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Abstract

Background: The computation of phylogenetic trees on the same set of species that are based on different
orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific
hybridization events recombining genes of different species. An important approach to analyze such events is the
computation of hybridization networks.

Results: This work presents the first algorithm computing the hybridization number as well as a set of representative
hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical
runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software
Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best
available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set
of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of
hybridization networks including their computation and visualization. Hybroscale is freely available1 and runs on all
three major operating systems.

Conclusion: Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0.
Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding
certain features to its graphical representation.

Keywords: Hybridization networks, Maximum acyclic agreement forests, Phylogenetics

Background
Recombinational or homoploid hybrid speciation [1] is a
mechanism influencing the evolution of species by merg-
ing a sizable percentage of the genomes of two different
species. It has been discovered especially in plants [2, 3],
but also in certain animals [4]. If two individuals each
belonging to different species hybridize, a new species,
containing genes from both parental individuals, can arise
under the following certain circumstances. First of all,
the resulting hybrid has to produce viable gametes, which
is often a problem due to the two genetically different
parental sets of chromosomes preventing a correct mei-
otic pairing. Second, if these two sets are similar enough
and, thus, the hybrid is able to produce any progeny, its
early recombinants have to find and successfully colonize
its own unexploited niche that is different from either of
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its parents, which ensures a reduction of the gene flow
between its parental genotypes. Due to these circum-
stances, homoploid hybrid speciation is considered as a
rare phenomenon. Note that, after such a new hybrid
species has successfully established itself, there can still
occur gene flow back from the hybrid species to their
parent species, which is denoted as introgression [1].
Now, regarding a well-established homoploid hybrid

species resulting from such a evolutionary process as
described above, we can reconstruct its evolutionary his-
tory by taking two different scenarios each corresponding
to one of its parental species into account. This is typ-
ically done by, first, computing two rooted phylogenetic
trees each based on those genes corresponding to one
of both parental gene sets and, second, by reconciling
these two topologically different trees into one rooted
phylogenetic network, whose reticulate nodes (nodes of
in-degree ≥ 2) represent certain putative hybridization
events. Because of those major hurdles a hybrid species
has to face, hybridization events rarely happen and, thus,
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from a biological point of view, only those networks con-
taining a minimum number of reticulate nodes are of high
interest.
Due to hybridization, the genome of hybrid species,

however, can obviously contain more than just two genes
having different evolutionary histories. Thus, given a set
T of rooted binary gene trees sharing the same set of
taxa, the general problem is to compute a rooted phylo-
genetic network displaying T by a minimum hybridiza-
tion number as defined later by Eq. 2. Unfortunately,
this is a well-known NP-hard problem, which is how-
ever fixed-parameter tractable, even for the simplest case
when only just two binary input trees are given [5].
In the general case, however, if the input consists of
more than two rooted binary trees, the problem still
remains fixed-parameter tractable as recently shown by
van Iersel and Linz [6]. More precisely, this means that
the problem is exponential in some parameter related
to the problem itself, namely the hybridization num-
ber, and only polynomial in the size of the input trees.
Note that this is an important feature, which facili-
tates the development of exact algorithms as it is used
by our algorithm for some subproblems to maximize
efficiency.
In this work, we tackle this NP-hard problem by pre-

senting the first algorithm that is able to compute the
exact hybridization number as well as a certain set con-
taining all representative networks for, not just only two,
but an arbitrary number of rooted binary phylogenetic
X -trees all sharing the same set of taxa. Note that, until
now, the software PIRNv2.0 [7, 8] is the most efficient
software that guarantees the computation of the exact
hybridization number for multiple input trees. In most
cases, however, PIRN runs only reasonable efficient if the
number of hybridization events is relatively small and,
moreover, PIRN does usually output only a small sub-
set of those networks that are computed by our method
which plays an important role for the interpretation of
the networks as shown later. The algorithm, presented
in this work, is based on previous work of Albrecht
et al. [9] describing an algorithm for just two input trees,
which itself is based on several works including Baroni
et al. [10], Bordewich and Semple [11], andWhidden et al.
[12]. Moreover, this previous approach could only com-
pute a subset of all representative networks and, thus, the
motivation for this work was to extend this former algo-
rithm such that now all of those networks for an arbitrary
number of input trees can be computed.
As we state that our algorithm guarantees the compu-

tation of the exact hybridization number, we are aware of
the fact that this algorithm raises some questions regard-
ing its correctness. However, since in this paper we want
to focus on the efficiency of the presented algorithm as
well as on the advantages of our software Hybroscale

regarding the interpretation of hybridization networks, we
decided to discuss those rather complex theoretical issues
in a forthcoming paper [13].
Given a hybridization network displaying several input

trees, it is often visually challenging for a user to figure
out the embedding of those trees. Thus, we have devel-
oped the software Hybroscale providing a function for
highlighting each input tree by coloring its corresponding
edges within a resulting network, which makes it easier
for a biologist to analyze hybridization events. Moreover,
Hybroscale sorts the set of computed networks by support
values indicating how often a certain hybridization event
occurs in the set of representative networks.
To demonstrate the efficiency of our implementation,

we computed the hybridization number for a specific syn-
thetic dataset and compared the respective runtime with
the best currently available software PIRNv2.0 [7, 8]. Note
that there are two main differences between our approach
and the one corresponding to PIRN. On the one hand, our
software provides the better practical runtime for com-
puting hybridization numbers because of parallelization,
certain reduction steps, and other algorithmic issues as
discussed in the upcoming part of this paper. On the other
hand, our approach additionally enables the computation
of all representative networks allowing the assignment of
meaningful support values to each internal node repre-
senting a putative hybridization event which helps biolo-
gists to figure out hybridization events that might played
an important role. Note that the networks reported by
PIRN2.0 are either also calculated by our approach or are
not considered as being relevant because there exist other
networks representing these networks as described in the
upcoming part of this paper.

