,
2014). Estimates of the teams’ average market values can be found on the webpage http://www.transfermarkt.de3.
For each national team participating in a EURO these market value estimates (in Euro) have been collected
right before the start of the tournament.

• FIFA ranking. The FIFA ranking provides a ranking system for all national teams measuring the performance
of the teams over the last four years. The exact formula for the calculation of the underlying FIFA points and
all rankings since implementation of the FIFA ranking system can be found at the official FIFA website (http:
//de.fifa.com/worldranking/index.html). Since the calculation formula of the FIFA points changed after
the World Cup 2006, the rankings according to FIFA points are used instead of the points4.

• UEFA points. The associations’ club coefficients rankings are based on the results of each association’s clubs
in the five previous UEFA CL and Europa League (previously UEFA Cup) seasons. The exact formula for the
calculation of the underlying UEFA points and all rankings since implementation of the UEFA ranking system
can be found at the official UEFA website (http://www.uefa.com/memberassociations/uefarankings/
country/index.html). The rankings determine the number of places allocated to an association (country)
in the forthcoming UEFA club competitions. Thus, the UEFA points represent the strength and success of
a national league in comparison to other European national leagues. Besides, the more teams of a national
league participate in the UEFA CL and the UEFA Europa League, the more experience the players from that

1The GDP per capita is the gross domestic product divided by midyear population. The GDP is the sum of gross values added by
all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products.

2In order to collect data for all participating countries at the EURO 2004, 2008 and 2012, different sources had to be used. Amongst
the most useful ones are http://www.wko.at, http://www.statista.com/ and http://epp.eurostat.ec.europa.eu. For some years the
populations of Russia and Ukraine had to be searched individually.

3Unfortunately, the archive of the webpage was established not until 4th October 2004, so the average market values of the national
teams that we used for the EURO 2004 can only be seen as a rough approximation, as market values certainly changed after the EURO
2004.

4The FIFA ranking was introduced in August 1993.
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national league are able to earn on an international level. As usually a relationship between the level of a
national league and the level of the national team of that country is supposed, the UEFA points could also
affect the performance of the corresponding national team.

Factors describing the team’s structure:

• (Second) maximum number of teammates5. If many players from one club play together in a national team,
this could lead to an improved performance of the team as the teammates know each other better. Therefore,
both the maximum and the second maximum number of teammates from the same club are counted and
included as covariates.

• Average age. The average age of all 23 players is collected from the website http://www.transfermarkt.de

to include possible differences between rather old and rather young teams.

• Number of Champions League (Europa League) players5. The European club leagues are assessed to be the
best leagues in the world. Therefore, the competitions between the best European teams, namely the UEFA
CL and Europa League, can be seen as the most prestigious and valuable competitions on club level. As a
measurement of the success of the players on club level, the number of players in the semi finals (taking place
only weeks before the respective EURO) of these competitions are counted.

• Number of players abroad5. The national teams strongly differ in the numbers of players playing in the league
of the respective country and players from leagues of other countries. For each team, the number of players
playing in clubs abroad (in the season previous to the respective EURO) is counted.

Factors describing the team’s coach.

Also covariates of the coach of the national team may have an influence on the performance of the team. Therefore,
the age of the coach is observed together with a dummy variable6 , indicating if the coach has the same nationality
as his team or not.

4 Bivariate Poisson Regression on the EUROs 2004 - 2012:

We now applied the boosting approach introduced in Section 2.4 with linear predictors as specified in Equations (5)-
(7). The vectors of covariate differences x̃ and of absolute covariate differences |x̃| in (6) and (7), respectively,
incorporate all 15 potential influence variables from Section 3.1. An extract of the design matrix, which corresponds
to the covariate differences, is presented in Table 1. The optimal numbers of boosting steps have been determined
by a three-dimensional 10-fold cross validation.

Team 1 Team 2 Goals 1 Goals 2 Year odds market value · · ·
1 Portugal Greece 1 2 2004 -39.0 7.85 · · ·
2 Spain Russia 1 0 2004 -33.5 7.67 · · ·
3 Greece Spain 1 1 2004 38.5 -7.58 · · ·
4 Russia Portugal 0 2 2004 34.0 -7.94 · · ·
5 Spain Portugal 0 1 2004 0.5 -0.27 · · ·
6 Russia Greece 2 1 2004 -5.0 -0.09 · · ·
...

