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Synopsis 

High~pressure phase-equilibrium calculations using an 
equation of state are more sensitive to the mixing rules than 
to details in the effect of density or temperature on pressure. 
Therefore, calculations using any one of the currently popular 
equations of state are often successful provided at least one 
binary parameter is included in the mixing rules; in some cases, 
two binary parameters are required. However, for significant 
progress, more fundamental attention must be given to the prob~ 
lem of how to extend equations of state to mixtures. One pos~ 
sible technique is provided by perturbation theory; another by 
superposition of chemical equilibria. 

At low or moderate pressures, vapor~phase corrections are 
often important. When specific intermolecular forces produce 
formation of molecular aggregates, strong deviations from ideal~ 
gas behavior can be significant even at pressures well below 
l bar. 

When vapor-liquid equilibrium data are reduced using con~ 
ventional expressions for the excess Gibbs energy, the resulting 
binary parameters tend to be partially correlated and therefore, 
not unique. Lack of uniqueness makes it difficult, but not 
impossible, to calculate ternary liquid-liquid equilibria using 
binary parameters only. 

New models for calculating properties of liquid~phase 
mixtures must allow for changes in free volume to give consid­
eration to the effect of mixing on changes in rotational and 
vibrational degrees of freedom. Liquid-phase volumetric effects 
are also important in describing the solubilities of gases in 
solvent mixtures. Therefore, future liquid-phase models should 
incorporate a liquid-phase equation of state, either of the 
van der Waals type or, perhaps, as given by the direct-correla­
tion function theory of liquids. 
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While the executive committee for this conference has 

honored me by requesting that I once again present a review 

of the state of the art of phase equilibria, this assignment 

presents me with a difficult conflict. On the one hand, I 

must be fair and perceptive but on the other, I must choose 

and omit. In the limited time available, I must both include 

and exclude, thereby unavoidably giving preferences on grounds 

which are based on little more than my own opinions. There­

fore, let me at once apologize not so much for what I shall 

say, but for what I shall not say. 

Phase equilibrium thermodynamics has generated a vast 

literature and in the space of one hour I can only mention 

a few topics. My choices are in no sense dogmatic; I fully 

recognize that in choosing particular topics, I reveal my 

personal preferences; others may well choose differently and, 

no doubt, with good reason. My position is similar to that 

of the late Professor Guggenheim: When his book ''Thermo­

dynamics" was published, a reviewer made a pertinent 

remark that surely applies to me. The reviewer said, ''This 

book is very nice but it has an inappropriate title. It 

should be called Pride and Prejudice.'' Therefore, if in 

this short review I omit something dear to you, for example 

one of your own articles, please forgive me. At this festive 

ball, with so many distinguished beauties, it is not possible 

to dance with all the debutantes. 
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I should like to begin with some conunents on present 

problems concerning equations of state. Figure 1 presents 

a reminder to indicate why equations of state are important 

to us: given the relation between pressure, volume, temper­

ature and composition, we can calculate fugacities and thereby 

phase equilibria. There are two important items to remember: 

first, it is necessary that the equation of state apply to 

all phases of interest. That is obvious but the second item 

is not quite as evident: since the pressure is integ:t;_ated 

with respect to volume, the precise volume dependence is 

often not very important; however, since the pressure is 

differentiated with respect to mole number, calculated K 

factors are very sensitive to the effect of composition. The 

composition effect is included in what we commonly call mixing 

rules and we find that small changes in the mixing rules can 

have large consequences on phase equilibria. 

Figure 2 shows a few isotherms for methane calculated 

with three currently-popular equations of state: the Soave 

form of the Redlich-Kwong equation, the Pong-Robinson equation 

and the Lce-Kesler form of the Benedict-Webb-Rubin equation (l). 

There appears to be no major difference between the equations; 

all of them do well at densities below the critical but at 

higher densities, all show noticeable deviations from experiment. 

Figure 3 shows similar calculations for water and now the 

deviations from experiment are considerably larger, In deter-

mining the constants for these equations, for methane as well 
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as for water, priority has been given to the vapor-pressure 

data. Therefore, calculated vapor-pressures are good but 

calculated fluid densities, especially liquid densities, show 

appreciable error. Figures 2 and 3 illustrate that, after a 

hundred years of effort, we still do not have a satisfactory 

~jmple equation of state valid for the entire fluid-density 

region. 

