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A. Introduction

1.) This note is a summary of machine function integral expressions the
author has accumulated in several years' work on accelerator physics. It is
not of theoretical importance, but it can help much in practical calculation.
Many accelerator physicists have noticed that to express such integrals by
functions at some special points and parameters of the magnet in question has
an advantage over step-by-step summation, owing to less time elapsed and
better accuracy obtained. However, most of the formulae they present in
papers or programs still have much room for simplification. To express the
integrals as simply as possible has the following benefits: it saves more
time; it exhibits conclusions in better clarity so as to reduce chances of
error; it can help set some parameters as "function of qoodness" or "fit
function" in searching for an ideal lattice configuration, though the
parameters are usually considered too complicated. For example, it is
possible to make the non~coupling emittance as well as some other functions
minimized in designing a synchrotron radiation source, and it may be found
easy to fit the momentum compaction factor to a given goal value for choosing
a very short bunch length lattice. Both of these were realized in the
author's work on the Hefei 800 MeV Storage Ring.
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2.) Let 1 and 2 denote the entrance and the exit of a magnet respectively,
The effective length of the magnet is L = 2y, — 24 Supose P is a z~dependent

machine function. Let average symbol [ ] and difference symbol A be defined
as below:

N

[P)= TSP(Z) dz {1
24

AP =P, - P, = P(z,) - P(z,) 2)

The problem of function integral evaluation is how to express [ P] Ly known
parameters.

Suppose Q is another z-dependent function and A is piecewisely constant,

namely, R doesn't change between zy and Zy- Obviously the Eollowing relations
can be established:

[al=2a ; [AP]=A(P] ; [(P+Ql=([®)] +C[a] :
{p] =4ap/1 ; ireo')= A(PpQ)/t-([20Q) &)
3.) No mathematical approximation is made in any eguations throughout this
note. It is assumed that magnetic field is constant within a magnet. The
particle motion is described in a natural orthogonal x-y-z coordinate system,
with y-axis fixed vertically, which implies no vertical bending., Then the
first order motion equation of a particle without energy deviation reads
1 -
w' +F ou=10 (4)

where u may be x or y, and

1
rx-xaf—z, F=-K (5)

P Yy

f is the curvature radius of the ideal orbit in a bending magnet where

magnetic field 'BY = (Bp )o/f » with (BP ), the particle magnetic rcigidity. X
is quadrupole component defined as K = {( BBY /Zx)/(Br Vg » Py FY and f are
all piecewise ‘constants.
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As well known, the behavior of particles in a machine can be described by
Courant—Snyderl) beta function ﬁ& ana PY' energy dispersion function 9,
and some functions associated with pu such as du' Vu and phase advance

yu‘ Usually a computer program evaluates all these functions at any magnet

edges, after L, K and llf of all the elements in the machine are given.

4.) A summary of the functions whose integrals over a magnet one may be
interested in ic as follows.

[O], the essential part in calculating machine integrals I, and Iy which
will in turn determine the momentum compaction factor and the damping
partition numbers respectively, See Refs,2) and 3) for explanatiaon of this
statement as well as of what follows.

[3{], where function 3& is defined as

o= ) ed DB 0B/ By (61

Prom [ 3&] , the non-coupling emittance and consequently the equilibrium beam
size can be found,

i Pu], the dominant term in calculating the natural chromaticities and an
important parameter in estimating either the dependence of the tunes on
magnetic gradient errors or the dependence of closed orbit distortion rms
values on magnet misalignments4‘. It also plays a role in obtaining beam size
rms values in a magnet, since

St 2. 929,12, - 172,
[0 ms™ (B LB+ (F°1YN D0 5 LG )y «aylpy]) ;
- s .2 21,172 ; - 1/2
(O hma™ (Exl ¥+ (L) D% 1 L) (EyL ¥ (N
where § & is the emittance on u plane and the explanation for the other
symbols can bhe found in Ref,2). The beam size rms values (sigmas) are useful

in calculations related to Touschek lifetime and instabilities and in
Eeaturing synchrotron light sources.
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L Yu]n L 02] and [ q'z], ail are needed in evaluating Eq. (7).

{ puzl, used to estimate tune shift rms values and function distortion
due to magnetic erzozs.“

{ pufjl in sextupoles has to be calculated for chromaticity corcection. And
[le)] in nonzero-gradient bending magnets is needed for natural
chromaticity calculation. The formula of [ qu] in bending magnets will not
be presented, both because there is no need for it in chromaticity

calculations)

, and because no simple expression can be found for it under the
most general condition in which neither K nor l/f is zero. But some

formulae in the Appendix can help those really interested in { PY')] . N

5.} All the formulae of integrals introduced later will be grouped in two
sets. In the first set the integrals are expressed by functions at both
edges, while in the second set by functions at the midpoint, One is free in
choosing that formula he feels more convenient. Generallv speaking, the first
set is more suitable for handling quadrupoles and, if some special conditions
such as "separate function" are given, for bending magnets also. The second
set can serve better if bending magnets under general conditions are treated.

The Appendix presents a detailed description of a few special functions named
as Cu(z), Su(z) and Du(z). Their properties profit the author very much in
almost every piece of work concerning accelerator physics, 8o their use is
not limited in integral claculations.

B, Inteqrals Expressed by Function Values at Magnet Edges

1.) The following relations are well knownl)
Pu'= -2 dy dy'= Fy Pu - ¥
W'=2F, A, wu = t+ duz)/ Pu )

which hold on the condition that the particle motion is described by Eq. (4).




