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A. Introduction 

1.) This note is a summary of machine function integral expressions the 
author has accumulated in several years' work on accelerator physics. I t i s 
not of theoretical importance, but i t can help much in practical calculation. 
Many accelerator physic ists have noticed that to express such integrals by 
functions at some special points and parameters of the magnet in question has 
an advantage over step-by-step summation, owing to less time elapsed and 
better accuracy obtained. However, most of the eormulae they present in 
papers or programs s t i l l have much room for simplification. To express the 
integrals as simply as possible has the following benefits: i t saves more 
time; i t exhibits conclusions in better c lar i ty so as to reduce chances of 
error; i t can help set some parameters as "function of goodness" or " f i t 
function" in searching for an ideal la t t i ce configuration, though the 
parameters are usually considered too complicated. For example, i t is 
possible to make the non-coupling emittance as well as some other functions 
minimized in designing a synchrotron radiation source, and i t may be found 
easy to f i t the momentum compaction factor to a given goal value for choosing 
a very short bunch length l a t t i c e . Both of these were realized in the 
author's work on the Hefei 800 HeV Storage Ring. 
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2 . ) Let 1 and 2 denote the entrance and the e x i t of a magnet r e s p e c t i v e l y . 
The e f f e c t i v e l ength of the magnet i s L = z - z . sopose p i s a z-dependent 
machine funct ion . Let average symbol [ ] and d i f f e r e n c e symbol A be defined 
as below: 

1 f** 
£ ? 3 = -7- \ P(z) dz fi \ 

A P = P 2 - P x = P ( z 2 ) - P ( Z l ) (2) 

The problem of funct ion i n t e g r a l eva lua t ion i s how to express [ P } by known 
parameters. 

Suppose Q i s another z-dependent function and A i s p iecewise ly c o n s t a n t , 
namely, A doesn ' t change between z. and z_ . Obviously the Eollowing r e l a t i o n s 
can be e s t a b l i s h e d : 

t A3 = A ; [ A P ] = A [ P ] ; [ P + Q ] = t P ] + [ Q ] ; 

[ P'] = AP/ L ; [ P Q'] = A( P Q ) / L - [ P'Q ] (3) 

3 . ) Ho mathematical approximation i s made in any equations throughout th i s 
n o t e . I t i s assumed t h a t magnetic f i e l d i s cons tant within a magnet. The 
p a r t i c l e motion i s descr ibed in a natural orthogonal x -y-z coordinate system, 
wi th y - a x i s f ixed v e r t i c a l l y , which impl ies no v e r t i c a l bending. Then the 
f i r s t order motion equat ion of a p a r t i c l e wi thout energy dev ia t ion reads 

U " + F Q u = 0 (4) 

where u nay be x or y , and 

P x = K + -L ; F y = - K (5) 

P i s the curvature rad ius of the idea l o r b i t in a bending magnet where 
magnetic f i e l d B = ( B / ) Q/f , wi th {B^ )„ the p a r t i c l e magnetic r i g i d i t y . K 
i s quadrupole component def ined as K = ( 3B / 8 x ) / [ B P ) Q . F x , P and P are 
a l l p i ecewise c o n s t a n t s . 



As well known, the behavior of particles in a machine can be described by 
Courant-Snyder ' beta function B and B , energy dispersion function W, 
and some functions associated with |3 such as ol , y and phase advance 
11) . UsualLy a computer program evaluates all these functions at any magnet 
edges, after L, K and 1/P of all the elements In the machine are qiven. 

4.) A summary of the functions whose integrals over a magnet one may be 
Interested in it; as follows. 

[fl], the essential part in calculating machine integrals I and I., which 
will in turn determine the momentum compaction factor and the damping 
partition numbers respectively. See Refs.2) and 3) for explanation of this 
statement as well as of what follows. 

[jftlt where function Jf, is defined as 

From [ 3f& ] r the non-coupling emittance and consequently the equilibrium beam 
size can be found. 

i fl J , the dominant term in calculating the natural chromaticities and an 
important parameter in estimating either the dependence of the tunes on 
magnetic gradient errors or the dependence of closed orbit distortion rms 
values on magnet misalignments '. It also plays a role in obtaining beam size 
rms values in a magnet, since 

I **W < M f,l + 'it >2t fl >1/2 ' K T y W ' M p Y 3 ,i/2 ; 

where £ is the emittance on u plane and the explanation for the other 
symbols can be found in Ref.2). the beam size rms values (sigmas) are useful 
in calculations related to Touschek lifetime and instabilities and in 
featuring synchrotron light sources. 
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C Yu3» C "J2] and [ *) , Z], all are needed in evaluating Eq. (7) . 

[ /3 ] , used to estimate tune shift rras values and /3 function distortion 
due to magnetic errors. ' 

£ /3Q')1 in sextupoles has to be calculated for chromaticity correction. And 
[ fl 1)1 in nonzero-gradient bending magnets is needed for natural 
chromaticity calculation. The formula of [fl IJ] in bending magnets will not 
be presented, both because there is no need for it in chromaticity 
calculation ', and because no simple expression can be found for it under the 
most general condition in which neither K nor l/P is zero. But some 
formulae in the Appendix can help those really interested in [ 6„')J . 

5.) All the formulae of integrals introduced later will be grouped in two 
sets. In the first set the integrals are expressed by functions at both 
edges, while in the second set by functions at the midpoint. One is free in 
choosing that formula he feels more convenient. Generally speaking, the first 
set is more suitable for handling quadrupoles and, if some special conditions 
such as "separate function" are given, for bending maqnets also. The second 
set can serve better if bending magnets undec general conditions are treated. 

The Appendix presents a detailed description of a few special functions named 
as C u(z), Su(z) and Du(z) . Their properties profit the author very much in 
almost every piece of work concerning accelerator physics, so their use is 
not limited in integral claculations. 

