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ABSTRACT

A design procedure is proposed for predicting the dynamic
structural response of a circular cylinder in turbulent crossflow.
The procedure is based on recently obtained data for a stationary,
rigid cylinder and on existing information. The procedure is not
applicable to conditions Where the wake vortex shedding frequency
locks in to a structural natural frequency.

This report is self-contained in that all the information and
structural analysis methods employed in the procedure are reviewed
and developed. Also, an example is given to illustrate the use of
the method for a typical reactor component. The calculated re-
sponses are found to be very small.

ix



INTRODUCTION

The response of a circular cylinder to flow normal to Its longitudinal

axis, called crossflow, Involves very complex physical phenomena which are

the subject of current research. Because a single tube In crossflow is not

an uncommon reactor geometry and strong fluid excitation mechanisms may

exist, the associated response must be accounted for in fatigue or fretting

and wear design. Several methods of response analysis and bodies of data

describing the fluid forces are available upon which to base a design

guide. The methods of structural analysis are classical, but the applica-

bility of the force data available and the modeling of the fluid-structure

interaction are controversial.

To date, most structural response analyses have been based on informa-

tion obtained for cylinders with very smooth surfaces subject to the two-

dimensional, uniform, very low turbulence, crossflow producible In wind and

water tunnels. These conditions shall be referred to as "ideal cross-

flow." For ideal crossflow, for which the fluid forces due to periodic

vortex shedding can be large and highly correlated along the cylinder

length, large responses are predictable, especially when the frequency of

the vortex shedding and the natural frequency of the structure coincide or

are multiples of each other. The vortex shedding is amplified by the

structural motion, and vice versa, with bounded steady state motion

resulting. The amplitude of the motion can be quite large depending on the

structural and fluid frequencies, mass, and damping. The worst case occurs

when the vortex shedding frequency "locks in" [1] to a structural mode fre-

quency. However, not uncommonly, reactor scale model response measurements

with potentially detrimental, but other than Ideal, crossflow conditions

fail to show anything but relatively low level random motion [2] with no

hint of periodic vortex shedding induced excitation. In short, current

design methods based on ideal crossflow information appear conservative.

As more and more is learned about the crossflow excitation mechanisms,

the design methods can be made more specific, and, as a result, less con-

servative and more accurate. Recently obtained experimental data [3] for

an isolated, stationary and rigid, smooth surfaced cylinder indicate that

the fluid forces can be greatly altered when the free stream turbulence in

the crossflow is significant. The magnitude of the fluid forces may be

greatly reduced and thus be less effective In producing structural



response, at least when the vortex shedding and structural motion do not

Interact.

Based on this new data, a design procedure Is proposed here which

attempts tc account for the effects of turbulence In the flow. Its full

range of validity Is yet to be determined, and the author requests feedback

where comparisons with measured response or prediction of other design

methods are performed. In particular, In this design procedure, fluid-

structure Interaction and the lock-In phenomenon are precluded by limiting

application to structures which are relatively heavily damped and for which

the nominal vortex shedding frequency Is removed from the structural

natural frequency. There Is some evidence [40] that lock-In does not occur

for relatively turbulent flows, but nuch more research Is required before

Its existence can be precluded. Until then, other design methods [1,14,

16,19,21] which account for lock-In should be employed when the conditions

for lock-in cannot be precluded. Of course, this design procedure can also

be applied for lock-in conditions and is recommended where experimental

measurement of prototypic response Is planned. Comparisons with both pre-

dictions would be important in determining the existence of the lock-in

phenomenon in practical reactor system flows.

This design procedure provides a considerable amount of background

information, to provide completeness, but the Design Procedure section

stands alone and can be employed separately by those who know too much or

too little.



DESIGN INFORMATION

The pertinent literature is reviewed and information presented which

will enable the performance of a linear elastic dynamic structural analysis

of a circular cylindrical component subject to turbulent crossflow. In

particular, characterizations of the fluid forces, a structural analysis

method, and criteria to avoid nonlinear fluid-structure interaction exci-

tation and lock-in are specified. Because the fluid forces created by

turbulent flow are primarily random in nature, a probabilistic formulation

is necessary.

1. Fluid Forces

In ideal crossflow, the strongest vibration excitation mechanism is

associated with the time varying (periodic to random) lift force component

created by vortices shed in the wake of the cylinder. The fluctuating lift

force acts normal to the cylinder axis and mean flow direction: the lift

direction. A usually larger steady drag force and a relatively smaller

fluctuating drag force component are created normal to the cylinder axis

and parallel to the mean flow direction: the drag direction. For a rigid,

stationary cylinder the primary independent parameter is the Reynolds

number NR, based on the mean velocity V and the cylinder diameter D.

In turbulent crossflow, the mean square distribution of the lift force

in the frequency domain, called the lift force spectral density, appears to

consist of a component in a narrow band of frequencies, due to organized

vortex shedding, superimposed on a component which occurs over a wide band

ot frequencies primarily below the vortex shedding frequency, due to flow

turbulence in the free stream and turbulence in the wake. The relative

size of the two components depends upon NR and the turbulence of the free

stream. As a minimum, the flow turbulence should be characterized in terms

of the flow direction turbulence intensity <u > ' /V and its integral scale

length 1^.

The turbulence intensity <uZ>1'2/V is a measure of the relative size

of the root mean square value of the fluctuating part of the flow direction

velocity component u relative to the mean value V. Typically wind and

water tunnels have turbulence Intensities of less than IX, while pipe and

wall-turbulent shear flows have intensities from 4 to 8% depending upon

distance from the wall and direction with respect to the mean flow direc-

tion. Mixing regions in reactor plenums and heat exchangers nay have



greater than 15Z Intensity especially where separated shear layers occur

downstream of grids, screens, tube arrays, and sudden changes In flow chan-

nel dimensions.

The Integral scale length !̂  is a measure of the average size turbu-

lent eddy creating the velocity fluctuations In the flow direction. Its

magnitude is governed by the size of the geometry creating the disturb-

ance: the bar size and spacing for screens and grids, the radius for pipe

flow, and the boundary layer thicknesses for shear flows along walls. For

homogeneous, isotropic turbulence well defined relations exist between the

size and decay of the directional components of the intensities, integral

scales and other point measures of the character of the turbulence. In

practical flows, such ideal conditions can only be approached, and the

character of the turbulence must be measured [24]. Typically for reactor

components mean velocity information is available, turbulence intensity

information may be available if a detailed study of thermal mixing has been

made, and the integral scale sizes must be estimated.

Besides the flow turbulence, other factors such as surface roughness,

flow gradients, and yaw of the cylinder with respect to the mean flow

direction will affect the fluid forces [6,25]. Taw effects can be conserv-

atively accounted for by using the component of velocity normal to the

cylinder as the mean velocity. Where a flow gradient occurs, replacing it

with one or more uniform flows having the maximum velocity in the flow

gradient usually is a conservative approximation. Neglecting surface

roughness often, but not always, produce* a conservative design. Each of

these items is the subject of current research which should he consulted

for farther information. They will not be considered further. The purpose

of tT.iis guide is to further quantify the effects of turbulent flow,

a. Ideal croasflow

Much about the character of the narrow band component of the

fluid forces in turbulent flow can be ascertained from the large amount of

data obtained for a stationary cylinder subject to ideal crossflow.

For 10 3 < NR < 3 x 10
5, subcritical Reynolds numbers, the narrow

band component is believed due to the two-dimensional tendency of the sepa-

rated boundary layer to roll into distinct vortex sheets along the axis of

the cylinder and shed alternatively from the top and bottom of the cylinder

at frequencies centered around a Strouhal number S of 0.19 based on



cylinder diameter D and mean, free stream velocity V. See Fig. l(a) for

siean values of S for different Ng based on a recent compilation of data

[5]. For ideal crossflow, vortex shedding correlation lengths of three to

six diameters have been measured for subcritlcal Reynolds numbers and the

amplitude of the associated lift force is nearly periodic (6]. When the

mean-square magnitude of the lift force per unit length is defined accord-

Ing to

C* , (i)

the lift coefficient (̂  varies with Ng as shown in Fig. 2(a).

In the drag cr flow direction both a mean and fluctuating force

exist and coefficients C D and Cjj, respectively, can be defined similar to

the lift coefficient in (1). Typically, Cfo has a value of one-tenth and C D

is of the same order as C^; see Figs. 3(b) and 4. As could be expected,

the fluctuating force frequency energy content is centered at twice the

vortex shedding frequency. However, the energy apparently has been

observed to occur over a broader frequency band than occurs for the associ-

ated lift. Presumably [25] the fluctuating drag force is more sensitive to

3-D flow effects than the fluctuating lift.

For larger Ng (> 3 x 10 ), the attached boundary layer undergoes

a turbulence transition extending to Nj • 3-4 x 106, the critical region.

The transition process destroys the two-dimensionality of the vortices and

the RMS lift and drag coefficients, Figs. 2(a) and 3(a), are reduced from

the values in the subcritical range, with a frequency content existing over

gradually peaked wide bands. The S versus N R curve of Fig. l(a) is shown

dashed in this region to indicate the trend of the very sporadic data in

this region. Periodicity is not believed to exist, but various anomalies

have resulted in reports of periodicity [5]. Correlation lengths on the

order of one cylinder diameter have been reported but the data is sparse

[6-8].