...
...

...
...

...
...

...
. . .

Table 1: Extract of the design matrix which corresponds to the differences of the covariates.

The intercept β̂0, corresponding to the linear predictor of γ̂1, was updated several times by the boosting algorithm.
Also the linear predictor of γ̂2 was updated several times and from the set of potential influence variables only the
covariates ODDSET odds, market value and UEFA points were chosen.

In contrast, the linear predictor of λ̂3 was not updated. No covariates were chosen and the intercept α̂0 was set to
a large negative value, leading to λ̂3 ≈ 0. This reflects an important result from the modeling perspective. It shows
that no additional covariance needs to be considered, if the linear predictors of the two Poisson parameters λ1 and

5Note that this variable is not available by any soccer data provider and thus had to be collected “by hand”.
6These two variables are available on several soccer data providers, see, for example, http://www.kicker.de/.
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λ2, in our re-parametrization reflected by γ2, already contain informative covariate information from both teams
and, hence, already induce a certain amount of (negative) correlation. Instead, on the EURO 2004-2012 data two
independent Poisson distributions can be used for the two numbers of goals of the matches, if the linear predictor
of both Poisson parameters each contains covariate information (here in the form of differences) of both competing
teams.

Altogether, we obtained a quite simple model with the following estimates (corresponding to scaled covariate
information):

• γ1 = exp(β0) with β̂0 = 0.176

=⇒ γ̂1 = exp(β̂0) = 1.192; the parameter reflects the average number of goals, if two teams with equal
covariates play against each other

• γ2 = exp((x1 − x2)Tβββ) = exp(x̃Tβββ) with (β̂odds, β̂marketvalue, β̂UEFApoints) = (−0.120, 0.143, 0.029)

• λ3 = exp(α0 + |x1 − x2|Tααα) = exp(α0 + |x̃|Tααα) with α0 = −9.21, ααα = 0

=⇒ λ3 ≈ 0; no (additional) covariance between scores of both teams

Hence, our final model for match scores is based on these estimates and, regarding the findings with respect to λ3,
on two independent Poisson distributions with parameters λ1 = γ1γ2 and λ2 = γ1/γ2. Based on this final model,
in the following different simulation studies were applied.

4.1 Probabilities for the UEFA European Championship 2016 Winner

For each match of the EURO 2016, the final model from the previous section is used to calculate the two distributions
of the scores of the two competing teams. For this purpose, for the two competing teams in a match the covariate
differences of the three selected covariates ODDSET odds, market value and UEFA points have to be calculated in
order to be able to compute an estimate of the linear predictor of the parameter γ̂2. Then, the match result can
be drawn randomly from these predicted distributions, i.e. G1 ∼ Poisson(λ̂1), G2 ∼ Poisson(λ̂2), with estimates

λ̂1 = γ̂1γ̂2 and λ̂2 = γ̂1/γ̂2. Note here that being able to draw exact match outcomes for each match constitutes an
advantage in comparison to several alternative prediction approaches, as this allows to precisely follow the official
UEFA rules when determining the final group standings7. If a match in the knockout stage ended in a draw, we
simulated another 30 minutes of extra time using scoring rates equal to 1/3 of the 90 minutes rates, i.e. using

Poisson parameters λ̂1/3 and λ̂2/3. If the match then still ended in a draw, the winner was calculated simply by
coin flip, reflecting a penalty shoot out.

