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Abstract

We analyze continuous-time games of strategic experimentation with two-armed

bandits when there is no discounting. We show that for all specifications of prior

beliefs and payoff-generating processes that satisfy some separability condition, the

unique symmetric Markov perfect equilibrium can be computed in a simple closed

form involving only the expected current payoff of the risky arm and the expected

full-information payoff, given current information. The separability condition holds

in a variety of models that have been explored in the literature, all of which assume

that the risky arm’s expected payoff per unit of time is time-invariant and actual

payoffs are generated by a process with independent and stationary increments. The

separability condition does not hold when the expected payoff per unit of time is

subject to state-switching.
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Introduction

We analyze the undiscounted version of a class of continuous-time two-armed bandit

models in which a number of players act non-cooperatively, trying to learn an unknown

parameter that governs the risky arm’s expected payoff per unit of time. Actual payoffs are

given by stochastic processes with stationary and independent increments. Assuming that

all actions and payoffs are public information, we restrict players to Markov strategies with

the common posterior belief about the unknown parameter as the natural state variable.

In this setting, the expected infinitesimal change in a players’ payoff function is pro-

portional to the overall intensity of experimentation performed at the given point in time.

As in Bolton and Harris (2000), this separability condition implies that best responses

can be computed without knowledge of a player’s value function. In fact, given the cur-

rent belief, a player’s optimal action depends only on the intensity of experimentation

performed by the other players, the expected current payoff of the risky arm, and the

expected full-information payoff – it does not depend on the precise specification of the

payoff-generating process.

This insight allows us to handle a much larger class of priors and payoff-generating

processes than the existing literature on bandit-based multi-agent learning in continuous

time. More specifically, we present five examples that fit in our general framework. In the

first, payoffs are generated by a Brownian motion with unknown drift, and the agents’

prior belief about this drift is an arbitrary discrete distribution; this extends the setup of

Bolton and Harris (1999, 2000) where the prior is a Bernoulli distribution. In the second,

payoffs come from a Poisson process with unknown intensity, and the agents’ prior belief

about this intensity is again an arbitrary discrete distribution; this generalizes the setup of

Keller, Rady and Cripps (2005) and Keller and Rady (2010) who also assume a Bernoulli

prior. These two examples are special cases of a third in which payoffs are generated

by a Lévy process, that is, a continuous-time process with independent and stationary

increments; a single-agent version of this setup was explored by Cohen and Solan (2013)

under a Bernoulli prior and a specific assumption on the distribution of jumps. In the

fourth example, payoffs stem again from a Brownian motion with unknown drift, but the

prior belief is a normal distribution; this is the same specification as in Jovanovic (1979).

In the fifth, payoffs are generated by a Poisson process with unknown intensity, but now

the agents’ prior belief about this intensity is characterized by a Gamma distribution; this

specification has been assumed by Moscarini and Squintani (2010).

This broadening of the class of payoff-generating processes, and the generalization

from Bernoulli to arbitrary discrete priors in particular, is not entirely without costs,

however. In fact, while the specifics of the payoff-generating process do not affect mutual

best responses at a given belief, they are highly relevant when it comes to ‘synthesizing’
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belief-contingent action profiles into a profile of Markov strategies that induces a well-

defined law of motion for posterior beliefs. In the models of Bolton and Harris (1999,

2000), Keller, Rady and Cripps (2005) and Keller and Rady (2010), beliefs evolve on the

unit interval, and this allows for a space of admissible Markov strategies large enough

to accommodate the discontinuities of actions with respect to beliefs which are an im-

mutable feature of asymmetric equilibria. Such a strategy space can also be defined in

the Poisson-Gamma case where only one component of the posterior distribution (the

shape parameter) evolves stochastically, and in a special case of Lévy payoffs where the

size of observed jumps is the only source of information, so posterior beliefs are piecewise

constant. In general, however, we must invoke results on the existence and uniqueness

of solutions to stochastic differential equations that rely on Lipschitz continuity of coef-

ficients. This rules out asymmetric equilibria but, as our main result shows, the space

of Lipschitz continuous strategies is large enough to ensure existence of a unique sym-

metric Markov perfect equilibrium. The equilibrium strategy has a simple explicit form,

moreover.

Besides Bolton and Harris (2000), the undiscounted limit of a continuous-time stochas-

tic game with one-dimensional state space has also been studied in Harris (1988, 1993)

and Bergemann and Välimäki (1997, 2002), yielding a much simpler characterization

of equilibria than under discounting. More recent applications of this methodology to

single-agent experimentation problems can be found in Bonatti (2011) and Peitz, Rady

and Trepper (2015). It should be noted, however, that the advantages of considering

the undiscounted game hinge on the stationarity of the environment in which the players

are learning (meaning in particular that the average payoff per unit of time does not

change over time). When payoffs are generated by a Brownian motion with an unknown

drift that is subject to Markovian state-switching between a high and a low level as in

Keller and Rady (1999, 2003), for example, the separability condition is violated, and the

computation of best responses requires knowledge of the value function.

The rest of the paper is organized as follows. Section 1 sets up the game, introduces the

separability condition and states our assumptions on priors, payoff-generating processes

and strategy spaces. Section 2 proves existence of a unique symmetric Markov perfect

equilibrium under these assumptions. Section 3 presents our five examples. Section 4

briefly considers a setting where separability fails because of state switching. Section 5

offers some concluding remarks.

1 The Experimentation Game

Time t ∈ [0,∞) is continuous. There are N ≥ 1 players, each of them endowed with

one unit of a perfectly divisible resource per unit of time. Each player faces a two-armed
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bandit problem where she continually has to decide what fraction of the available resource

to allocate to each arm.