The data for Nj > 4 x 106, the transcritical region, is even

sparser than for the critical region. However, a return to a narrow band

random frequency content and finally to almost periodic distributions by N^

• 6 x 106 have been reported [6-12] for the lift force, but no indication

of periodicity in the fluctuating drag has been reported [24]. Up to 6 x



10 , the only available data [7] Indicates a correlation length of only one

cylinder diameter. Simulated transcritical flows for NR > 10 have pro-

duced correlation lengths on the order of nine diameters [9] and larger

lift coefficients, but to simulate the transcritical NR the model surfaces

had to be significantly roughened producing a boundary layer flow which may

be unique to roughened surfaces [15].

b. Turbulent flow

The effect of turbulence in the flow on fluid forces is three-

fold, with all effects resulting in spectral densities which are more

random than periodic* First, the Reynolds number at which the attached

boundary layer undergoes transition from laminar to turbulent flow is

reduced [3,25,26]. This can be observed from the relatively sharp declines

in C L and C D in Figs. 2(a) and 4, as well as in the increase in AS in Fig.

l(b)c Thus, the critical region appears to occur over a larger Reynolds

number range, and the associated wake forces are random at N R where they

were periodic in ideal crossflow: the more turbulent the flow, the smaller

the subcritical range of Reynolds numbers. The existence of a transcriti-

cal region in turbulent crossflow cannot be determined until more tests in

turbulent flow at higher N R have been performed.

No hint of a return to narrow band or periodic fluid forces typi-

cal of the transcritical range in Ideal crossflow has been observed in

turbulent flows with 2 < <u2>l'2/V < 15Z and t^ < 5 x 105 [3,26], but a

return in the pressure field has been reported [25]. One would expect a

transcritical region to exist for only slightly turbulent flows, meaning

the possibility cannot be ruled out* Thus a conservative estimate of the

beginning of the transcritical region in turbulent flow, at least for

< U2 >1/2^ V < 0#15> would be NR - 8 x 10
5. This estimate is based on the

elimination of the subcritical range by the turbulence and the existence of

the same size critical range as occurs for ideal crossflow.

The second effect of turbulence in the flow is the degradation of

the two-dimensional vortex shedding process for subcritical Reynolds

numbers, as measured by the broadening and reduction in amplitude of the

vortex shedding peaks in the lift force spectral densities [3,25-27]. For

large turbulence intensities this effect is difficult to distinguish from

the effect of an earlier transition to the critical region, as discussed

previously* But, for whatever reason, the axial correlation of the surface



pressures and forces are the same size or smaller than in ideal cross-

flow. Based on this information, together with the knowledge that many

cylinder end effects lead to the almost total breakdown of two-dimensional

flow to three-dimensional flow [3,5-14,25], axial correlation lengths in

practical flow situations can be expected to be less than 3D for subcriti-

cal Reynolds numbers and D for other Reynolds numbers*

The third effect is the pressure fluctuations created, at least

on the upstream side of the cylinder surface [27], by the impinging turbu-

lence in the flow. The associated random excitation forces are difficult

to separate from those created by the wake. However, the relative magni-

tude of the drag coefficient with respect to the lift coefficient is larger

in turbulent flow than in ideal crossflow. See Fig. 3(b). Periodicity may

still exist in the drag direction, but for the most part it is submerged in

the wide band random forces which the turbulence in the flow somehow

creates. Utilizing turbulent flow drag force data is more conservative

than using ideal crossflow data.

2. Fluid-Structure Interaction

Interaction of the structure with the wake flow resulting in amplified

motion and lock-in has been observed for several parameter ranges. Lock-in

definitely can occur for subcritical Reynolds number in nonturbulent flow

[6]. Its existence in the critical range is debatable and expected in the

transcritical [17]. Practical occurrences have been documented in all

ranges [18], so the possibility must be assessed for all Reynolds numbers

in turbulent flow. In ideal crossflow the phenomenon only occurs for

specific excitation frequency ranges and structural mass and damping

parameters.

Lock-in in the lift direction, normal to the flow, may occur at

reduced velocities Vri - V/f^D within ±25Z of the vortex shedding reduced

velocity Vrs - 1/S [6], at least for subcritical \ « 2 x 10 5). Since S

is "0.2, fluid interaction with lift direction structural motion can be

avoided if Vro < 3.75 can be achieved by design. If coincidence of the

vortex shedding and lowest structural natural frequency cannot be avoided

as proposed above, then the design must be rationalized utilizing one of

the several currently proposed analysis methods [1,14,16,19, 21] which

account for the lift direction lock-in or by scale model testing [22].

Lift direction lock-in is a strong excitation mechanism and can occur for a



wide range of structural densities, fluid densities, and structural

damping.

Lock-in, or at least fluid-solid interaction which may significantly

amplify drag or flow direction structural motion, has been observed to

begin at one-quarter V r 8 [16]. Lock-in at one-half Vrg, corresponding to

twice the shedding frequency, is not unexpected, because the vortex shed-

ding process is asymmetric: at least, vortices are shed alternatively from

each side of a stationary cylinder. However, the basis for fluid-structure

interaction at three and four times the shedding frequency is not obvious

and is the subject of current research [16,19,20]. Fluid Interaction with

drag direction structural motion can be avoided if Vro < 1 can be achieved

by design. This condition also avoids possible structural excitation by

the weaker higher frequency harmonics of the shedding process [1] for which

little information is available.

Drag direction, compared to lift direction, fluid-structure inter-

action is a relatively weak excitation mechanism, and usually only occurs

for lightly damped structures in dense fluids (liquids). For cantilevered

cylinders of length L subject to various levels h £ L of flow above the

base, a geometry representing ocean piles, fluid structure interaction ap-

parently is suppressed [16] if the reduced structural damping Cj satisfies

c, - |-i> 1.2 , (2)

where S^ is the fraction of critical damping in the 1th vibration mode and

MJ is the effective modal mass per unit length given by

L 2

M _ O ,ox

/ 1<?
Le

with î  the ith mode shape function, to be discussed more in the next sec-

tion, and at(g) the beam mass per unit length. The range Le in the denomi-

nator implies integration should occur only over the region of the cylinder

length subject to crossflow, which, for an ocean pile, is the water depth

h. Also note that m£ is composed according to



•t(x) - mg(x) + mc(x) + mA(x) , (4)

where mg is the structural mass, mc the contained fluid mass, and nA the

added fluid mass. For an isolated cylinder, « A is the displaced fluid

mass.. If sections of the cylinder are confined then the possibility of

increased added mass and fluid damping au£t be taken into account [23,28].

Because a cantilevered cylinder loaded at its free end represents a

geometry most susceptible to flow excitation, except possibly for a rigid

cylinder with each end spring mounted, satisfaction of (2) for a more gene-

ral structure would likely avoid drag direction lock-in. In more general

use of (2), Lg would represent the region along the cylinder where signifi-

cant vortex shedding is occurring.

In the design method proposed here, satisfaction of (2) and

V r o < 3.33 (5)

is required. This limit is proposed to exclude lock-in at subcritical N^

as well as at larger NR where S > 0.2 can occur; see Fig. l(a). If neither

condition can be satisfied, then the design must be rationalized utilizing

existing analysis methods or scale model testing [22]. Most likely scale

model testing will be required because of lack of analysis information.

3. Response Equations

The response equation can be greatly simplified because of the design

restriction imposed to avoid fluid-structure interaction. If, in addition,

the beam response Is assumed to be linear and separable into normal modes3
see Appendix A, the mean square value of the lateral displacement is

00

<w2> - (î /k*) / ^ / U J ^ f . (6)
o

The expression for <w2(x)> only contains contributions from the lowest fre-

quency vibration mode 4>o(x), because the main energy of excitation Is

restricted by (2) and (5) to occur substantially below the fundamental mode

frequency fQ. In addition, beam frequencies normally are widely sepa-

rated. The mode shape tyQ and the fundamental frequency fQ are either mea-

sured or calculated via free vibration analysis (see Appendix A ) .

The fundamental modal stiffness in (6) is

ko - "o<2irfo>2



10

where the fundamental modal mass per unit length is determined by

L 2 L 2
a • f m. * dg / / + d£ (8)o t o oo o

in terms of the total mass per unit length mt(x) which is measured or esti-

mated and includes contained liquid and added mass as indicated in (4).

The magnitude of the amplification factor for the fundamental mode is

lzol
2 - [1 - (f/fo)

2]2 + I25of/fo]
2 (9)

where co is the measured or estimated fraction of critical viscous damping

in the fundamental mode for nonflowing fluid.

The fundamental mode's generalized force spectral density can be

approximated by

L 2 _2 L 2

00 o ° o p

because the correlation length ££(x,f) of vortex shedding in turbulent flow

can be expected to be substantially less than the beam length. Based on

the data described in the previous section &c < 3D. Without this simplifi-

cation, $00(f) would depend upon cross correlations and cross spectral

densities of p(x,t) instead of the easier to obtain single point spectral

density <]> (x,f). See Appendix A. Available results for the single-sided

<f> , 0 < f < <», will be presented in the next section.

