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Abstract

The aim of this master thesis is to give the user an estimate of uncertainty

over missing data imputation. The full factorization approach is compared
to the state-of-the-art approach of full conditional. The special feature in
both algorithms is the penalization techniques. Both algorithms are used
with different types of missing data like MAR, MCAR and NMAR.
Simulated datasets were conducted with copulas. Simulations were varied in
rate of missing observations, refitting times and the use, or not, of LASSO
regression for last fit.
Results are given in terms of accuracy of predicted values, pooled variance
estimates and errors which occurred during programming and runtime. The
full factorization approach showed advantages over full conditional especially
if one looks on ratios of 10:1 observations to covariables. In cases were co-
variables were in higher numbers than observations, full conditional and full
factorization nearly covered same results when ridge regression was used for
all fits. Generally lasso regression did not improve accuracy of imputation
results. This result can be generalized for all missing types used and simu-
lations conducted in this master thesis. Imputed observations showed paths
which are similar to MCMC bayesian statistics. The imputation steps alter-
nated and converged to certain values.
Results were stable when different datasets and seeds for random numbers
were processed. Run time for both approaches was high due to errors that
occurred in different R packages and functions which are costly in terms of
CPU usage.
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Abbreviations and acronyms

MAR Missing at random

NMAR Non missing at random

MCAR Missing completely at random

LASSO Least absolute shrinkage and selection operator

CV Cross validation

CI Confidence interval

n Number of observations

p Number of covariables

n:p Ratio between number of observations and covariables

NA Non available meaning missing data

AIC Akaike information criterion

BIC Bayesian information criterion

CART Classification And Regression Tree

L1 Penalty term of LASSO regression; Also used as synonym for LASSO
regression

L2 Penalty term of ridge regression; Also used as synonym for ridge regres-
sion
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Chapter 1

Introduction: Missing data in
statistics

Missing data is a huge statistical topic, because of the wide variety of situa-
tions one has to deal with it. I will give two examples of these situations in
the following. Both do have NAs but the underlying types of missing data
are different.
For example in political surveys missing data often occur when people want
to vote for not politically desired parties. Voters of these parties will then
tend to hide their opinions or simply vote for a more accepted party. The
problem for the statistical analyst is now that the estimates for these parties
are downwards biased. The type of missing data here is non missing at ran-
dom (NMAR), because data is missing due to the observation itself. Another
field in which missing data can cause problems is genomic analysis. Here one
has to deal with a huge number of variables p and often a small number of
observations n. If the variables p are genomes it is highly likely that miss-
ing data could be present because of measurement errors that happened at
the experiments undertaken. Mathematically this gives two tasks: The first
one is finding a solution for the missing data. This could only be done by
using complete cases or imputing the data one time with an algorithm at
hand. The second task is fitting estimates in a situation where variables p
are in larger numbers than observations n. This problem can be solved with
penalized regressions like ridge or LASSO regression or even CART algo-
rithms. The type of missing data is more likely either Missing completely at
random (MCAR) if the observations with missing occur independently from
each other or Missing at random (MAR), if the missing data are linked with
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especially one variable and are dependent on observations of other variables
in the data.
Generally this master thesis will concentrate on algorithms which impute
missing data. Most common algorithms today try doing this by giving the
user solid numbers for the values missing. What most algorithm miss is esti-
mating an uncertainty of these imputations. In the following I will introduce
a known and a new approach, the Full conditional and Full factorization, for
imputing missing data with uncertainty. The advantage of these procedures
is that users are not given a single observation as solution in the algorithm
but an entire distribution for each cell missing in the data.
Chapter 2 will lay the mathematical and statical foundations for both algo-
rithms. Chapter 3 will then give an exact overview of the programming for
simulations in R (R Core Team, 2014). Results and a comparison of both
algorithms are presented in Chapter 4.1.
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Chapter 2

Theory of new missing data
approaches

2.1 General theory of missing data algorithms

This chapter will clarify the mathematical similarities between the full con-
ditional and the full factorization approach. The independent differences will
each be presented in separate sections (2.4,2.3) later on.
In general both algorithms are using penalized regressions and bootstrap
methods to estimate missing data. The functions know five different regres-
sion families for the dependent variable, each of which different statistical
models are being used. Following the main regressions are explained with
their inner methods before going to the methods and models for the different
distributions.
For further insights to the theory of imputing missing values one should
have a look at Rubin’s article ”Inference and missing data” (Rubin, 1976) or
(Schafer, 1997).

2.1.1 The LASSO

The least absolute shrinkage and selection operator (LASSO) is a linear
model with an L1 penalization term (Tibshirani, 1996):

β̂lasso = arg min
β

{
1

2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|

}
(2.1)
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The absolute penalization term can shrink beta coefficients to zero so that
they are selected from the model. In case of p >> n the LASSO can be used
to thin out variables in models and make fitting in the presence of collinearity
even possible. The LASSO is used for all families inside the function with a
cross validated penalization term. The disadvantage of this method is that it
has no analytical solution for the covariance matrix of the beta coefficients,
because of the absolute penalization term that can not be differentiated.

2.1.2 Ridge regression

In contrast to lasso regression, the ridge regression shrinks the beta coeffi-
cients but is not generally used for variable selection (Tikhonov, 1943):

β̂ridge = arg min
β

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

}
(2.2)

The L2 penalization term allows a analytic solution for the covariance of
betas (Fahrmeir et al., 2013):

Cov
(
β̂Ridge

)
= σ2(XTX + λI)−1XTX(XTX + λK)−1 (2.3)

λ is given as the penalty coefficient calculated by cross-validation. K gives a
penalization matrix with diag(0,1,. . . ,1). Variance of ε is estimated with σ2.
Ridge regression yields coefficients in cases of collinearity or mathematically
unstable generalized linear models.

2.1.3 Bootstrapping

In cases where analytic solutions for covariance of beta coefficients can not
be calculated one can use bootstrapping (Hastie et al., 2011). Indices of the
original data set are sampled with replacement and the new data matrix is
fitted to the original models. This procedure is done R times and the resulting
variances and covariances stem from the variance/covariance of the different
bootstrap samples for each coefficient. The covariance matrix received should
be unbiased.