Assumption 1 (Payoffs) There are independent stochastic processes S1, . . . , SN , R0,

R1, . . . , RN , a real number s and a real-valued random variable µ such that: (i) the pro-

cesses Sn − st, n = 1, . . . , N , are identically distributed martingales independent of µ;

(ii) conditional on the realization of µ, the processes Rn − µt, n = 0, 1, . . . , N , are iden-

tically distributed martingales.

We interpret Sn as the payoff-generating process on player n’s safe arm, and assume

that its expected flow payoff s is commonly known. For n = 1, . . . , N , we interpret Rn as

the payoff-generating process on player n’s risky arm, and assume that its expected flow

payoff µ is unknown to the players. The process R0, finally, provides a background signal,

ensuring that the players eventually learn the value of µ even if they all play safe all the

time.

Let kn,t ∈ [0, 1] be the fraction of the available resource that player n allocates to

the risky arm at time t; this fraction is required to be measurable with respect to the

information that the player possesses at time t. The player’s cumulative payoff up to time

T is then given by the time-changed process Sn
T−τn(T ) + Rn

τn(T ) where τn(T ) =
∫ T
0 kn,t dt

measures the operational time that the risky arm has been used. In view of property (iii),

the player’s expected payoff (conditional on µ) is E
[∫ T

0 {(1− kn,t)s+ kn,tµ} dt
]
.

The players start with a common prior belief about µ, and thereafter all observe each

other’s actions and outcomes as well as the time-changed process R0
τ0(t) where τ

0(t) = k0t

with k0 > 0 exogenously given and arbitrarily small. So they hold common posterior

beliefs throughout time.

Assumption 2 (Beliefs) At time t the players believe that µ has a cumulative distribu-

tion function H(·;πt), where πt is a sufficient statistic for the observations on R0, . . . , RN

up to time t, and H represents a conjugate family of distributions. The safe expected flow

payoff s lies in the interior of the support of H(·;π0).

With s lying in the interior of the support of the prior distribution of µ, each player

has an incentive to learn the quality of the risky arm.

The evolution of the sufficient statistic over time is driven by N + 1 distinct sources

of information, namely the observations on R0, R1, . . . RN . The following assumption

specifies how beliefs evolve when only one of these sources is observed, and at full intensity.

Assumption 3 (Generator) Fix a player n and consider the time-invariant action pro-

file for which kn = 1 whereas kj = 0 for all j ∈ {0, . . . , N} \ {n}. Then the corresponding

process π is a time-homogeneous Markov process with infinitesimal generator Gn.
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By property (ii) in Assumption 1, we have G1 = G2 = . . . = GN , for which we simply

write G.

If we change player n’s time-invariant intensity to kn ∈ [0, 1] while keeping all other

intensities at zero, the resulting deceleration of the process of observations implies the

scaled-down generator knG for the sufficient statistic; see Dynkin (1965), for example.

The same applies to the background signal, of course, with associated generator k0G.
Finally, a repeated application of Trotter (1959) invoking the conditional independence

of the processes R0, . . . , RN establishes that the generator associated with time-invariant

intensities (k0, k1, . . . , kN) ∈ [0, 1]N+1 is (k0 + K)G where K =
∑N

n=1 kn measures how

much of the N available units of the resource is allocated to risky arms – we call it the

intensity of experimentation.

The fact that the infinitesimal generator of the sufficient statistic π is linear in k0+K

will play a crucial role in our analysis. In more heuristic fashion, we can rewrite this

separability condition as

E [u(πt+dt) | πt, k1,t, . . . , kN,t ] = u(πt) + (k0 +Kt)Gu(πt) dt, (1)

where u : [0, 1] → IR is any function in the domain of G, and Kt =
∑N

n=1 kn,t.

Given the current belief H(·;π), let m(π) denote the expected current (or myopic)

payoff from R, and let f(π) denote the expected full-information payoff:

m(π) =
∫

µ dH(µ; π), f(π) =
∫
(s ∨ µ) dH(µ;π) = sH(s; π) +

∫ ∞

s
µ dH(µ; π).

Asm(πt) and f(πt) are conditional expectations given all the information available at time

t, the Law of Iterated Expectations implies that Et[m(πT )] = m(πt) and Et[f(πT )] = f(πt)

for all T > t, i.e. both m(πt) and f(πt) are martingales with respect to the players’

information sets.

Players do not discount future payoffs, and are instead assumed to use the catching-up

criterion.1 This means that player n chooses allocations kn,t so as to maximize

E
[∫ ∞

0

{
(1− kn,t)s+ kn,tm(πt)− f(πt)

}
dt
]
.

Here, the integrand is the difference between what a player expects to receive and what

she would expect to receive were she to be fully informed. Note that a player’s payoff

depends on others’ actions only through their impact on the evolution of the sufficient

statistic.

1For a discussion of this objective and the role of the background signal, see Bolton and Harris (2000).
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The above objective highlights the potential for the sufficient statistic to serve as

a state variable; from now on, we shall restrict players to strategies that are Markovian

with respect to this variable. More precisely, the players’ common strategy space is a non-

empty set A of functions from the state space Π (consisting of all possible realizations of

the sufficient statistic) to [0, 1].

Assumption 4 (Strategies) The common strategy space A has the property that, start-

ing from any π ∈ Π, any strategy profile (k1, . . . , kN) ∈ AN induces a well-defined and

unique law of motion for πt.

This assumption implies that any strategy profile (k1, . . . , kN) ∈ AN gives rise to

well-defined payoff functions

un(π|k1, . . . , kN) = E
[∫ ∞

0

{
(1− kn(πt)s+ kn(πt)m(πt)− f(πt)

}
dt

∣∣∣∣π0 = π
]
.