It is possible to achieve good representation with a 

complicated equation of state, using a large number of ad­

justable constants and various equations of state for this 

purpose have been proposed. But these are not of interest 

here. Complicated equations require a large body of ex-

perimental data which is rarely available. To find an 

equation of state which is both simple and reliable, we must 

look to developments in molecular theory which, I expect, 

will be discussed later in this meeting. 

For process calculations, it is desireable to have an 

equation of state which is cubic in volume because it is 

then possible to find the roots of the equation analytically. 

Unfortunately, however, cubic equations are not capable of 

representing well the properties of real fluids over a wide 

density range. A comprehensive review by Martin (2) has 

shown convincingly that any cubic equation of state is a 

compromise, giving good representation in only part of the 

pressure-density diagram. 

Fortunately, however 1 even an inadequate equation of 

state can be remarkably useful for calculating vapor-liquid 
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equilibria, probably because fugacities (or K~factors) depend 

on an integral of the equation of state; it frequently happens 

that errors in the integral of a function are much smaller than 

errors in the function itself. As suggested by Figure 1, the 

effect of composition on pressure is more important than the 

effect of volume; the important quantity is the mixing rule. 

Figure 4 reviews conventional mixing rules and also reminds 

us that these apply to a one-fluid theory of mixtures, viz. 

the assumption that the properties of a mixture are equivalent 

to those of a hypothetical pure fluid whose characteristic 

constants are functions of composition. The one-fluid theory 

is so common that we have perhaps forgotten about alternatives 

such as the two-fluid theory. I shall briefly return to that 

alternative later. 

The important feature of Figure 4 is to indicate first, 

that there is only limited theoretical basis for the common 

mixing rules and second, that a binary constant, here called 

k .. , is introduced in one of the mixing rules. The importance 
lJ 

of this constant is shown in Figure 5 which reports calculations 

by D6ring (3) for the system methane-ethane. DBring calculates 

the binary parameter which gives minimum deviations from the 

experimental pressure. Two features are indicated: 

calculated phase-equilibria are sensitive to the binary para-

meter and second, the three equations of state studied give 

similar results. This figure illustrates our general ex-

perience that, at the present stage of development, the choice 
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of binary parameter is usually more important than the choice 

of a particular equation of state. 

While simple mixing rules and one binary constant are 

sufficient for many mixtures, some ~ixtures, especially those 

with at least one polar component, are better represented by 

somewhat different mixing rules, as indicated in Figure 6. 

One modification, particularly suitable for mixtures of small 

and large molecules, introduces a binary constant into the 

mixing rule for molecular-size constant b. Another modification 

attempts to take polarity into account by dividing the at-

tractive-force constant a into polar and nonpolar contributions. 

These modifications often help to achieve better re-

presentation but they do not solve the basic problem viz., 

that real mixtures are not random mixtures. Real molecules 

have preferences in their choice of neighbors and therefore 

the quadratic mole-fraction dependence of the equation-of-

state constants is meaningful only for simple mixtures where 

the random-mixing approximation is a good one. I will return 

to this in a moment but first I want to show two examples 

showing mixing-rule modifications in practice. Figure 7 

shows K factors for hydrogen in heavy hydrocarbons (4). 

In this case, attractive forces are relatively unimportant; 

much more important is the fluid structure when we mix small 

and large molecules. In this example, calculations by El-

Twaty are based on a modified Soave equation; the modification 

is due to the mixing rule for b; k .. is set equal to zero. 
lJ 
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As shown, it is also possible to fit the data using the 

original Soave equation but in that event, it is necessary to 

use unrealistically large values of k ... 
l] 

negative which makes little physical sense.) 

a .. 
l] 

Figure 8 shows calculations for the system hydrogen 

sulfide-water (5) using a Soave-type equation of state and 

two adjustable binary parameters. The binary constants are 

physically reasonable but unfortunately their temperature 

is 

dependence becomes appreciable, especially at lower temperatures. 

Further modifications in mixing rules are likely to attract 

more attention in the near future. Some useful empirical 

suggestions toward that end have been made by Huron and 

Vidal (6). 