V ar(β̂j) =
1

R− 1

R∑
i=1

(β̂Boot
ij − ¯βBoot

j ) (2.4)
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Bootstrapping can also be used to get unbiased estimates for beta coefficients.
Therefore the mean of the Bootstrap samples of betas is used.

β̂j =
1

R

R∑
i=1

β̂Boot
ij (2.5)

Stratified Bootstrapping

In case of binomial and categorical responses one should not use normal
bootstrapping, because of unbalanced classes in the bootstrap sample. If
one class is highly over represented regression coefficients are likely to be
unstable. Prevention of this can be done by sampling inside of the classes.
The advantage of this is that the proportions between classes stay the same
(Davison et al., 2003).

2.1.4 Cross-Validation

To estimate the penalization factor λ cross-validation is used. The method
splits the data into K different partitions and then uses K-1 partitions as
training sets and one partition as a validation set. The validation usually
computes a score like AIC, BIC or the cross-validation error.
The algorithm runs through all partitions and computes the statistical score.
Finally the λ with the smallest statistical score is chosen. Criterions for
statistical scores used in algorithms are discussed later on.

2.2 General form of algorithms

The algorithms start by computing the missing values in every variable one
time. These values are then used as the first starting values for the algorithm.
The variables are sampled throughout the whole algorithm to prevent find-
ing local maxima or minima. The user can decide on whether to use LASSO
regression for last imputation or not. Generally the algorithm runs in six
different steps:

1. Cross-Validation to get best λ penalization factor for regression
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2. Fit regression with p-1 independent variables

3. Sample variance of ε residuals

4. Compute covariance in case of ridge regression or use bootstrapping
with lasso penalty

5. Sample beta coefficients with given covariances

6. Predict new observations for imputation; latest predictions are used as
starting values for new predictions

In the following sections I will give detailed information about each of theses
steps for the regression families at hand. These sections will also present
programming in R.

2.2.1 First imputation using mice algorithm

Users can choose between giving their own starting values for NAs or letting
the algorithm choose for themselves. In case of the second one first imputa-
tions for data are done by using Fully Conditional Specification (FCS) im-
plemented by the MICE algorithm (van Buuren and Groothuis-Oudshoorn,
2011). This algorithm uses bayesian Gibbs sampling with Chained Equa-
tions. The method automatically recognizes regression families and fits im-
puted data by built-in imputation methods.
If the starting value is too far from the real data point the algorithm will
probably not converge in time.

2.2.2 Step 1: Use Cross-validation for optimal λ

As described in 2.1.4 cross-validiation is used to get an optimal regression
fit. Every regression family uses different R packages and therefore different
cross-validation models. The following table will give an overview of func-
tions and packages used for regression families in R.

Regression family R function R package
Normal, Binomial & Poisson optL1() & optL2() penalized package (Goeman, 2010)
Categorical cv.glmnet() glmnet package (Friedman et al., 2010)
Gamma cv.lqa() lqa package (Ulbricht, 2012)

Table 2.1: Functions and packages for cross-validation in R
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Each of these functions are given a user configured upper bound for the
penalization factor. Per default this is 512. For normal, binomial, poisson
and categorical family cross-validation is calculated via 10 data folds. In
case of gamma responses a training and validation dataset is drawn from the
original data.
Criteria for cross-validation are cross-validated likelihood (normal, binomial
and poisson family), misclassification rate (categorical family) and Akaikes
information criterion (gamma family).
There can be times when λ is set to zero. In that case different unregularized
regression fits are used.

2.2.3 Step 2: Fitting regression model

Regression family R function R package
Normal, Binomial & Poisson (λ 6= 0) penalized() penalized package
Normal, Binomial & Poisson (λ = 0) glm() stats package
Categorical glmnet() glmnet() package
Gamma lqa() lqa() package

Table 2.2: Functions and packages for regression fitting in R

Table 2.2 shows the functions in R that are used for calculating regression
fits. As explained before the user can choose between fitting entirely ridge
regression and taking LASSO regression for the last fit. The benefit of lasso
regression could be that in cases of p >> n unneeded covariables are selected
from the regression model. As explained in Step 1 cross-validation can set
the penalization parameter to zero leading to an unregularized model fit.
This is problematic for the penalized function because a penalization factor
λ is obligatory. To solve this problem normal generalized linear models are
taken if λ is set to zero.

y = h(η) (2.6)

η = β0 +

p∑
i=1

xiβi (2.7)

In 2.7 one can see the model formula for a generalized linear model. Link
function and response functions are the same as in their regularized equiva-
lents.
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Regression family Link function Model formula
Normal Identity y = xTβ

Binomial log Odds log
(

P (Y=1)
1−P (Y=1)

)
= xTβ

Poisson log log(y) = xTβ

Categorical Multinomial log Odds log
(
P (Y=r|x)
P (Y=k|x)

)
= xTβ

Gamma log log(y) = xTβ

Table 2.3: Link functions for regression models used

For gamma regression the canonical link function, the inverse function,
is not used because this could lead to constraints on the beta coefficients.
Also the interpretation of coefficients is much more complicated then usual,
because small beta coefficients indicate greater values of dependent variable
y. Log link for gamma regression gets rid of constraints on beta coefficients
and makes interpretation for users straight forward.

2.2.4 Step 3: Sample variance of residuals ε

σ̂new =
σ̂

DF-1
∗ χDF−1 (2.8)

To sample the variance of residuals the model variance is divided through
the degrees of freedom minus one for that model and multiplied by a random
number of a chi-squared distribution with DF-1 degrees of freedom. The
degrees of freedom here can be seen as the number of observations. Generally
the variance of residuals can be compared to statistic for model fits. A huge
variance would indicate a bad model fit and vice versa.