Strategy kn ∈ A is a best response against k¬n = (k1, . . . , kn−1, kn+1, . . . , kN) ∈ AN−1 if

un(π|kn, k¬n) ≥ un(π|k̃n, k¬n) for all π ∈ Π and all k̃n ∈ A. A Markov perfect equilibrium

(MPE) is a profile of strategies (k1, . . . , kN) ∈ AN that are mutually best responses. Such

an equilibrium is symmetric if k1 = k2 = . . . = kN .

Following Bolton and Harris (2000), we define the incentive to experiment by

I(π) =
f(π)− s

s−m(π)

when m(π) < s, and ∞ otherwise. Note that when the functions m and f are co-

monotonic, I inherits their monotonicity property.

Assumption 5 (Regularity) For any positive real numbers a < b, the function k : Π →
[0, 1] defined by

k(π) =


0 if I(π) ≤ a,
I(π)−a
b−a

if a < I(π) < b,

1 if I(π) ≥ b

is an element of A.

The type of strategy considered in Assumption 5 arises in symmetric Markov perfect

equilibria of the experimentation game, to which we turn now.
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2 Symmetric Markov Perfect Equilibrium

Suppose that all players except player n use the strategy k† ∈ A. By using the separability

condition in equation (1), the Bellman equation for player n’s best response then becomes

0 = max
kn∈[0,1]

{
s− f(π) + kn[m(π)− s] + [k0 + (N − 1)k†(π) + kn]Gun(π)

}
.

As the left-hand side is zero (a consequence of no discounting) and k0+(N −1)k†(π)+kn

is positive (because of the background signal), the Bellman equation can be rearranged

as

0 = max
kn∈[0,1]

{
s− f(π) + kn[m(π)− s]

k0 + (N − 1)k†(π) + kn

}
+ Gun(π),

which demonstrates that the optimal kn does not depend on continuation values. Straight-

forward algebra allows us to further simplify the problem by rewriting the Bellman equa-

tion so that kn appears only in the denominator:

0 = max
kn∈[0,1]

{
[k0 + (N − 1)k†(π)][s−m(π)]− [f(π)− s]

k0 + (N − 1)k†(π) + kn

}
− [s−m(π)] + Gun(π).

When I(π) < k0 + (N − 1)k†(π), the numerator in the reworked Bellman equation

is positive and it is optimal to minimize the denominator by choosing kn = 0; when

I(π) > k0 + (N − 1)k†(π), the numerator is negative and it is optimal to maximize the

denominator by choosing kn = 1; when I(π) = k0 + (N − 1)k†(π), the numerator is zero

and all choices of kn are optimal.

There are three different ways, therefore, in which kn = k†(π) can be an optimal choice

for player n: either k†(π) = 0 and I(π) ≤ k0, or k†(π) = 1 and I(π) ≥ k0 + N − 1, or

0 < k†(π) < 1 and I(π) = k0 + (N − 1)k†(π). This pins down k†(π) in terms of the

incentive to experiment, I(π), the strength of the background signal, k0, and the number

of players, N :

k†(π) =


0 if I(π) ≤ k0,
I(π)−k0
N−1

if k0 < I(π) < k0 +N − 1,

1 if I(π) ≥ k0 +N − 1.

Proposition. Under Assumptions 1–5, all players using the strategy k† constitutes the

unique symmetric Markov perfect equilibrium of the experimentation game.

Proof: By Assumption 5, the strategy k† is an element of A; by Assumption 4, all

players using this strategy gives rise to a well-defined common payoff function u†. By

standard results, this function satisfies

0 = s− f(π) + k†(π)[m(π)− s] + [k0 +Nk†(π)]Gu†(π),
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and the above arguments imply that

0 ≥ s− f(π) + k(π)[m(π)− s] + [k0 + (N − 1)k†(π) + k(π)]Gu†(π)

for any strategy k ∈ A. The standard verification argument now shows that all players

using the strategy k† indeed constitutes an MPE. Uniqueness (as usual, up to changes

on a null set of states) follows from the fact that, in view of the above arguments, the

common strategy in any symmetric MPE must agree with k† almost everywhere.

Note that the set of beliefs for which k†(π) = 0 is independent of the number of

players and actually the same as for a single agent experimenting in isolation. This is a

stark manifestation of the incentive to free-ride on information generated by others. In the

terminology coined by Bolton and Harris (1999), it means that there is no “encouragement

effect”: the prospect of subsequent experimentation by other players provides a player

no incentive to increase the current intensity of experimentation and thereby shorten the

time at which the information generated by the other players arrives. Intuitively, this

simply reflects our assumption that players do not discount future payoffs and hence are

indifferent as to their timing. Formally, the absence of the encouragement effect is a direct

consequence of the separability condition: as the value of future experimentation by other

players is captured by a player’s equilibrium continuation values, yet best responses are

independent of those continuation values, there is no channel for future experimentation

by others to impact current actions.

Free-riding can also be seen in the fact that k† is non-increasing in N , and decreasing

where it assumes interior values. (See Figure 3 at the end of Section 3.1 for an illustration

of these two points.) The dependence of the overall intensity of experimentation on the

number of players is less clear cut: roughly speaking, Nk† increases in N at beliefs where

k† requires exclusive use of the risky arm, but decreases at beliefs where both arms are

used simultaneously. Further, any weak monotonicity of I in a component of π is inherited

by k†.

Finally, by the martingale convergence theorem, beliefs converge almost surely to the

degenerate distribution concentrated on the true value of µ; therefore f(π) converges to

either s or µ, and so k†(π) converges to either 0 or 1.

3 Examples

This section presents five specifications of priors, payoff-generating processes and strategy

spaces that satisfy Assumptions 1–5. For more details of Example 3.1, see Bolton and

Harris (1999, 2000), and for the discounted version of Example 3.2, see Keller, Rady
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and Cripps (2005) and Keller and Rady (2010).2 A discounted single-agent version of

Example 3.3 with a two-point prior is solved in Cohen and Solan (2013). Models in which

agents observe stochastic processes and have beliefs like those in Examples 3.4 and 3.5

can be found in Jovanovic (1979) and Moscarini and Squintani (2010), respectively.