Methods
In this section, we first introduce the notation and termi-
nology that is used throughout the paper and then present
the algorithm ALLHNETWORKS.

Preliminaries
The upcoming definitions used for describing and dis-
cussing our algorithm follow the work of Huson et al.
[14]. We assume that the user is familiar with general
graph-theoretic concepts.
Phylogenetic trees. A rooted phylogenetic X -tree T is a

directed tree, whose edges are directed from the root to
the leaves and whose nodes, except the root, have a degree
not equal to 2. If T is a binary tree its root has in-degree
0 and out-degree 2, each inner node an in-degree of 1 and
an out-degree of 2, and each leaf an in-degree of 1 and
an out-degree of 0. Moreover, each leaf is labeled one-to-
one by a taxon of the taxa set X , which usually consists of
certain species or genes and is also denoted by L(T). For
a node v of T , the label set L(v) contains each taxon that
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is contained in the subtree rooted at v. Given a set F of
trees, the label set L(F) is simply the union of each label
set L(Fi) of a tree Fi ∈ F .
Now, given a rooted phylogenetic X -tree T and a taxa

set X ′ ⊆ X , we define T(X ′) as the minimal con-
nected subgraph of T whose leaf set contains each taxon
in X ′. Additionally, by T |X ′ we define the subgraph that
is obtained from T(X ′) by suppressing all nodes of both
in- and out-degree 1. Moreover, given a tree T , through-
out this paper we use T to denote the tree that is obtained
from T by suppressing each node of both in- and out-
degree 1.
Hybridization networks. A hybridization network N is

a rooted phylogenetic network, which is a rooted acyclic
digraph not containing nodes of both in- and out-degree 1
and whose leaves are all labeled one-to-one by a taxon
of the taxa set X (cf. Fig.1(a)). Each node v of in-degree
greater than 1 is called a hybridization node and each
edge directed into v is called a reticulation edge or, in the
context of hybridization, a hybridization edge. We say a
hybridization network N on X displays a rooted phyloge-
netic X ′-tree T ′, with X ′ ⊆ X , if we can delete a set of
hybridization edges E′ followed by suppressing each node
of both in- and out-degree 1 such that the resulting rooted
phylogeneticX -treeT containsT ′ as restricted subtree on
X ′. In such a case, we say that E′ refers to T ′ (cf. Fig.1(b)).
Since a network can display a tree in potentially several
ways, E′ is not necessarily unique. To quantify the num-
ber of reticulation events of a network N , the reticulation
number r(N) is defined by

r(N) =
∑

v∈V :δ−(v)>0
(δ−(v) − 1), (1)

where δ−(v) denotes the in-degree of node v. Moreover,
for a set T of rooted phylogenetic X -trees, we define the
hybridization number h(T ) as

h(T ) = min{r(N) : N displays each T ∈ T }. (2)

Now, given a hybridization networkN onX and an edge
set E′ referring to an embedded rooted phylogenetic X ′-
tree T ′ in N , the reduced network N |E′,X ′ , with X ′ ⊆ X , is
computed as follows. First, E′ is deleted and, second, each
node of out-degree 0 that is unlabeled or not labeled by a
taxon in X ′ is removed repeatedly. The resulting directed
graph corresponds toT ′|X ′ but still contains nodes of both
in- and out-degree 1, and, thus, each node in N |E′,X ′ can
be mapped back to exactly one specific node of the unre-
stricted network N (cf. Fig.1(c)). Moreover, the network
N(v) denotes a network rooted at v that is computed by,
first, removing each node that cannot be reached from
v and, second, by suppressing each node of both in- and
out-degree 1.
Agreement forests. Let T1 and T2 be two rooted binary

phylogenetic X -trees. For technical purpose, we regard
the root of both trees T1 and T2 as being a node that has
been attached to the original roots and to a taxon ρ �∈ X .
Now, an agreement forest for T1 and T2 is a set of compo-
nents F = {Fρ , F1, . . . , Fk} on X ∪ {ρ} with the following
properties.

(1) Each component Fi with taxa set Xi refers to the
restricted subtree T1|Xi and T2|Xi , respectively.

(2) There is exactly one component, denoted as Fρ ,
containing ρ.

(3) Let Xρ ,X1, . . . ,Xk be the taxa sets corresponding to
Fρ , F1, . . . , Fk . Then, all trees in
{T1(Xi)|i ∈ {ρ, 1, . . . , k}} and
{T2(Xi)|i ∈ {ρ, 1, . . . , k − 1}} are node disjoint
subtrees of T1 and T2, respectively.