B. Integrals Expressed by Function values at Magnet Edges 

1.) The following relations are well known ' 

f V = - 2 e * u

; otu'= F U (3U - Vu 

Vu'= 2 F u <*u • V u = (i+ « * u V p u (8) 

which hold on the condition that the particle motion is described by Eq. (41 . 
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One can Bjne a Euller use of them if he defines A „ as 
f}u 

A
r = F u - p u + *u <9> 

and finds that A is a piecewise constant, since A' = 0 when F remains pu fl u u 
unchanged. 

The special case in which F = 0 wi l l be discussed in the l a s t part of this 
sect ion. So suppose F 5*0, and one can easily obtain 

I V J - Y < A ^ u - A 0 l u / L ) (11) 

and, inc iden ta l ly , 

[dul» - \ *fa / L 
Here A „ as well as other piecewise constants to be defined later can be 
evaluated at any point in the magnet. Sometimes an index i is attached to the 
functions involved to denote this arbitrariness, with the understanding that 
i stands for either 1, 2 or other point indices. For example, Eq.(10) can be 
written as 

1 
1 P u l = TK ( F u P u i + *u i + t d°2- d*iu L 

If F = 0, then V . + A oi / L = 0 and Eq. (10) will be indefinite. This 
will also happen to the other equations where F appears in the denominator. 
But, when one is looking for natural chromaticities or for the tune shifts 
due to a relative gradient error ( A K / K ) , if the magnet in question is a 
quadrupole, the term he has to calculate will fortunately be \ F fl dz . So 
Eq.(10) can be rewritten as 

t F

o p u l = T < F u ( 3 u i + V u i ^ o l u / L (121 

In this case Eq.(12) always works, no matter how much F is. 
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Let us s t ick to the supposit ion that P 4 0. Then 

t d u ' p u 3 - M c i u p u > / 1. - I d u p u ' ] =A( d u p u ) / 1 . - 2 * 1 [ p u V u l 

- A ( d u p u ) / t. -a + a ^ l f a l " t c l u - p u ] 

Therefore, [ d u ' p u ] = ^ R pu C f u ] + j j ; A ( * u ^ u ) - 1 . 

So one arr ives at 

= ^ < 3 *j8u t p u 3 + A* d „{•„»' L " 2 ' < 1 3 > 
And, a t the same time, some more equations are obtained such as 

t (s«u= i A p a tp«i - TC A ( otuPu' + T 

2.) 11 function is the per iod ic solution of equation 

I f F = K + - J J ^ 0, i t i s easy to give 

1^1= I J ~ 1)"!/ F x = < j - AT|V L ) / F x 

(14) 

(15) 

A Special example i s , for separate function bending magnets where K = 0, one 
consequently has 

t*)j= / ( 1 - 4 5 7 eB> 

where 9 B i s the bending angle . 
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In order to find [_ >) ] and [ fl" 3 , one can make use of another Diecewise 
constant , which is defined as 

I t is obvious that S«'= 0, and that 

Therefore, 

' T 2 i - T ' « , l » * n r * " ) , ' 9 - - s f ' ' >"' 

3.) I t seemed more d i f f i cu l t at f i r s t thought to find re la t ive ly simple 
expressions for integrals of fl - J combined functions, such as the jf̂  
function defined by Eq. (6) . Because %'^Wf )( ol xU + /9X 9 ' ' ' ?£ i t s e l f is 
a piecewise constant if 1/P = 0. But this doesn' t help anything since one is 
only in te res ted in calculat ing [Jt] of bending magnets where 1/f must be 
non-zero. However, th i s idea encourages attempts to find another function 
which i s similar to ~U, but i s piecewisely constant even if 1/P f 0 . 

This i s done by defining several functions: 

A H= t V-jTj) V + D" u = (' 9-j^-> 2 + u 2 " I 8 * ( 1 9 1 

And one can use Eqs.(8) and (14) to prove the following equations; 

D'= - V j V = P x 0 ; Ag'- 0 (20) 

An interesting conclusion can be drawn from Eq.(20) that V and U are a pair 
of independent solutions to equation u'' + F u = 0. A„ is a new piecewise 
constant which is nothing but jf£ function with >) replaced by ( fl - fl ) . 



T h e r e f o r e , 

where A„ and U are e v a l u a t e d by Eq.(19) and [ j / ] by E q . ( l l ) . For example, in 
a s e p a r a t e func t ion machine, one can give 

t K l = l b " 0 i " f ) 2 + ° i 2 , + l f , U l " V ^ i ' f x i * / 2 »»i> +^««ixr " ^ 
where O = d x ( * ) - f ) + | 3 X IJ ' . 

F u n c t i o n s U and V a l s o h e l p g e t the e x p r e s s i o n for [ fl fl ] in the way shown 
be low. S i n c e 

and 2 - F x [ ^ ] = t l R p x + d x ' , V ) l - A ^ f j l + i K d x I J l / L - [ 0 1 , 9 ' J . 

one coraes to r 

"5fe« 2 A j 3 x f ] l - j C p x 3 + 4 f 2 <M + |M' »/ L ' < 2 2 1 

All the integrals mentioned in the first section have been expressed by 
functions at magnet edges thcough Eqs. (10), (11) , (13) , (15), (17), (18) , C".i) and 
(22) as long as F / 0. 