3.1 Brownian payoffs, discrete prior

We start with the case of a two-point prior. For n = 0, 1, . . . , N , we let Rn = µt + σZn

where (Z0, Z1, . . . , ZN) is an (N+1)-dimensional Wiener process, σ > 0 and µ ∈ {µ0, µ1}
with µ0 < s < µ1.

3

Let πt denote the probability that the players assign to the event µ = µ1 given their

observations up to time t. This is an obvious sufficient statistic for the problem at hand,

and we have

m(π) = (1− π)µ0 + πµ1, f(π) = (1− π)s+ πµ1.

Moreover, it follows from Liptser and Shiryayev (1977, Theorem 9.1) that for a single

player who allocates his entire resource to the risky arm, πt is a diffusion process with zero

drift and diffusion coefficient (µ1 − µ0)σ
−1πt(1 − πt) relative to the player’s information

filtration.4 This implies

Gu(π) = 1

2σ2
(µ1 − µ0)

2π2(1− π)2 u′′(π).

There is a straightforward generalization to the case where µ can take any one of L+1

possible values µ0 < µ1 < . . . < µL−1 < µL with µ0 < s < µL. Players’ beliefs now

become an L-vector π = (π1, . . . , πL) where πℓ is the probability assigned to µ = µℓ. The

state space is Π = ∆L, the standard L-simplex, and, with π0 = 1−∑L
ℓ=1 πℓ,

m(π) =
∑L

ℓ=0 πℓ µℓ, f(π) =
∑L

ℓ=0 πℓ (s ∨ µℓ).

An extension of Liptser and Shiryayev (1977, Theorem 9.1) shows that for a single player

allocating his entire resource to the risky arm, πt is a driftless L-dimensional diffusion

2Keller and Rady (2015) consider a ‘bad news’ variant of this example in which the processes Sn and

Rn represent the cumulative cost of using an arm rather than the cumulative payoff.
3Note that the same parameter σ applies in both states of the world. If this were not the case, the

players could infer the true state in an instant from the quadratic variation of risky payoffs.
4More precisely, they show that the belief evolves according to dπt = σ−1 πt[µ1 − m(πt)] dZ̄t where

the innovation process Z̄t, given by dZ̄t = σ−1
(
[µ−m(πt)] dt+ σ dZt

)
, is a Wiener process relative to

the player’s information filtration.
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process with instantaneous variance-covariance matrix given by

Cov [dπi,t, dπℓ,t | πt] =
[
πi,t (µi −m(πt))σ

−1
] [
πℓ,t (µℓ −m(πt))σ

−1
]
dt.

Thus,

Gu(π) = 1

2σ2

L∑
i=1

L∑
ℓ=1

πi πℓ (µi −m(π))(µℓ −m(π))
∂2u(π)

∂πi ∂πℓ

.

For L = 1, the case analyzed in Bolton and Harris (2000), the presence of background

information allows one to invoke a result of Engelbert and Schmidt (1984) whereby any

profile of Markov strategies in M([0, 1], [0, 1]), the set of Borel measurable functions from

the unit interval to itself, implies a unique solution for the belief dynamics.5 As this

result does not generalize to higher dimensions, the set of admissible strategies for L ≥ 2

will necessarily be a strict subset of M(∆L, [0, 1]). In view of standard existence and

uniqueness results for solutions of stochastic differential equations, a natural choice is

A = L(∆L, [0, 1]), the set of all Lipschitz continuous functions from the simplex to the

unit interval.

As the partial derivatives of the incentive to experiment I are clearly bounded on

the compact set Π(a, b) = {π ∈ Π : a ≤ I(π) ≤ b}, Assumption 5 holds trivially. Like the

functions m and f , moreover, I and the equilibrium strategy k† are non-decreasing in π.

Figures 1 and 2 illustrate the case where L = 2. (In all the figures, k0 = 0.2; when µ
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Figure 1: Equilibrium actions for L = 2

and µ0 < µ1 < s < µ2
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Figure 2: Equilibrium actions for L = 2

and µ0 < s < µ1 < µ2

has a discrete distribution, we use parameter values µ0 = 2, µ1 = 5, µ2 = 8; in this pair of

figures, s = 6 on the left, s = 4 on the right, and in both cases N = 4.) The solid lines are

5See also Section 5.5 of Karatzas and Shreve (1988).
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the boundaries of the sets of beliefs at which the equilibrium requires full experimentation

(k† = 1) and no experimentation (k† = 0), respectively. The dotted lines are level curves

of k† for the experimentation intensities 0.2, 0.4, 0.6 and 0.8. A comparison of the two

figures exhibits the familiar property that a decrease in the reward from the safe action

gives the players an increased incentive to experiment.

Figure 3 illustrates the effect that increasing the number of players has on the equi-

librium actions. On the horizontal axis we set π1 = π2 and let that common belief range

Belief

k†

Figure 3: Equilibrium actions for L = 2, π1 = π2 and N ∈ {2, 4, 6, 8, 10}

from 0 to 0.5: so it is a slice through the simplex from the µ0-vertex to the midpoint

of the opposite edge. (In this figure, s = 6, and N varies from 2 for the leftmost curve

to 10 for the rightmost curve; so the second curve from the left has the same parameter

values as in Figure 1.) As can clearly be seen, the set of beliefs where players use the

safe arm exclusively is independent of the number of players, reflecting the absence of the

encouragement effect. Free-riding is also evident: as the number of players, N , increases,

k† decreases at any belief where 0 < k† < 1. In this range of beliefs, the curves become

more convex as N increases – less steep for low beliefs, and much steeper for high beliefs.