2.2.5 Step 4: Computing covariances for beta coeffi-
cients

To sample new beta coefficients the covarianc of estimated betas in the re-
gression model is needed. Ridge regression allows for analytic solutions of
these covariances as stated in section 2.1.2. To compute inverses for matrices
the general inverse is used. It is implemented in the function ginv from the
package MASS. This functions calculates the Moore-Penrose pseudoinversion
of a matrix. The advantage of this method is that even in case of singularities

18



in matrices the algorithm still functions.
LASSO regression can not be differentiated because of the absolute penal-
ization term. In every scenario bootstrapping is used. For categorical and
binomial regression families stratified bootstrap is considered over normal
bootstrapping. As stated above the binomial family is problematic consider-
ing analytic solutions of covariance matrices. So even in the ridge regression
case one has to use bootstrapping for calculation of variances.

2.2.6 Step 5: Sample beta coefficients with given co-
variances

The resampling of beta coefficients relies on the function rmvnorm in the
package mvtnorm (Genz et al., 2014). This function samples random numbers
from a multivariate normal density.

f(x, y) =
1

2πσ1σ2
√

1− ρ2
(2.9)

× exp

{
− 1

2(1− ρ2)

[(
x− µ1

σ1

)2

− 2ρ

(
x− µ1

σ1

)(
y − µ2

σ2

)
+

(
y − µ2

σ2

)2
]}

(2.10)

In 2.10 one can see a density of two-dimensional multivarite normal distribu-
tion. Cholesky decomposition is used to calculate inversions of sigma matrix.

2.2.7 Step 6: Predicting new observations for imputa-
tion

Predictions are different considering the regression families. In cases of nor-
mal, poisson and gamma distribution the algorithm is the same.
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Algorithm 1 Predicition of imputed observations

1: procedure Predicition of imputed observations
2: Min Var ← Minimum of variable to be imputed
3: Max Var ← Maximum of variable to be imputed
4: Min CI ← Min Var - Proportion · StandardDev(Var)
5: Max CI ← Max Var + Proportion · StandardDev(Var)
6: . Proportion is taken to be 0.1 per default
7: Minimal ← Are there any observations smaller then CI of Minima?
8: Maximal ← Are there any observations greater then CI of Maxima?
. Predictions out of models are reviewed for outliers

9: . If any are found the observations are resampled with mean of not
imputed observations and standard deviations

10: if length(Minimal) > 0 or length(Maximal) >0 then
11: mean Var ← Mean of not imputed observations in variable
12: if length(Minimal) > 0 then
13: Eta[Minimal] ← Random numbers out of Variable with

mean Var and standard deviation
14: end if
15: if length(Maximal) > 0 then
16: Eta[Maximal] ← Random numbers out of Variable with

mean Var and standard deviation
17: end if
18: end if
19: end procedure

Re-running regression models can cause problems in terms of extreme
outliers accounting for singularity problems. Consider a single outlier in one
run of the algorithms. Refitting this outlier could lead to an outlier even more
extreme then the last imputed observation causing beta coefficients to become
unstabile. To prevent this confidence intervals for minima and maxima of
imputations are computed. A proportion of the standard deviation of the
variable is added or taken from the minima or maxima. If an outlier is smaller
or greater than one of CI boundaries it is resampled with the mean of the
not imputed observations and standard deviation.
Outlier prevention in categorical regression is done by avoiding classes to be
over represented. If a model predicts only one class for all observations and
the number of observation exceeds a proportion of 40 % of all observations
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then the prediction is discarded.
Binomial observations are sampled with p to be the mean of not imputed
observations in the variable.

2.3 Full conditional approach

The full conditional approach as the name suggests starts with the full condi-
tional of every variable in the dataset. This method does not work properly
if the joint distribution does not exist (Drechsler and Rässler, 2008).

X1|X2, . . . , Xp (2.11)

X2|X1, . . . , Xp (2.12)

... (2.13)

Xp|X1, . . . , Xp−1 (2.14)

Every full conditional can be seen as a model with p-1 independent variables
and one dependent variable. Variables are permuted in every refitting step
to prevent the algorithm to be stuck on local optima. To give a deeper
understanding of the algorithm one can see the algorithm in pseudo code at
page 23.

2.4 Full factorization approach

The full factorization approach is based on a joint distribution over all vari-
ables p (Garcia et al., 2010). However in every programming step another
joint distribution is selected. The program starts with a full model fit of
all variables in the dataset and reduces one variable at a time until only
one variable is left. Imputation for this variable is done by the marginal
distribution.

X1|X2, X3, X4 (2.15)

X2|X3, X4 (2.16)

X3|X4 (2.17)

X4 (2.18)

The algorithm is similar to the full conditional approach and should work
computationally faster because the regressions are not fitted on the whole
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dataset. In every refitting step the joint distribution is permuted with the
same reason as in the full conditional approach. The algorithm can be seen
on 24.
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Algorithm 2 Full conditional approach

1: procedure Full conditional approach
2: Data Comp ← Compute starting values for missing
3: textitdata
4: . Starting values are calculated by MICE or directly by the user
5: p ← Length of covariables in data
6: Covariable List ← List with length p
7: Times ← Number of times algorithm should repeat
8: . Old imputations Xi are used as new starting values
9: for i in 1 to Times do
10: for j in sample(1 to p) do
11: Covariable List[j]← Regression(Xj|X1, . . . , Xj−1, Xj+1, . . . , Xp)
12: . Ridge/LASSO for metrical, poisson and binomial approaches; glmnet

for categorical approach
13: if L1 then
14: . Use LASSO regression in last imputation?
15: if i!=Times then
16: . Use ridge regression in first imputations
17: if j is nominal, poisson or gamma then
18: λ2 ← Cross-valdition(data,model)

19:
̂

Cov(β̂R)← (XTX + λK)−1XTX(XTX + λK)−1

20: else . If Xj is binary or categorical use bootstrap
instead

21:
̂

Cov(b̂etaR)← Bootstrap
22: end if
23: β̂Newi

∼MVN(β̂i,Cov(βR))
24: Xi ∼ N(η̂Newi

, σ̂2
Newi

)
25: end if
26: else . Use LASSO regression
27: λ1 ← Crossvaldition(data,model)