Jdne can make a fuller use of them if he defines A as

Pu
A gu” Py Put ¥y {9)

and finds that A Pu is a piecewise constant, since A’ = 0 when F remains

Pu

unchanged.

The special case in which Ty = 0 will be discussed in the last part of this

section, SO suppose Fu # 0, and one can easily obtain

1 1
[(Sul=[?';:(Apu+du )]=2—&(A(3u+ ad, /1) (10)
[)’u]=%(AFu—Adu/L) (1L

and, incidentally,

1
[d, 1= - Y AF“ / L

Here A 5 as well as other piecewise constants to he defined later can be
evaluated at any point in the magnet. Sometimes an index i is attached to the
functions involved to denote this arbitrariness, with the understanding that
i stands for either 1, 2 or other point indices. For example, Eq.(l0) can be
written as

1
[Fu]= 2 Fu CF, Pui tody Ht du2_ dul)/ L

If F =0, then ¥; +Ad, / L =0 and £q.(10) will be indefinite. This
will also happen to the other equations where F, @ppears in the denominator.
But, when one is looking for natural chromaticities or for the tune shifts
due to a relative gradient error ( AK/K), if the magnet in question is a
qﬁad:upole, the term he has to calculate will fortunately be SzzFu Pudz . S50
Eq.(10) can be rewritten as Z

1
[FuPu]=E(Fu(3ui+ Yoo + Add, 7 1) (12
In this case Eg.(12) always works, no matter how much Fo is.

-5~




Let us stick to the supposition that E‘u # 0. Then

td, Pu]=A( duFu)/ L-[0d, Fu-] = Af du(iu)/ L-2+2[ P“]‘u]

AL, B/ b2+ Apulﬁul -rdy P“]
Therefore, [ clu'{.iu]= 1? A pu [F“] +-z1—L Al du(iu) -1,

So one arrives at

2,_ 1 .
[F“]=Z_FA.[AP“P“+ dy Pu]
i
1
~ =ZE(JAF“[F“]+ A(du(Ju)/L—z) (3

And, at the same time, some more equations are obtained such as
¥ - & A = Al oy B *
tPu " s pu[{aul 2L 4! ufau) z
29 L S -l
[du1—4AFu[Pu] 4L A(d“(Bu) -
2.) 1) function is the periodic solution of equation

')""%')’% (1a)

IfF_ = K+—1-a¢ 0, it is easy to give
x P2 :

Bt 1 WIS 1 e e 4 SAEELRY

wn

-¢d " LAY
101—[7-91/Fx=(f, an'/ L)/ F, (15)

A special example is, for separate function bending magnets where K = 0, one
conseguently has

PRI UV EEOR

ti= pc1-an/ gy

where BB is the bending angle.

(BN L UH ko



In order to find [ Uzl and [ 0‘2], one can make use of another piecewise
constant, which is defined as

- BRI SR T
Ay = (0, ij’) Y U (16)

It is obvious that A0'= 0, and that

1 24 . 1 , 1 1 .2
E(')--T—)]~-ETA( ')(D-E—f—\)’f'ﬁl') )

Therefore,
tN'21=<F¢» +—'—A(V)'(9—'—n (un
z =™ 2L Fxf
2 1 1 1 | 2 &Y
= = Ap -~ ——— . - — - a
[97) = 3 Ry~ e at) (Y Fuf” +(F,,y)‘ L (18)

3.) It seemed more difficult at ficrst thought to f£ind relatively simple
expressions for integrals of @-9 combined functions, such as the 36
function defined bv Eq. (). Because }{,'=(2/f 0o pxg "1, F ieself is
a piecewise constant if L[f = 0. But this doesn't help anything since one is
only Iinterested in calculating [3£] of bending magnets where l{f must be
non-zero. However, this idea encourages attempts to find another Function
which is similar to }L but is piecewisely constant even if 1{f 0.

This is done by defining several functions:
U(z)=d(9~—-1 Y+ Y v Y(’)-—1 Y+ d N s
X Fx f X X an X
')‘ )V+‘) U‘((O" fz+U2\/Px {191
And one can use Eqs,(8) and (14) to prove the following equations:
U= -V ; vi= B U ; Ag'=0 {20}
An interesting conclusion can be drawn from Bq.{20) that V and U are a pair
of independent solutions to equation u'' + Fyu = 0. Ay is a new plecewise

constant which is nothing but 7& function with 9 replaced by | 9 F }
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Therefore,

[Hi=Ca,+ Ff (Fr)131~ H—F—rAu/L+(Fr)z[X] f2n

where A, and U are evaluated by Eq.(19) and [)’x] by Eq.(ll), For example, in

a separate function machine, one can give

2p z
[}E]- ((')1 f)+uz)+-i—(u -UH (P’“ f Tui)* i tdly,- o)

zL X2
where U = dx(l‘)-f) +(jx9'.

Functions U and V alsc help get the expression for [(j ?)] in the way shown
below,. Since

TP L gy YY) Apr')l‘wx(ﬂ“g';yﬂ ’,:71
and 25, [ f§,0] = [(APx*r d,M1 =APx[')] talt dyN/ Lo d, 01,
one comes to
[Px')]=3—'—h(2Ath9] J,1:3’1+A(U+c:l,"})/:.)

1
& — 2A - —- + A{ 2 + ' L 22)
3T, ¢ th')] 3 [Py + a¢ el + )/ (
All the integrals mentioned in the first section have been expressed by

functions at maqnet edges through Eqs. (10}, (LL),(13), (15}, (17),(18), (L) and
(22) as long as Fu # 0.