3.2 Poisson payoffs, discrete prior

As in Example 3.1, we start with the case of a two-point prior and let R0, R1, . . . , RN

be independent Poisson processes with common intensity µ where µ ∈ {µ0, µ1} and µ0 <

s < µ1. We can again take πt, the posterior probability that µ = µ1, as the sufficient

statistic. In particular, m(π) = (1− π)µ0 + πµ1 and f(π) = (1− π)s+ πµ1 are the same

as in Example 3.1.

Now, consider a single player allocating his entire resource to the risky arm. With

10



probability m(πt) dt, he will observe a positive increment between t and t + dt, and his

belief jumps to

j(πt) =
πtµ1

m(πt)

by Bayes’ rule. With probability 1−m(πt) dt, there is no such increment and Bayes’ rule

yields

dπt = −(µ1 − µ0) πt(1− πt) dt.

So, we have

E [u(πt+dt) | πt]

= m(πt)u(j(πt)) dt+
(
1−m(πt) dt

) (
u(πt)− (µ1 − µ0) πt(1− πt)u

′(πt) dt
)

= u(πt) +
{
m(πt) [u(j(πt))− u(πt)]− (µ1 − µ0)πt(1− πt)u

′(πt)
}
dt,

or

Gu(π) = m(π) [u(j(π))− u(π)]− (µ1 − µ0)π(1− π)u′(π).

As in Example 3.1, there is a simple generalization to the case where µ can take any

one of L+1 possible values. Just as there, players’ beliefs become an L-vector, and m(π)

and f(π) are the same as given earlier. After a positive increment, beliefs jump to

j(πt) =
1

m(πt)

(
π1,t µ1, . . . , πℓ,t µℓ, . . . , πL,t µL

)
;

if no increment arrives, beliefs adjust infinitesimally by

dπℓ,t = −πℓ,t (µℓ −m(πt)) dt.

This leads to

Gu(π) = m(π) [u(j(π))− u(π)]−
L∑

ℓ=1

πℓ (µℓ −m(π))
∂u(π)

∂πℓ

.

For L = 1, the case analyzed in Keller, Rady and Cripps (2005) and Keller and Rady

(2010), one can take A to be the set of functions from the unit interval to itself which are

left-continuous and piecewise Lipschitz continuous; as beliefs drift down deterministically

in between Poisson events, these properties allow one to construct belief dynamics in a

pathwise fashion. When L ≥ 2, A = L(∆L, [0, 1]) is again a natural choice.

The functions I and k† are the same as in Example 3.1, and so Assumption 5 also

holds here.

11



3.3 Lévy payoffs, discrete prior

Examples 3.1 and 3.2 are special cases of a specification where payoffs are generated

by a Lévy process, that is, a continuous-time process with independent and stationary

increments. For simplicity, we restrict ourselves in the following to Lévy processes with

a finite expected number of jumps per unit of time; the jump component of any such

process is a compound Poisson process.

Let Rn = ρ t + σ Zn + Y n, therefore, where (Z0, Z1, . . . , ZN) is again an (N + 1)-

dimensional Wiener process and Y 0, Y 1, . . . , Y N are independent compound Poisson pro-

cesses whose common Lévy measure ν has a finite second moment
∫
g2 ν(dg).6 While σ > 0

is the same in all states of the world, the drift rate ρ and the Lévy measure ν vary with the

state. We write (ρℓ, νℓ) for their realization in state ℓ = 0, 1, . . . , L, λℓ = νℓ(IR\{0}) for the
expected number of jumps per unit of time, and gℓ =

∫
IR\{0} g νℓ(dg) / λℓ for the expected

jump size.7 The expected risky payoff per unit of time in state ℓ is µℓ = ρℓ + λℓ gℓ. Once

more, the functions m and f are the same as in Example 3.1.

With these payoffs, the generator G is that of a jump-diffusion, given by a combination

of expressions that generalize those in Examples 3.1 and 3.2, namely

Gu(π) =
1

2σ2

L∑
i=1

L∑
ℓ=1

πi πℓ (ρi − ρ(π))(ρℓ − ρ(π))
∂2u(π)

∂πi ∂πℓ

+
∫
IR\{0}

[u(j(π, g))− u(π)] ν(π)(dg) −
L∑

ℓ=1

πℓ (λℓ − λ(π))
∂u(π)

∂πℓ

,

where

ρ(π) =
∑L

ℓ=0 πℓ ρℓ, ν(π) =
∑L

ℓ=0 πℓ νℓ, λ(π) =
∑L

ℓ=0 πℓ λℓ,

and jℓ(π, g) = πℓ νℓ(dg) / ν(π)(dg) is the revised probability after a jump of size g arrives.

Once more, we can take A = L(∆L, [0, 1]), and the functions I and k† are the same

as before. In the special case where ρ0 = . . . = ρL (so there is nothing to learn about the

drift rate) and λ0 = . . . = λL (so jumps occur at the same rate in all states of the world),

the process of posterior beliefs is piecewise constant, and we can take A = M(∆L, [0, 1]).