The importance of binary parameters is not difficult 

to understand if we recall that, intermolecular forces between 

unlike molecules cannot, at present, be simply related to 

intermolecular forces between like molecules. Nevertheless, 

there is always the suspicion that a binary parameter is just 

a correction factor to hide our ignorance. Just how deep this 

suspicion is, was revealed to me some years ago in the men's 

room of Gilman Hall (University of California, Berkeley) 

where I found the graffiti shown in Figure 9. 

Inspired by this caustic conunent on k 12 , I now want to 

inquire how we may improve our treatment of mixtures by relaxing 

the random-mixing assumption. One possible method, shown in 

Figure 10, is to use perturbation theory which gives an 

expansion of the Helmholtz energy in powers of reciprocal 
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temperature. The zeroth term is the hard-sphere term; the 

composition dependence of this term is well-known (7). The 

first perturbation term is the random-mixing term where the 

quadratic mixing rules apply. The higher terms take into 

account the effect of nonrandomness, also called clustering. 

We have some, but not much, fundamental information about 

these terms. 

The important point in this expansion 1s that each 

term has its own mixing rule, suggested by theory. In this 

treatment we do not use one overall mixing rule but assign 

different mixing rules to different contributions to the 

Helmholtz energy. The Helmholtz energy is directly related 

to the equation of state and fugacities, as usual, are 

obtained by differentiation with respect to composition. 

An application of these ideas is shown in Figure 11 

where we see Henry's constants calculated by Liu for a 

variety of volatile solutes in polyethylene (8), using 

perturbed-hard-chain theory. Only one binary constant, 

independent of temperature, .is used for each binary system. 

The effect of temperature is represented very well, probably 

because an attempt was made to take into account the effect 

of nonrandom mixing. 

A more classical method to account for nonrandomness is 

provided by a chemical hypothesis as indicated in Figure 12. 

The preferences which molecules have in their choice of 

neighbors can be expressed quantitatively by formation of 
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complexes, i.e. through association and solvation equilibria. 

For simplicity, Figure 12 shows the general ideas for a pure 

fluid which can form dimers; in this view, a p<1re fluid is, 

in effect, a binary mixture consisting of monomers and dimers. 

The distribution of monomers and dimers is given by an 

equilibrium constant (a function of temperature only) and 

by fugacity coefficients as calculated from the partition 

function. 

To reduce these ideas to practice, it is necessary to 

make some quantitative statement about the various terms 

in the partition function; in particular, (see bottom of 

Figure 12) it is necessary to specify how these terms depend 

on volume. The details of these dependencies are not important 

here; in the simplest case, the free volume leads to a function 

(v-b) in the equation of state; the potential leads to a 

f t . ; 2 . h . f h'l h . 1 -unc-lon a v 1n t e equat1on o state; w 1 e t e rotat1ona 

and vibrational contributions are assumed independent of 

volume. The important point is that nonrandomness is taken 

seriously by taking into account strong specific forces of 

attraction. 

The chemical treatment is easily extended to mixtures 

but the calculations are formidable. In general, a binary 

mixture of components A and B contains five molecular species: 

monomers A and B and dimers A
2

, B
2 

and AB. 

An application of this type of chemical theory was made 

by Gmehling and Liu (9) who used the perturbed-hard-chain 
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partition function. Figure 13 shows calculated results for 

the highly polar system methanol-water at moderate and high 

pressures. For the entire range shown, only two binary 

parameters are required; these are for the cross dimer: one 

standard enthalpy and one standard ~ntropy of formation. 

Similar chemical-type calculations have been reported by 

various authors, notably by Wenzel and Rupp (10). 

In superimposing chemical equilibria on an equation 

of state, it is usual practice to confine attention to 

dimerization. In principle, it is possible to include tri­

merization as well as formation of higher aggregates but to 

do so requires much computation and, what is worse, additional 

adjustable parameters. 

I now turn attention to phase equilibria at low or 

moderate pressures. Figure 14 reminds us that in vapor­

liquid equilibria we must calculate vapor-phase fugacity 

coefficients and that in vapor-liquid and in liquid-liquid 

equilibria we must calculate activity coefficients, The 

choice of standard-state fugacity is troublesome for super­

critical components; for solutions of gases in liquids, 

therefore, an equation-of-state method is more useful than 

the customary activity-coefficient method. 

At moderate pressures, vapor-phase fugacity coefficients 

are often calculated using second virial coefficients. The 

main problem is to estimate the cross-coefficient s 12 where 
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some surprises may occur, as illustrated in Figure 15. 