4.) If P = 0/ the integrals can be directly obtained by using the following 
expressions which are valid in this case 

ft." P U 1 - 2 0 ,
U 1 ( Z - Z 1 » + ^ul' 2" 8!* 2 •' 

dyT ^ul " ^ul{z _ zl' ' V ûi { c o n s t a n t > 
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and using equation [(z -Zj)"] = L n/jn+l). Therefore, 

i p u i = p u l - d u l i . ^ J / U 1 ^ = J ( p u l+ p u 2 i - j y u l L 2 i 

I V u l= V u i , 

f ) ' 2 3 - 1iT2 + T < * ' / ' 2 ' 

t » i - i««i*^)- jy«- 2 (7 |8 , 1 -» > t l ' ) 1 -«l , i5i ' + 47i^ct . r^ 4 y«i • 

i p ^ l - c p ^ - E p l - ^ ^ i <*xiVa+ < M ' 1 - ^ 2 * x i > <"> 
and, i f — = K = 0 , 

l f u ^ = T f 1 l + ? 2 K f U

1 " - i i : L 2 ( rful!|2+ ^ u 2 f l > 

5.) Most equations introduced in this section exhibit- a symmetric appearance 
of the functions at the two edges so that the contributions from the two 
halves of the magnet will be the same if the function in question is mirror 
symmetric in the magnet. This may explain why the expressions usinq Eunctions 
at the two edges are simpler than those using functions at only one edge, say 
at the entrance. In the case where F 9* 0, it is interesting that all the 
expressions proved in this section don't depend on which mathematical 
functions are used to describe S or J in the magnet. In fact, even no 
consideration was given to such descriptions. 
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C. I n t e g r a l s Expressed by F u n c t i o n Va lues a t Magnet Midpoin t 

1.) One can make use of the symmetry of the i n t eg rand f u n c t i o n s in an 
a l t e r n a t i v e way, t h a t i s , by e x p r e s s i n g them with f u n c t i o n s eva lua t e t ' at the 
midpoin t of t h e magnet. The Appendix a t t a c h e d d e s c r i b e s t h r e e f u n c t i o n s , wi th 
t he a id of which the e x p r e s s i o n s r e q u i r e d can be much s i m p l i f i e d . The 
f u n c t i o n s a r e def ined as 

1 . C (z)= 2 1 ( " F „ ) n z 2 " / ( 2 n ) l 
n=0 

v c o s h ( J - F u z) , 

S. .U) = 2 <-*•„>" z 2 n + 1 / < 2 n + l > ! = < 
Tl=0 

D u t z ) = 2 t - F u ) n z 2 n + 2 / ( 2 n + 2 ) ! 
n=0 I 4 : - a -

The i r p r o p e r t i e s are given in the Appendix in much d e t a i l . 

i f P u > 0 , 

if F = 0 , u 
i f F <. 0 ; 

if F u > 0 , 

if F u = 0 , 

i f p < 0 : 

IE F u f 0 , 

i f F u = 0 (25) 

Let m d e n o t e the midpoint of the magnet . The main machine f u n c t i o n s a r e g iven 
in terms of t h e func t ions de f ined by Eq. (25) as 

• u m S u 2 f z - V - 2 ^UmCu(z - W * -V ' 

C*u | z>= ^ u m C u 2 ( 2 - V " F u ° * u m s u 2 ' 2 - z m , + (Fu fum" C ) C u ( z " W z "V : 

Yu<Z> = V U B C u

2 ( z - z n l , + F u

2 | 3 u n l S u

2 ( z - z l n , + 2 F u O « u t t C u ( Z - Z l I 1 ) S u ( 2 - z m ) : 

*) <z> = \ Cx< z " V + 9m s x ( z ~ V + J V z -V ' 

*>'<*> = ! ) m C x l z - V + < J - F x * ) m » S x< <* - * » > (26) 

I t i s seen that the use of f u n c t i o n s C , S and D makes funct ion express ions 
independent on the s ign of F . For example, i f F = 0 , Eq. (26) w i l l 
a u t o m a t i c a l l y read the same as E q . ( 2 3 ) . 
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It is obvious that, if !(z -z ) is an odd function, f_ f(z -z )] = 0. This 
reduces the number of the terras one has to calculate almost to its half, 
since S (z) is an odd function while both C (z) and D (z) are even functions. 

2.) The terms involved in the integrals are treated one by one as follows. 
The details can be found in the Appendix. For brevity, the variable of the 
functions in the following expressions will be omitted if it is (a -z ). Some 
terras are named as P., (i = 1, 2,...61 to keep the succeeding expressions 
independent on whether F , is 0. 

C c u 3 = - £ - s u t L / 2 ) , - c u

2 ] = ± ( i + s u j u / L ) ; 

c c u s

u

2 } = ^ ; s

u

3 ( L / 2 ) •• t c « 3 l : r s » l l / 2 ! - ^ F

u

s

u

! | L / ! 1 : 

IH/L ) , if F u !* 0 . 

I ^ > 

C S U 2 D

U I = p

3 = IT : ' vn: s u 3 < L / a 

[ D " ] = ? 2 " \TH l - - ^ S u ( L / 2 1 ) , i f F u t 0 

)) r i f F * 0 

- i f F, = 0 ; 
150 U 

[ C u D u l = ? , - P 2 ; [ C U

Z D u ] - P 2 - F u P 3 = P 2 - Pj_ • £ - S U

3 (L /2J 

i f F u t 0 , 

3 « " ' i f F u = 0 : 

t D u 2 i = p 4 -\-k< 2 p

2 - p i > • 
- 1 - L 4 

{ ak1 1 ~n;V 2 L » -
- i - L 2 

t C u 2 s u 2 J - p 5 M a T a 1 1 - T L S a ( 2 L " ' » * „ » " > . 

12 

t C „ 4 l = 4 - « 1 + S„{L)/I, ) - P„ P . ; s u r 5 

8o 

i f P a = 0 

« P U t o . 
i f F u = 0 (27) 
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I t i s conven ien t in wr i t inq Drograms to have some mors oa ramete r s defineri as 

Q. - [ C u 1 , Q 2 - [ C u

2 J S Q 3 = [ C u S u

2 ] 12*1 

1 ? If F u = 0 , the d e f i n i t i o n of S Q i z ) , i ;q.<2S) ( g ives that g - 0?_- 1, Q3= y £ t, . 