4. Fluid Force Coefficients and Spectral Densities

Fluctuating lift and drag force spectral densities have been measured

[3] for a wide range of flow direction turbulence intensities (1.5 to 15%)

and integral scale lengths (0.5 to 2 times the cylinder diameter D). The

functional form of these single sided (0 £ f £ °°) force spectra was approx-

imated using the normalized one-dimensional velocity fluctuation spectrum

for homogeneous, lsotropic turbulent flow [24]

•(?) - *o(l + Ait
2!2)'1 (11)

which is graphed in Fig. 5 for *Q - 4.5 as a function of the reduced

frequency
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1 - fD/V, (12)

where V is the mean crossflow velocity. The velocity fluctuation spectra

also were measured [3] and found to be well approximated by (11) when,

instead of D in (12), the measured integral length scale in the flow direc-

tion, Ly, was employed.

a. Fluctuating drag

The functional form for the normalized fluctuating drag spectra

was chosen to be

*D<?> • *D0<1 +

where *p is a normalization of <t>Q, the single-sided spectral density of the

fluctuating fluid drag force per unit length. Specifically,

*D " •D(V/D)(l/2 pV
2D)" 2. (14)

A *JJQ was chosen for each turbulence condition such that *D formed an upper

bound on the wide band part of the spectra for all values of Reynolds

number Ng. Table 1 associates the *JJQ chosen with the turbulence condition

and the RMS fluctuating drag force coefficient Cjjg calculated by inte-

grating (13) from zero to infinity

2 - 0.225 in,, . (15)

The degree to which (13) approximates the measured spectra is well repre-

sented by the differences between the calculated CJg, given in Table 1, and

the measured C{j shown in Fig. 3(b). Except for the lowest Ng and grid 2

data, (13) represented the spectra well: the spectra are nearly the same

for the same turbulence condition and different NR. Some narrow band con-

tent in the measured drag fluctuation data was present at multiples of the

vortex shedding Strouhal number, but it was typically submerged in the wide

band excitation forces except at the lowest Reynolds numbers. By adding to

the wide band excitation forces a deterministic force at ? - 0.4 with a

coefficient of (C'D - C'pg), when C'D > C'^,, an upper bound on the

fluctuating fluid drag force can be generated.

b. Fluctuating lift

The spectra of the fluctuating lift force per unit beam length

could not be as simply approximated as could the fluctuating drag spectra,
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because a relatively large component of force in a narrow frequency band

was superimposed upon components of forces extending over a wide frequency

band. The narrow band was centered around the vortex shedding frequency

corresponding to the Strouhal number S, which averaged 0.19 for the Ng

tested. As the turbulence Intensity increased, the bandwidth of the narrow

band component broadened until only a band limited component existed. Thus

the measured Strouhal numbers represent peak frequencies of the lift spec-

tra, and they are given in Table 2 and compared in Fig. l(a) to the data

obtained in ideal crossflow. A measure of the randomness of the narrow

band component can be gleaned from Fig. l(b) and Table 2 where the half-

power bandwidth, in terms of the Strouhal number AS, is shown as a function

of turbulence character and Reynolds number, as well as compared to ideal

crossflow AS. For ideal crossflow, AS ~ 0 for NR < 2 x 10
5. Also, AS is

difficult to define in the critical region, 2 i 105 < ̂  < 3 x 106, where

no reproducible peaks exist in the lift spectra.

The wi<te band component of the lift force spectra for 1 < S

appeared to be representable by • , while for 1 > S it appeared to be

representable by * . See Fig. 5 for *, $ , and a linear approximation *^

which differed from the measured spectra mainly where the narrow band com-

ponent existed. Thus the wide band component of the normalized lift

spectra was represented by

*L " *L0 * < °'22

- (2.34 x io~3)#LOr-
4 r > 0.22 <16>

where *L is related to the single-sided spectral density of the fluctuating

lift force per unit length ^ by

*L " •L<V'DJ<1'2 P V 2 D ) ~ 1 / 2 . (17)

The narrow band component was represented by a deterministic force at I •

1/S - 0.2 with a lift coefficient

CLV " °L " °LR <18>

where CL is the measured lift coefficient and C L R is a calculated value

associated with the wide band component: the area under the curve (16) from
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1 - 0 to «° for a *LQ selected to best fit (visually) the experimental data

C 2
R - 0.293 $L0. (19)

The lift coefficients are displayed In Figs. 2 and 3(a) as well as listed

in Table 2 for each *LQ.

c. Mean drag

The measured mean drag coefficients C D are plotted in Fig. 4, and

listed in Table 2, along with bounding curves for the existing nonturbulent

flow data. Note that the C D are corrected for test section blockage [4],

and the uncorrected values Cpg are listed in Table 2. The fluctuating lift

and drag coefficients were not corrected for blockage because no agreed

upon method exists. The significant reduction in drag due to .flow turbu-

lence is most apparent in Fig. 4 and thought to be due to transition of the

attached boundary layer to a state of turbulence at a lower Reynolds number

than occurs for nonturbulent flows.

5. Design Equations

If the velocity and correlation length distributions, V(x) and

£ (x,f), are known in detail, then expressions for the fluctuating lift and

drag forces could be obtained from (13), (16), and (19) and substituted

into (10) and (6) to obtain the mean square response. However, such

detailed information is rarely known with sufficient accuracy to warrant

this rigorous approach.

Typical of industrial applications, a maximum velocity is available,

V - VM> along with a length Le over which significant fluid loading is

expected to occur, and the designer must estimate the correlation length

0 < lc < 6D. Assuming uniform flow velocity and constant correlation

length Lc> the mean square fundamental mode response is (see Appendix A)

2
<W> *K (Vj + V + V )

 <20)
*(x)D K2

where a reduced stiffness K has been defined

K2 - (4nf2Co)
2/(25o)

Z (21)

which is independent of damping ZQ. Reduced forces have been defined

F2, - C2
V (22)
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4 - <& (23)

FR - ?o V T o ) <**>

for periodic vortex shedding, turbulent buffeting, and turbulent excitation

of resonant response, respectively. The remaining terms are combined fluid

and structure multipliers for each type of force

YV - (LC// «£dO [d - fj/f2)2 + ca^fy/^)2]"1 (25)
L
e

Le

Le

(26)

< 2 7 )

A different correlation length Lc may be employed for each type of reduced

force when available.
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DESIGN PROCEDURE

Based on the preceding information, a procedure to estimate the mean

square displacement of an isolated, smooth surfaced, circular cylinder in

turbulent crossflow has been developed. The fluid-structure interaction,

where the vortex shedding frequency locks-in with a structural natural fre-

quency, is avoided by component design. The main purpose of this procedure

is to account for the effects of turbulence in the flow stream. The

effects of a roughened cylindrical surface [9,15] or adjacent structures

[14,26], which can be significant, are not accounted for, but the same

method can be applied when fluid force data becomes available.

1. Structural Characterization

Use of the procedure presumes the following structural information Is

available: (a) the measured or calculated fundamental (lowest) structural

frequency fQ and mode shape <l>o(x) of the circular cylindrical structure In

a still fluid, (b) the fraction of critical damping £o which occurs during

fundamental mode free vibration in a still fluid, and (c) the total mass of

the beam per unit length mt(x) which Is composed, see (4), of the struc-

tural mass plus any contained fluid mass plus any added fluid mass.

In calculating fQ and ^ o(x), the total mfc(x) should be employed when

the cylinder is immersed in a dense fluid (liquid): 'usually the contained

and added fluid mass are not negligible in comparison to the structural

mass especially if thin-walled tubes are part of the design. Determination

of the contained fluid mass and the added fluid mass for an isolated circu-

lar cylinder, the displaced fluid mass, is simple. However, if portions of

the cylinder's surface are separated from adjacent structures by less than

one cylinder diameter, a confined structure, then much larger added mass

may occur which can be estimated by available literature [23,28].

The total fraction of critical damping ?Q in a still fluid is best

obtained by measurement, but prototype values normally are not available

during design. If damping values are available from a scale model test,

then scrutiny of the data is necessary to avoid overestimation of damping

values due to scale modeling distortions [22,33,34]. Clearly the goal is

to just underestimate the prototype damping to produce a design which is

conservative but not overly conservative. However, the procedure for

determination of Co Is not well defined especially when test values arc not

available.
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Without test data, estimates of Co must be made based on Information

obtained for structures of like design. As a starting point see [22,31-

32,34-35]. Similarity of the structure from which ?o is estimated cannot

be overemphasized, because values of ?o can vary greatly depending upon the

type of structural connections and fluid confinement. For instance, welded

joints can result in very low fractions of critical damping, less than

0.005, whereas the slip joints of heat exchanger baffle supports [1] or

fuel assembly grid supports [32] may produce large damping values, greater

than 0.10. Adjacent bodies, closer than one-half diameter and creating a

confined structure, can produce large damping values [23,28] by the same

effect which makes fluid bearings possible. Often damping values obtained

in air are employed, because they are smaller than submersed values and

thus give conservative response estimates. In any case, the inaccuracy in

obtaining damping values should be understood for it is reflected directly

in response predictions. Also, it should temper the rigor employed in the

application of the design procedure.

2. Hydraulics Characterization

As a minimum, the local velocity distribution producing crossflow must

be known to the extent that a maximum mean flow velocity VM and the cylin-

der length L@ over which significant crossflow occurs can be defined. If

significant gradients exist in the flow velocity distribution along the

cylinder, then the fluid loading may be broken into several regions with

several maximum flow velocities. After subdivision, the procedure can be

applied to each region separately, and the mean square responses obtained

by superposition. However, the lengths of the regions should be no smaller

than the vortex shedding correlation length Lc chosen in the procedure.