Experimental results for the system methanol-trimethylamine 

show that the second virial cross-coefficient is much more 

negative than the second virial coefficient for either pure 

fluid. There appears to be strong attraction between the 

different molecules which depresses the fugacity coefficic11ts 

well below unity, even at pressures near 1 atm (11). 

For mixtures containing organic acids, the virial equation 

is not applicable; a chemical theory must be used. The 

tendency of these acids to dimerize is so strong that large 

deviations from ideal-gas behavior occur, even at low pressures 

where ordinarily one might expect no significant deviations. 

Figure 16 shows results for mixtures of acetaldehyde and acetic 

acid. Even at 0.25 atm, fugacity coefficients for acid-rich 

mixtures are well removed from unity. 

Turning now to activity coefficients, I want first to 

indicate the debt of thanks which we owe to Dr. Gmehling and 

Professor Onken for their exhaustive search and reduction 

of experimental data. Their continuing series of data books 

sponsored by DECBEMA provide a tremendously useful service 

to all who are concerned with phase equilibria. Second, I 

want to indicate my appreciation to Professor Fredcnslund, 

Dr. Rasmussen and Dr. Gmehling for the vigor with which they 

have pursued the UNIFAC method for correlating activity coef­

ficients. Thanks to their efforts, UNIFAC is now a common 

engineering tool used in many countries. 
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Figure 17 reminds us that activity coefficients are 

directly related to the excess Gibbs energy. Numerous models 

E have been proposed for G but there is no time here to review 

them. I do, however, want to call attention to a problem 

common to all current models, viz. the non-uniqueness of binary 

parameters obtained from data reduction. Within the un~ 

certainty of the experimental data and that of the model, 

there are many sets of binary parameters which can be used. 

If we confine attention to binaries, this non-uniqueness has 

no particular practical importance but when we want to use 

binary parameters to predict multicomponent equilibria, then 

the results are influenced by our choice of binary parameters. 

In multicomponent vapor-liquid equilibriau this influence is 

often weak because in such equilibria the dominant quantities 

are the pure-component vapor pressures; the activity coefficients 

play only a secondary role. However, in liquid-liquid equilibria, 

vapor pressures play no role at all and even small changes in the 

activity coefficients can have large effects. To illustrate, 

Figure 18 shows some calculations by Anderson (12) for the 

ternary benzene-ethanol-water, using the UNIQUAC equation. 

For the immiscible pair (benzene-water), binary parameters 

are determined by mutual solubilities. For the two miscible 

pairs, we have some choice of binary parameters. Those which 

give best binary vapor-liquid equilibria give erroneous ternary 

liquid-liquid equilibria; these results are shown by the dashed 
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lines. Small adjustments in the binary parameters give very 

good ternary results while the corresponding binary vapor­

J.iquid equilibria are still reasonably good. The present 

situation is such that for many mixtures we can calculate 

multic:omponent liquid·-liquid equilibria using only binary para­

meters but to do so, we need a few multicomponent data to 

guide us in the selection of the best binary parameters. 

Conclusions similar to Anderson 1 s were reported by Nicolaides 

and Eckert (13). 

Our simple models for the excess Gibbs energy are most 

likely to fail for strongly nonideal mixtures. In such cases, 

analogous to what I said earlier about the equation of state, 

we can improve representation by superimposing a chemical 

theory. A particularly thorough attempt in that direction 

was made by Nagata (14) who superimposed both associating and 

solvating equilibria on the UNIQUAC equation as shown in 

Pigure 19. In this case chemical equilibria refer to con­

tinuous association, not just dimerization, with the simpli­

fying assumption that a suitably defined equilil)rium constant 

[See Flory (15)] is independent of the degree of polymerization. 

~qith this superposition it is possible to obtain remarkably 

accurate representation of mixture properties as shown in 

Figure 20 for propanol-carbon tetrachloride. There are four 

binary parameters and there are two association parameters for 

propanol which are independent of the other component. Nagata's 

treatment accurately reproduces both the excess Gibbs energy 
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and the S-shaped results for the excess enthalpy. 