4.) IfF =0, the integrals can be directly obtained by using the following
expressions which are valid in this case

‘au= Pui -2 dul(z “24) + )’ml(z -21’2

dru= du1 - xul(z “24) ¥

u Yui { constant )

9= 91 + 9; lz -z4) +z_‘i (z —11)2 H 9' 9’1 + 7‘;— (z -z,) (23)

- =

S AT



and using equation ({z —zl)n] = L7/ (a+1) . Therefore,
= - ! 2 _ 1 1 2,
LRul= fu du1L+3-Yu1L =3 ‘Fuf’ﬂuz’ g Yo B
L Yu] = Yui i
2. p® 2 2,.2 3,1 g2 4
! (3u 1= {5u1 “2 Ay Bt 3 (1t 305" =y ¥yl +_? Yo b

- 2,1 .2 A oyz .2,
'[(su]+ L(dul.ol‘u2+5 p BT

5 at
| ’ 1 2 1
[‘)1=01+?7)1L+E}7"‘-‘01 ')2"'12_] ‘
[')2]=[')]2+1—1£L2('];_'J,2 %(L/r) ;
U)'2]= U'l')f,_+—— (L/f) ;

%A
[f.))

and, if

5:.
:e.

fol y>t:1')1 xl?l) 4.sz dxl 4_,} x:. i
8
[Fx]'[r)]_ﬁ[‘ ( d‘xj.',z+ xz')l-r_r,_f 2}’xi (243

= Q,

]

n
=

1
7
l(’d ‘)]-—('}1 2”? ]'—'L ( dul?I2+du2?/1)

5.) Most equations introduced in this section exhibit a symmetric appearance
of the functions at the two edges so that the contributions from the two
halves of the magnet will be the same if the functiom in question is mirror
symmetric in the magnet. This may explain why the expressions using Eunctions
at the two edges are simpler than those using functions at only one edge, say
at the entrance. In the case where F, # 0, it is interesting that all the
expressions proved in this section don't depend on which mathematical
functions are used to describe /Su or y in the magnet. In f£act, even no
consideration was given to such descriptions.

-9-
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€. Integrals Expressed by Function Values at Magnet Midpoint

1.) One can make use of the symmetry of the integrand functions in an
alternative way, that is, by expressing them with functions evaluatec at the
midpoint of the magnet. The Appendix attached describes three functions, with
the aid of which the expressions required can be much simplified, The
funections are defined as

. cos(,Fu z) if Fu >0,
c 2= Za ¢-F " 22" s2my1 = 1, iEF =0,
u n=0 u u
cosh( —E‘u z) if E‘u <0
- sin(]Fu z)/lE‘u R if Fu >0 ,
su(z)=Z°(—1-‘u)“ 227 s onenyr = z , tEF =0,
n=
sinh{( —Fu 2}/, —Fu , if E‘u<0 s
o2
_ _ n _2n+2 = s
D tz)= F -F 0" z /(2n+2) ! = (1-Ct2))/ F, , iEF A0,
n=0 1 2 {£F =0
z Z ' i u = (25)

Their properties are given in the Appendix in much detail.

Let m denote the midpoint of the magnet. The main machine functions are given
in terms of the functions defined by Eq.(25) as

(20 Pumcuz(z -z )+ Yumsuz(z —zg)- 2 B Otz —2)5, (2 ~2) 3
du(z)= d!.uﬂcuz(z ~Zg)= Fy duuns!.\ztz -zm)”Fu(aum_ Yum)cu(z “Z)S,tz —zg) g
Y, (2= Ymcuz(z ~z )+ I-‘uz Fumsuz (z ~z)+ 2 F O € (z —2))8 (z ~z) &
VJ (z)= ')m C (z ~zp)+ '):n S, (z —z)+ )‘—, D (z -z)

I)' (2)= '); C, (z —zp+( }7 - F M) Selz —zp) 26)
It is seen that the use of functions cu' 5, and D, makes function expressions
independent on the sign of Fu' For example, if F,= 0, Eq.(26) will

automatically read the same as Eq. (23).

- 10 -
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It 1s obvious that, if Sz -z.) is an odd function, [ f(z -zm)] = 0. Thig
reduces the numhecr of the terms one has to calculate almost to its half,

since Su(z) i3 an odd function while hoth Cu(z) and Du(z) are even functions.

2.) The terms involved in the integrals are treated one by onpe as follows,
The details can be found in the Appendix. For brevity, the variable of the
functions in the following expressions will b2 omitted if it is [z -z} . Some
terms 2re named as Pi, (i =1, 2,...6) to keep the succeeding expressions
independent on whether F is 0.
w2y ;T c Y-

£c,l= {1+ S (LI/LY 3

zﬂ
L ~u

2 2 2 }
e, 52]=—-53(L/2) : fcu31=—,_,'5u"“/2"3—LFusu3(L/2‘ ; _

L0 '
1 <
LsLl = I——“_(I-S(LI/L) . itF, 70,
k] , ift-‘u=0;
D 1=p = {1 - 2 IEF_#0
[U]-Pz-i‘__“—(l T St/2n itEF #0 .
.2 ; = .
_zzL , lfFu-O ¥
[s2D J=p,={+ (p -5 31w/ iEF_#0
u 3 {F“ 1 3 "u < ’ u . !
S A iIEF =0 : i
150 !
) 2, - P, c?op P -F =, -p, + =5 Yy ‘f
[CyD,d=2; =P, 5 [C D1=7, P3 = Py 7 By * 37 Su MD) ’s
24_p - f1 - i
{p,°1= 4-1&(2?2 P ) itF, 70, !
1 .4 i = s i
3201_. ’ ifEF =0 : :
t
2 . 24 _ 1 - i :
te, su]-Ps-isFu(l zL s,(2m)) IEF, #0,
2 ; -
12[_, , 1EFu—D H
4 1 _ . :
[Cu] —z-(1+5(L)/D) E‘ PS H
4 :
[5,1=72 = 1—-(9 -Pg ) . icr 70,
ifF =0 (27