28:
̂

Cov(b̂etaR)← Bootstrap
29: Xi ∼ N(η̂Newi

, σ̂2
Newi

)
30: end if
31: end for
32: end for
33: end procedure
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Algorithm 3 Full factorization approach

1: procedure Full conditional approach
2: Data Comp ← Compute starting values for missingdata
3: . Starting values are calculated by MICE or directly by the user
4: p ← Length of covariables in data
5: Covariable List ← List with length p
6: Times ← Number of times algorithm should repeat
7: . Old imputations Xi are used as new starting values
8: for i in 1 to Times do
9: for j in sample(1 to p) do

10: Covariable List[j]← Regression(Xj|X1, . . . , Xj−1, Xj+1, . . . , Xp)
11:

12: Regression(X1|X2, . . . , Xj−1, Xj+1, . . . , Xp) .
Ridge/LASSO for metrical, poisson and binomial approaches; glmnet for
categorical approach

13: if L1 then
14: . Use LASSO regression in last imputation?
15: if i!=Times then
16: . Use ridge regression in first imputations
17: if j is nominal, poisson or gamma then
18: λ2 ← Cross-valdition(data,model)

19:
̂

Cov(β̂R)← (XTX + λK)−1XTX(XTX + λK)−1

20: else . If Xj is binary or categorical use bootstrap
instead

21:
̂

Cov(b̂etaR)← Bootstrap
22: end if
23: β̂Newi

∼MVN(β̂i,Cov(βR))
24: Xi ∼ N(η̂Newi

, σ̂2
Newi

)
25: end if
26: else . Use LASSO regression
27: λ1 ← Cross-valdition(data,model)

28:
̂

Cov(b̂etaR)← Bootstrap
29: Xi ∼ N(η̂Newi

, σ̂2
Newi

)
30: end if
31: end for
32: end for
33: end procedure
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Chapter 3

Simulation

3.1 Introduction to simulation

To compare approaches a simulation was conducted. Datasets are simulated
with different missing values, variable numbers and times the algorithms
reruns the regression fits. This chapter will give an overview of the simulating
topics beginning with the algorithm used for simulations of the data sets.
The functions for missing values and variety of simulating the approaches
are explained later on.

3.1.1 Simulating datasets

To simulate datasets copulas are used to retrieve datasets with correlation
structures. Datasets simulated here have an exchangeable structure. This
means the correlation between all variables stays the same.

Corr(X) =


1 α α . . . α
α 1 α . . . α
...

. . . . . . . . . . . .

α α α . . . 1

 (3.1)

Output of copulas are uniform distributions, which give the marginal distri-
bution of each variable. One has to transform these variables by quantile
functions to get the actuall distributions. The copula (Hofert et al., 2014)
(Jun Yan, 2007) (Ivan Kojadinovic and Jun Yan, 2010) (Marius Hofert and
Martin Mächler, 2011) package supports various modes which can be used for
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simulating marginal distributions. In this case the normalCopula function is
used which is based on a normal distribution.

Algorithm 4 Simulating datasets

1: procedure Simulating datasets(n,distrib,means,sd,strength=0.2,seed=1234)
2: set.seed(seed)
3: . A seed is set to ensure reproducibility
4: dim ← Length of distrib
5: . Dimensions of new dataset are evaluated of the input parameters
6: Copula ← Copula(n=n,copula=normalCopula(strength,dim=dim))
7: . Copula is evaluated with a normalCopula random number generator

with exchangeable structure for correlations
8: for j in 1:dim do
9: . The uniform distributions are transformed with quantile functions in

R, means and standard deviations as input parameters
10: if Distribution == ”normal” then
11: Variable ← qnorm(p=Copula,means=means,sd=sd)
12: else
13: if Distribution == ”binomial” then
14: Variable ← qbinom(p=Copula,size=1,prob=means)
15: . A coin is flipped one time with probability of means
16: else
17: if Distribution == ”poisson” then
18: Variable ← qpois(p=Copula,lambda=means)
19: else
20: if Distribution == ”gamma” then
21: Scale ← (Standard deviation)2/Means
22: Shape ← (Means)2/Standard deviation
23: Variable← qgamma(p=Copula,scale=Scale,shape=Shape
24: else

The probabilities for a categorical variable are data driven by proportion
of observations between certain boundaries. The strength of the exchangeable
structure is set to 0.2 by default.
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25: if Distribution == ”categorical” then . The
categorical distribution chooses on probability of different classes on its on

26: . Boundaries are set by number of different classes for categorical
variables

27: Dsort ← sort(Copula)
28: . Copula is sorted by values
29: Bound ← seq(0,1,by=1/means
30: . Boundaries are set uniformly over range from zero to one
31: for i in 1:length(Bound)-1 do
32: PropClass ← Proportion of observations be-

tween Boundary i and Boundary i-1
33: end for
34: Variable ← sam-

ple(1:mean,size=n,replace=TRUE,prob=PropClass)
35: end if
36: end if
37: end if
38: end if
39: end if
40: end for
41: end procedure

3.1.2 Simulating missing values with MCAR

Simulating missing values with underlying missing completely at random
is done by theoretically flipping a coin for every observation and set this
observation to missing in case of success.
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Algorithm 5 Simulating missing values MCAR

1: procedure Missing values(data,missing=0.1,seed=1234)
2: set.seed(seed)
3: . Set seed for reproducibility
4: row ← Number of rows in dataset
5: col ← Number of columns in dataset
6: for j in 1:row do
7: for i in 1:col do
8: na ← Coin flip with probability of success set by missing
9: if Coin flip is succesfull then

10: data[i,j] ← NA
11: end if
12: end for
13: end for
14: end procedure

3.1.3 Simulating missing values with NMAR

NMAR (non missing at random) is a missing mechanism where missing values
are dependent on observations of the variable itself. Consider scaling people.
If a person is overweighted then it could happen that scaling fails due to limits
of measurement. The observation is missing because of the observation itself.
To simulate this structure quantiles of every metrical variable are taken. Per
default these are the 5 and 95 % quantiles. So very small and very large
observations are taken to be missing. In case of binomial or categorical
variables MCAR is used with a default missing rate of 0.1 . The algorithm
can be seen in pseudo code on page 29.
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Algorithm 6 Simulating missing values NMAR