3.) Using Eq . (26 ) , one can express anv machine funct ions he i s interested in 
by C , S and D u , such as: 

(i 2 ( 2 ) = ft2 c A* V2- s "^ 2fi+3 dz jc 2 s 2 - 4 d ( /3 c 2+ y s 2 i c =. ; |"u l ' [ um u °um u urn' u u ^um' | ura u •um u u u 

Tl) : ( Z ) = *) 2C 2 + >)' 2S 2 + A ; D 2 + — flCD-'— n ' s D + 2 / ] l l ' c s : J v ' Jm x /m x © a x o Jm x x p J m x x /m /ra x x 

W' 2 ( z )= T 2 C 2 + ( X - F ») ) 2 S

 2 + 2 >)'( — - F H )C S ; / /m x v p x /.n x /m p x ^m' x x 

J >t / | xm /m x v ' xm /m "xm /m x x o /"xm x x p fxm x x 

+ V x ^ x 3 * < Pxm1]'™- 2 ^ x m ^ » C x B x " ^ ^ ,„C S D (29) 
xin x x x 

I t may be a surprise that the formula for n̂j i s relatively very simple. 
The results are: 

o U r M ' = 'dHmTVpxnX'V ^x. 1)™' M m ' 5 * 

cM'+Yxl)" («=txm')'n.+ V«%>V ( c l x m V (L % >Px Sx 

= # n , + ^ < / 3xm ,)'m

+olxm% ) Sx-J-( "^nX* x̂n, ^ ' D x 

+ ^ I ' ^ X - " K 2 + yxm D x 2 " 2 d x m V x ' t 3 0 » 

- 12 -



Now there is no difficulty for one to arrive at 

f 2 

urn u 2 T =u /"urn c l 

^1= P» 9m<VW+ 1 »M % "2 d*9'.>«3 +jf-«VW* j " Vxmp3 ' 

f T 2 l = ' ) m 2 0 2 + < J - F x , ! ) m > 2 p i ' 

f f u 2 l = fum < Q 2 " F U P 5 > + C * 6 * 2( 1 + 3 d ^ ) P 5 (31) 

For c l a r i t y , the parameters Q. ( i = l , 2 , 3 ) and p . ( i » l , 2 . . . 6 ) are g i v e n again by 

Q L = ^ - S u { L / 2 ) ; Q 2 - - ^ t 1 + S u ( L ) / L ) f Q 3 = — S u

3 ( L / 2 ) s 

P , = i 4- ( 1 " Q 2 » • i f F u ,« 0 , 

i £ ¥a = 0 » 

P 2 = } T Z < 1 _ Q l > ' " *»*9 ' 
i £ F = 0 S 

I Q3 ' 

ft. 15 L 2 P 2 , i f F u = 0 5 

Z *2 • i f F u = 0 , 
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i f P u ,* 0 

i f F u = 0 

P 6 " j - f c ' P 1 _ P 5 > ' 
I 2 P 3 , 

i f F u j£ 0 

i f F u = 0 ( 32 ) 

where P- and P, are only used in c a l c u l a t i n g [ /3„ 2 J- A l l these formulae, Sqs. 
(31) and (32) , can be c a r r i e d out by a program very e a s i l y . Readers who check 
them w i l l find that , a f t e r the functions at magnet edges are evaluated with 
E q . ( 2 6 ) , a l l these formulae are well equivalent to those introduced in the 
l a s t s e c t i o n . An advantage of Eqs.(31) and (321 i s that they are general 
enough to cover a l l commonly used magnet t y p e s . The s ign of P only 
i n f l u e n c e s how to eva lua te Q. 's and P . ' s . 

For a rough e s t imate , one may expand Q. 's and P j ' s as power s e r i e s in L and 
use the f i c s t severa l terms only . The s e r i e s cead 

1 2 1 2 4 

Q 2 = 1 - T T F U I ' 2 + ! 4 O - F U 2 L 4 - - • • ' Q

3 = - J I L 2 ( I - 7 » ^ 2 + • • • > ' 

p ^ - L ^ l l - J - F u L 2

+ . . . ) , P 2 = J _ L 2 ( l - J _ F u I l 2 + . . . , , 

P , = - ^ L 4 - . . . ; T» = J - L 4 - . . . , 
3 160 4 32o 

P 5 = X t 2 ( l - I - F u L 2

+ . . . ) , p 6 = J . t * - . „ 1331 

4 . ) The funct ions a t the midpoit as w e l l as S (L/2) can be found by making 
use of a ha l f -e lement t r a n s f e r matrix, u s u a l l y t h i s i s only needed for each 
bending magnet. A d i s p l a y of the function va lues at a l l the bending magnet 
midpoints may be cons idered worth doing, e s p e c i a l l y i f the machine i s to be a 
synchrotron r a d i a t i o n s o u r c e . I f t h i s i s not pre ferred , Eq.(26) can he used 
t o g i v e the r e l a t i o n s between the funct ions a t the midpoint and those at the 
two edges , the l a t t e r are usua l ly ca l cu la ted by every program. S ince the 
whole-element t rans fer matrix must have been known, one can ge t C (H = M , , 
5 (!•) = M._ on e i t h e r x or y plane. Then the required functions are g i v e n by 
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C

U ( V 2 ) = (•!• ( 1 + C u ( L ) ) ) 1 / 2 -. S u ( L / 2 ) = S u ( t , l / ( 2 C u ( l / 2 l ) ; 

D x ( L / 2 ) = S x

2 ( L / 2 ) / ( 1+ C x ( L / 2 ) ) ( o r J y- ( 1- C x ( L / 2 ) ) , i f P x f 0 , 

' " -1" L» . i f P x = 0 ) ; 8 

S u ( 2 L)= 2 S U (L) C Q ( L | 

d u m = < P U r P U 2 > / « 2 S u « L > ' ( o r < C ^ u i + 0 t u 2 ) / ( 2 C u ( L l ) ) , 

»)m = T < ! / l + 1 h " J V L / 2 " / C x ( L / 2 > ; 

V)'m = ' 9 2

 _ J i> /<2 S x (L /2>) ( o r ( V)[ + ^ ) / ( 2 C^ (L/2> ) ) (34) 