The framework with Lévy payoff processes and discrete priors permits the analysis of

experimentation games in which the size of a jump in cumulative payoffs is informative,

and – in the special case just described – even the only source of information. Moreover,

6Here, ν(B) < ∞ is the expected number of jumps per unit of time whose size is in the Borel set

B ⊆ IR\{0}. The finite second moment ensures that the processes Rn have finite mean and finite quadratic

variation.
7Our assumptions on the Lévy measures ensure that the players cannot infer the true state instanta-

neously from the jump part of risky payoffs.
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it is straightforward to model situations in which large payoff increments are bad news.8

For example, let L = 1 for simplicity, with ρ0 = ρ1 and λ0 = λ1. Assume that

the payoff increments are in the set {s − 10, s − 5, s + 5, s + 10}. For the ‘good’ arm,

the associated probabilities of a jump of that size are {0.1, 0.3, 0.5, 0.1}, so the expected

increment is s+1; for the ‘bad’ arm, the associated probabilities of a jump of that size are

{0.5, 0.1, 0.1, 0.3}, and the expected increment is s− 2. When a payoff increment occurs,

the belief jumps – up if the increment is moderate (s − 5 and s + 5 are relatively more

likely if the arm is ‘good’), and down if the increment is extreme (s− 10 and s + 10 are

relatively more likely if the arm is ‘bad’). So, in this stripped-down illustration, an arrival

of the largest possible payoff increment is bad news, and may well cause the players to

stop experimenting.

3.4 Brownian payoffs, normal prior

In this specification, the risky arms and background signal are as in Example 3.1 except

for the assumption that µ can now take any real value. At time t, players believe that

µ is distributed according to a normal distribution with mean mt and precision τt > 0.

Given π = (m, τ) ∈ IR× ]0,∞[ , the probability density function for µ is thus h(µ;π) =

τ 1/2ϕ
(
(µ−m)τ 1/2

)
, where ϕ denotes the standard normal density.

Again, consider a single player allocating his entire resource to the risky arm. Following

Chernoff (1968, Lemma 4.1), or Liptser and Shiryayev (1977, Theorem 10.1), τt increases

deterministically at the rate σ−2 and mt is a driftless diffusion process with diffusion

coefficient σ−1 τ−1
t relative to the player’s information filtration.9 Applying Itô’s lemma

and taking expectations, we see that

E [u(πt+dt) | πt] = u(πt) + σ−2

[
1
2
τ−2
t

∂2u(πt)

∂m2
+

∂u(πt)

∂τ

]
dt

or

Gu(π) = σ−2

[
1
2
τ−2 ∂

2u(π)

∂m2
+

∂u(π)

∂τ

]
.

Since the precision τt increases over time, the relevant state space is the half-plane

Π = IR × [τ0,∞[ . As to admissible strategies, we take A to be the set of all functions

k : Π → [0, 1] such that kτ−1 is Lipschitz continuous on Π. We show that this is sufficient

for Assumption 4 to be satisfied, i.e. there is a well-defined and unique law of motion for

8In Keller et al. (2005) and Keller and Rady (2010, 2015) jump sizes are completely uninformative,

while in Cohen and Solan (2013) jumps are informative, but always good news.
9More precisely, it can be shown that dmt = σ−1 τ−1

t dZ̄t and dτt = σ−2 dt where, now, the innovation

process is dZ̄t = σ−1
(
[µ−mt] dt+ σ dZt

)
. Note that the expression equivalent to that for dmt to be

found in equation (9) of Jovanovic (1979) omits the term [µ−mt] dt.
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the state.

Given a strategy profile (k1, . . . , kN) ∈ AN , the corresponding intensity of experi-

mentation K =
∑N

n=1 kn also lies in A, and the system we need to solve is

dm = K(m, τ) τ−1σ−1dZ̄, dτ = K(m, τ) σ−2dt.

The change of variable η = ln τ transforms this into dm = K(m, eη) e−ησ−1dZ̄ and dη =

K(m, eη) e−ησ−2dt; as K(m, eη) e−η is Lipschitz continuous in (m, η) on IR × [ln τ0,∞[ ,

this system has a unique solution, verifying Assumption 4.

In preparation for showing that Assumption 5 is satisfied by this example, we derive

m(π), f(π), and I(π). The expected current payoff m(π) is simply the projection of π on

its first component. For the expected full-information payoff, we have

f(π) = sΦ(z) +m [1− Φ(z)] + τ−1/2ϕ(z),

where z = (s − m)τ 1/2 and Φ denotes the standard normal cumulative distribution

function. To see this, note first that we trivially obtain H(s;π) =
∫ s
−∞ h(µ;π) dµ =∫ z

−∞ ϕ(x) dx = Φ(z). Since h(µ; π) ∝ exp
(
−1

2
(µ−m)2τ

)
, moreover, we have dh(µ;π) =

−(µ−m)τ h(µ; π) dµ and so µh(µ; π) dµ = mh(µ;π) dµ− τ−1 dh(µ;π), implying∫ ∞

s
µ dH(µ;π) =

∫ ∞

s
µh(µ;π) dµ =

∫ ∞

s
mh(µ;π) dµ−

∫ ∞

s
τ−1 dh(µ; π)

= m [1−H(s; π)] + τ−1 h(s; π) = m [1− Φ(z)] + τ−1/2 ϕ(z).

The above representation makes it straightforward to verify that f is strictly increasing

in m and strictly decreasing in τ .10 By what was said above, I and k† are non-decreasing

in m and non-increasing in τ .

When m < s we have

I(π) =
sΦ(z) +m [1− Φ(z)] + τ−1/2ϕ(z)− s

s−m
= Φ(z)− 1 + z−1ϕ(z).

In the appendix we verify Assumption 5 for this example by showing that Iτ−1 is Lip-

schitz continuous on Π(a, b) = {π ∈ Π : a ≤ I(π) ≤ b}. This is more involved than in the

examples with a discrete prior because the set Π(a, b) is unbounded.