1: procedure Missing values(data,quantile=(0.05,0.95),missing=0.1,seed=1234)
2: set.seed(seed)
3: . Set seed for reproducibility
4: col ← Number of columns in dataset
5: for i in 1:col do
6: if Length of unique observations of variable are larger then cate-

gories of categorical variable then
7: . The if clause is necessary to differ between metrical and binomial or

categorical variable
8: Upper quantile ← 0.95 % quantile of variable i
9: Lower quantile ← 0.05 % quantile of variable i
10: . Here default quantiles are taken; User can change these
11: Data which are greater then Upper quantile are set to NA
12: Data which are smaller then Lower quantile are set to NA
13: else
14: . MCAR is used for binomial and categorical variables
15: row ← Number of rows in dataset
16: for j in 1:row do
17: na ← Coin flip with probability of success set by missing
18: if Coin flip is successfull then
19: data[i,j] ← NA
20: end if
21: end for
22: end if
23: end for
24: end procedure

3.1.4 Simulating missing values with MAR

The third missing mechanism is one where values do not depend on the ob-
servations themselves but are dependent on observations of other variables.
Take the example of scaling people of the NMAR section. Now consider that
before scaling was done anyone in the population was undergoing several
medical tests. Within these tests blood pressure, cholesterol level and other
medical properties are measured. If a value at scaling is now missing because
measurement fails, this values depends on the other values of observations.
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To get a proper algorithm working quantiles of variables like in the NMAR
algorithm were taken as boundaries for missing values. The difference of
NMAR and MAR algorithm is now that missing values are not implemented
into variables itself but into other variables of dataset. Quantiles of categor-
ical and binomial variables do not make sense so in these case simple MCAR
was used with a missing success rate of 0.2 . The algorithm takes only one
variable at a time to create missing values.

Algorithm 7 Simulating missing values MAR

1: procedure Missing values(data,quantile=(0.05,0.95),missing=0.1,seed=1234)
2: set.seed(seed)
3: . Set seed for reproducibility
4: col ← Number of columns in dataset
5: Var ← 1:ncol
6: . Var vector is set as the independent variable of the MAR algorithm
7: for i in 1:col do
8: if Length of unique observations of variable are larger then cate-

gories of categorical variable then
9: . The if clause is necessary to differ between metrical and binomial or

categorical variable
10: Independent ← Sampled from numbers of Var
11: while Independent == i do
12: Independent ← Sampled from numbers of Var
13: end while
14: . Independent variable can not be variable itself
15: Upper quantile ← 0.95 % quantile of variable i
16: Lower quantile ← 0.05 % quantile of variable i
17: . Here default quantiles are taken; User can change these
18: Observations in independent variable which are greater then

Upper quantile are set to NA

3.1.5 Variations over simulating steps

To evaluate and compare the different approaches a small variety of simula-
tions are undertaken. These simulations can be generalized for larger pop-
ulations due to proportions of observations and covariables in the dataset.
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19: Observations in independent variable which are smaller then
Lower quantile are set to NA

20: Var ← Var without used independent variable
21: else
22: . MCAR is used for binomial and categorical variables
23: row ← Number of rows in dataset
24: for j in 1:row do
25: na ← Coin flip with probabiilty of success set by missing
26: if Coin flip is succesfull then
27: data[i,j] ← NA
28: end if
29: end for
30: Var ← Var without used independent variable
31: end if
32: end for
33: end procedure

For all missing structures, datasets are simulated with a ratio of 10:1 and 2:3
between Observations and Variables. These proportions were chosen to set
boundaries in cases were penalization techniques are not required and cases
where they are crucial to have. For MAR mechanism a proportion of 3:2 is
also examined. The missing value probability is set to 0.2 / 0.4 .
Simulated algorithms are for example compared by paths of their simulating
steps and also the density of their simulating results in total. The distribu-
tion families are equally split over the number of covariables p. Mean and
standard deviation are different for each variable in a distribution family and
depend on the number of covariable p the user has selected. For distribu-
tions where standard deviations are not needed for simulating process none
are reported. In case of binomial distribution, mean gives the probability of
success. For categorical distributions, mean is always 3 and gives the number
of classes for the variable. 3 was picked because run time grew relevantly in
case of greater class numbers.
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Mean Standard deviation
Distribution Upper boundary Lower boundary Upper boundary Lower boundary
Gamma 20 2 10 2
Normal 20 1 10 1
Binomial 0.7 0.3 - -
Poisson 20 3 - -
Categorical 3 3 - -

Table 3.1: Mean and standard deviations for each distribution in simulating
process

To give an example of simulating distributions consider a dataset of di-
mension 50 for p and 100 for n. To split the distributions equally over the
dataset each distribution is simulated 10 times. The gamma distribution
starts with a mean of 2 and a standard deviation of 2 and so on.

Mean 2 4 6 . . . 20
Standard deviation 2 2.88 3.77 . . . 10

Table 3.2: Example of 10 gamma distributions for simulating process
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Chapter 4

Results of simulation

This chapter is going to focus on giving statistical results for the simulations
undertaken. The three different mechanisms for missing values are being
compared and also plots for the simulating steps are going to be depictured.
Plots presented in this chapter were all done with ggplot2 (Wickham, 2009).

4.1 Comparison of statistical accuracy of pre-

dictions

The main goal of the featured algorithm is to predict uncertainty. But one
should not forget the goodness of prediction in missing values. To compare
this prediction the mean and standard deviation for every variable is taken
and a 95 % confidence interval is calculated with the 95 % quantile of the
normal distribution. The number of true values of observations is counted to
give a proportion of goodness of prediction for metrical variables.