- 11 -
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It is convenlent in writing programs to have some more parameters defined as -

< . - 24 . _ 2
Qo =f0c, ) 0, = 0,71 03—[Cuﬂu] (283

: . ) . LI
If F =0, the definition of § iz}, Bq.(25), gives that 2t Q= 1, Q4= 1z Lo, =

3.) Using Eqg.(26), one can express anv machine functions he is interested in
by Cu, su and Du, such as:

2 @2 .4, yZ _ 4 2 a2
{iu {z)= (-“um e fe ¥ 5,0 2ar3d e %s 2- a1 d

4 4 l.lm‘ um u yl.lll'l u u ‘u

2,22, 2.2,V 202 2
)) (zi= vm Ce ‘}m Sy *an +F 0mCxDx‘ I olmsxnf' 2 ')m qun Csx

P 2= Yole B (—-- 7o Nt 25,0 z’)m(—- sx')m)cnsx ;
1 1
{3 ’) Fxm ')m xt Cm T 2 m CSK * 7 mecxsz+ -f yxm'qmcsz
2
* yxrnql!lsx + (Smem” 2d,p N )szsx - F o enCa 4P (29

It may be a surprise that thes formula for }'ﬂ is relatively very simple.
The results are:

d) * P )" «d,mo.; Pm ITENTIY IR A R
3 Puent F VusaPt Fohum B 25,70
dx )% ¥l (dmnm+ Von iy ()t fm ) I
f mesxsxz = mecx"x*'j?dxmsx‘ 2810 s
DCd, 0 e ) dxn+pxow
L XL L UL SN [ MRS

2 2
Fxmx"'yn-zo‘xmxx (30)

H

- 12 -



whece FEo = ¥ o M2+ 2 d, et Pea e -
Now there is no difficulty For one to arrive at
[Pu]= F‘um Q+ Yyun®y 7
TV ¥un 0 * B’ fun By
[’)]= Ule-*-‘—;- P, i
(8= Pun D@ =F 00+ Yo Ny -2 ulmg;)of-}f!am(pz—rxpsw-}- Vouls ¢
tH- %m -5 amn.’.n Valw %2+ 33 P T Den Pa )

2
[92]_ +n'2 1 f?- 4+70m(P P2’ H
129 2 L .
(1= n HF-F“')“‘) By
rF“2]= P“i‘ (Q, - F, B ) + Y;‘p6+2(1+3d“’;n)vs (3L

For clarity, the parameters Qi(i=1,2,3) and Pi(i=1.,2...6) are given again by

- . 1 . -2 43 .
Ql—LS(L/Z) PG m g (145,0/8) ¢ 0y =TS0/
1 .
P1=iﬁ 1-0) iEF, 40,
Q3 ifFu=0;
p,={-(1-0 if P
2" r“( l) ’ 1 ufo'
% iEF =0
1 .
P3={E ‘03) ’ lfFui‘D'
: 0.15 L2 Py iEF =0 ;
p,={X(2p,-» if P 0
q: F“-( 2 1) [ b 3 uf ’
% iEP =0

-13 -




Ps’i'alﬁ( 1-s (/@) , ifP #0,
a, . if F,=0
P6=1ﬁ(?1-1’5) s iftF #0,
293 , if Fu=0 (321

where Pg and Py are only used in calculating [{3“2]. All these formulae, Egs.
(31) and (32), can be carried out by a program very easily. Readers who check
them will find that, after the functions at magnet edges are evaluated with
Eq. {26), all these formulae are well eguivalent to those introduced in the
last section. An advantage of Egs.({31) and (32) is that they are general
enough to cover all commonly used magnet types. The sign of F, only
influences how to evaluate Qi's and Pi's.

For a rough estimate, ore may expand Qi's and Pi's as power series in L and
use the ficst several terms only. The series read

Q1=1-—11;Fur.2+‘5“1-*u2n4- cee 8

Q2=1-#Funz+?}‘_—opuzn4-... PQ, =--;-'5L2(1--;-Eu:.2+... Yo
pyatfi-Teale iy R SR LR LR
?3=7l-16—°4-...: P4=§%;L4-...:
?5=-‘1-£L2(1-%FULZ+...) : P6=-B;;L4---. (33)

4.) The functions at the midpoit as well as su(L/Z) can be found by making
use of a half-element transfer matrix. Usually this is only needed for each
bending magnet. A display of the function values at all the bending magnet
midpoints may be considered worth doing, especially if the machine is to be a
synchrotron radiation source, If this is not preferred, Eg.(26) can be used
to give the relations between the functions at the midpoint and those at the
two edges, the lattar are usually calculated by every program. Since the
whole-element transfer matrix must have been known, one can get C (L)1= Mg
5,)= “12 on either x or y plane. Then the required functions are given by

- 14 -
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9 172 . .
Cu(L/Z)- (I t 1+ Cu(L))) H Su(L/Z)— Su(L)/(Z Cu(L/ZH H