The whole tournament was simulated 1,000,000 times. Based on these simulations, for each of the 24 participating
teams probabilities to reach the next stage and, finally, to win the tournament are obtained. These are summarized
in Table 2 together with the winning probabilities based on the ODDSET odds for comparison. In contrast to most
other prediction approaches for the current UEFA European championship favoring France (see, for example, Zeileis
et al., 2016; Goldman-Sachs Economics Research, 2016), we get a neck-and-neck race between Spain and Germany,
finally with better chances for Spain. The major reason for this is that in the simulations with a high probability
both Spain and Germany finish their groups on the first place and then face each other in the final. In a direct duel,
the model concedes Spain a thin advantage with a winning probability of 51.1% against 48.9%. The favorites Spain
and Germany are followed by the teams of France, England, Belgium and Portugal. This also shows how unlikely

7The final group standings are determined by the number of points. If two or more teams are equal on points after completion of
the group matches, specific tie-breaking criteria are applied: if two or more teams are equal on points, the first tie-breaking criteria are
matches between teams in question (1. obtained points; 2. goal difference; 3. higher number of goals scored). 4. if teams still have
an equal ranking, criteria 1 to 3 are applied once again, exclusively to the matches between the teams in question to determine their
final rankings. If teams still have an equal ranking, all matches in the group are considered (5. goal difference; 6. higher number of
goals scored). 7. if only two teams have the same number of points, and they were tied according to criteria 1-6 after having met in
the last round of the group stage, their ranking is determined by a direct penalty shoot-out (this criterion would not be used if three or
more teams had the same number of points.). 7. fair play conduct (yellow card: 1 point, red card: 3 points); 8. Position in the UEFA
national team coefficient ranking system.

Note that due to the augmentation from 16 to 24 teams, also the four best third-placed teams qualified for the newly introduced
round-of-sixteen. For the determination of the four best third-placed teams also specific criteria are used: 1. obtained points; 2. goal
difference; 3. higher number of goals scored; 4. fair play conduct; 5. Position in the UEFA national team coefficient ranking system.
Note that depending on which third-placed teams qualify from groups, several different options for the round-of-sixteen have to be taken
into account.
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in advance of the tournament the triumph of the Portuguese team was assessed. While according to the bookmaker
ODDSET only a probability of 4.5% was expected, after all our model assigned an increased probability of 5.5% to
this event.

Round of 16 Quarter Finals Semi Finals Final European Champion Oddset

Spain 95.4 72.9 52.3 35.1 21.8 13.9
Germany 99.3 79.5 51.3 34.4 21.0 16.9

France 97.5 71.9 48.2 25.8 13.8 18.9
England 95.2 69.4 43.4 23.9 12.9 9.2
Belgium 93.9 58.7 32.8 18.7 9.5 7.3
Portugal 92.5 52.3 27.4 12.6 5.5 4.5

Italy 87.7 47.6 23.8 11.4 4.8 5.3
Croatia 73.2 35.3 16.8 7.3 2.7 3.2
Poland 86.0 42.2 15.6 5.5 1.6 2
Austria 79.1 34.0 13.4 4.4 1.3 2.7

Switzerland 77.9 35.8 13.3 4.3 1.2 1.6
Turkey 56.1 21.2 8.3 2.8 0.8 1.6
Wales 65.6 27.4 9.6 2.8 0.8 1.6

Russia 62.3 25.1 8.6 2.5 0.6 1.3
Ukraine 71.0 25.8 7.7 2.0 0.4 1
Iceland 61.7 20.0 6.2 1.5 0.3 1.6

Czech Rep. 42.5 13.6 4.6 1.3 0.3 1.6
Slovakia 44.5 13.6 3.6 0.8 0.2 1
Sweden 42.9 11.2 3.3 0.8 0.1 1
Ireland 41.7 10.6 3.1 0.7 0.1 1

Romania 45.6 12.3 2.8 0.5 0.1 0.8
Albania 41.3 10.4 2.2 0.4 0.1 0.8

Hungary 37.1 8.1 1.8 0.3 0.0 0.8
Nor. Ireland 10.0 1.0 0.1 0.0 0.0 0.4

Table 2: Estimated probabilities (in %) for reaching the different stages in the UEFA European championship 2016 for all
24 teams based on 1,000,000 simulation runs of the UEFA European championship 2016 together with winning probabilities
based on the ODDSET odds.

4.2 Most probable tournament outcome

Finally, based on the 1,000,000 simulations, we also provide the most probable tournament outcome. Here, for each
of the six groups we selected the most probable final group standing regarding the complete order of the places one
to four. The results together with the corresponding probabilities are presented in Table 3.