Figure 4 illustrates equilibrium actions as a function of the posterior mean m and

variance τ−1. (In this figure, s = 6 and N = 4.) As in Figures 1–2, the solid curves are

the boundaries of the sets of beliefs at which the equilibrium requires full experimentation

10Alternatively, since s∨ µ is increasing in µ, a first-order stochastic dominance argument can be used

to establish that ∂f(π)/∂m > 0, and since s ∨ µ is convex in µ, a second-order stochastic dominance

argument can be used to establish that ∂f(π)/∂τ < 0.
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Figure 4: Equilibrium actions for Brownian payoffs and normal prior

or no experimentation, and the dashed lines are level curves for k† equal to 0.2, 0.4,

0.6 and 0.8. All these curves are downward sloping; as one would expect, there is a

trade-off between mean and variance with the latter capturing the “option value” of

experimentation. In particular, a very high variance is needed to induce a high intensity

of experimentation at low means. As the mean approaches the safe flow payoff, the level

curves become steeper and steeper so that the posterior variance has a diminishing impact

on the intensity with which the players explore the risky arm.

3.5 Poisson payoffs, gamma prior

The risky arms and background signal are specified as in Example 3.2 except for the

assumption that µ can now take any non-negative value. Let s > 0 for the safe arm.

At time t, players believe that µ is distributed according to the gamma distribution

Ga(αt, βt) with parameters αt > 0 and βt > 0. Given π = (α, β) ∈ ]0,∞[2, the probability

density function for µ is h(µ;π) = [βα/Γ(α)]µα−1e−βµ, and we have m(π) = α/β. (The

corresponding variance of µ is α/β2.)

Once more, consider a single player allocating his entire resource to the risky arm.

With probability m(πt) dt, he obtains a positive increment between t and t+ dt, in which

case Bayes’ rule implies that πt jumps to (αt +1, βt); with probability 1−m(πt) dt, there

is no such increment and dπt = (dαt, dβt) = (0, dt). Thus, α counts arrivals of increments

and β measures the time that has elapsed – see, for example, DeGroot (1970, Chapter 9).

We obtain

E [u(πt+dt) | πt] = m(πt)u(αt + 1, βt) dt+
(
1−m(πt) dt

)(
u(πt) +

∂u(πt)

∂β
dt

)
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= u(πt) +

{
m(πt) [u(αt + 1, βt)− u(πt)] +

∂u(πt)

∂β

}
dt,

hence

Gu(π) = m(π) [u(α + 1, β)− u(π)] +
∂u(π)

∂β
.

Given that αt and βt increase over time, and αt can only do so in unit increments,

the relevant state space is Π = {α0 + ℓ : ℓ = 0, 1, 2, . . .} × [β0,∞[ . For A, we choose the

set of all functions k : Π → [0, 1] such that k(α0 + ℓ, ·) is right-continuous and piecewise

Lipschitz continuous for all ℓ, so Assumption 4 is satisfied.

Again, in preparation for showing that Assumption 5 is also satisfied, we restate m(π),

then derive f(π) and I(π).

m(π) = α
β
, f(π) = sH(s;α, β) + α

β
[1−H(s;α + 1, β)].

The second term in the expression for f is obtained as follows:∫ ∞

s
µ dH(µ; π) =

∫ ∞

s
µ [βα/Γ(α)]µα−1e−βµ dµ = α

β

∫ ∞

s
[βα+1/αΓ(α)]µαe−βµ dµ

= α
β

∫ ∞

s
[βα+1/Γ(α + 1)]µαe−βµ dµ = α

β

∫ ∞

s
h(µ;α + 1, β) dµ

= α
β
[1−H(s;α + 1, β)].

The formula for f makes it straightforward to verify that, exactly like m, this function

is strictly increasing in α and strictly decreasing in β.11 Consequently, I and k† are

non-decreasing in α and non-increasing in β.

For m(π) = α/β < s, we have

I(π) =
sH(s;α, β) + α

β
[1−H(s;α + 1, β)]− s

s− α
β

=
sH(s;α, β)− α

β
H(s;α + 1, β)

s− α
β

− 1.

In the appendix we show that I(α, ·) has a bounded first derivative when m(π) < s for

any fixed α, i.e. on B(a, b) =
{
β ∈ ]α

s
,∞[ : a ≤ I(π) ≤ b

}
, thus verifying Assumption 5

for this example.

Figure 5 illustrates the mean-variance trade-off in equilibrium actions for Poisson

payoffs and gamma prior. (Here, as in the example with Brownian payoffs and normal

prior, s = 6 and N = 4; the curves shown are thus the exact counterparts of those in

Figure 4.) To compute the level curves, one uses the fact that the shape parameter α

11Alternatively, for α′ > α′′ the likelihood ratio h(µ;α′, β)/h(µ;α′′, β) is increasing, and for β′ > β′′ the

likelihood ratio h(µ;α, β′)/h(µ;α, β′′) is decreasing. Since the likelihood ratio ordering implies first-order

stochastic dominance, f has the stated monotonicity properties.
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Figure 5: Equilibrium actions for Poisson payoffs and gamma prior

equals the squared mean of the gamma distribution divided by its variance, and β is α

divided by the mean. The similarity to Figure 4 is striking; a closer comparison reveals

that the level curves in the Brownian-normal case are somewhat steeper than those in the

Poisson-gamma case. This is because in the former, an increase in the variance induces

a mean-preserving spread for the random variable µ on the whole real axis, whereas in

the latter, the mean-preserving spread is concentrated on the positive half-axis and thus

raises the option value of experimentation by more.

4 An Example Where Separability Fails

The aim of this section is to present a specification of beliefs and payoffs that violates

separability. To this end, we modify Example 3.1 by introducing state-switching: the

unknown drift of the Brownian motion switches between levels µ0 and µ1 according to a

continuous-time Markov process with transition probabilities

Pr(µt+dt = µ1 | µt = µ0) = p0 dt, Pr(µt+dt = µ0 | µt = µ1) = p1 dt,

where pℓ > 0 (ℓ = 0, 1).