A maximum agreement forest is an agreement forest
of minimum size, which implies there does not exist a
smaller set of components fulfilling each property listed
above. Moreover, we call an agreement forest F for two
rooted binary phylogenetic X -trees T1 and T2 acyclic, if
its underlying ancestor-descendant graph AG(T1,T2,F)

does not contain any directed cycles (cf. Fig. 2). More
specifically, this graph AG(T1,T2,F) contains one node
corresponding to exactly one component of F . Moreover,

Fig. 1 a A hybridization network N with taxa setX = {a, b, c, d, e} whose reticulation edges are consecutively numbered. b A phylogeneticX -tree
T that is displayed by N. Based on N, both edge sets {3, 6, 1} and {3, 6, 2} refer to T . c The restricted network N|E′ ,X ′ with E′ = {3, 6, 1} and
X ′ = {b, c, d, e} still containing nodes of both in- and out-degree 1
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Fig. 2 An agreement forestF of two phylogeneticX -trees T1 and T2 together with the corresponding ancestor-descendant graph AG(T1, T2,F).
Note that, as AG(T1, T2,F) does not contain any directed cycles,F is acyclic

two nodes Fi and Fj with i �= j are connected via a directed
edge (Fi, Fj) if either

(i) the root of T1(Xi) is an ancestor of the root of T1(Xj)
or

(ii) the root of T2(Xi) is an ancestor of the root of T2(Xj),

where Xi,Xj ⊆ X denotes the taxa set of Fi and Fj,
respectively. Again, we call an acyclic agreement forest
of minimum size a maximum acyclic agreement forest.
Note that for a maximum acyclic agreement forest for two
rooted binary phylogenetic X -trees T1 and T2 containing
k components there exists a hybridization network whose
reticulation number is k − 1 [15]. This means, in particu-
lar, if a maximum acyclic agreement forest for T1 and T2
contains only one component, both trees are equal.
IfF is acyclic and, thus, AG(T1,T2,F) does not contain

any directed cycles, one can compute an acyclic ordering,

as already described in Baroni et al. [10], as follows. First,
select the node vρ of in-degree 0, which corresponds to
Fρ , and remove vρ by deleting this node together with all
its incident edges. Next, again choose a node v1 with in-
degree 0 and remove this node. By continuing this way
until finally all nodes have been removed, one receives the
ordering � = (vρ , v1, . . . , vk). In the following, we call the
ordering of components corresponding to �, denoted by
(Fρ , F1, . . . , Fk), an acyclic ordering of F . As during each
of those steps there can occur multiple nodes of in-degree
0, especially if F contains components only consisting of
isolated nodes, such an acyclic ordering is in general not
unique.
Representative networks. As mentioned above, our

algorithm ensures the computation of all representative
networks, which are those hybridization networks with
minimum hybridization number (cf. Eq. (2)) fulfilling
an additional property that is based on the following
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observation. Given a hybridization network containing a
node v with in-degree of at least 3, one can generate fur-
ther networks by simply dragging some of its hybridiza-
tion edges upwards resulting in a stack of hybridization
nodes. More precisely, such a stack is a path (v1, . . . , vn)
in which each hybridization node vi is connected through
a hybridization edge to vi+1 (cf. Fig. 3). From a biologi-
cal point of view, such a stack implies that a hybridiza-
tion event belonging to a hybridization node vi happened
before those corresponding to the in-edges of a hybridiza-
tion node vj with i < j. However, as for each of those
networks there exists a network where each stack is fully
compressed, we only consider those compressed networks
as being relevant.
Consequently, the set of representative networks con-

sists only of those networks with minimum hybridization
number not containing any stacks of hybridization nodes
leaving the interpretation of the ordering of the hybridiza-
tion events open. Moreover, just for simplicity, we claim
that each of those networks has to be binary not contain-
ing any nodes of out-degree greater than 2. By introducing
multifurcating nodes, which are nodes having an out-
degree of at least 3, the set of representative networks
typically shrinks because due to those nodes a network
can display several binary networks.
Lastly, given two representative networksN1 andN2, we

say that N1 differs from N2 if either their graph topologies
(disregarding edge labels) are not isomorphic or their edge
sets indicating the embedding of each input tree differ.

The algorithm ALLHNETWORKS

In this section, we give a high level description of our algo-
rithm ALLHNETWORKS. More information, involving a
more detailed description of the upcoming steps as well as
some theoretical issues, will be discussed in a forthcoming
paper [13].
The input of the algorithm is a set T of rooted

binary phylogenetic X -trees and its output is either just

the hybridization number or all representative networks
showing the embedding of those input trees. Similar to
the approach described in the work of Albrecht et al. [9],
ALLHNETWORKS can be separated into three phases. The
reduction phase (consisting of a subtree reduction follow-
ing the work of Bordewich and Semple [16] and a cluster
reduction following the work of Baroni et al. [10] and Linz
[17]), the exhaustive search phase, and the output phase
(combining the result of all clusters and undoing each sub-
tree reduction). Whereas the reduction and the output
phase can be conducted in polynomial time, the second
phase solves anNP-hard problem and, thus, its runtime is
exponential [5]. However, as recently shown by van Iersel
and Linz [6], certain parts of the problem still remain
fixed-parameter tractable, which, as already noted in the
introduction, is an important feature that is exploited by
our algorithm to maximize its efficiency.
At this point, we have to give a remark regarding the cor-