θ̂ ± z1−α · std (4.1)

In case of binomial and categorical variables the number of right predictions
is counted and divided by the number of all predictions to give a ratio of true
predicted observations. If that number exceeds 0.5 the prediction is taken to
be correct for the algorithm at hand. Number of observations for all scenar-
ios is always 100. This section will only give a small overview of the results
for all three missing value states. The complete tables with all results can
be seen in the appendix following page ii. If observations are missing at the
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tables the algorithm was aborted due to errors which are explained later on.
The predicted numbers are based on certain simulated datasets. This means
numbers will vary if one redoes the simulations.

4.1.1 Tables for accuracy of predicted data

The following table will give first impressions on the differences between
missing values structures. Models here were fitted with 10 covariables and 100
observations. Quantiles for MAR and NMAR are 0.05 and 0.95. Proportion
for missing values at MCAR was 0.2 . LASSO fitting for last fit was not used
for these models.

Algorithm Missing value structure Refitting Times Percentage of accurate predictions
Full factorization MCAR 20 38.46 %
Full conditional MCAR 20 31.25 %
Full factorization MCAR 50 37.50 %
Full conditional MCAR 50 32.69 %
Full factorization MAR 20 38.23 %
Full conditional MAR 20 35.29 %
Full factorization MAR 50 41.17 %
Full conditional MAR 50 35.29 %
Full factorization NMAR 20 10.48 %
Full conditional NMAR 20 09.79 %
Full factorization NMAR 50 09.79 %
Full conditional NMAR 50 09.79 %

Table 4.1: Comparison of accurate predictions over missing value structures
with no LASSO fitting and n >> p

In nearly all models fitted the percentage of accurate predictions in full
factorization is greater than in the full conditional approach. Smallest values
are observed with NMAR, which is not surprising due to the fact that miss-
ing values are only dependent on themselves and can not be easily predicted
with regression models. MCAR and MAR do have comparable values with
MAR accurate predictions slightly smaller then MCAR. If one looks at the
refitting times values decrease in MCAR structure while they stay the same
or increase in MAR structure.
The advantages of penalized regressions like LASSO or ridge regression clearly
are the p >> n case. The next table will give an overview of these cases with
ratios 2:3 observations to covariables and LASSO fitting which in these cases
was used.
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Algorithm Missing value structure Refitting Times Percentage of accurate predictions
Full factorization MCAR 20 21.12 %
Full conditional MCAR 20 49.71 %
Full factorization MCAR 50 31.70 %
Full conditional MCAR 50 49.75 %
Full factorization MAR 20 27.40 %
Full conditional MAR 20 50.22 %
Full factorization MAR 50 36.83 %
Full conditional MAR 50 51.57 %
Full factorization NMAR 20 14.98 %
Full conditional NMAR 20 17.38 %
Full factorization NMAR 50 16.59 %
Full conditional NMAR 50 17.85 %

Table 4.2: Comparison of accurate predictions over missing value structures
with LASSO fitting and n << p

The general results of the n >> p are contradicted here. Generally the
full conditional approach fits better then the full factorization. A reason
for this behavior in case of MAR is that the dependent variable was used
before the missing values for the independent variable were fitted. So the
dependency structure can not be refitted. In case of full conditional with
penalized approaches the important variables are selected from the dataset.
Comparing lasso step in the last fitted model one will give an overview in
tabular 4.3 of some exemplary models fitted in MCAR. The results can be
generalized for all missing mechanism (see also appendix following ii).

Algorithm Missing value structure Refitting Times p Use L1 penalty? Percentage
of accurate
predictions

Full factorization MCAR 20 10 No 38.46 %
Full conditional MCAR 20 10 No 31.25 %
Full factorization MCAR 20 10 Yes 33.17 %
Full conditional MCAR 20 10 Yes 30.28 %
Full factorization MCAR 20 150 No 50.04 %
Full conditional MCAR 20 150 No 49.38 %
Full factorization MCAR 20 150 Yes 21.12 %
Full conditional MCAR 20 150 Yes 49.71 %

Table 4.3: Comparison of accurate predictions using L1 penalty and different
numbers of covariables

When covariable and observation numbers are in ”good” proportion of
1:10, lasso regression should not be used. The accuracy of predictions is
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decreasing because of bias in the linear predictor. Also these cases would
normally not need penalized regression fits. Looking at huge covariable num-
bers and small observations numbers like in the 150:100 lasso regression is
obsolete as well. In the full factorization approaches, numbers even decrease
when using lasso models for the last refit. Ridge regression scenarios were in
these cases more stable.

4.1.2 Accuracy of predictions within distributions

To show wich distributions are responsible for the accurate prediction rates a
table is presented. It holds numbers of every distributions and the percentage
to which these predictions are accurate in the sense of chapter 4.1. The
numbers presented are as always dependent on the simulated datasets and
model fits. Dimension of data sets was 100 observations with 10 covariables.
Fitting was done by a MAR mechanism with 0.95 and 0.05 upper and lower
quantile and no use of lasso at the 50ths refit.

Accuracy of predictions in percent
Distributions Full conditional Full factorization
Normal 33.33 % 44.44 %
Poisson 95.00 % 95.00 %
Gamma 28.00 % 44.44 %
Binomial 80.00 % 80.00 %
Categorical 30.76 % 33.33 %

Table 4.4: Accuracy of predictions within distributions for p << n

The numbers for full factorization exceed the numbers for full conditional.
The point of interest clearly lies on the numbers for the poisson distributions.
Nearly all of these observations are predicted accurate, means within the CI.
On the contrary the numbers for the categorical and gamma distributions
are the lowest. Conclusion is that variance within these predictions has to
be very high. Poisson and binomial distribution show similar results for both
approaches.
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4.1.3 Comparison of fitting on different datasets

To verify that results were not only random artifacts, the whole process of
model fitting was redone with different datasets and seed for random number
generation being used. Models compared in table 4.5 were fitted with 20
refits, no usage of lasso regression, 0.2 missing rate in case of MCAR and
0.05 and 0.95 quantile boundaries for NMAR/MAR. Accuracy numbers are
given in percent.

seed=1000 seed=1234
Full factorization Full condtional Full factorization Full conditional

MAR
p=10 35.91 30.28 38.23 35.29
p=150 48.07 49.02 51.12 50.35

NMAR
p=10 12.5 11.18 10.48 09.79
p=150 18.73 18.87 16.77 17.49

MCAR
p=10 36.89 31.01 38.46 31.25
p=150 50.69 50.79 50.04 49.38

Table 4.5: Comparison of accuracy results in different seeds used for data
simulation

Results for accuracy seem to be stable over all missing structures and
different covariables modelled.