Also, if the mean flow velocity does not act normal to the axis of the cyl-

inder, then the component normal to the axis should be employed.

Since Reynolds number NR is important in determining vortex shedding

flow regimes, the fluid viscosity v must be known. While v is relatively

easy to determine, the flow turbulence parameters, which also affect flow

regimes, are not normally available and may pose the main obstacle to the

use of this design procedure.

To apply the design procedure, estimates must be made of the turbu-

lence intensity and integral scale lengths in the flow direction. However,

only crude estimates are required because of the scatter In the limited
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data available* Categorization of the turbulence intensity into one of

four ranges 0 - 1 % , 2 - 5 % , 6 - 11%, 12-162 and the integral scale size

into one of three ~ 0.5D, ~ 1.0D, > 1.5D is sufficient. Essentially the

intensity ranges cover, respectively, the basic types of flow regimes [24]:

nearly laminar flows, the central core region of turbulent channel flows or

the far outer region of wall turbulent shear flows, outside the central

core region of channel flows and the near outer region of wall turbulent

shear flows, and free turbulent shear flows such as occur downstream of

cylinders, grids, and jets. The integral scale sizes are determined by the

boundary layer thickness in wall flows and by the size of and distances

from the sources in free shear flows.

The fluid force data utilized in this procedure was obtained in the

central core region of turbulent channel flow or behind grids producing

measured turbulence intensifies and integral scales corresponding to avail-

able theory [36]. As such, they represent more homogeneous and isotropic

flow conditions than the aonh.oaogenf.ou.8 flows usually found in practice.

Thus, if lower bounds on the turbulence Intensity and upper bounds on the

integral scale are estimated by testing or available data [24,36-38], then

the design procedure should produce an upper bound on the actual response.

3. Response Estimation

A procedure to determine the mean square response in the direction

normal to the mean velocity, the lift direction, is outlined after first

checking to see that fluid-structure Interaction does not occur. The same

procedure can be applied to calculate response in the flow or drag direc-

tion, as illustrated in the examples.

a. Procedure applicability

Utilizing the largest velocity VM and the lowest structural natu-

ral frequency fo, for which motion transverse to the flow direction (the

lift direction) is possible, determine if the reduced velocity satisfies

—^ < 3.33 . (28)
o

If not, then the procedure is not applicable because lift-direction lock-In

is probable. If (28) is satisfied, determine if the reduced structural

damping ratios c±t calculated according to (2), satisfies
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c± > 1.2 (29)

for each structural natural frequency with a reduced velocity less than

1. If (29) Is not satisfied, then drag-direction fluid-structure Inter-

action is probable and the procedure is not applicable.

b. Structural stiffness

If (29) is satisfied, then fluid-structure interaction is not

probable and the mean square value of the lift direction forced response

<w > due to periodic and random vortex shedding can be estimated according

to (20). Assuming that lift direction response occurs at the lowest fre-

quency fo, the reduced frequency ? o - fo
n/VM can be calculated. With the

co calculated in the previous subsection, the reduced stiffness K in (21)

can be determined.

c. Reduced forces

The reduced force due to periodic vortex shedding Fy » C^y is

determined by entering Fig. 2(b) or Table 2 at the Reynolds number

NR - VMD/v (30)

and selecting the C L V from the data with the closest, smaller turbulence

Intensity and closest, larger integral scale. Note that the data is rela-

tively insensitive to integral scale length and that using the ideal flow

data curve is always conservative.

The ideal flow data must be used to determine both CJJJ and S at

NR > 3 x 10* where the effects of turbulence are not yet known. Assuming

that vortex shedding is strictly periodic for H^ > 3 x 10 may or may not

produce a more conservative response estimate than assuming random fluid

forces. For a given force coefficient, which assumption produces the more

conservative estimate depends upon the relative size of the multipliers Yy

and Y R in (20). Host of the available Information Indicates that the

forces will not be periodic until NR > 10
6. Calculating responses due to

both excitations and choosing the largest Is recommended.

The reduced force due to turbulent buffeting FB - C^g is deter-

mined from Fig. 3a. A value of C ^ 2 0.1 appears appropriate for all

turbulent flows. However for NR > 3 x 10 , a C ^ - 0 should be employed

for consistency when Fy is calculated assuming strictly periodic vortex

shedding (CL • CLV^» aB discussed above. Utilizing the same logic for
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determining response due to strictly random fluid forces at NR > 3 x 10
5,

choose C^v - Fy » 0. The random excitation estimate is expected to be

closer in value to the actual response than the estimate based on strictly

periodic vortex shedding, at least for 3 x 105 < N^ < 106.

The effective force for turbulent excitation of resonant response

FR is calculated according to (24) utilizing the spectral density of (16)

where $ L 0 is selected from Table 2 for N^ < 3 x 10s. In interpolating

Table 2, remember that a smaller turbulence intensity, a larger integral

scale, or a larger $^Q will give a more conservative response prediction.

For Nĵ  > 3 x 10 , the response estimate associated with strictly periodic

shedding is facilitated by choosing G^Q « FR » 0. The response estimate

associated with assuming strictly random fluid forces, Fy » 0, for Ng >

3 x 105 is facilitated by choosing Sj^ - 0.0A2, according to (19) with Cĵ  -

d. Multipliers

The multipliers Yv, YB, and Y R can be calculated, according to

(25-27), for each type of reduced force. Knowledge of the reduced frequen-

cy ?o, the damping Co, and the associated correlation length Lc is

required. The least is known about the choice of Lc. For rigid, station-

ary cylinders the largest correlation lengths were measured for uniform,

nonturbulent crossflow at NR < 3 x 10
5. The two-dimensionality, or axial

independence, of the vortex shedding process is greatest for these ideal

flow conditions. Still the correlation lengths are only three to six

diameters. The measured effect of turbulence in the crossflow is always to

reduce the correlation length. For Hj > 3 x 105, all the correlation

lengths measured have been one diameter or less. Both turbulence in the

flow or flow exceeding the Reynolds number N R ~ 3 x 105, where the attached

boundary layer first becomes turbulent in ideal crossflow, deteriorates the

two-dimensionality of the vortex shedding process to various degrees.

In general, maintaining two-dimensionality of the vortex shedding

process is very difficult for rigid, stationary cylinders. The surfaces of

the cylinders must be very smooth with roughness height to diameter less

than ~103, the flow turbulence intensity must be minimal or less than 0.5Z,

the Ng < 10 , and the two-dimensionality of the mean flow velocity must be

meticulously maintained. Flows along the axis of the cylinder, created by

test section wall boundary layers, are so effective in destroying two-
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dimensionality that most data has been taken utilizing two end plates which

Isolate a central section of the cylinder where measurements are made. The

end plates, which are thin and short enough not to produce significant

boundary flows of their own, are fixed on the cylinder, normal to its axis,

and located outside the test section wall boundary layers.

Based on the above observations, a correlation length Lc of three

diameters is recommended for calculating Yy when NR < 3 x 10 , and a corre-

lation length of one diameter or the turbulence integral scale size, up to

three diameters, is recommended for calculating Yy when NR > 3 x 10* and Yg

and YR for all conditions. Conservative estimates of response are expected

with these correlation lengths if the conditions which avoid fluid-

structure interaction of subsection 3a. are satisfied: whereas maintaining

a two-dimensional vortex shedding process is very difficult for a rigid

stationary cylinder, if the fluid-structure lock-in phenomenon occurs the

correlation lengths can approach the lengths of the vibrating cylinder.

4. Example Problem

a. Description

One of many thin-walled shroud tubes spaced six diameters apart

is cantilevered into the plenum of a reactor system component where, chan-

neled by baffle plates, it is exposed to crossflow along the part of its

length between the baffle plates. The free end of the tube, which allows

for thermal expansion, fits concentrically into a slightly larger, rela-

tively short lower support sleeve attached to a relatively rigid support

plate. See Fig. 6a for a typicaj. tube.

The totally submerged;* uniform tube is DQ » 100 torn in outside

diameter, with a T - 10 mm wall thickness, and is 6 m in length. The tube

inside diameter D^ - 80 mm. The shroud tube, made from 304 SS, contains

and protects from the coolant flow a very flexible instrumentation control

tube of the same material with a dQ * 25 ran outside diameter and t • 3 mm

wall thickness. The control tube d^ - 19 mm. The remaining area inside

the shroud and instrumentation tube is filled with fluid. The free end of

the shroud tube fits into a sleeve which is larger In diameter by 2h • 1 mm

and is three shroud tube diameters in length.

Sodium, at a temperature of 425°C, flows past the shrouds, and

between the baffles, over a one meter length starting two meters from its

fixed end. The normal operating flow rate through the channel formed by
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the baffles divided by the open channel area, in a plane normal to the flow

and containing the shroud, gives an average velocity of 0.3 to 3 m/sec

depending on the tube location. The majority of the turbulence in the flow

is expected to be created by the wakes of the upstream cylinders, when they

exist, or by the turbulence in the channel where the array of shrouds

begins.

No tests have been performed on this particular tube, but results

from the testing of similar structures have shown that the cantilevered and

higher mode damping in air may be less than 1% of critical damping ;t,cu the

amplitude of motion is small and the tube does not Impact the baffle

plates, where the shroud tube penetrates, or the lower support sleeve.