5.) S e p a r a t a func t ion type i s perhaps roost qoramonly adopted nowadays in 
machine d e s i g n . Mote a t t e n t i o n i s t h e r e f o r e pa id to t h i s s p e c i a l case in 
which, for a l l the bending magne t s , K = 0 and c o n s e q u e n t l y F = 1 /P i F„= 0 . 
The fo l lowing formulae can be used in a program s p e c i a l l y made for t h i s c a s e : 

i%>Mm- 2 / < 0 , » , 9 « + y^t j . - p n u - Bin( eB/2V( eB/a»j 

t p x> T p. .* 1 * s i n V <V + i f y««i- s i n <V flB) i 
t **> T 0 1 + ^n fiB/ e B , + ^ ^ ( 1 - sin 6 3 / flB) , 

+ I j>2(2+ 6d x

2

m - ^ | £ - J 2 j £ l ( l - s in 2 e B / (2 6,)l » 
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1 1 2 u T ( V J»»2 t l + s i n V °B> + T f %2 «i- s i" V «B> 
+ f2 + 2 f ( ^ l m " / l sin( 6B/2)/{ 6B/2) ; 

[ * ) , 2 > 7 % 2 ( 1 + s i n V e B ' + 7 I p ! ' ) m - f > 2 ( 1 - s i n V « V * 

ifx*)i= p f f l l(ij 1 1;-pn-^in 2(V2))8i„«a B/2)/iVa> + rfxm<1+ s i n V ^ > 

lfy21- f i + T / 2 < 1 + 3 d ^' 6 B 2 + £ /* Vi ftB

4 '«) 
where 8-= L/P is the bending angle. Usually [fl BJ is not needed in this case. 

The f i rs t two of Eq. (35) are much more significant than the rest. In the 
procedure of machine design, P and 0 of every bending magnet are usually 
decided before lattice optimization. So, during lat t ice optimization, [ >1J is 
determined by p alone and, therefore, the momentum compaction factor is 
linearly dependent on 0 of every bending magnet and can be made a "f i t 
function" of the program. With all the 0 -dependent coefficients 
precalculated, [ J£J is determined so fast that i t s minimisation can also be 
set as a criterion of optimization. 

The partition numbers J , J and J_ are also related to [1)3 . The formulae 
are^ ' ' 3' 

J x= 1 - 3) ; J y= 1 ; JE= 2 + 3) ; 3) = I 4 / I 2 

where the machine integrals I . and I , are given by 

l 4 = i ~ f { j i + 2 R ) l i ) a z - ? 7 5 % t a n e e » j 2 - z S T * 3 * ( 3 6 ) 

2> and £ denote summations for all the bending magnets and all the 
bending magnet edges, respectively. 
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Suppose K = 0 and edge angles 0 = 0 = Qe in every bending magnet. Then the 
contr ibut ion from a bending magnet and i t s edges to I i s 

X4(6)= J ! V 2 t a n 6 e

J + y i ( % - / " s i n ( V 2 ) " c o s ' 6B/2)tane e) 

1. and thus the pa r t i t ion numbers are a l l determined by ft alone. 
Especia l ly , if the bending magnet is rectangular, tha t i s , fl = 0 /2 , then 

I 4 = S - T t 6 B - 2 t a n ( 6 B / 2 » 
B / 

is en t i r e ly independent on l a t t i c e configuration.'., provided that 9 and & 
are chosen already. Furthermore, if p is ident ical for a l l the bending 
magnets, then 

3) = 1 " ^ r Z t a n | 0 B /2) (37 
B 

This means the pa r t i t ion numbers are determined by 0 - alone, i f a l l the 
bending magnets are wholly i d e n t i c a l , f la t (no gradient} and rectangular, 
then 

J x = tan( & B /2) / ( 0 B /2)= tan Bj 6e ; J y = 1 ; J E = 3 - J x (38 

J is greater than 1 but very close to 1. 

In the calculation of I., effects of bending magnets and their edges are 
combined and it seems that the formula can be simplified to the greatest 
extent when the magnets are flat and rectangular. Similar attempts are made 
for first order chromatidty calculation, in which a similar combination 
taKes place. But the results are not very satisfactory, giving a relatively 
simple formula for \ and a complicated one for ^ . ' 

6.) Two more integrals are sometimes useful in solving problems and their 
;ions also benefit from the propert evaluations also benefit from the properties of C , S and D . They are 

\zffisin<v v dz ana \z]>Tf OTst v y u i » ** 
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where y u ~ y*û = J (1/ /3U ('2'') J dz is the phase advance from z, to another point 
in the magnet, indicated by z. The relation between transfer matrix elements 
and A function gives4' 

c«««-«i»-lifuf«»/j8ui < c o s < f u ' 2 ' - y u i 5 + c*ui a in<jCu<*»-y„i>» * 

Since S (z) = \ C u ( z ) d z , D u ( z ) = \ S u ( z ) d z , one can soon obtain 

Of c o u r s e r t h e s e two i n t e g r a l s can a l s o be expressed by funct ions at z_ or 
z . I f the phase advance i s w r i t t e n as VV - ^ = \ ( 1 / fl ) dz, one g e t s 

£ V p l n < -̂ YW d* = " » ^ c o s t ^u" f™)6z = 2 i f ^ s ^ t L / 2 ) C4X) 

Eq.(41) looks much simpler than but is equivalent to Eq. (40!. 
* * * * * 

A l l the equations introduced above have been c a r e f u l l y checked to assure 
t h e i r mathematical c o r r e c t n e s s . Most of them have been used in programs and 
they gave e x a c t l y the -=ame r e s u l t s as obtained from other programs, though 
the formulae adopted by the l a t t e r are more compl icated . 
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Attached to "TECHNIQUES IN MACHINE FUNCTION INTEGRAL CALCULATIONS" 

APPENDIX 

Functions C (z) , S (z) and D (z) 

1.) This appendix describes three functions and presents a summary of their 
valuable proper t ies . The functions are dependent both On a parameter F , tha t 
i s the focusing strength on u plane, and on a variable z, tha t is usually the 
azlmuthal coordinate, u is understood to be x or y, corresponding to 
horizontal or ver t ica l plane respect ive ly . If expressed by these functions, 
most formulae commonly used in accelerator physics wi l l give a uniform 
appearance. 