D, (L/2)= sx2(1./2)/( 1+ c_(L/2)) (Or i——( 1- ¢ (L/2)) , ifF_#0,
2

-;— t?, ite, =0);
Sal2 L)=2 S, Cu(Ll H

fun = lz CPur * Puz * SuB/200 dypm dyy V/C, 720 g

dum = (Pur Puz?/ 2 8,80 (or €y + dyp/2C,m ) s

m

"= (0, -0 0/42 8 (L/2Y) or (W +Nn! /2 c w2y 134)
N M- X 17 x

u
P 2 o
"i <9y "92 - F D, (L/2))/C (L/2)

5.) Separat2 function type is perhaps most commonly adopted nowadays in
machine design. More attention is therefore paid to this special case in
which, for all the bending magr}ets, K = 0 and consequently Fo= i/f 2 f Fy= 0.
The following formulae can be used in a program specially made for this case:

[v]=r+(r)m-f) sin( BB/Z)/(GB/Z) H
3= Ha - 2 el Vat Vem! D f 1) (- sEnt Bp/20/( /)
+% ¢ Fxm- JJZ yxm) {1- sin 03/ 6y

{Px=%(3m(l+sin9/9)+—f V(- sin 6,/ 65) +

-

Ld.- 1? Ye!1# sin By/ By) + - sinfy/ ;)

zfz Fxm
[Fx2]= -%— (me(u sin g/ 0p) + ;f Ymu— sin f5/ 05)

+;—P (2+sd2 ——Fm f)} ) (1~ sin2 Bg/(2 6,))

- 15 -
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[)71= 3 (N Pr2as sin By/ By) + o P2 Y201 sinBy/ 0y
+I)z +2p (R~ P) sintBy/2/( B/ s
[')'2]- > r):z(u sin §p/ 65) +ET (N f) (1- sin 5/ 8y)
:qu1= Pm( Vo Iz (1-—sin (85/2))sint8p/2)/ (By/2) +-{3xmf1* sinf/fy)
+'if Nmtl-sinaB/GBH;f ot D= 372 dy Y sin® (Byr2r/ B/
tfyl- fym P Yk A AP B U S
le— Fym + & PPusadin 92 aof Ugm 05 135)
where BB= :./f is the bending angle. Usually [rxv)l is not needed in this case.

The first two of Eq.{35) are much more significant than the rest. In the
procedure of machine design, f and BB of every bending magnet are usually
decided before lattice optimization. So, during lattice optimization, [))] is
determined by 9m alone and, therefore, the momentum compaction factor is
linearly dependent on 9m of every hending magnet and can be made a "fit
function™ of the program., With all the GB—dependent coefficients
precalcnlated, [Jﬂ] is determined so fast that its minimization can also be
set as a criterion of cptimization.

The partition numbers Tee I

and J_ are also related to [9] . The formulae
2}, 3) Y
are®’’

=1-Dd: I=1; Ig=2+D; D=1,/1,

where the machine integrals 14 and I2 are given by

_Z' 'z+zx) dz - '-J—,_etanee: I Z La
577 V- e ) 2= g

é and Ze'- denote summations for all the bhending magnets and all the
bending magnet edges, respectively.
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Suppose F = 0 and edge angles el.= 92= Ge in every bending magnet. Then the
contribution from a bending magnet and its edges to 14 is

2
Pz

and thus the partition numbers are all determined by nm alone.

2 tan § )+ ( 'Jm’f" sin{ §p/2) -cos( B /2)tan B,)

1
Tam™ ] ( 8-
I4
Especially, if the bending magnet is rectangular, that is, ee= OB /2 , then

1
I,= 7= By~ 2 tan{ B, /2))
4 B f B B
is entirely independent on lattice configurationr., provided that f and BB
are chosen already. Furthermore, if f is identical for all the bending
magnets, then

D=1- ;’r—étan( B, /2) (37

This means the partition numbers are determined by G'B alone. If all the
bending magnets are wholly identical, flat (nho gradient} and rectangular,
then

J= tan{ 95/2)/( bg/2)= tan B/ 8, s Il Jp=3-3 (38

J, is greater than 1 but very close to 1.
In the calculation of 14, effects of bending magnets and their edges are
combined and it seems that the formula can be simplified to the greatest
extent when the magnets are flat and rectanqular. Similar attempts are made
for first order chromaticity calculation, in which a similar combination
takes place. But the results are not very satisfactory, giving a relatively
: 5}

simple formula for & and a complicated one far gy'
6.) Two more integrals are sometimes useful in solving problems and their
evaluations also benefit from the properties of C,r 8, and D, They are

Z2

2

z3
SzJ'F_u sin( 9“," 9’“1) dz and S J—P_“ cos ( ?’u- yul) dz

- 17 -
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2

where \yu— 9’u1= Sz'(]./ Pu('z')) dz is the phase advance from zy to another point
in the magnet, indicated by z. The relation between transfer matrix elements
and {3 fanction gives?) '

Cylz-z)= {(ﬂu(z)/ (%1 (cos( Y (z1- P 1 + dyy sin(piz-¥ 0 s
sy(z-2)= [ Pu‘z"{‘ul sin( ¥, (- ¥, (39)
Since Su(z)= Scu(z)dz, Du(z)= Ssu(z)dz, one can soon ohtain

22
S ,’Pu Sin(\}’u— \Yui) dz = D, L)/ Ful d

E]

22 _ _
S ,J Fu cos ( Svu— ?ui) dz = (Ful su([') d‘ul Du(m ‘/J (jul (40)
24

Of course, these two integrals can also be expressed by functions at z,
. z -
zy- If the phase advance is written as \}'u- 9’“‘- Sz 1/ Pu) dz, one gets
™

22 23
Sz fF:sin( Y- Yupidz = 0 SZJF;cos( 9@- 9Lm)dz =2 ,Fumsu(nlz) (41)
1

1

or

Eq. (41} looks much simpler tham but is equivalent to Eq. (40%.