When the response is large or initial misalignment is such that impacting

occurs at the baffles, damping can Increase to 4 or 5%. Testing of similar

lower sleeve supports has shown that very little response or misalignment

is required at the lower sleeve to change the lowest mode shape and fre-

quency from that of a simple cantilevered beam to that of a fixed-simply

supported beam.

The response is desired to determine shroud plate clearances

which avoid baffle plate impacting and to make fatigue calculations,

b. Beam modeling

Because of the relative flexibility of the instrument line in the

shroud, it is assumed to be mass carried by the shroud during fundamental

mode vibration. With this assumption, the total mass per unit tube length

can be calculated knowing that the mass density of 304 SS at 425°C is p s •

7.85 x 103 kg/m3 while that of sodium is p - 7.61 x 102 kg/m3. Thus

i <do + d i ) ^ 2 ! " 2 3 « 8 1

- (do + d i ) t /2] - 3.67 kg/m

(31)
mA - pitD /̂4 - 5.98 kg/m

mt - 33.45 kg/m

for all lengths of the beam not in close proximity to other structures.

Where the tube fits in the lower support sleeve, the added mass effect is
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estimated [28] to be increased by the factor (RDQ/2h) - (0.6)(100)/l - 60,

where K is determined from Fig. 3 of [28]. With this factor

m* - 23.81 + 3.67 + 60(5.98) - 386.3 kg/m . (32)

Considering the tube to be cantilevered with a mass on its end, repre-

senting the added mass effect of the sleeve, the relative ratio of the beam

mass to end mass is (6)(33.45)/(.3)(386.3) - 1.73. The cantilevered mode

frequency and damping is estimated [28], see Appendix B, to be 1.02 Hz and

34X of critical damping, respectively. Considering the relatively large

mass and damping effect of the fluid annulus alone, the beam can be

expected to have a lowest mode response closer to a fixed-simply supported

beam rather than a cantilevered beam. Also, the close fit of the tube in

the support sleeve and fabrication tolerance buildup would justify modeling

the lower sleeve as a simple support, at least. Because of the length of

the sleeve, rotational support also could be rationalized, but using the

lower fundamental frequency of the simple support model is more

conservative.

For the fixed-simply supported beam model with mt - 33.45 kg/m, I

- 2.90 x 10"6 m4, E - 167 x 109 Pa (at 425°C), and L - 6 m, the lowest mode

frequency of the beam can be calculated to be [39]

m . 8.2 Bz . (33)
"t

The next two higher frequency modes occur at 26.5 and 55.2 Hz. The funda-

mental mode shape [39] is given approximately by

^(x) - exp(-3.93 f) - /I cos(3.93 £ + £) (34)

where

^ - L (35)

o
and for Lfi: 2m < x < 3m

/ *2(x)dx - 0.2742 L « (36)
Le

The axial distance x is zero at the clamped end. The maximum value of
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4» (x) Is

iJ>0 - 1.51 x - 0.58 L (37)

while i|>o - 0.96 and 1.45 at the baffles where x - 0.33 L and x - 0.5 L,

respectively.

The reduced velocities associated with the beam fundamental fre-

quency and specified range of flow velocities are

V 0.3 •»• 3 n ,, ^ , ,

Thus the method will not be applicable for /flow velocities greater than

2.7 m/sec, since (28) is not satisfied and lift direction lock-in is

likely. For V > 0.81 m/sec, the reduced damping for the fundamental mode

co must satisfy (29) to avoid drag direction lock-in and ensure applica-

bility of the method. The higher beam modes do not have reduced velocities

greater than one and therefore are not of concern.

To calculate cQ according to (2), the effective modal mass per

unit length MQ must be determined. For a uniform beam MQ > afc according to

(3). Assuming the beam is subject to a load along its entire length makes

it easy to determine MQ - mt and co « 55.23 £o according to (2). Based on

this cQ the design method would not be applicable, according to (2), for

any ?0 < 1.2/55.23 - 0.022. Accounting for the fact that the beam is

loaded over only part of its length, Lfi: 2m < x < 3ra, the more exact value

of MQ = 3.65 mt is obtained from (3), utilizing (36). Based on the new cQ
» 201.4 £o> the design method would not be applicable for less than 0.6% of

critical damping. Thus both conditions (28) and (29) are violated for part

of the range of the component parameters: the largest flow velocities >2.7

m/sec and the smallest damping ratios <0.006.

Because the Reynolds numbers for V > 2.7 m/sec, D - 0.1 •, and

v - 3.16 x 10"' nr/sec are large

NR > 8.5 x 10
5 , (39)

where lock-in response prediction methods are least reliable, a scale-model

test would be indicated. Because of the expense of such testing, the

recommendation to the designer would be to change the component design, if

possible, so all conditions can be predicted with more confidence and,

thus, lessen the need for scale model testing.
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For purposes of calculating respose, the beam Is taken to hare a

lowest frequency of fQ * 8.2 HB, a fixed-siaple node shape given by (34),

and a ?o - 0.01, cQ - 2.01, or a co • 0.04, cQ - 8.04.

c. Blow Modeling

The mean flow velocity is taken to occur over the range of V -

0.3 m/sec to 2.7 a/sec with a corresponding Reynolds nuaber range of 9.5 x

10 < NR < 8.5 x 1 0 . The characterization of the flow turbulence cannot

be as accurately defined and guidance froa available literature [24,36-38]

must be employed.

For the farthest upstream shroud tubes, the turbulence character

will be governed by the upstream flow channel geoaetry. If it is long with

respect to its width, then characterization as fully developed channel flow

is appropriate. In the core region of the channel, the turbulence inten-

sity is least, <u2>1'2/V - 3 to 4%. Although the turbulence is nearly

isotropic near the center of the core, in general it is anlsotropic with

the integral scale varying from 0.2 to 0.8 of the half channel width, or

0.1 m to 0.3 m, depending upon measurement direction [24]. If the channel

is very short and foras a smooth intake froa a much larger plenum region

where the flow velocity is nearly zero, then the flow turbulence could be

almost nonexistent. The extreme case, <u > ' /V - 0, will be considered in

an example calculation.

In the array of tubes the scale of turbulence should be close to

the size of the vortices shed, which is approximately the tube diameter in

the short wake formation region allowed in the array. Depending on the

array pattern, the tubes will be six to twelve diameters apart. For even

larger distances downstream from a cylinder, the turbulence exhibits inten-

sities greater than 20Z and is still anlsotropic [24]. The turbulence

intensity 6-12 diameters downstream of a cylinder can be expected to be at

least 15Z. An example response calculation will? be made for <u2>1'2/V -

15Z and 1^ - D.

d. Lift direction response

Case 1 - Nonturbulent flow, lowest flow velocity, and smallest damping

Given: <u2>1/2/V « 0, VM - 0.3 m/sec, % - 9.5 x 104, Lc - 3D,

D « 0.1 a, fQ - 8.2 HE, and cQ - 2.01 for £o - 0.01.
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Results: TQ - 2.73, K
2 - 8.90 x 107, F^ - 0.25, Yy " 0.184 and

<w2>1'2 - 2.27 x 10~6<|io(x) (aeters) (40)

After calculating the reduced frequency froa (12), the reduced

stiffness K was calculated from (21). Entering Figs. 1-3 at % - 9.5 x

10*, CLy - CL - 0.5, fy > S > 0.2, and C ^ - 0 were chosen. Accordingly,

the reduced force of periodic vortex shedding Fy could be calculated

according to (22). The reduced forces of turbulent flow were assumed zero

by definition: Fg - FR • 0. Adopting the recommended correlation length Lc

« 3D for periodic vortex shedding, Yy was calculated with (25). Because TQ

» 7 V the structural part of the amplification was 1, the same as for

static loads. Thus the multiplier Yy actually is an attenuation (Yy < 1)

due to the relatively small correlation length, Lc « Le.

Case 2 - Same as Case 1 but for largest damping

Given: As per Case 1 except cQ - 8.04 for t,Q » 0.04

Results: Same as for Case 1

Because fy « 1Q, the structural amplification Is 1, static

amplification, and the response predictions are not sensitive to structural

damping variations.

Case 3 - Very turbulent flow, lowest flow velocity, and smallest damping

Given: <u2>1^2/V - 15!S, Ly ~ D, Lc » D, and see Case 1 for other parame-

ters

Results: 1Q - 2.73, K
2 - 8.90 x 107, F2, - 0.001, F£ - 0.01, if -

4.81 x 10"6, Yy - 0.184, YB - 0.0613, YR - 4.82, and

< W 2 > 1 / 2 _ 3#0 x !0-7 + o( x ) peters) (41)

Case 1 fo, K, and NR are applicable. Entering Figs. 1-3,

0.1 and Cjy - 0.03 were chosen and allowed determination of Fy and FR froa

(22-23). From (19), *w - 0.034 for C m - 0.1 was calculated and employed

to determine FR by (24). The multiplier Yy is the sa»« as for Case 1. The

YB is one-third as large, because the correlation length for turbulent,

excitation is assumed one-third that for periodic vortex shedding.
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Whereas the periodic and buffeting force components produce

nearly static responses, the random excitation produces response at fQ.

The multiplier yR is a net amplification composed of a still larger

structural amplification at ? o of 78.6 multiplied by a fluid correlation

factor equal to YB- With these results, the displacement was calculated

according to (20). A result worth noting is that the random response at

the structural resonance is negligible in comparison to the buffeting

response, while the vortex shedding response is about 15% at these low

reduced velocities of high reduced frequencies.