rectness of the cluster reduction. The well-known work of
Baroni et al. [10] contains a proof showing that the exact
hybridization number of two binary phylogenetic X -trees
can also be computed by adding up the exact hybridiza-
tion numbers of its minimum common clusters. A more
general proof, showing that this concept also holds for
multiple binary phylogeneticX -trees, can be found in our
forthcoming paper [13].
In the upcoming part, we will briefly discuss the exhaus-

tive search phase and its parallelization. A description
of the other two phases is omitted but can be looked
up in the work of Albrecht et al. [9]. The exhaustive
search phase runs for an increasing parameter k bounding
the reticulation number of each computed network. If a
hybridization network with reticulation number less than
or equal to k does not exist, the search is continued with
k + 1 until a hybridization network displaying all input
trees can be computed.
Exhaustive search phase. Given a set T consisting of

n rooted binary phylogenetic X -trees and a parameter

Fig. 3 An illustration of a stack of hybridization nodes. The hybridization node with in-degree 4 of the left tree T1 can be resolved, amongst others,
into two different stacks of hybridization nodes (v1, v2, v3) as demonstrated by T2 and T3, respectively. Note that by resolving a hybridization node
into a stack of hybridization nodes the set of trees that are displayed in the original network remains unchanged
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k ∈ N, in a first step we choose an ordering of T , which is
for convenience (T1,T2, . . . ,Tn) in the following. Second,
each tree of this ordering is added sequentially to a setN
of networks in all possible ways. At the beginning,N only
consists of the first tree of the ordering, which is T1 in this
case. By adding an upcoming input tree Ti (i > 1), the size
of N grows rapidly, because in general there exist multi-
ple ways of how this can be achieved (cf. Fig. 6). Since we
do not delete any edges from a so far computed network
N , we can disregard those networks whose reticulation
number exceeds k. Note that, in order to guarantee the
computation of all representative networks, this step must
be performed for each possible ordering of T .
The input tree Ti is added to a so far computed net-

work N by adding hybridization edges connecting certain
parts of N . Given an edge set E′ referring to a phyloge-
netic X -tree T ′ that is displayed by N , such parts can
be derived from the components of a maximum acyclic
agreement forest for T ′ and Ti. Again, in order to guar-
antee the computation of all representative networks, the
insertion of Ti has to be performed for all maximum
acyclic agreement forests referring to Ti and each phylo-
geneticX -treeT ′ that is embedded inN , and, additionally,
for all edge sets E′ referring to T ′. Note that, given two
rooted binary phylogenetic X -trees, the computation of
all maximum acyclic agreement forests follows the algo-
rithm ALLMAAFS [18].
A maximum acyclic agreement forest F of Ti and T ′

is added to N by, first, computing an acyclic ordering
(Fρ , F1, . . . , Fk) of F which can be done with the help of
the directed graph AG(T ′,Ti,F) as previously described.
Next, each component Fi, beginning with F1, is added to
N by inserting a new hybridization edge connecting a cer-
tain source and target node such that, after all components
of F have been inserted, N displays the considered input
tree Ti. In order to guarantee the computation of the exact
hybridization number, all acyclic orderings and all valid
combinations of source and target nodes, as described
below, have to be taken into account. More precisely, in
order to avoid directed cycles, we consider a pair (s, t) of
source and target nodes as being valid if the source node
s cannot be reached from t. Note that the way of how
we add a tree to a network is similar to the algorithm
HYBRIDPHYLOGENY [10].
The set of target and source nodes corresponding to

a component Fi in F is defined as follows. Let F ′ =
{Fρ , F1, . . . , Fi−1} ⊂ F = {Fρ , F1, . . . , Fk} be the set of
components that has been added so far. Note that, sinceN
is initialized with Fρ , at the beginning L(F ′) equals L(Fρ)

and the first component that is added is F1.
Target Nodes. The set Vt of target nodes contains all

nodes v with N |E′,L(F ′)∪L(Fi)(v) isomorphic to Ti|L(Fi).
Due to the restriction of the network to L(F ′), this set
usually contains more than one node.

Source Nodes of Type A. For each edge set Ei referring
to the embedded tree Ti|L(F ′) in N , the set VA

s of source
nodes of Type A contains all nodes vwithN |Ei,L(F ′)(v) iso-
morphic to Ti|L(F ′)(vsib), where vsib denotes the sibling
of the node v′ with L(v′) = L(Fi) in Ti|L(F ′)∪L(Fi). Note
that, due to the restriction of the network to L(F ′), this
set usually consists of more than one node.
Source Nodes of Type B. The set VB

s of source nodes of
Type B is computed such that it contains each node v of a
subtree, whose root is a sibling of a node in VA

s and which
does not contain any taxa of L(F ′). Moreover, its leaf set
L(v) has to consist only of several subsets representing the
total taxa set L(F) of a component F in F , which means
that v must not be part of a subtree corresponding to a
component that is added afterward.
For a better understanding the definitions of source and

target nodes are illustrated in Fig. 4.
Now, given a valid pair (s, t) of source and target nodes,

a new hybridization edge is inserted as follows. The in-
edge of the source node s is split in a way that there is a
new node s′ that is connected to s and to the parent of
s. If the parent of t is of in-degree one the in-edge of t
is split in the same way. Otherwise, its parent node acts
as t′ which allows the computation of networks contain-
ing nodes of in-degree greater than 2. Note that this is an
optional step that is necessary to ensure that each com-
puted hybridization network does not contain any stacks
of hybridization nodes such that it applies to the definition
of a representative network. Finally, the two nodes s′ and
t′ are connected through a path P consisting of two edges.
This is done because, on the one hand, we only allow
nodes of in-degree one as source nodes, but, on the other
hand, in order to compute all representative networks,
we have to enable that a target node can additionally be
attached to hybridization edges. Due to this fact, however,
before reporting a network embedding all input trees, one
still has to suppress all nodes of both in- and out-degree
1. By referring to the terminology used above, in Fig. 5 we