The functions are defined as 
cosfJF" z) , if F u > 0 . 

C„U>= 2 (-F,,)" z 2 " /<2n>! { 1 , if F u = 0 , 
cosh(j-F u z) , if F u < 0 (Al) 

s i n f j F - z ) / ^ , i f F u > 0 , 

S„(z)= ZL( -F u ) n z 2 n L / ( 2n+ l ) ! = 1 z , if F = 0 , 
"=° I , 

s inh(J -F u z ) / J - F u , i f F u < 0 (A2) 

» u ( z )= Z l t - P u ) n z 2 n + 2 / (2n+21! = J ( 1 - C.^z)) / P u , i f F u 3* 0 , 

I -~* • if F u = 0 (A3) 
All of them are continuous e i the r with respect to z or with respect to F , 
even in the v ic in i ty of F = 0. 

They may be named as cos ine- l ike function, s ine- l ike function and dispersion-
arising function respectively. 

2.) The fundamental properties of these functions are as follows: 
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Let ' denote d/dz . C (z) i s the c o s i n e - l i k e s o l u t i o n of the d i f f e r e n t i a l 
e q u a t i o n u" ' + F u = 0 , where F i s a c o n s t a n t , no matter whether p o s i t i v e , 
z e r o or n e g a t i v e . S [z) i s the s i n e - l i k e s o l u t i o n of the equat ion. D (z) i s 
the p a r t i c u l a r s o l u t i o n of equation u' ' + F u = 1 , with i n i t i a l va lue and 
i n i t i a l f i r s t d e r i v a t i v e both equal to zero . Expressed bv formulae, that i s 

C u " + F u c u - ° ; C u t 0 1 = 1 r c u ' ( 0 , = ° •• 

s u " + F u S u = ° ' V ° ' = ° ' V < 0 : = X ; 

D u " + F u D u = 1 ; D

u ( 0 ) = ° •• D

u ' ( 0 ) = 0 (A4) 

_2 S o , i f magnet length i s measured in meters , F i s in m and C in u n i t , S 
i n m, D in ra . I f one t r i e s t o s o l v e Eq.(A4) by s e r i e s , the r e s u l t s w i l l be 
j u s t the d e f i n i t i o n equat ions (Al) , (A2) and (A3) . 

i.) In a sense these f u n c t i o n s are pseudo- t r igonometr i c f u n c t i o n s , among 
which C and D are even f u n c t i o n s whi le S u i s odd. One can g ive 

C u ( - Z l = CU(Z1 ; S U C-Z)= - S u ( z> ; D u ( -Z) = D u ( z ) (A5) 

and C u ( * l + z 2 5 = C u ( z 1 ) - C u ( z 2 ] - V V ^ ' V ^ 1 j 

S u K + z 2 > = S u ( z l ) - C u ( Z 2 > + W'W , A 6 ) 

Combination of Eqs.(A5) and (AS) makes almost a l l the t r igonometr ica l 
i n v a r i a n t equations s t i l l v a l i d for S and C a f t e r necessary m o d i f i c a t i o n . 
Foe example, 

C Q

2 ( z ) + F a S u

2 ( z ) = 1 <A7) 
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C uC2z>= C u

2 ( 2 ) - F u S u

2 ( 2 ) = 2 C u

2 ( z ) - 1 = 1 - 2 P U S U

2 ( Z ) ; 

S u ( 2 z ) = 2 S u ( z l C u ( z ) ; 

F

u V z / 2 > F u Su<z> _ ! - C u t z > 
C u(z/2) 1 + C uU) S u(z) (A8) 

From Eq.(A3), one gets 

C u(z)+ F u Du(z) = 1 (A9) 

Therefore, the relation among D , S and C is 

Du(z)= S u

2 tz»/ (1 + C u(z)) = 2 S u

2 (z/2) (A10) 

or S u

2 ( z ) - Cu(zi Du{z) = Du(z) (All) 

Eqs.{A7), (A9) and (All) are the three invariant equations used most 
frequently in formula simplification. 

4.) The derivatives of the functions with respect to z are 

C u ' (z) = - F u S u(z) ; S u ' ( z )=C u (z ) s D u ' ( 3 ) = S u ( z ) (A12) 

£••< So D (z) can also be defined as \ S n(z) dz 

Because these functions keep continuous when F varies, one can get their 
derivatives with respect to T . which also present a uniform appearance well 
independent on the sign of F , 

3 C U ( Z ) / 3 F U - - • ! • S S U ( Z ) ; 

3 S U ( Z ) / 3 P 1 1 = { T J ^ U C U (Z) - s u (z)) , if F U i< 0 , 

if F u = 0 t 1-4. z3 , 
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z z S u ( ! l ] , i f F u jf 0 , 

For the r e l a t i o n among the d e r i v a t i v e s one has 

3 D U ( Z ) / B F U = 4 - S ] ] U / 2 ) . ' 3 ( S U U / 2 ) ) / 3 F I 1 J t a D u / 3 P u ) - = a s u / a p u , 

Let W represent e i ther C , S u or D u . Function "b®a/ £>FU s a t i s f i e s 

O W U / 3 F U J " + F U ( 3 W U / ^ F U ) = - w u , 

O W u / a F u ) | z = Q = O W u / a F u r | z = 0 = 0 <M5> 

The differential equation can be directly obtained by deriving the equation 
W ''+ F W = 0 or 1 with respect to F . Functions ( <JW /{&F ) are useful in 
finding the linear dependence of a transfer matrix on the focusing strength. 