4.1.4 Analysis of variances within distributions

Dimension of 10:1

To quantify how variances differ between full factorization and full condi-
tional approaches pooled variances are are used. Pooled variances are often
used in statistical testing (Toutenburg et al., 2008).

S2 =

∑n
i=1(ni − 1)s2i∑n
i=1(ni − 1)

(4.2)

In the following table different, but comparable, models of every missing
structure are shown with their pooled variances in all distributions except
categorical. For this distributions it is uncertain how variances should be
calculated. All distributions shown in table 4.7 were fitted without using lasso
and 50 refits. For MAR and NMAR upper quantiles and lower quantiles 0.95
and 0.05 were taken and 0.2 missing success probability for MCAR. Results
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for simulations using lasso for last refit can be seen following page vii in the
appendix.

MAR MCAR NMAR
Full conditional Full factorization Full conditional Full factorization Full conditional Full factorization

Normal 4.13 10.42 1.69 4.82 1.36 7.17
Gamma 33.45 74.39 25.01 79.33 14.83 30.79
Poisson 21.15 21.99 18.29 18.57 7.96 9.51
Binomial 1.80 5.41 1.478 3.51 0.88 5.02

Table 4.6: Table of pooled variances for ratios 10:1

Pooled variances are for all missing mechanism greater at full factoriza-
tion. This is not surprising because accuracy in predictions was better for
ratios 10:1 in full factorization than in full conditional. Figure 4.1 illustrates
the confidence intervals for the three metrical distribution at an example of
a MAR model fit. Model was fitted with 50 refits no lasso using and upper
and lower quantile of 0.95 and 0.05 .
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Figure 4.1: CI plot for 10:1 ratio at MAR fit

Two out of three confidence intervals are greater for full factorization then
full conditional. The plot also shows starting values for both algorithms and
the minimum/maximum range of imputed values. All confidence intervals are
smaller then the underlying imputations. Also one can see that algorithms
are dependent on starting values in this case MICE imputations.
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Dimension of 2:3

The following table will show pooled variances and CI interval plots for same
simulations as before but dimension proportions of 2:3 .

MAR MCAR NMAR
Full conditional Full factorization Full conditional Full factorization Full conditional Full factorization

Normal 9.82 10.45 9.44 10.09 6.44 6.38
Gamma 118.14 119.15 129.99 134.12 72.17 76.42
Poisson 18.06 17.92 16.93 16.66 10.41 10.33
Binomial 8.97 9.85 10.51 10.59 8.87 9.18

Table 4.7: Table of pooled variances for proportion 2:3

Variance in MAR and MCAR are greater then in NMAR. This is not
surprising because imputed values in a NMAR structure will be much more
uniformly to the data at hand. Variances in full factorization exceed full
conditional as in 10:1 proportions.
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Figure 4.2: CI plot for 2:3 proportion at MAR fit

The CI plot shows quite different results for a 2:3 dimension than in
10:1 . For instance the confidence intervals are in most of the cases greater
then range between minimum and maximum. An interesting observation for
normal distribution is that mean prediction for full factorization is closer to
MICE imputation then the full conditional approach. Gamma imputations
confidence intervals have grown relevantly to 10:1 ratios.
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Comparison of pooled variances between different simulations

Pooled variances can be compared to each other if underlying datasets are
the same, which in this case is true. Pooled variances for a MAR simulation
with 50 refits and quantiles of 0.95 and 0.05 were taken for comparison.
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Figure 4.3: Pooled variances for 50 refits and no usuage of lasso fitting

Big differences between both approaches can be seen for normal and
gamma distribution. The 10:1 dimension plots seems to be interessting be-
cause variances for 2:3 are nearly the same. Big differences in 10:1 arise if
looking at normal and gamma distribution. Here the full factorization ap-
proach covers much more variance then the full conditional approach. The
comparison of lasso models can be found following page vii.

4.1.5 Paths, histograms and boxplots for imputed data

This section will focus on the paths and distributions of the imputed data.
Because of the wide variety of models fitted every picture will only be exem-
plary. The pictures shown here will focus on a MAR mechanism fitted with
50 refits and upper and lower quantiles of 0.05 and 0.95 for missing structure.
Because graphs are looking similar for metrical variables the normal distri-
bution is used. Plots for gamma and poisson distribution can be found in
the appendix on page vi. In case of binomial and categorical variables only
histograms are shown between the real data and the last refitted imputations.
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Normal distribution
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Figure 4.4: Comparison of Paths and Boxplots for a normal variable

The paths for both algorithm are similar to MCMC paths for bayesian statis-
tics. The values alternate round a mean value after a specific amount of time.
In this case both approaches seem to have missed the real data point but are
converging round the same spot. Overall the distributions for the imputed
variables are in both approaches overestimated as can be seen in figure 4.5.
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Figure 4.5: Histogram for normal variable
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Binomial distribution
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Figure 4.6: Histogram for binomial variable

This examples shows that generally both algorithms are very close to the
real data. There are only minor differences between approaches regarding
the goodness of prediction here.

Categorical distribution
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Figure 4.7: Histogram for categorical variable
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Results for the categorical variable are similar to the binomial variable. Both
variables are close to the real data. However this time the full factorization
approach overestimates the second class. The full conditional approach seems
to be closer to real data.

4.1.6 Problems with implementation of algorithms

In the implementation phase of R programming several problems did arise.
These problems were based on different R packages and on the algorithms
themselves. This chapter will give a short overlook over some of the problems
and the solutions which were implemented with the function tryCatch in R.