Fig. 4 An illustration of the definitions of target (left) and source
nodes (right) for a component Fi (p, q > i) in which red nodes
correspond to target nodes, blue nodes to source nodes of Type A,
and green nodes to source nodes of Type B. Moreover, dashed edges
and dotted edges are those edges that are disregarded when
considering the restricted network in terms of the chosen embedded
tree and the taxa set of the so far added components, respectively
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give a short example of how a certain input tree is added
to a network.
For clarity, the algorithm ALLHNETWORKS has been

described so far with respect to one single embedding
of each input tree. Given n input trees, to generate all

representative networks, one still has to compute for each
network all possible combinations of edge sets each refer-
ring to the embedding of one input tree.
Lastly, we give some high level ideas why the algo-

rithm ALLHNETWORKS is correct, i.e., calculates all

Fig. 5 An illustration of how an input tree Ti is inserted into a network Ni−1 with the help of an embedded tree T ′ . a The network Ni−1 together with
an embedded tree T ′ . b The input tree Ti , which will be embedded into Ni−1 by inserting the maximum acyclic agreementF forest of Ti and T ′
consisting of three components Fρ , F1, and F2. c, d All important elements that have to be considered during the insertion of both components F1
and F2, respectively. Blue dots correspond to source nodes and red nodes to target nodes. Note that, regarding N(1)

i , there is only one valid pair of
source and target nodes. Dashed edges are those edges that are disregarded when considering the restricted network in terms of T ′ and the taxa set
of the so far added components ofF . e The resulting network Ni , which is obtained from N(3)

i by suppressing each node of both in- and out-degree 1
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representative networks for a set of rooted binary phy-
logenetic X -trees. We refer readers who are interested
in a detailed proof to our forthcoming paper [13]. Let
N ′ be a representative network displaying a subset T ′
of all input trees T and let N be a hybridization net-
work (not containing any stacks of hybridization nodes)
that is based on N ′ and displays a further input tree
Ti �∈ T . Then, one can obtain N from N ′ by insert-
ing a set E′ of reticulation edges whose source and target
nodes can be derived from an acyclic agreement for-
est F for Ti and a certain tree displayed by N ′. This
is due to the fact that N ′ must contain such an agree-
ment forest F so that each of its components, except Fρ ,
is rooted at a target node of an edge in E′ whose inci-
dent nodes are contained in Vt and VA

s ∪VB
s , respectively.

Moreover, one can show that by constructing networks
for all possible orderings of the input trees, it suffices
to take only maximum acyclic agreement forests into
account.

Parallelization
In order to improve the practical runtime of the algorithm
ALLHNETWORKS, our implementation is able to run the
exhaustive search looking for hybridization networks with

hybridization number k in parallel. As mentioned above,
the insertion of an input tree Ti to a so far computed
network results in several new networks, which are then
processed by inserting the next input tree Ti+1 of the
chosen ordering (cf. Fig. 6). Since the processing of net-
works runs independently from each other, these steps can
be parallelized in a simple manner. Based on the num-
ber of hybridization edges of a so far computed network,
each of those steps is more or less likely to result in a
representative network. Thus, we set up a priority queue
to process the most promising networks first, which, on
the one hand, depends on the number of so far inserted
input trees and, on the other hand, on its reticulation
number.
Such a priority queue, however, does only speed up the

computation of the hybridization number, since in this
case all computational paths can be aborted immediately
as far as the first minimum hybridization network could
be computed successfully. For the computation of all rep-
resentative networks, however, each computational path
has to be processed anyway until either it can be early
aborted (which is the case if the reticulation number of
the corresponding network exceeds k) or it leads to a
representative network.

Fig. 6 An illustration of how the insertion of the input trees is conducted by the algorithm ALLHNETWORKS in respect of the parameter k bounding
the maximal reticulation number of resulting networks. Beginning with the first input tree T1, repeatedly, first, an embedded tree T ′ of a so far
computed network N is extracted, and, second, the current input tree Ti is inserted into N by sequentially adding the components of a maximum
acyclic agreement forest for T ′ and Ti . As soon as the reticulation number of a so far computed network exceeds k one can be sure that this network
cannot lead to a network with reticulation number smaller or equal to k and, thus, the corresponding computational path can be aborted
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Moreover, as the algorithm computes networks for all
different orderings of input trees and all different acyclic
orderings of maximum acyclic agreement forests, a rep-
resentative network can be computed multiple times. As
a consequence, to ensure that the output only consists
of unique networks, one has to filter the set of networks
obtained from the exhaustive search step. For this pur-
pose, we first group this set after the sum of support values
computed for each network (as defined later) and then
check each of those subgroups for isomorphic networks
in parallel. Due to the typically large number of computed
networks (cf. Tables 1, 2), the restriction of the filtering
step to small subgroups usually provokes a large speedup.
Note that, as already mentioned above, we consider two
networks as being different if either their graph topologies
(disregarding edge labels) are not isomorphic or their sets
of edges that are necessary for displaying each input tree
differ.