Any method like Nagata's, based on a combined chemical­

plus-physical theory, is virtually certain to give good results 

for binary systems of nonelectrolytes. However, scale-up to 

multicomponent systems is very difficult not only becau~e of 

formidable computation but also because drastic simplifications 

are needed if one includes, as Nagata does, polymerization 

beyond formation of dimers. For engineering application, there­

fore, chemical theories have serious limitations. Nevertheless, 

it is clear that in some cases a chemical theory is the only 

one capable of representing the data. To illustrate, consider 

the excess enthalpy data of Munn and Svejda (16) for the 

system propionic acid-triethylamine, shown in Figure 21. It 

is evident that none of our current physical models could 

possibly do justice to these data. The evidence for strong 

complex formation is so convincing that the only reasonable way 

to represent these data is through a chemical equilibrium 

constant for the formation of a 3:1 compound. 

Chemical theories of solution have a long history; they 

were particularly popular in the period 1905-1925. One early 

advocate of the chemical approach was Dolezalek who worked on such 

theories while he was on the faculty of our host institution, the 

Technical University of Berlin. 

A possibly promising new model for the excess Gibbs 

energy has been introduced by Brandani (17) who uses a 

partition function of the van der Waals form, as shown ln 
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Figure 22. There are two important features. First, the 

\;ncrgy is calculated not with a one-fluid theory but with 

a two-fluid theory using local compositions, as suggested 

by n::mrer (18); the use of local compositions provides an 

attempt to allow for nonrandomness. Second, and probably 

more important, the partition function includes a free­

volume term which allows some account to be taken of the 

effect of mixing on rotational and vibrational degrees of 

freedom. IH th few exceptions, our common models are more or 

less based on a checker-board model where the mixing process 

is considered to be no more than an exchange of nearest 

neighbots. In fact, however, mixing also changes the free 

space available to a molecule for exercising its rotational 

and vibr~tional motions. It is precisely this effect which 

is reflected in the free-volume term. The importance of 

that term was pointed out by Flory (19) who, however, used 

a one-fluid theory of random mixing. Brandani has combined 

Flory's insight concerning free volume with Maurer's inter­

pretation of Wilson's local compositions. Note that the 

characteristic energy terms are per unit volume (similar to 

solubility parameters) to allow for changes in intermolecular 

sep~rations. Such changes are not taken into account in a 

lattice (checker-board) model. 

Figure 23 shows some calculations for the system acetone­

polystyrene; contrary to simple lattice theory, the Flory 

parameter X is a function of concentration. The two adjustable 
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parameters, used for fitting the excess Gibbs energy, also 

represent the enthalpy of mixing for this system. 

The important feature of Brandani's work is that the 

excess Gibbs energy of the mixture depends not only on 

molecular sizes and molecular energies in addition to tempera­

ture and composition. It depends also on the volume of the 

mixture. That is why a van der Waals-type partition function 

is particularly useful for liquid mixtures: it provides us 

not only with the free energy but simultaneously with the 

liquid-phase equation of state. 

The importance of volumetric effects becomes particularly 

evident when we consider the solubilities of gases in liquids. 

To illustrate, Figure 24 shows a reduced, correspondinq-states plot 

prepared by Anderson (20) for calculating fugacities of hypo­

thetical pure liquids at temperatures exceeding the critical. The 

curve is essentially arbitrary. It was chosen such that typical 

gas-solubility data might yield activity coefficients at 

infinite dilution which are in the range 1-100. Figure 25 

shows such activity coefficients, based on Anderson's arbitrary 

curve. 

When these binary results are coupled with the UNIQUAC 

equation, it is possible to calculate activity coefficients 

for gaseous solutes in solvent mixtures using only binary 

parameters. However, the multicomponent results are often 

disappointing, as illustrated in Figure 26, showing calculations 

by Kistenmacher and Landeck (21) for carbon dioxide in mixtures 
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of water and ethylene glycol. At 25°C, carbon dioxide is 

nearly at its critical temperature and, therefore, a highly 

expanded fluid. The significant disagreement cannot be 

removed by adjustment of binary parameters; it must surely be 

attributed to the failure of UNIQUAC to allow for volumetric 

changes resulting from mixing. Gas solubility is strongly 

sensitive to the density of the liquid solvent. 

It now appears that mole fraction is not enough to 

specify solvent composition; we must also somehow specify the 

density. That is exactly what Brandani's treatment does. 