Cross validation failes

Before fitting regression models, the best penalization penalty was deter-
mined using cross-validation. In some scenarios the algorithm failed or gave
a penalization factor of infinity. To prevent from this behavior the user can
give boundaries in which the algorithm searches for the best penalty factor.
Also when cross validation failed completely observations were resampled in
case of metrical distributions or a observation was flipped from zero to one
in case of binomial distribution.

Predictions of classes result in abortion of algorithms

Regression fits for categorical variables do rely on uniformly distributed
classes in the variable. If one variable is totally over represented beta co-
efficients tend to get unstable. This was a huge problem for bootstrapping
with binomial and categorical variables. Because of the sampling with re-
placement at bootstrapping dependent variables could include only one class
or one class was left out. To prevent this behavior indices for data were
sampled in class groups so that proportion of classes were not changed. Also
if the algorithm tried to predict classes with one class over 0.4 of the whole
prediction, meaning one class highly overrepresented the prediction was dis-
carded and the algorithm continued.
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Mysterious error in full factorization approach results in huge time
loss

Bootstrapping at full factorization lead to a mysterious error. Covariables at
bootstrapping alternated even if the base model fit was correct. Until now the
origin of this error is unknown. A first try was to simple redo the procedure
and in mostly all times the error was solved. In some times even that resulted
in an abortion of the algorithm. The main reason for this error could be the
unknown source code of several R packages. If this project should continue
all of the programming code should be rewritten to prevent unknown errors.
Also a different program language should be chosen like C or C++ to boost the
algorithm in runtime. The described error lead to a time miss management
at full factorization. In theory the full conditional approach should be much
slower then the full factorization approach. Because of this error the results
were vice-versa, which can be seen in figure 4.8. Here an example of 100
observations was fitted with covariable numbers p 10,20 and 30.
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Chapter 5

Summary and perspective

In this thesis two algorithms were implemented and compared with each
other. Both algorithm rely on refitting penalized regression models. Datasets
and algorithms for the three main missing data structures were simulated.
The result section showed that the full factorization approach has advantages
to the full conditional approach. Missing observations are better predicted
in case of n >> p and nearly all mechanisms of missing data. In these model
cases using lasso regression for last refit did not improve the accuracy of pre-
dictions. This maybe due to the bias a penalized regression model requires.
If datasets have ”good” proportions like 10:1 (Observations/Covariables) pe-
nalized regressions are not needed and therefore do not improve model fits.
Simulation results also covered the opposite proportions in which covariables
are in greater numbers then observations. The results here showed that full
factorization gave nearly the same accuracies than full conditional if lasso
regressions was not used for last refits. Evidence gives reason that biases in
lasso regression lead to non accurate imputed missing values.
Pooled variances for single distributions displayed for full factorization ap-
proaches larger confidence intervals in cases of 10:1 proportions, which is
a reasonable assumption for the better accuracy in full factorization. If one
looks at the missing mechanisms implemented in this thesis MCAR and MAR
did have comparable results. Only in the case of NMAR predictions could not
approximate missing observations. This behavior is not surprising because
missing data values at NMAR are missing because of the observations them-
selves, meaning that either the observations were very large or very small.
Both algorithms did have problems with errors in R packages. Both programs
should be implemented in languages that run faster like C or C++. The refit-
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ting process showed that both algorithms were in need of special predicting
functions because of extreme outliers.
The full factorization approach seems to have potential to take a further look
in it.
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Figure 6.1: Comparison of Paths and Boxplots for a gamma distribution
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Figure 6.2: Comparison of Paths and Boxplots for a poisson distribution
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6.6 Pooled variances and CI plots for lasso

usage

Models compared in table 6.5 were fitted with 20 refits, usage of lasso regres-
sion, 0.2 missing rate in case of MCAR and 0.05 and 0.95 quantile boundaries
for NMAR/MAR. Accuracy numbers are given in percent.

10:1 ratio

MAR MCAR NMAR
Full conditional Full factorization Full conditional Full factorization Full conditional Full factorization

Normal 5.45 8.02 2.59 2.55 1.89 3.59
Gamma 61.29 138.58 43.68 49.35 24.23 32.71
Poisson 20.42 18.85 17.74 12.84 6.66 6.31
Binomial 2.72 3.99 2.65 2.64 1.84 7.44

Table 6.5: Table of pooled variances for proportion 10:1 using lasso
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Figure 6.3: CI plot for 10:1 proportion at MAR fit using LASSO and 50 refits

Imputations seem to be not dependent on first starting values, especially
if one looks at full factorization and normal and gamma distribution. Full
conditional means of imputation are still very close to the mice imputation.
For normal and poisson distribution the means of imputation are not centered
around the range of maximum/minimum imputations.
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2:3 ratio

MAR MCAR NMAR
Full conditional Full factorization Full conditional Full factorization Full conditional Full factorization

Normal 9.90 5.79 9.47 5.80 6.43 3.49
Gamma 116.15 151.43 126.95 134.72 71.08 91.67
Poisson 18.09 8.80 16.92 5.86 10.41 4.38
Binomial 8.98 5.12 10.55 4.75 8.97 5.45

Table 6.6: Table of pooled variances for proportion 2:3 using LASSO
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Figure 6.4: CI plot for 2:3 proportion at MAR fit using LASSO and 50 refits
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Comparison of pooled variances between different simulations
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Figure 6.5: Pooled variances for 50 refits and usage of LASSO fitting
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6.7 Content of CD-ROM

The appended CD-ROM holds the following contents

• R-Scripts and Simulations All scripts and simulations that were
undertaken for the master thesis. Simulations were saved as .RData

files, which can be loaded into the R console with the load command.

– Datasets simulated via copula

∗ Seed 1234

∗ Seed 1000

– Dependencie structures for MAR mechanism

∗ Seed 1234

∗ Seed 1000

– MAR Simulations

∗ Seed 1234

∗ Seed 1000

– MCAR Simulations

∗ Seed 1234

∗ Seed 1000

– NMAR Simulations

∗ Seed 1234

∗ Seed 1000

– R-Scripts

• Pictures Contains all pictures that are depictured in the thesis and
extra plots for further research

• Thesis The thesis in pdf format
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