Additional features
Given just the extended newick format [19] of a hybridiza-
tion network, its topology is in general hard to interpret.
Although there exist software packages, which are able to
display rooted phylogenetic networks, e.g., the software
Dendroscope [14], most of them are not able to visualize
the embedding of all input trees, which is a preferable fea-
ture for studying hybridization events. In order to close
this gap, we have developed the software Hybroscale,
which is specifically designed for studying hybridization
networks. Besides the computation of a graphical lay-
out of rooted trees and rooted networks, which is opti-
mized by minimizing the number of crossings between all
hybridization edges, Hybroscale can additionally highlight
each hybridization edge that is necessary for displaying all
embedded input trees by assigning a specific color to each
tree (cf. Fig 7). Thus, Hybroscale is a software that, on the
one hand, enables an easy handling of our algorithm and,
on the other hand, ensures the readability of the computed
networks.
Furthermore, Hybroscale assigns each hybridization

node a support value indicating the fraction of networks
containing this node and, additionally, sorts the reported
networks by the sum of those values in decreasing order.
More specifically, the computation of support values is
done as follows. Given a networkN , each edge set Ei refer-
ring to one of the input trees Ti, and a certain hybridiza-
tion node v, we, first, compute the following ordering of
taxa sets �(v) = (L(N(v)|E1,X ), . . . ,L(N(v)|En,X )). More
precisely, each elementL(N(v)|Ei,X ) consists of those taxa
adhering to each leaf that can be reached from v by
directed paths only crossing those hybridization edges in
Ei indicating the embedding of Ti. For example, regarding
Fig. 7, the set referring to the hybridization edges indicat-
ing the embedding of Tree 2 and the node labeled by 22%

is {austrodant, karoochloa}. Second, we determine the
fraction of networks containing �(v). This step ensures
that the user can instantly look at those networks con-
taining the most promising hybridization events, which is
an important feature, because usually a large number of
networks is reported (cf. Tables 1, 2).

Results and discussion
In this section, we first report a simulation study indicat-
ing that our approach is much faster than other existing
methods and then illustrate how Hybroscale can be used
for studying hybridization networks by applying the soft-
ware to a well known grass (Poaceae) dataset.

Simulation study
To show the efficiency of our implementation, we
have integrated our algorithm into the Java software
Hybroscale and conducted a simulation study compar-
ing its runtime to PIRNv2.0 [7, 8], which is so far the
best available software for computing exact hybridization
numbers for multiple rooted binary phylogeneticX -trees.
Our synthetic dataset is freely available2 and consists

of several tree sets each containing multiple rooted phy-
logenetic X -trees. Each X -tree is generated by ranging
over all different combinations of four parameters, namely
the number of input trees n, the number of leaves �, an
upper bound for the hybridization number k, and the clus-
ter degree c as defined below. Each of the n input trees
is obtained from a bicombining network N , which means
that N only contains hybridization nodes of in-degree 2.
This network N is computed in respect to these four dif-
ferent parameters as follows. In a first step, a random
binary tree T with � leaves is computed which is done in
the following way. First, at the beginning, two nodes u and
v of a specific set V , which is initialized by � nodes of both
in- and out-degree 0, are randomly selected. Those two
selected nodes u and v are then connected to a new node
w and, finally, V is updated by replacing u and v by its par-
ent node w. This process is repeated until V consists only
of one node corresponding to the root of T . In a second
step, k hybridization edges are created in T with respect
to parameter c such that the resulting network N contains
exactly k hybridization nodes of in-degree 2.
In this context, the cluster degree is an ad hoc con-

cept influencing the computational complexity of a tree
set similar to the concept of the tangling degree intro-
duced in the work of Scornavacca et al. [18]. When adding
a hybridization edge e with target node v2 and source
node v1, we say that e respects cluster degree c, if v1 can-
not be reached from v2 and there is a path of length less
than or equal to c leading from v2 to a certain node p
such that v1 can be reached from p. Consequently, net-
works providing a small cluster degree in general contain
more minimum common clusters than networks of large
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Fig. 7 Our software Hybroscale showing a hybridization network displaying the embedding of four input trees by the colors blue, red, green, and
orange

cluster degrees and, thus, typically can be processed quite
fast when applying a cluster reduction beforehand. For a
better understanding, in Fig. 8 an example of this concept
is depicted.
To compare the efficiency, both programs have been run

on a grid computer providing 16 cores and 40 GB RAM
for our synthetic dataset containing tree sets with param-
eters n ∈ {3, 4, 5}, � ∈ {10, 25, 50}, k ∈ {5, 10, 15}, and c ∈
{1, 3, 5}. More precisely, we have generated for all 81 com-
binations of the four parameters 30 tree sets as described
above resulting in 2430 tree sets in total. The results for
three input trees (n = 3) are presented in Figs. 9, 10