A B C D E F

1 France England Germany Spain Belgium Portugal
2 Switzerland Wales Poland Croatia Italy Austria
3 Romania Russia Ukraine Turkey Sweden Iceland
4 Albania Slovakia Nor. Ireland Czech Rep. Ireland Hungary

21.2% 15.1% 37.6% 17.7% 17.5% 16.9%

Table 3: Most probable final group standings together with the corresponding probabilities for the UEFA European cham-
pionship 2016 based on 1,000,000 simulation runs

It is obvious that there are large differences with respect to the groups’ balances. While in Group A the model
forecasts the most likely final group standing of the four teams with a somewhat higher probabilities of 37.6%, the
other groups seem to be closer.

Based on the most probable group standings, we also provide the most probable course of the knockout stage,
compare Figure 1. However, note that the most probable round-of-sixteen cannot directly be concluded from the
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most probable final group standings shown in Table 3, as it is depending on which teams turn out to be the four best
third-placed teams. For this reason, the knockout stage in Figure 1 starts with the most frequent constellation of the
round-of-sixteen, which in fact still is extremely unlikely, as it occurred only 25 times out of the 1,000,000 simulation
runs. Below each tournament stage the probability for the displayed combination of matches is displayed. Finally,
according to the most probable tournament course the Spanish team would have won the European championship
2016. After all, obviously even this ’most probable’ outcome is still extremely unlikely to happen because of the
myriad of possible constellations. Hence, deviations of the true tournament outcome from the model’s most probable
one are not only possible, but very likely.

ESPGER - ESP

ESP - ENG

POL - ESP

SUI - POL
52%

ESP - ICE 85%

79%

ENG - POR

ENG - CRO
65%

POR - ITA 51%

60% 58%

ESP - FRA

GER - BEL

GER - WAL
81%

BEL - TUR 72%

59%

FRA - AUT

FRA - UKR
81%

RUS - AUT 55%

73%

57
%

51%

0.0025% 0.14% 2.65% 8.87% 21.8%

Figure 1: Most probable course of the knockout stage together with corresponding probabilities for the UEFA European
championship 2016 based on 1,000,000 simulation runs.

4.3 Prediction power

In the following, we try to asses the performance of our model with respect to prediction. We collected the “three-
way” odds8 for all 51 matches of the EURO 2016 from the online bookmaker Tipico (https://www.tipico.de/
de/online-sportwetten/). By taking the three quantities p̃r = 1/oddsr, r ∈ {1, 2, 3} and by normalizing with

c :=
∑3
r=1 p̃r in order to adjust for the bookmaker’s margins, the odds can be directly transformed into probabilities

using p̂r = p̃r/c
9. On the other hand, let G1 and G2 denote the random variables representing the number of goals

scored by two competing teams in a match. Then, we can compute the same probabilities by approximating
p̂1 = P (G1 > G2), p̂2 = P (G1 = G2) and p̂3 = P (G1 < G2) for each of the 51 matches of the EURO 2016 using

the corresponding Poisson distributions G1 ∼ Poisson(λ̂1), G2 ∼ Poisson(λ̂2), where the estimates λ̂1 and λ̂2
are obtained by our regression model. Based on these predicted probabilities, the average probability of a correct
prediction of a EURO 2016 match can be obtained. For the true match outcomes ωm ∈ {1, 2, 3},m = 1, . . . , 51, it

is given by p̄three-way := 1
51

∑51
m=1 p̂

δ1ωm
1m p̂

δ2ωm
2m p̂

δ3ωm
3m , with δrm denoting Kronecker’s delta. The quantity p̄three-way

serves as a useful performance measure for a comparison of the predictive power of the model and the bookmaker’s
odds and is shown for both data sets in Table 4. It is striking that the predictive power of our model outperforms
the bookmaker’s odds, especially if one has in mind that the bookmaker’s odds are usually released just some days

8Three-way odds consider only the tendency of a match with the possible results victory of team 1, draw or defeat of team 1 and
are usually fixed some days before the corresponding match takes place.