For the linear dependence of a transfer matrix on the coupling strength from 
the other transverse plane, another group of functions can help. They are 
defined asi 

A W U / A F U - j I V W y )/( V F y) . if F x f F y , 
i f F x " F y { A i 6 ) 

where W may be C , s . D or - F S . This group of functions satisfies 

< A D U / A F U ) < = A S U / A F U , ( i ! S u / ^ F u ) ' = a C u / f l F u J 

( A C U / 4 F U ) ' = A( -F U S U ) / , 4F U S < * V A F U > U = 0 = ° '' 

( AW U / AFU> ' •+ F x t AW U/ AF U )= - Wy J 

( AW U / A F U > ' •+ F y ( a W u / 4 F U ) = - Wx (A17) 
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5.) The standard form of the first order particle motion equation in a 
magnet is 

s 
u1 '+ F u = (A181 

u p 
where u i s x or y, S i s energy d e v i a t i o n , f i s the c u r v a t u r e r ad iu s of 
the idea l c e n t r a l o r b i t on u p l a n e . P and F are c o n s t a n t w i t h i n a magnet, 
and they a r e r e l a t e d with magnet ic f i e l d components by 

1/J>X= B y /<Bj>)0 ; i ^ /y" - " , / » / ) 0 ' 

F x = ( 3 B y / 3 x ) / ( B j > ) „ + ( l / j > x ) 2 J F y = - ( a B y / B x J / f B P ) n + ( l / / y ) 2 

where (B P ) Q i s the p a r t i c l e r i g i d i t y . 

Let u and u' deno te ul and u' I r e s p e c t i v e l y . The s o l u t i o n of 
o o ' z s z 0 'z=Zo 

Eq. (A18) i n t h e magnet i s 
S 

u U l = u o C u ( z - z Q ) + u' S u ( z - z Q ) + — D u (z - z Q ) , 
/ " -

u« (z)= u ' Q C U ( Z - Z Q ) + ( - — - F u u Q ) S u ( z - z Q ) (A191 

Therefore., in the theory of transfer matrices, the matrix of an L-meter-long 
magnet reads 

Ca(L> SU(L) D u ( L , / / u 

V L> " { " W ^ c*™ V L , / / u I , A 2 0 J 

0 0 1 

Some computer programs need the derivatives of the transfer matrix with 
respect to the focusing strength or the length of the magnet in order to get 
the linear dependence of machine parameters. The deriatives can be expressed 
by 

3 " u / " V S u< L > C u ' L ) V L'/ .Pu 
3 L [ - F U .C U (L ) - V S U ( L ) C U ( L ) / / U J (R21) 

o o o 
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? F u ( - j ( L - c

u ( L 1 4 - S u ( L I 1 " T L ' S u ( L ) < 3 S u ( L 1 / 3 P u 1 / / u ) ( A 2 2 ) 

\ 0 0 0 

where 3S U(L)/<)F U and 3D u(L)/dF y are evaluated by Eq. (A13t with z = L. 

Whatever value F is, Eqs.(A20), (A21) and (A22) as well as all the other 
equations introduced in this appendix Keep correct. This helps to make a 
universal subroutine program for calculating all the elements of either a 
transfer latrix or its derivative matrices. The subroutine is as short as 
about 50 lines but able to cover almost all the cases one usually meets with 
(except the matrices for magnet edges). Input information is 4 arguments: 
F , 1/ P , L and an integer number indicating which are wanted as output — 
the elements of the transfer matrix of the magnet, or of the derivative 
matrix with respect to F or of the derivative matrix with respect to L. Here 
what the word "magnet" means is a quadrupole, a bending magnet or a drift. 
The matrix may represent the motion on either x or y plane. The only 
condition is that P and 1/ P remain unchanged within the lenqth L. An 
explanation for the sign of the parameters is as follows. 

Focusing strength F is positive for focusing magnets, negative for 
defocusing magnets, or zero for non-focusing elements such as a drift. 
Magnetic field 1/ P is positive for normally (inward) bending magnets, 
negative for reversely (outward) bending magnets, or zero for non-bending 
elements. For example, 1/P„ is always zero in a machine with only horizontal 
bending. Effective length L is usually positive. If L is negative, output 
will be the inverse transfer matrix, in other words. 

« V - M = <Mu(i,n X or Mu(-L).Mu(l,) = (i ; :) 
\ 0 0 1 / 

If Ii = 0, M will be the unit matrix and 3M„/ 3 F will be the zero matrix, 
whatever F and 1/ P are. 

Not only the matrix elements, but also all the widely used machine functions 
can be given a uniform, simple description. Let index o denote function value 
at point z and suppose F and 1/ P are constant between z and z. 
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As a solution to equatio - • • 

IA2 

1) w i)0 c xiz -zo) + r ) ' o S j t ( z - z 0 i + jr D X I Z - z o ) , 

5' ( z ) = "5'o C x , z "zo> + 1 ^ - F x Do > S x ( z -*o> 

[3 function is a solution to equation fl ' ' • +4 P W ' = 0 , which is 

obtained from the relations j3^'= - 2 <£u r ol u '= F

u (3 u " y u

 a n d 

) f u

, = 2 F o l o n the condition that F ' = 0 . Therefore, 

p u < z ' = P u o C u 2 ( z - z o > + C S

0

2 < 3 - 2 o » - 2 ^ u o C u < I - I o , S a U - z o ' ; 

d u ( z > = c ( u o C u

2 ( z - z 0 ) - F u o / u o S u

2 ( z - z o ) + , F u ^ u o - 0 C u ( , - ,

0

, S

B " - ' o 1 ; 

6.) Some integrals are useEul in parameter calculation. Here is a l i s t of 

the indefinite integrals possibly involved: 

$ C u d Z = S u J z ) 

J s u d Z = 0 u ( z ) 