Case 4 - Same as Case 3 except Co " 0.04, the largest damping

Since Case 3 response is nearly static and the random component

of response is negligible for the smaller ;Q - 0.01, then the results will

be the same as in Case 3 for the larger ?o - 0.04.

Case 5 - Nonturbulent flow, highest flowrate, and largest or smallest

damping

Given: Same as Case 1 or Case 2 except V » 27 m/sec and NR - 8.5 x 10
5

Results: Fo - 0.3, K
2 - 1.29 x 10*, F2, - 0.01, fv - 0.23, yv - 1.07, and

<w 2> 1 / 2 - 9.22 x 10"5i|»o(x) (meters) (42)

The above results were obtained following the same procedure as

in Case 1 and Case 2: periodic vortex shedding was assumed to exist at this

higher NR. Notable quantitative difference with Case 1 was that the C L V -

0.1 chosen from Fig. 2 is smaller. Also, because IQ is smaller by an order

of magnitude, the excitation frequency fy - 0.23 is closer to the resonance

frequency TQ - 0.3, K
2 is smaller by almost four orders of magnitude, and

Yy is larger by almost an order of magnitude.

As suggested in the design procedure for his high Reynolds number

range, the response assuming a random forcing function was calculated for

comparison.

Results: 1Q - 0.3, K
2 « 1.29 x 104, F2 - 0.01, F2. - 3.64 x 10"3, y B -

0.0613, YR - 4.82 for zo - 0.01 or yR - 1.21 for co - 0.4, and
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1.072 x 10"4*o(x) (meters) for zo
 m 0-01 (43)

and

< W 2 > 1 / 2 _ 5#69 x io~
5*0<x> (meters) for 5O - 0.04 (44)

The calculation procedure followed was similar to that in Case 3 and Case

4. The only notable quantitative differences were that C^y - 0 was chosen,

? o is an order of magnitude smaller, and most importantly the response is

primarily (90Z) due to random excitation resonance response rather than

random buffeting. Thus the ~/? o dependence upon the amount of structural

damping. Also note that for Co • 0.01, the response due to random excita-

tion (43) is larger than that due to periodic vortex shedding (42).

Case 6 - Very turbulent flow, highest flow velocity, and largest and

smallest damping

Fluid force data has not been taken at this high N^ for such tur-

bulent flow. Based on extrapolating the existing information, no periodic

vortex shedding would be expected and the best estimates of response would

be the random force excitation results given directly above, (43) and (44).

e. Drag direction response

The same cases will be considered as for the lift direction.

Case 1 and Case 2 - Fluctuating drag response

Results: r"o - 2.73, K
2 - 8.90 x 107, F2, - 0.01, r"v - 0.4, y y - 0.184 and

<w2>l/2 . 4.52 x 1 0 " 7 * O ( X ) (meters) (45)

For ideally nonturbulent, two-dimensional flow the fluctuating

drag is periodic with a reduced frequency Iy or Strouhal number S twice

that occurring in the lift direction and an amplitude, from Fig* 3, of Cfo =

0.1. Utilizing (22) with Cjj replacing CLy, the F
2, was calculated. The K

and Yy are the same as for the lift direction analysis and SMS response is

calculated according to (20) with FB * FR - 0. Note the response is

smaller than in the lift direction (40), primarily due to a smaller force

coefficient.
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Case 1 and Case 2 - Steady drag response

Results: 1Q - 2.73, K
2 - 8.9 x 107, F^ - 1.44, Yv - 1.21, ly - 0, and

w « 1.4 x 10"5*o(x) (meters) (46)

An approxiaate value of the static deflection can be obtained

from (20) by choosing FB - FR - 0, Fv - Cn, and Lg - Lfi - 2m. From Fig. 4

a value of C D - 1.2 was chosen and Yv was calculated per (25). Of course,

the deflection given above is not an RMS value as reported for the fluctu-

ating response. The static deflection is approximate to the degree the

fundamental dynamic mode shape represents the static deflection curve. For

uniform beams the two are usually quite close. Note the static deflection

(46) is larger than the dynamic response (45), primarily due to the larger

static force coefficients.

Case 3 - Fluctuating drag response

Results: 1Q - 2.73, K
2 - 8.9 x 107, F| - 0.01, F2. - 9.25 x 10~3,

YB - 0.0613, YR • 4.82, and

<w2>l/2 . 2#25 x 10-6^o(x) (meters) . (47)

The ? o and K are the same as for Cases 1 and 2 above, but Fy is

assumed zero while FB - CJ) - 0.1 was chosen from Fig. 4. Corresponding to

a Cf, - O.I, a *QQ - 0.044 was determined from (15), and F2, was determined

with (24) and (13). Using the same Y B and Y R as employed in the lift

direction, the RMS response was determined with (20). Note this response

is larger than the lift direction response (41) which was due primarily to

turbulent buffeting. In contrast, for the drag direction, resonant

response to random excitation predominates over buffeting response. It is

larger than the resonant response in the lift direction, because of the

larger bandwidth of *D as compared to *L. See (13), (16), and Fig. 5.

Essentially, for the same force coefficient, more energy exists at higher

frequencies where the structural natural frequencies are restricted, by

design, to occur. Thus, as will be seen in the results of Case 4, a

/c dependence on damping exists.
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Case 3 - Steady drag response

Results: Same as for Case 1 and Case 2 except F?, » 0.16 and

w - 4.67 x 10"6*o(x) (rosters) . (48)

The static deflection varies In direct proportion to Fy - Cp.

For 152 turbulence Intensity C D » 0.4 Instead of 1.2, see Fig. 4, and the

static deflection is proportionally smaller.

Case 4 - Fluctuating drag response

Results: Same as for Case 3 except Y R • 1.21 and

< W 2 > 1 / 2 _ !.15 x io"
6^o(x) (meters) . (49)

As discussed above, the RMS response is primarily due to random

excitation at resonance and therefore exhibits a /£o dependence on damp-

ing. Since Case 3 has one-fourth the damping of this case, it will have

twice the response. Of course, the static response does not depend upon ;o

and therefore is the same.

Case 5 and Case 6 - Fluctuating drag response

Results: fQ - 0.3, K
2 - 1.29 x 104, F2, - 0.01, F2, - 6.59 x 10"2'

YB - 0.0613, yR - 4.82 for £o - 0.01, YR - 1.21 for Co - 0.04 and

< W 2 > 1 / 2 . 4<>97 x !o-*^o(x) (meters) for ?o - 0.01 (50)

and

< W 2 > 1 / 2 _ 2.5 x 10~So(x) (meters) for zo - 0.04 (51)

Since no periodic vortex shedding has been observed for this high

N R - 8.5 x 10
s, Fv - 0 was assumed, and a force coefficient of

 cb " FB "

0.1 was chosen from Fig. 3. Corresponding to Cfj •• 0.1, Fg was determined

as in cases 3 and 4 directly above. Again the dependence on /Co is pres-

ent. Note the drag direction response amplitudes (50) and (51) are several

times larger than those of the lift direction (42-44).



30

Case 5 and Case 6 - Steady drag response

Results: I Q - 0.3, K
2 - 1.29 x 104, Ty - 0, F

2, - 0.25, Y V * 1*21, and

w - 4.84 x 10~4i|»o(x> (meters) . (52)

The same procedures were followed as for Case 1. The quantitative differ-

ences are the smaller value of K and Fv - C D - 0.5, obtained from Fig. 4

for NR - 8.5 x 10
5.

f. Discussion

The responses calculated according to the design procedure are

very small and on the order of the static drag deflection for the example

considered, but the example is typical of structures which satisfy the

constraints, (28) and (29), of the design method: only significantly off-

resonant response which is sufficiently damped is allowed. The condition

requiring off-resonant response is primarily responsible for the small

motions, and it is worth discussing what may happen if (28) is violated for

the example considered.

First the assumption will be made that lock-in occurs. Several

methods for determination of nonlinear lock-in response are available, but

an order of magnitude estimate can be calculated utilizing the linear

response relation (20) and some physically observed estimates of the system

parameters which occur during lock-in. In the lift direction, for example,

s
Given: V - 2.7 m/sec, Lc - 2m, fo - fy - 0.25, CQ - 0.01, C L - Cy - 1.6"
then

Results: K2 - 2.55 x 103, F$ - 1.0, FB - FR - 0, Yv - 3025, and

<w2>l/2 - 0.071i|»o(x) (meters) . (53)

Even though the flow and structural parameters are the same as for the

smallest damping situation discussed in Case 5, almost one diameter of

motion is predicted. This is why the lock-in phenomenon is avoided or only

allowed to occur for large values of reduced damping cQ.

To make the predictions, lock-in and the coincidence of the fre-

quency of structural motion and vortex shedding at 1Q - Fy » 0.25 were

presumed. This is a somewhat contrived condition, for lock-in won't occur
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for the actual large separation in values of Jy - 0.23 and JQ » 0.3.

However, the frequency at which lock-in occurs is relatively unimportant.

In going from an f*o * 0.3 to IQ » 0.23 the response is increased only by a

factor of 1.7. Whereas the fact that ?v » ?o was assumed, increases Yy

from 1.07 to 3025, which translates into an increase of response by a

factor of 55. The increase in Yy is due to two factors. First, assuming

total correlation of the vortex shedding during lock-in, results in an

increase in Lc from 0.3 m to 2 m, a factor of 6.67. Second, the major

increase, a factor of 453, is due to the large structural amplification

which occurs when periodic excitation occurs at the structural response

frequency. Also, the lock-in was presumed to amplify the lift coefficient

from 0.1 to 1.0, a factor of 10, which translates into an additional

increase in response by a factor of 10.