Fig. 8 An illustration of the cluster degree parameter c = 1. When
inserting an in-going edge e to node v2 that is respecting c, each
node that is marked green or is part of a green marked subnetwork
forms a potential source node
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Fig. 9 The figure shows the mean average runtime corresponding to
Hybroscale and PIRNv2.0 grouped by parameter k denoting the
hybridization number of the network that was used to obtain the tree
set T from. Thus, this parameter k acts as an upper bound of the
hybridization number of T . Each percentage indicates the
proportion of tree sets that could be computed within the time limit
of 20 minutes
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Fig. 10 The figure shows the mean average runtime of all tree sets
grouped by the computed hybridization numbers. The numbers
inside the plot indicate how many tree sets could be computed for
the corresponding hybridization number within the time limit of 20
minutes. Note that for the hybridization numbers 0 to 3 all
corresponding tree sets could be computed by Hybroscale and
PIRNv2.0 within comparable runtimes

and 11, whereas the results for four and five input trees
(n = 4, 5) can be found in the Additional file 1. Due to time
limitations, if the hybridization number of a certain tree
set could not be computed within 20 minutes, the compu-
tation of this tree set was aborted. In Figs. 9, 11, 12, and 13
those unfinished tree sets were taken into account with a
runtime of 20 minutes whereas in Fig. 10 these tree sets
were omitted.
Each of the simulation results given in Figs. 9, 10, 11, 12,

and 13, which are now discussed in more detail, clearly
demonstrates that our implementation is much faster than
PIRN.
Figure 9 shows that, by increasing the upper bound

of the hybridization number k, the mean average run-
time of the datasets computed by PIRN increases up to
1000 seconds whereas the mean average runtime corre-
sponding to Hybroscale is always below 100 seconds. Note
that, as the runtime of each unfinished dataset was set to
1200 seconds, if we would set the time limit to a higher
value, the maximal mean average runtime produced by
PIRN is expected to be even higher — otherwise, to pro-
duce a reasonable comparison between both programs,
we would have to leave out each dataset, which could
not be computed by one of both programs, which means
that we would end up with only those non representative
datasets that are quite easy to compute. Figure 10 shows
that Hybroscale, in comparison to PIRN, can compute
more datasets within the time limit and datasets having
a significant larger hybridization number. Whereas PIRN

Fig. 11 A scatterplot of the runtimes generated by PIRNv2.0 (x-axis)
against the runtimes generated by Hybroscale (y-axis) of all 810 data
sets consisting of three input trees. Note that PIRNv2.0 is not able to
compute the result for 449 tree sets corresponding to each dot in the
figure whose x-value is 1200. From those tree sets just 6 according to
the dots whose y-value is also 1200 could not be computed by
Hybroscale
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Fig. 12 The figure shows the number of tree sets that could be
computed within the runtime given on the x-axis by considering the
real-runtime of PIRN and both real- and user-runtime of Hybroscale.
Only the rightmost bar group reveals that the massive parallelization
with 16 cores can significantly improve the runtime of Hybroscale in
this case. Note that this is, on the one hand, due to the low time limit
of just 20 minutes and, on the other hand, due to the low
computational complexity of the considered tree sets
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Fig. 13 Distribution of the speedups of Hybroscale versus PIRN
computed for each tree set of our synthetic dataset. For three input
trees Hybroscale is on mean average about 110 times faster than
PIRN, for four input trees on mean average about 170 times, and for
five input trees on mean average about 190 times

is just able to compute hybridization numbers up to 5,
Hybroscale is able to compute hybridization numbers up
to 13.
Thus, it is obvious that our implementation outper-

forms PIRN which becomes even clearer by looking at
Fig. 11 showing a scatterplot of the runtimes produced by
both programs. The figure shows that for each runtime
of a specific data set produced by PIRN the correspond-
ing runtime of Hybroscale is smaller or equal. Moreover,
looking at the bottom right of the figure, there exist a lot
of data sets that could be computed by Hybroscale quite
fast in less than 200 seconds, whereas PIRN is not able to
come up with a result in less than 1200 seconds.
By comparing real- with user-runtimes, Fig. 12 demon-

strates that the better performance of Hybroscale is not
only due to the applied massive parallelization. As the
user-runtime indicates the total CPU time, which means
that the time spent on all available cores is simply added
up, this time indication corresponds to the runtime pro-
duced by a program that is executed on a system only
providing a single core with no parallel execution tak-
ing place. Figure 12 shows the number of tree sets that
could be computed within the runtime given at the x-
axis. For example, the leftmost bar-group shows that PIRN
could only finish 360 of 810 tree sets consisting of three
trees within 1200 seconds whereas Hybroscale could fin-
ish 804 by taking parallelization into account and 793
by not taking parallelization into account. Note that the
difference between both bars corresponding to the real-
and user-runtime of Hybroscale would be even larger if,
on the one hand, the dataset would contain tree sets of

higher computational complexity and, on the other hand,
the time limit would be set to a higher value. A possi-
ble explanation for the speedup without taking advan-
tage of parallelization is, on the one hand, the proven
method allMAAFs [18] that is used for solving the NP-
hard problem of computing all maximum acyclic agree-
ment forests. The efficiency of this method has been
indicated recently in the work of Albrecht et al. [9]. On
the other hand, in contrast to our approach, we assume
that PIRN does only apply a subtree reduction and not
additionally a cluster reduction to the set of initial input
trees.
Finally, we have computed the speedup of Hybroscale

versus PIRN by comparing its runtimes produced for
each tree set within our synthetic dataset. More pre-
cisely, for each tree set d we have computed the speedup
s(d) = RP(d)/RH(d), where RP and RH denotes the real-
runtime produced by PIRN and Hybroscale, respectively.
Figure 13, showing the distribution of the speedups corre-
sponding to each of those tree sets, reveals that for three
input trees Hybroscale is onmean average about 110 times
faster than PIRN, for four input trees on mean average
about 170 times, and for five input trees on mean average
about 190 times.