U- 3 
- S u ( z l ) , if F u f 0 

if F, =0 

5 c

u

2 d z = T ( z + c

u < z > V z n = T t z + - r s „ l 2 z ) ) 2 U 1 

dz = "£• S u

2 [ z ) = -£- D u ( 2 z ) \ c s 
J u u 

\ 5*2 d z •{ zk ( Z " C u( z >V z >> • i f F

u / ° ' 
I 3" 3 • 

( o r j s u

2 dz = ± { S u(Z)D u<z) + JD u dz ) j 

if F u = 0 
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c u D u d z = S S u 2 d z " S D u d z 

D u Z d z = { TW1 2 J D u a 2 - J 5 u 2 d z ' • i £ F u * ° -

» i f F„ = 0 
10 ' u I 10 2 * 

C * \ * * - S D u a z - F u 5 S u 2 D u a z 

C u S u D u d z = T D u 2 < z ' - J F u D

U

3 < z ) 

S u D u 2 d z = J D u 3 t z > 

C u D u 2 d z - V z l D u 2 ' z > - 2 S S U 2 D U d z 

- F IC 2 S u J u u 

l *'5 • 

c u 4 d z = T , z + T s u i Z z ) 1 - F - l c » ' s » ' d z 

i f F . = 0 - ! - z 5 

C u s u 2 a i = T ' » 3 I « ) 

c u

3 d* = s u ( Z , - y F n S u

3 {z ) 

S u 3 d z = D u 2 ( z , t X - T F u D u ' z " 

C u 2 s u d z = °uW ( V z > + T F u 2 D u 2 i z ) 1 

s u \ d z =1 -s:1 K 2 d z ~ 7 s

0

3 ( z l ) • i n J ° -

c u 2 s u 2 d z = ^ "ik ( z " i r s u ( 4 z " ' « r u / o . 
if F.. = n 

2 az ) , if F U f o r 

i f F u = 0 

More complicated integrals can also be worKed out but are less useful. I t i s 
easy to convert these equations into expressions of averaged functions. 
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Sometimes the i n t e g r a n d s one has t o d e a l wi th a re combina t ions oE func t ions 
on the two t r a n s v e r s e p l a n e s , for example , i n c a l c u l a t i n g \ fl |1 dz . Some 
i n d e f i n i t e i n t e g r a l s of t h i s kind a r e p r e s e n t e d below. Note t h a t the ind ices 
x and y can be exchanged, t h a t i s , t hey a r e not f ixed to a c e r t a i n p l a n e . 

SuDpose F i F . Otherwise one can make W = W , and f ind t he r e s u l t s in the - c x y y x ' 

p reced ing l i s t . 

j c x C y dz = ( Fx S x ( Z > C y ( z ) - F y C x ( z ) S y ( z ) ) / f F , - F y ) 

^ S x S y dz = ( S X (Z) C y (z> - C x ( z ) S y ( z ) ) / ( F x - F y ) 

^ C x S y dz = ( F x S x ( z ) S y ( z ) + C x ( z ) C y ( z ) ) / ( F x - F y ) 
j c x D y dz = S x ( z ) D y ( z ) - { : dz = S„ (z ) D„(z) - \ S x S y dz 

j S x D y dz = ( S x ( z ) S y ( z } - C x ( z ) D y [ z ) - D x ( z ) ) / ( F x - F y ) 

S D D dz = / (z -S {z) -S (z)+ \C x y 1 x ' y J " 
1 2 1 

x C y a Z l / ( F x F y ) , i f F x # 0 , F y * 0 

V ( S

x ( z l - z C x ( z ) ) ' i f F y = ° 

And one can g e t e x p r e s s i o n s of \ s z d z , \ C z dz, I C z d z , e t c . by 
t r a n s f o r m a t i o n of the above e q u a t i o n s on the s u p p o s i t i o n t h a t F or F = 0 . 

x y 

Suppose F 3s 4 F . O the rwi se , one can r e l a t e W (z) t o W (2z) and f ind the x y x y 
r e s u l t s in the p r e c e d i n g l i s t . 

\ S x C y S y d z = ( S x ( ^ , C y t 2 z > " T C x ( z ) S y ( 2 z , ) / ( V 4 F y * 

i C x C y S y d z = ( C x ( z l c y ( 2 z > + " z F x s x ( z ) S y t 2 2 ) ) / ^ ^ ^ ^ ® ^ ^ "•'''-

\ D x c y s y d z = l~z ( S y 2 t z ) " s

x

( z ) S

y

{ 2 z n + D x(zic yc2z))/1 F K - 4 F y > 

] c x c

y

2 d z = s * ( z > c y 2 ( z ) + 2 F y j s x c y s y d z 

J C x 5 y 2 d z - S x , z > S y 2 ( z ) " 2 j S x C y S y d z 
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] s * c

y

2 d 2 " D x ( 2 > c

y

2 ( z ) + 2 F y S D x c y s y d z 

j s x s y

2 dz = oxw s y

2<z) - 2JD x C y S y az 

5 V y 2 d 2 = -j < T z + T S y , 2 2 ) - S c x C y 
[ ( z C y ( 2 Z ) + | . F y z 3 - ( - A - -

J D x S y 2 d z = \ < I°K d z " 1 
I 2 J D x D y d z 

j w x C y D y d z = j w x S y

2 d z - j w x D y d 

J C x S y D y d Z = S x < 2 > V Z ) V Z > - J s x C y

D y d* " J 
j S x S y D y dz = D x ( z ) S y ( z 1 D y , z ) - j D x C y D y dz - j 

2 dz ) / F x . i f F x ? 0 , 

F y z 2 ) S y { 2 z ) ) / ( 8 F y ) , i f F x = 0 

D x C y

2 dz ) / P y , i f F y f 0 . 

y - i f F y = 0 

( W x i s C x ' S x ° r V 

dz = S„tz)S„(z)D„(z> - \ S„C„D„ dz - | S x S y

2 dz 

,C„D„ dz - 1 n

x S v

2 dz 

This appendix has summarized almost all possibly useful information about C n, 
S and D so t 
calculations. 
S and D so as to make them very convenient tools in accelerator physics 