* * * * *
All the equations introduced above have been carefully checked to assure
their mathematical correctness. Most of them have been used in programs and
they gave exactly the ssme results as obtained from other programs, though
the formulae adopted by the latter are more complicated.
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Attached to “"TECHNIQUES IN MACHINE FUNCTION INTEGRAL CALCULATIONS"
APPENDIX

Functions Cu(z), Su(z) and Du(z)

1.) This appendix describes three functions and presents a summary of their
valuable properties. The functions are dependent both on a parameter Fu' that
is the focusing strength on u plane, and on a variable z, that is usually the
azimuthal coordinate. u is understoaod to be x or y, corresponding to
horizontal or vertical plane respectively. If expressed by these functionsg,
most formulae commonly used in accelerator physics will give a uniform
appearance.

The functions are defined as

cos { Fu z) ' if Fu >0,
oY
_ _ n _2n _ : -
c,(z)= Eo( F " 2% s2m = 1, IEF =0,
cosh(JFF "=z) , iEF <0 (A1)
sin('ﬁ‘: z)/hﬁ: v if F,>0,
- d
s ta)= Z-F )" 2™ senenyy - z . EF, =0,
n=0
sinh([F, =)/ [F, , ifF, <0 (A2)
-
b z1= Z(F " 222 sonent = i (1-cyz/ ®, , LEF _F0,
n=4
-12—22 , iEF, =0 (A3)

All of them are continuous either with respect to z or with respect to Fos
even in the vicinity of Fu = 0.

They may be named as cosine-like function, sine-like function and dispersion-
arising function respectively.

2.) The fundamental properties of these functions are as follows:

- 19 -
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Let ' denote d/dz . Cu(z) is the cosine-like solution of the differential
equatisn u'' + F,u=20, where E‘u is a constant, no matter whether positive,
zero or negative, Su(z) is the sine-like solution of the equation, Du(z) is
the particular solution of eqguation u'' + F,u=1, with initial value and
initial first derivative both equal to zero. Expressed by formulae, that 1is

[} = - = . = H
Cu + Fu cu =0 ; Cu(n) 1 Cu'(O) 0D ;
Su"+ l-“J Su=0 H Su(0)=0 H Su'(0:=l H
Du"+ Fu D, = 1 Du(0)= 0 s Du'(0)= 4 (A4)

So, if magnet length is measured in meters, Fu is in m'2 and cu in unit, su
in m, Du in mz. If one tries to solve Eg,(A4) by series, the results will be
just the definition equations(Al), (A2) and (A3).

3.) 1In a sense these functions are pseude-trigonometric functions, among
which Cu and D, are even functions while S, is odd. One can give

Cu(—zl= C“(z) H Su(—z)= - S“(z) H Du(—z)= Du(z) (A5)
and Cu(zl + z2)= Cu(zl)-cu(zz) - Fu-su(zl)-su(zz) s

Sylzy + 2,)= 5,12,)-C {z,) + C(z,). S (2,) (A6)
Combination of Eqgs.(A5) and (A6) makes almost all the trigonometrical
invariant eguations still valid for 8, and ¢, after necessary modification.

For example,

2, . 2, . _
Cu (z)+ Fu su (z) =1 (A7)
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- 2 - 2 _ 2 oy o= v 2 .
Cu(Zz)— Cu {z)- F 5,7(z) = 2C “(z} -1 =1-2 Fusu [£3]

5,(22)= 2 8, (2) C (z)

Fo Su(z/Z) - F, S,(2) 1-c ta)

Cu(z/Z) 1+ C (=) S,(2) (AB)

From Eq. (A3}, one gets

C,lz)+ F D (z) =1 (R9)

Therefore, the relation among Du' su and Cu is

b lz)= st/ + c, (1) = 2 5.2(z/2) (a10}

2 =
or s “(z)- C,(2) D {z) = D (2] (ALL)

Egs.{A7), (A9) and (All) are the three invariant eguations used most
frequently in formula simplification,

4,) The derivatives of the functions with respect to z are

Cpl(z)= = F, 5,(2) ; 8,'(z)=C (a) ; D, "{z)= 8§ (2) (a12)

z
So D, (2} can also be defined as S S“('z') Jz ..
. . [

Because these functions keep continuous when Pu varies, one can get their
derivatives with respect to I‘u, which also present a uniform appearance well
. independent on the sign of Fu.

1
acu(z)/ apu =-Zz8,(2) 3

: ' 1
. 95,(2)/ 9%, = { T (2 Culz) = Stz ifF, A0,
. ' -1 3 i =0 ;
_ 3 . if Fa=0
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1 1 .