As noted in the discussion of Case 6 for lift direction motion,

force data is not known for very turbulent flows at high N^« In addition

the literature is contradictory on the effect of large flow turbulence on

the lock-in phenomenon at low or high NR. If large turbulence does not

allow the lock-in phenomenon to occur, the data of Figs. 1-3 are applicable

and even at resonance, when fy * ?o»
 t h e r e s P o n s e "ill he small. In fact,

it would only be a couple of times larger than the lift response calculated

for random excitation in Case 6, (43) and (44).
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CONCLUDING REMARKS

The procedure developed herein for prediction of dynamic structural

response of a circular cylinder In turbulent crossflow has shown that very

small amplitudes of notion can be expected for typical reactor components,

unless lock-In occurs. The use of the procedure is prohibited for those

conditions where lock-in has been observed in relatively nonturbulent

flow. Whether the lock-in phenomenon will occur for the prohibited condi-

tions in very turbulent flow has not been established.

The possibility exists that for very turbulent flow lock-in does not

occur and the small amplitudes predicted by this procedure are valid. The

existence of another set of operating conditions for which the usually very

destructive lock-in phenomenon can be avoided would be useful to reactor

component designers. This emphasizes the importance of conducting a funda-

mental Investigation to determine whether or not the lock-in phenomenon

occurs for very turbulent flows.
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Table 1. Grid turbulence characteristics and coefficients associated
with force spectral density functional form (13) [3]

Grid

OP

EC

2(493)

24(191)

24(107)

52(493)

52(338)

Intensity
(X)

3

2

4

10

16

11

15

Scale
(mm)

50

50

13

10

10

25

24

*D0

0.100

0.100

0.032

0.010

0.014

0.027

0.026

0.15

0.15

0.09

0.05

0.06

0.08

0.08



Grid

OP

HC

24(191)

24(107)

52(493)

52(338)
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Table 2. Fluid force coefficients [3]

NRxl0"
5

0.24
0.45
0.71
0.94
1.38
1.89

0.22
0.45
0.68
0.90
1.37
1.86

0.22
0.43
0.71
0.90
1.2
1.6

0.29
0.58
0.86
1.15
1.69
3.52

0.32
0.64
0.97
1.28
1.63
1.85
2.58

0.20
0.40
0.63
0.78
1.18
1.60

0.22
0.47
0.61
0.91
1.04
1.36

CL

0.48
0.47
0.46
0.34
0.25
0.19

0.42
0.45
0.38
0.23
0.19
0.24

0.59
0.43
0.25
0.19
0.10
0.07

0.21
0.10
0.08
0.08
0.10
0.11

0.14
0.11
0.12
0.12
0.13
0.15
0.15

0.43
0.25
0.17
0.13
0.14
0.14

0.37
0.19
0.17
0.17
0.16
0.16

•LO

0.069
0.069
0.069
0.069
0.20
0.12

0.033
0.041
0.041
0.033
0.021
0.19

0.074
0.074
0.074
0.074
0.038
0.021

0.036
0.024
0.020
0.023
0.025
0.028

0.052
0.037
0.037
0.037
0.052
0.052
0.052

0.087
0.060
0.037
0.037
0.037
0.037

0.10
0.06
0.06
0.06
0.06
0.06

CLR

0.14
0.14
0.14
0.14
0.24
0.18

0.10
0.11
0.11
0.10
0.08
0.24

0.15
0.15
0.15
0.15

o.u
0.08

0.10
0.08
0.07
0.08
0.09
0.09

0.12
0.10
0.10
0.10
0.12
0.12
0.12

0.16
0.13
0.10
0.10
0.10
0.10

0.17
0.13
0.13
0.13
0.13
0.13

°LV
0.33
0.33
0.31
0.19
0.01
0.01

0.32
0.34
0.27
0.13
0.11
0.00

0.44
0.28
0.10
0.04

-0.01
0.00

0.11
0.02
0.01
0.01
0.01
0.02

0.02
0.01
0.02
0.02
0.03
0.03
0.01

0.27
0.11
0.06
0.03
0.03
0.04

0.20
0.06
0.04
0.04
0.03
0.03

1
1
1
1
1
0

1
1
1
1
1
1

1
1
0
0
0
0

0
0
0
0
0
0

0
0
0,
0.
0,
0,
0,

0,
0,
0,
0,
0.
0.

0.
0.
0.
0.
0.
0.

CD0

.29

.13

.31

.16

.00

.67

.00

.37

.36

.27

.25

.03

.50

.13

.82

.64

.44

.35

.70

.39

.35

.33

.35

.38

.43

.34

.37

.38

.45

.44

.44

.99

.50

.48

.44

.40
,41

.61
,63
.48
,47
38
,35

i

1
1
1
1
0
0

0
1
1

CD

.20

.06

.21

.08

.94

.64

.94

.27

.26
1.18
1
0

1
1
0
0
0,
0

0,
0.
0,
0,
0,
0,

0.
0,
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

.17

.97

.38

.06

.78

.61

.42

.34

.67

.38

.34

.32

.34

.37

.41

.33

.36

.37

.43

.42

.42

,93
,48
,46
,42
,39
40

,58
60
46
45
37
34

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0,
0

0,
0,
0,
0
0,
0,

0.
0,
0.
0,
0,
0,
0,

0,
0,
0.
0.
0,
0.

0.
0.
0.
0.
0.
0.

s
.18
.19
.19
.18
.18
.20

.20

.19

.20

.20

.19

.19

.19

.20

.20

.22

.18

.17

.19

.23

.20

.18

.18

.18

.20

.20

.20

.18

.19

.19

.19

,20
,21
,23
,22
,19
19

,21
21
21
20
20
19

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0,
0,
0,
0
0,
0,

0,
0,
0,
0,
0.
0.
0.

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

&s
.01
.01
.01
.00
.03
.10

.02

.01

.01

.00

.01

.05

.01

.01

.02

.02

.05

.04

.01

.01

.07

.07

.07

.07

.05

.06

.23

.22

.23

.23

.11

.00

.01

.06
,07
,07
,08

,01
04
07
08
08
08
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Ideal crossflow S , with representing trend for sporadic data [5],
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APPENDIX A - DYNAMIC RESPONSE ANALYSIS

1. Free Vibrations

The nodal analysis of beams is classical and is included here for

completeness and consistency of notation and treatment*

a. Equation of motion [29]

The governing equation of motion for the free vibrations of a beam

is

m(x) -^4 + Mw) - 0 (1-1)
dt

where L( ) is a stiffness operator per unit length,

b. Solution

Assuming that separation of variables is possible, the solution

00

w(x,t) - I <Mx)r.(t) (1-2)
i-1 x x

is substituted into (1-1) to give

» d2r
I [m(xH,(x) —J^ + r.L(i|> )] - 0

i-1 1 dtZ X X

which requires for a stable oscillatory (noncritical damped) system

where the eigenvalue oî , in rad/sec, is often given in cycles/sec: f± «

id£/2ir. The solution to the first of the above equations is the real part

of

rt - R± e
 l (1-4)

and tfi£ is the solution of the eigenvector equation

. (1-5)

The above equations are solved, with the appropriate boundary conditions,

for the frequencies tô  and the mode shape function eigenvectors <!>£•
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c. Eigenvector properties

Assuming that the system is self-adjoint (see Appendix B)

L
/ [•1W*J) " •jL(tf-1)]dx - 0 (1-6)

then the eigenvectors are orthogonal, in the sense

L
/ •(x)*1(x)*j(x) - 0 1 * j (1-7)

for distinct frequencies w. j* m^. This can be shown by combining (1-5) and

(1-6) to give

1 ? L

(a£ - u p / m(x)t|»i+jdx - 0 (1-8)

2. Forced Vibrations

The equation of motion of a beam subject to a time varying load p(t) is

given by [29]

2
m(x) 1 4 + i- C(w) + L(w) - p (2-1)

3t2 *

assuming that the beam is subject to a damping operator C(w). The solution

to (2-1) can be expressed easily in terms of the free vibration eigen-

vectors ^(x) if C(w) takes the form of generalized viscous damping per

unit length

C(w) - CjLCw) + C2m(x)w (2-2)

where C^ and C 2 are constants. Because damping is difficult to define, the

assumption (2-2) usually is made and has proven to be a satisfactory pro-

cedure where beam natural frequencies are adequately separated•

a. Modal decomposition

Assuming that the system possesses orthogonal self-adjoint eigen-

vectors, then the solution to (2-1) can be expanded in the series

w(x,t) - I •|(x)q.(t) (2-3)
1-1 X X
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where q^ is the modal displacement. Substituting (2-3) into the equation

of motion, multiplying by tyAx), and integrating the result over the beam

length gives

» d2q, L dq. L

i*l dt o J o J

L L

o ^ o •*

From the orthogonality condition (1-7), the eigenvector equation (1-5), and

the form of damping (2-2), the single equation uncouples into

q± + 2«alCiqli + wjfqi - Vi/m± i - 1, 2 » (2-5)

where the ( ) has been employed to denote time derivatives and

L L
/ dx = 2(0^ / «(x)*ttJdx 6±j (2-6)

with 2(0^^ » ci"\ + C2* T'13 mo<*al fraction of critical damping is Cj, and

the modal mass per unit length is

/ *(C)d? / / ^(5)d5 . (2-7)
o o

The modal force per unit length is

rL ? 2
P±(t) - / p(5,t)*i(5)df / / ^ ( O d S • (2-8)

o o
For the special case of static deformation: q̂  - q. - t) and (2-9)

where (2-10)

ki " "»i4
is the modal stiffness,

b. Fourier analysis

For nondetermlnistic fluid forces p(x,t), statistical analysis of

the response is appropriate and Is often done in the frequency domain. The

spectral density of the response can be determined by Fourier transform
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analysis of the modal equation of motion (2-5). Taking the Fourier trans-

form of both sides of (2-5) gives

-v>\ + 2(ou)1ciQ1i + <o
2
1Q1 - P ^ (2-11)

where

L L ,
P1(o>) - / P(g,»)«,(E)dg / / C(S)d5 (2-12)

o o

and the Fourier transforms are given by

+»
Q1(<-) " / q1(t)e"