9The transformed probabilities only serve as an approximation, based on the assumption that the bookmaker’s margins follow a
discrete uniform distribution on the three possible match tendencies.
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before the corresponding match takes place and, hence, are able to include the latest performance trends of both
competing teams. This reflects a quite favorable result.

If one puts one’s trust into the model and its predicted probabilities, the following betting strategy can be applied:
for every match one would bet on the three-way match outcome with the highest expected return, which can be
calculated as the product of the model’s predicted probability and the corresponding three-way odd offered by the
bookmakers. We applied this strategy to our model’s results, yielding a return of 30.28%, when for all 51 matches
equal-sized bets are placed. This is also a very satisfying result.

boosted bivariate Poisson model Tipico odds

42.22% 39.23%

Table 4: Average probability p̄three-way of a correct prediction of a UEFA European championship 2016 match for our model
and the Tipico odds.

5 Concluding remarks

A bivariate Poisson model for the number of goals scored by soccer teams facing each other in international tourna-
ment matches is set up. As an application, the UEFA European championships 2004-2012 serve as the data basis
for an analysis of the influence of several covariates on the success of national teams in terms of the number of
goals they score in single matches. Procedures for variable selection based on boosting methods, implemented in
the R-package gamboostLSS, are used.

The boosting method selected only three covariates for the two Poisson parameters λ1 and λ2, namely the
ODDSET odds, the market value and the UEFA points, while for the covariance parameter λ3 no covariates were
selected and the parameter was in fact estimated to be zero. This reflects an important general result for the
modeling of soccer data. It shows that on the EURO 2004-2012 data no additional (positive) covariance needs to be
considered. Hence, instead of the bivariate Poisson distribution two independent Poisson distributions can be used,
if the two corresponding Poisson parameters λ1 and λ2 already contain covariate information from both teams, and,
in this way already induce a certain amount of (negative) correlation.

The obtained sparse model was then used for simulation of the UEFA European championship 2016. According
to these simulations, Spain, Germany and France turned out to be the top favorites for winning the title, with an
advantage for Spain. Besides, the most probable tournament outcome is provided. An analysis of the predictive
power of the model yielded very satisfactory results.

A major part of the statistical novelty of the presented work lies in the combination of boosting methods with
a bivariate Poisson model. While the bivariate Poisson model enables explicit modeling of the covariance struc-
ture between match scores, the boosting method allows to include many covariates simultaneously and performs
automatic variable selection.
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Appendix

A Correlation structure of the EURO 2004 - 2012 data

home GDP max1 max2 odds popu- ave. market FIFA UEFA CL UEFA age nation
lation age value rank points players players coach coach

GDP -0.01
max1 0.07 -0.31
max2 0.03 -0.35 0.64
odds 0.06 -0.12 -0.03 -0.19

population -0.14 -0.07 0.41 0.53 -0.52
ave age -0.20 0.11 -0.09 -0.18 0.26 -0.36

market value -0.08 0.14 0.27 0.41 -0.75 0.49 -0.27
FIFA rank 0.58 -0.09 0.03 -0.11 0.70 -0.27 -0.06 -0.52

UEFA points 0.06 -0.11 -0.33 -0.37 0.72 -0.54 0.12 -0.76 0.44
CL players 0.07 0.01 0.29 0.33 -0.46 0.24 -0.42 0.82 -0.31 -0.48

UEFA players -0.17 -0.08 0.09 0.23 -0.28 0.46 -0.15 0.27 -0.24 -0.20 0.15
age coach 0.08 0.00 0.00 0.08 0.15 -0.01 -0.06 -0.02 0.13 0.07 0.09 -0.19

nation coach 0.03 0.23 -0.03 -0.16 -0.17 0.12 -0.15 0.19 0.01 -0.16 0.11 0.10 -0.32
legionnaires -0.04 0.15 -0.59 -0.72 0.26 -0.77 0.36 -0.45 0.01 0.55 -0.23 -0.35 0.00 0.01

Table 5: Correlation matrix of the considered variable differences for the EURO 2004 - 2012.
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