Further, it is the calculation of density which is the key 

element in the important work of Mathias and O'Connell (22) 

who use the theory of direct correlation functions to cal­

ctilate gas solubilities. An essential clement in their 

solubility calculation is that they first calculate the 

volume of the gas-liquid solution. Figure 27 shows some 

calculations for hydrogen-benzene with one binary constant. 

The calculations utilize an equation of state for the liquid 

phase. Once the volumetric properties are estimated, it is 

then possible to use the equation of state for calculating 

chemical potentials and thereby to predict gas solubilities 

as shown in Figure 28. The binary constant in Figure 28 is 

the same as that used in Figure 27. When we use a liquid­

phase equation of state to calculate the chemical potential 

of the solute, there is no need to use hypothetical states 
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(e.g, supercritical pure "liquids") for calculating standard~ 

state fugacities. 

It is time for me to stop talking so that we may enjoy 

a well-earned Berliner Mittagsessen. Let me quickly conclude, 

therefore, by making five summarizing statements: 

1 - We still do not have a truly satisfactory equation of 

state for mixtures covering all fluid densities. However, in 

many cases it appears that this is not a serious limitation 

because what really counts are the mixing rules. 

2 - The simple mixing rules, with some modifications, often 

do very well. One adjustable binary constant is essential 

but sometimes we need two. 

3 - For significant progress, we must critically re-examine 

the one-fluid approximation and possibly abandon the over-

all mixing rule idea. It may be better to look at different 

contributions to a mixture's free energy and to devise specific 

mixing rules for each contribution. 

4 - Nonideality in binary mixtures can often be represented 

well by chemical theory but it is difficult to generalize 

chemical theory for multicomponent mixtures. 

5 - In liquid mixtures, especially in those containing 

gaseous solutes, volumetric effects are often important. We 

must get away from the old lattice ideas and develop models 

which take into account changes in volume that accompany the 

mixing process. 
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Becuuse of time limitations, there is much important 

material that, with regret, I had to omit. In making my 

selections of what to include in this review, I was guided 

by a comment mnde by the French essayist Michel i,lontaigne who 

said that in writing his essays, he wns preparing a bouquet 

of flm·Jers, and like a boy on a summer meadmv, picking a 

few flowers here and there, all he did was to provide the 

string that holds them together. 
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Nomenclature 

A = Helmholtz energy 

a = attractive-force constant in equation of state 

a = activity 

a. . - binary parameter 
lJ 

B = second virial coefficient 

b = molecular-size constant in equation of state 

C = third virial coefficient 

c = speed of light 

c. . -- binary size parameter lJ 
E = energy 

E(i) = potential energy of hypothetical fluid i 

E12 = binary size parameter 

9 = a function 

f = fugacity 

f 0 = standard-state fugacity 

fOL = fugacity of pure liquid 

GE = excess Gibbs energy 

E 
g - molar excess Gibbs energy 

HE = excess enthalpy 

hE = molar excess enthalpy 

hA = enthalpy of association 

hAB = enthalpy of solvation 

K. . = binary energy parameter 
lJ 

K = K-factor = y/x 

K = chemical equilibrium constant 
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Nomenclature 
-(continued:) 

- binary energy parameter 

= Boltzmann's constant 

-- mass 

= number of molecules 

= number of moles of component i 

= total number of moles 

= total pressure 

- critical pressure 

= partition function 

= rotational and vibrational contributions to partition function 

= gas constant 

= number of segments 

= temperature 

= critical te~perature 

= binary parameter 

= total volume 

= free volume 

= molar volume 

= liquid-phase mole fraction 

= vapor-phase mole fraction 

= compressibility factor 

= true mole fraction 
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Nomenclature 
---Tcon-EinucCiT 

c.. - characteristic potential cncryy for the i-j inL(:r:1ciion 
lJ 

00 

yij 

e 

e .. 
1.] 

p 

\) 

X 

n 

- liquid-phase activity coefficient 

·- a c t i vi t y co e f f i c i (~ r1 t o f s o lll t e i i r1 f i. n. i l: c; 1 y cJ i_ lll t e i n 
~3olvent j 

= part of ideal-gas contribution to partition function, 
depends on temperature, not density 

- volume fraction or seyment fraction 

= potential 

- fugacity coefficient 

- surface fraction 

- local surface fraction 

= density 

= critical density 

= characteristic energy density 

= Flory interaction parameter 

association factor 
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