Given the belief πt that µt = µ1, the players assign probability (1 − πt)p0 dt to a

transition from µt = µ0 to µt+dt = µ1; similarly, they assign probability πtp1 dt to a

transition from µt = µ1 to µt+dt = µ0. The former induces a positive drift for πt, the

latter a negative drift, and the combined effect leads to

E [dπt | πt, Kt ] = [(1− πt)p0 − πtp1] dt,
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adding a term to the infinitesimal generator of π that is not linear in k0 +Kt. In fact, we

have

E [u(πt+dt) | πt, k1,t, . . . , kN,t ]

= u(πt) +
{
[(1− πt)p0 − πtp1]u

′(πt) +
1
2
(k0 +Kt)

[
πt(1− πt)∆µσ−1

]2
u′′(πt)

}
dt,

so condition (1) does not hold for this specification. Separability fails because the speed

of mean reversion introduced by state switching is completely unaffected by the intensity

with which the players sample their payoff generating processes.

The Bellman equation for player n against all other players using a strategy k† now

becomes

0 = max
kn∈[0,1]

{
s− θ∗n + kn[m(π)− s] + [(1− π)p0 − πp1]u

′
n(π)

+ 1
2
[k0 + (N − 1)k†(π) + kn]

[
π(1− π)∆µσ−1

]2
u′′
n(π)

}
,

with θ∗n denoting the highest achievable long-run average payoff. It is clearly impossible

to rewrite this equation so as to separate all terms involving u′
n or u′′

n from the choice

variable kn. In other words, Markovian best responses can no longer be computed without

knowledge of the value function un.

5 Concluding Remarks

We have seen that under the separability condition, the players’ strategies in a symmetric

MPE of the undiscounted experimentation game depend only on the expected current

payoff from the risky arm and the expected full-information payoff. Under a discrete

prior distribution for the unknown average payoff per unit of time, these two expected

payoffs are fully determined – the equilibrium strategy is then invariant to the specification

of the payoff-generating process.

As to the examples with a continuous prior distribution, recall that in Example 3.4

(Brownian noise, normal prior) the precision of the posterior distribution increases un-

boundedly with time, as does the inverse of the variance in Example 3.5 (Poisson noise,

gamma prior) – consequently the posterior probability density function becomes concen-

trated on a narrow domain of the support. If we approximate the normal or gamma

distribution with a discrete distribution (Example 3.1 or 3.2) then, over time, the beliefs

become more and more concentrated on the discrete values closest to the true parameter

µ – this suggests that we could take the ‘engineering’ approach and focus on discrete
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distributions, with the specification of the payoff-generating processes being irrelevant.12

Of course, the evolution of the agents’ posterior belief does depend on how the payoffs

are generated, as do the players’ equilibrium payoffs; and to calculate the latter, one has

to solve a functional equation that involves the operator G, which encodes the evolution

of beliefs.

12But note that if for T very large the two closest neighbours of µ in the support of H(·;πT ) are µi

and µℓ with µi < µ < µℓ, then, although m(πT ) ≃ µ, we would have Var[µ | πT ] ≃ (µℓ − µ)(µ− µi) ≫ 0.
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Appendix

Verification of Assumption 5 in Example 3.4

From the main body of the text, for m < s we have

I(π) = Φ(z)− 1 + z−1ϕ(z)

where z = (s−m)τ1/2.

The function F (z) = Φ(z) − 1 + z−1ϕ(z) is a strictly decreasing bijection from ]0,∞[ to

itself with first derivative F ′(z) = −z−2ϕ(z). For any positive real number c, therefore, we

have I(π) = c if and only if (s − m)τ1/2 = F−1(c). At any such (m, τ) in the half-plane

Π = IR × [τ0,∞[ , we have ∂I/∂m = −F ′(F−1(c)) τ1/2 and ∂I/∂τ = 1
2F

′(F−1(c))F−1(c) τ−1.

To verify Assumption 5, it suffices to show that Iτ−1 is Lipschitz continuous on Π(a, b) =

{π ∈ Π : a ≤ I(π) ≤ b} for any positive real numbers a < b. For I(π) = c, we have ∂(Iτ−1)/∂m =

−F ′(F−1(c)) τ−1/2 and ∂(Iτ−1)/∂τ =
(
1
2F

′(F−1(c))F−1(c)− c
)
τ−2. This establishes that both

partial derivatives of Iτ−1 are bounded along any level curve I(π) = c in Π. Letting c range

from a to b shows that they are bounded on the whole of Π(a, b), so Iτ−1 is indeed Lipschitz

continuous there.

Verification of Assumption 5 in Example 3.5

Again from the main body of the text, for m(π) = α/β < s we have

I(π) =
sH(s;α, β)− α

β H(s;α+ 1, β)

s− α
β

− 1.

We fix α as well as positive real numbers a < b. To verify Assumption 5, it suffices to show that

I(α, ·) is Lipschitz continuous on the set B(a, b) =
{
β ∈ ]αs ,∞[ : a ≤ I(π) ≤ b

}
. To this end, we

note first that

H(s;α, β)−H(s;α+ 1, β) =

∫ s

0

βα

Γ(α)
xα−1e−βµ

[
1− βµ

α

]
dµ.

For β = α/s and µ < s, the term in square brackets under the integral is positive, so we have

H(s;α, αs )−H(s;α+1, αs ) > 0. For β ↘ α
s , therefore, the numerator sH(s;α, β)−α

β H(s;α+1, β)

in the above expression for I(π) tends to a positive limit. Given that I(π) is finite for β ∈ B(a, b),

this implies that the denominator in the above expression must be bounded away from 0, i.e. β

must be bounded away from α/s on B(a, b). Using the fact that

∂H(s;α, β)

∂β
= α

β [H(s;α, β)−H(s;α+ 1, β)] ,

it is now straightforward to verify that that I(α, ·) has a bounded first derivative on B(a, b).
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