0,2}/ OF, =4 - T (Pul®) -z s, iR Fo,
4 : _ .
z . if 'E‘u— Q

1
D(-F 8, (2))/F, =~ 2 (2 C z) + 5,(2) (ALY
For the relation among the derivatives one has
0D, (z)/ QF, = 4-5,(2/2)- D(5,(z/2))/QF : (3D,/AF)'=3S/AF,
(2s,/dF,)'=BC /AP, ¢ (JC/AF = J-F S}/ DF, (A18)

s, or D,. Function W/ BFn satisfies

Let wu repregsent either Cu’ "

(awu/aFu)"+ Fu(awu/apu)= - W, g
(09, /3F ) | 5oy =W/ AF ) | gug = O aLs)

The differential eguation can he directly obtained by deriving the equation
W ''+ F W, =0o0r 1wvith respect to F,. Functions (awulasu) are useful in
finding the linear dependence of a transfer matrix om the focusing strength.

For the linear dependence of a transfer matrix on the coupling strength Erom
the other transverse plane, another group of functions can help. They are
defined as:

AWu/AFu={(Wx- LERVAR SR NI ifF_#E
aw‘/brx ' ifF, - R (A16)
where Wu may be C“, Syr D, or - Fusu‘ This group of functions satisfies

(AD,/ AP )'= A8 /AF, i (4S,/AF)'= sC /aF, ;

(AC,/ AF,)'= A(-P,S )/ AP (AW /aF )|, =0

{aW /AF,)'"+ F, (AW / AF, )= - WY H

LaW,/ aF) '+ B, (aW,/ AF )= - W, (aL7)
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5.) The standard form of the first order particle motion equation in a
magnet is

u''+ E‘u = e—
Ju

where u is x or y, & is enecgy deviation, Jf, is the curvature radius of

the ideal central orbit on u plane. Pu and F, are constant within a magnet,

(A18)

and they are related with magnetic field components by

1/ P8, /BPI, L7py -8, /8Py
o= (3B /30 / BRI/ P02 1 Fym (BB /AN BP gL/ P07

X

where (Bf )0 is the particle rigidity.

Let u, and u' denote ulz-z and respectively, The solution of
bt -]

EqQ.{Al8) in the magnet is

u l 2=2¢q

u (z}= 4y Cu(z —zo) + u'° su(z ~z4) +-}T¢D“(z -25) 3
u* (z)= u'o Cu(z -24} +(-f;.— - Fu u, ) Su(z —zo) (Al9)
w

Therefore., in the theory of transfz=r matrices, the matrix of an L-~meter-long
magnet reads

C, (L} S, (L) D,/ Py
Muﬂ'_) = - Fu-su(L) C, su(I.)/f“ {A20)
0 0 1

Some computer programs need the deriva:tives of the transfer matrix with
respect to the focusing strength or the length of the magnet in order to get
the linear dependence of machine parameters. The deriatives can be expressed
by

BMu = F,-8,{L) Cutm Su(L)/ j’u

oL - F,+C,(0) ~ F 5,0} C i/ Py (a21)
0 0 0
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1
BMU= 1 -3 L5, (L) 05,/ 3F, (dD, LI/ AF Y/ p,
- — - —_ ! -
?F, 2 (LCyL1+5 (L) LS, W (as,(/ar)/ p, (a2
0 0 0

where S (L)/QJF, and 3D (L)/ 3Fu are avaluated by Eq.(Al3) with ¢z = L,

Whatever wvalue Fu is, Egs.(A20), (A21) and (A22) as well as all the ather
equations introduced in this appendix keep correct. This helps to make a
universal subroutine program for calculating all the elements of either a
transfer matrix or its derivative matrices. The subroutine is as short as
about 50 lines but able to cover almost all the rcases one usually meets with
{except the matrices for magnet edges). Input information is 4 arguments:
Fu' l/.fu' L and an integer number indicating which are wanted as output «—
the elements of the transfer matrix of the magnet, or of the derivative
matrix with respect to F, or of the derivative matrix with respect to L, Here
what the word "magnet” means is a quadrupole, a bending magnet or a drift.
The matrix may represent the motion on either x or y plane. The only
condition is that T, and 1/ fu remain unchanged within the length L. An
explanation for the sign of the parameters is as follows.

Pocusing strength Fy is positive for focusing magnets, negative for
defocusing magnets, or zero for non-focusing elements such as a drift.
Magnetic field 1/‘f“ is positive for normally (inward) bending magnets,
negative for reversely (outward) bending magnets, or zero for non-bending
elements. For example, 1/ f is always zero in a machine with only horizontal
bending. Effective length L is usually positive. If L is negative, output
will be the inverse transfer matrix, in other words,

1 0 0

. a )
ML) = (M (L)) or M (-L)* ¥ (L) = 0 1 o
0 0 1

IfL = 0, M_ will be the unit matrix and M/ aFu will be the zero matrix,
whatever F  and 1/ fu are.

Not only the matrix elements, but algo all the widely used machine functions
can be given a uniform, simple description., Let index o denote function value
at point z, and suppose F, and I/yu are constant between 2z

o and z.
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As a solution to equation 9"+ P

1
x9=—f_"

1
7)(7.)= 7)0 Colz -z) + 9'0 S .z -z.) +—-: D fz —25)

1
[ = ] - —— -
Nizr= Ny Cplz m2zp) + 7 Fello ) Silz —20) (A23)
R
[5 function is a solution to equation ﬁu"' +4 Fu {ﬂu' = 0 , which is
. . N v ~ i
obtained from the relatiens [J '=~ 2¢\, , ol,'= F, pu Y, am
Yo' 27, du on the condition that F ' =0 . Tharafore,