1Wtdt (2-13)

and

+•» -iwt
P(x,u>) - / p(x,t)e dt . (2-14)

—09

Solving for Qt(w),

Q1(o>) - P1(u)/k1z1((o) (2-15)

where

zi(u) » 1 - ( u / ^ )
2 + i2q(u)/u)±) (2-16)

is the complex structural mode amplification factor.

A similar Fourier transform formulation can be made in terms of

frequency f in cycles per second rather than o> in radians per second. The

results are of the same form as derived above and can be obtained by

replacement in (2-11) to (2-16) of P(a>), P 1(u), Z1(u), with P(f), P ±(f),

and substitution of

a) - 2irf (2-17)

and

us± - 2irfj (2-18)

where they occur explicitly. Future reference to dependences on u or f

will be deleted except Where explicitly required. Note several different

definitions of Fourier transforms and their inverse are employed in the

literature, and care must be exercised when comparing data and results.
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Having determined the Fourier transform of Qj, the trans fora of the

displacement can be determined

W - I * P / k z . (2-19)
i-1 x * x 1

By substituting (2-19) and (2-12) into the correlation theorem [29]

T/2 I op *

lim i / w(x,t)w(x',t+T)dT - lim i / W*(x,f)W(x',f)ei2irfTdf .
T ~ -T/2 T ~ T - (2_2(J)

Then letting x » x' and T - 0, the aean square displacement

OS OS CO

i-1 j-1 1 J x J -» XJ * J

is obtained recognizing

S (f) - lim i P*(f)P (f) (2-22)

is the cross spectral density (-<* < f < •») of the nodal forces per unit

length.

3. Special Cases

The results of the previous section can be simplified for many situa-

tions which occur in practical applications*

a. Single mode response

Assuming that the majority of the response occurs in the lowest

mode

|l00

<w2> - ( * 2 / k 2 ) / S / I s | 2 d f (3-1)
—CO

where the first mode amplification factor is

|zol
2 - [1 - (f/fo)

2]2 + r2Cof/fo]
2 (3-2)

and the first mode generalized force spectral density is

L , -2 L L

sTO(f) - [/ vo&] I I s <5ie
f,f)to(«)to(e

l)d«a5l (3-3)
o o o
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where S (x,x*,f) Is the cross spectral density of p(x,t)

S (x,x',f) - li«ip*(x,t)P(x',t) . (3-4)
™ T-H»

b. tc « L

If the correlation length for p(x,t), A, Is small In comparison to

the beam length L, then (3-3) further simplifies to

L , -2 L -

[ ] *oo O 5 ] / S «,f>* <«.f)**(5)« (3-5)
o o p

where only knowledge of the single point spectral density S (x,f) of p(x,t)

is required and an estimate of the correlation length

A/2
I (x,f) - / r(x,x+A,f)dA A « L (3-6)
c -A/2

which formally is defined in terms of the coherence function (Appendix D)

S (x.x'.f)
r(x,x',f) ?• Tm . (3-7)

[Sp(x,f)Sp(x',f)]
1/Z

However, &c can be conservatively estimated based on existing data.

c. Single-sided spectra

In the measurement of spectral densities, most often the single-

sided estimates $ (x,f), 0 < f < <», are determined rather than the double-

sided S (x,f), -» < f < •». No generality is lost employing $ • 2S ,

0 < f < n, because S is symmetric in f. In the same fashion, a single-

sided generalized force spectral density $£* can be employed instead of

Sj... Both 4>oo and $ are employed in the main text.

d. Constant velocity and correlation length

If the velocity and correlation length are constant, V • V« and

lc " Lc, respectively, over the length of the beam Le where fluid excita-

tion occurs, then the generalized force spectral density (3-5) can be

simplified to

*oo(f) " L J ' *od5 ; (/ +od5) ] *P (3"8)
Ii O
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where the normalized spectrum 4 ^ is employed which has been obtained by

Multiplication of ^QQ by the factor VM/D(l/2 p V^D)"
2, as in section 4 of

the text, (14) and (17). Substitution of (3-8) into (3-1) yields, with

some algebraic manipulation, the normalized mean square displacement

Y F2/K2 (3-9)

where

i 2 ^
(Lc / / i£dC) / *p / lzordf . (3-10)

The Y will be interpreted as a multiplier of a reduced force F and K as a

reduced stiffness. Also, the reduced stiffness can be interpreted as the

product of the reduced damping or mass co, see (2) of the text, times the

reduced frequency squared or acceleration 4irzfj » u£. Note in (3-12) that

|zol
2 depends parametrically upon the damping factor £o and the fundamental

frequency fQ. See (3-2).

Once the structure's free vibrational response has been charac-

terized, in terms of fQ, tyQ, ?o, and co, the dynamic mean square response

can be determined from (3-9) after specification of Lc and determination of

YF2 for the particular fluid force operative,

e. Idealized *_

The integration for YF2 in (3-10) is obtained readily for several

extreme combinations of normalized fluid force spectral densities •_ and

structural properties, as characterized by |zol. When the fluid force per

unit length excitation occurs in a very narrow frequency band centered

about the reduced frequency ly, then

F " FV " °LV <3-12)

Y - Yv . . 2 A 6 j (3-13)

I1 < W * V
where C L V is the (RMS) lift coefficient for the narrow band excitation.
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The largest value for Yv occurs when the excitation and fundamental fre-

quency coincide

Y (

o
IJ

In this case, the multiplier is a Measure of structural amplification and

attenuation due to lack of fluid force correlation*

In the case of wide band excitation where the energy of excitation

is United to occur in a frequency band well below the fundamental

frequency, called buffeting, the response is nearly static in character and

is given by

YB " Lc ' ' *o d C <

Le

as can be seen from (3-13) letting fv/f0 z 0 and C ^ represent the FMS lift

coefficient for wide band random excitation. In this case, the multiplier

is a measure of fluid force correlation attenuation since static structural

amplification is one.

When the fluid force excitation occurs in a wide frequency band

which is nearly constant in magnitude *p(^o) and includes the fundamental

reduced frequency 1Q, then the integral of (3-10) can be evaluated

explicitly [29] to give
FR " W ?o> <

\ • T 5 o \ ' ' +od5 '
Li

f. General *p

When the excitation force occurs over a wide frequency band which

has a maximum near 1Q, then (3-10) cannot be evaluated explicitly.

However, for •_ whose variation with 1 is gradual, the Y F 2 can be

approximated by adding the separate results (3-15) to (3-18) [30]. Thus,

in the general case, where the excitation force consists of a component
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distributed over a wide band of frequencies superimposed on a periodic

component, an estimate of the mean square response is given by

<w2> 1

o

which is an upper bound.
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APPENDIX B - EXAMPLE DETAILS

For the shroud tube in the close fitting sleeve of the example problem,

assume the damping operator of Appendix A (2-1) is entirely viscous In

nature

C(w) - C(x)w(x) , (1)

where C is the damping coefficient. This is an accurate representation

[29] for small motion which is all that can occur without Impacting. The

fundamental mode damping ratio is

1 fL c 2 ^ ; rL a 2 d x (2

o o o

assuming the normal modes are uncoupled. If

m,0 0 < x < L
m(x),C(x) - (3)

m1 ,C L < x < L + AL

and AL « L, then

C mL 1 L 2 -1

For a cantllevered mode <|>2(L) > <|>2(x), thus

> 2
o

where C depends upon frequency. For the example problem, the frequency of

the fundamental mode is [39]

f - 1 r 3EI i 1 / 2

J •
° L LJ(mf AL + 0.24 aL)

Since mL - 6(33.45) kg/m, m'AL - 0.3(386.3), E - 167 x 109 Pa for 304 SST

at 425°C, and

I - ̂  ir((.l)4 - (.08)*) - 2.90 x lO*"6*4 (7)
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then fQ - 1.02 Hz. Knowing the frequency, and the kinematic viscosity v -

3.16 z 10 nr/sec, an approximation for the damping coefficient is

available [28]. The viscous penetration depth divided by the gap size is

(£) - \-^—\12 - 0.634 . (8)

Then from Figs. 2 and 3 of [28]

C - (0.6)(2)(100)m|u)o

which gives finally

mA -1/2
? > 0.6 -? [1 + mL/m'AL] ' - 0.337
o in

or 34Z of critical damping, which is quite large.