- 2, _ 2, _ - - - R
PU(Z)_ (auocu lz=z )+ yuosu {zmz5)= 2 d‘uocu(z zo)Su(z Zo) d

2 2 .
du(z)= duocu 2=z, - E‘ucluosu "z_zo)"'(Fu{suob a’uo)Cu(z-zo)Surz-zo) i

2

_ 2, - 2 _ - _
¥ (2= Yuocu (z-2)+F Puosu (z-z)+2 F ol Cyl2-2,)8  (z-2.) (A24)

6.) Some integrals are useful in parameter calculation, Here is a list of
the indefinite integrals possibly involved: L

SC dz

u = Su(z)
Ssu dz = b, (z) :
1 ; :
SDudz= E(z-su(z)) ’ 1fE‘u;€0, ;
1 3 § -
e z® ifF =0
2 _ 1 1 1 i
Scu dz = = (z + C (2)8,(z)) = 5 (z + 5 5,(22)) %
12 2 .
Cusu dz = z Su (z) = ry Du(zz)
s 2dz={ = (z - ¢ (z)38.(2)) LEF A0 |
u 2Fu u a ' u ' 5
1 3 : - i
3 2 . if Fu =0

2 .. _ 1 . i
(o:Ssu dz = 2 (Su(zluu(z) +jDu dz ) )

12
SSUDu dz = — D, “(z)

N
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3

1
Su(z) - — Fu Su {z)

1

8 3
1 , _ 2. 2
——(Z+_z—su‘zz)) F“scu 5, dz
1,02, (.2.2
_F:‘jsu dz jcusu daz ) ,
L2

i

3
1

2
= Du (3¢ 1 - 3 Fu Du(z))

1 2 2
B,z ¢ Cu(z) + 3 7,0 Dy iz

1

Fu
1

2 U R
(Ss“ dz asu z}y .

10 '

§o.

2
az - Fujsu D‘_l az

2 ! 3
b, "z - 3 F, D, (2)

2 2
Su(z) Du (z) - ZSSu Du dz

5

1 1
T (2 - T Syt

’

IEF, 70, :

1EP =0
1 )
LEF # 0,
ifF, =0
iET #0,
iEF, =0
ifEF f0,
iEF =0

More complicated integrals can also be worked out but are less useful. It is
easy to convert these eguations into expressions cof averaged functions.
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sometimes the integrands one has to deal with are cambinations of functions
on the two transverse planes, for example, in caleculating py dz . Some
indefinite integrals of this kind are presented helow. Note that the indices
x and y can be exchanged, that is, they are not fixed to a certain plane.

Suppose Fx # Fy' Otherwise one can make Wy = W, and £ind the results in the

preceding list.

Scxcy dz = ( F, 5, (2) Cy(z) - Fy c, (2 Sy(z))/( F - E‘y )

.

SSKSY dz = ( Sx(z) Cy(z) - Cx(z) Sy(z))/( Fx— FV }

SCXSY dz = { Fx Sx(z) Sytz) + Cx(z) Cy(z))/( Fx- FY )

S Cny dz = Sx(z) Dy(z) —Ssxsy dz

S SXDY dz = { Sx(z) Sy(z) ~ C (2} Dy(z) - Dx(z))/( Fx_ Fy )

S Dny dz = {z —Sx(z) —,SY(Z)+ SCXCY dz )/ { FxFY Yo if Fx# 0, E‘y# 0,
1.2 1 . _
Gsz (z - 3 Sx(z))+*r-.:;i- (Sx(z\ -2 Cx(z)) ’ if Fy-— 0

And one can get expressions of Ssxz dz, Scxz dz, Scxzz dz, etc. by
transformation of the abave equations on the supposition that Fx or Fy = 0.

Suppose E‘x £ 4 Fy. Otherwise, one can relate Wx(z) to Wy(ZZ) and find the
results in the preceding list.

s C da
S X-ysy z

1
[ 5,.02) CY(ZZ) -3 Ckl2) SY(ZZ))/( Feo 4 F)

"

1 oA
C,Cy8y 42 = ( C,(2) C (22) + 3 F, 5, (2) S, (22))/%

=}
*n
|/:]
&
n

1 2 _ _
vy { 2 (Sy (z) SX(Z)SY(ZZ)) + Dx(z)Cy(Zz))/( Fo— 4 Fy )

2
Selz) € f(z) + 2 ijsxcysy az

<7
N
]

Y'Y

L S . et I )
n
2]
N
o’}
N
1]

2
Sx(z) SY (z) - 255 c s, dz
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H
4.
i
T
[
1.
2
H

e

e — b b, Y T

2 . 2
S chy dz = Dx(z) CY (zy + 2 Fy SDxcysy dz
s 8 2daz=0_(2 s.2z) -2|pcs az
Sy ® Y ¥y
pelareS(+z+rts 2 —Scc’-a /F i
Xy = i z 2" 5yl?2 Ly 92 VEL iEr, #0.,
2 3 1 2 :
c 2p g3 L =
( z Y(22)"' 3 ‘Iz ( > FYZ )SY(ZZ))/(BFy) , 1iE Fo 0
p.s 2dz= (So az - \nc,2az )/ F iEF. £ 0
'y % X7y y ! Fo '
ZijDydz i F =0

2
W a ~- W
s "CYDY z S WxSY dz j ny dz

X
2
= -15 - d
S styny daz sx(z)sy(z)ny(z) 5 nyDy az stsy z
2
dz = D ~-1D - a
Ssxsyny z x(z)Sy(z)DY(z) j nyDY daz jnxsy z

This appendix has summarized almost all possibly useful information about Cyr

su and D 50 as to make them very convenient tools in accelerator physics
calculations.
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