Application to a grass dataset
As mentioned above our algorithm computes all repre-
sentative networks for a set of input trees. In particular,
given only two input trees, this means that Hybroscale
in general outputs multiple networks for each maximum
acyclic agreement forest instead of only one as it is the
case for the method described in the work of Albrecht

Table 1 Output produced by Hybroscale applied to two
phylogenetic trees belonging to a well known grass (Poaceae)
dataset

Genes Taxa HNumber #MAAFs #HNetworks

ndhf phyB 40 8 459 2079

ndhf rbcl 36 8 72 1488

ndhf rpoc 34 9 144 264

ndhf waxy 19 6 46 599

phyB its 30 8 21 195

phyB rbcl 21 4 4 6

phyB rpoc 21 4 5 9

phyB waxy 14 3 6 10

rbcl rpoc 26 7 18 111

rbcl waxy 12 4 10 84

rpoc its 31 12 12 3480

rpoc waxy 10 2 1 1

waxy its 15 5 6 15
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Table 2 Output produced by Hybroscale applied to
phylogenetic trees belonging to a grass (Poaceae) dataset. Each
runtime given in this table is stated in seconds. A missing result
for a certain tree set means that our software Hybroscale could
not compute the exact hybridization number (resp. set of
representative networks) within 20 minutes

Computing HNumbers Computing HNetworks

Genes #Taxa HNumber Runtime #HNetworks Runtime

ndhf its 46 17 3.262 - -

ndhf phyB 40 8 0.199 2079 33.035

ndhf rbcl 36 8 0.175 1488 32.1

ndhf rpoc 34 9 0.197 264 5.353

ndhf waxy 19 6 0.179 599 5.693

phyB its 30 8 0.238 195 8.304

phyB rbcl 21 4 0.083 6 1.65

phyB rpoc 21 4 0.091 9 1.678

phyB waxy 14 3 0.071 10 1.615

rbcl its 29 12 4.41 - -

rbcl rpoc 26 7 0.147 111 3.836

rbcl waxy 12 4 0.126 84 4.338

rpoc its 31 12 4.5 3480 217.575

rpoc waxy 10 2 0.07 1 1.582

waxy its 15 5 0.118 15 2.712

ndhf phyB its 30 13 243.411 - -

ndhf phyB rbcl 21 9 7.226 - -

ndhf phyB rpoc 21 8 6.189 36948 206.114

ndhf phyB waxy 14 4 1.599 54 2.87

ndhf rbcl its 28 - - - -

ndhf rbcl rpoc 26 11 7.223 46946 511.296

ndhf rbcl waxy 12 5 4.198 114 5.577

ndhf rpoc its 31 - - - -

ndhf rpoc waxy 10 3 2.583 14 2.632

ndhf waxy its 15 8 4.213 6490 26.697

phyB rbcl its 17 8 9.437 8661 233.768

phyB rbcl rpoc 15 6 4.652 40 4.867

phyB rbcl waxy 7 2 2.568 11 2.592

phyB rpoc its 19 7 3.774 57 4.633

phyB rpoc waxy 5 0 0.045 1 0.075

phyB waxy its 10 4 3.122 204 3.844

rbcl rpoc its 24 - - - -

rbcl rpoc waxy 9 3 1.585 5 1.62

rbcl waxy its 11 6 6.224 63 7.49

rpoc waxy its 10 4 2.626 4 2.635

ndhf phyB rbcl its 17 - - - -

ndhf phyB rbcl
rpoc

15 9 224.934 1517 403.728

Table 2 Output produced by Hybroscale applied to
phylogenetic trees belonging to a grass (Poaceae) dataset. Each
runtime given in this table is stated in seconds. A missing result
for a certain tree set means that our software Hybroscale could
not compute the exact hybridization number (resp. set of
representative networks) within 20 minutes (Continued)

Computing HNumbers Computing HNetworks

Genes #Taxa HNumber Runtime #HNetworks Runtime

ndhf phyB rbcl
waxy

7 2 2.581 1 2.594

ndhf phyB rpoc
its

19 9 984.937 - -

ndhf phyB rpoc
waxy

5 0 0.056 1 0.071

ndhf phyB waxy
its

10 5 4.159 8016 26.434

ndhf rbcl rpoc its 24 - - - -

ndhf rbcl rpoc
waxy

9 4 3.165 396 14.864

ndhf rbcl waxy its 11 6 54.399 2 159.99

ndhf rpoc waxy
its

10 5 4.213 324 16.663

phyB rbcl rpoc its 14 - - - -

phyB rbcl rpoc
waxy

4 0 0.057 1 0.06

phyB rbcl waxy its 6 2 2.574 3 2.589

phyB rpoc waxy
its

5 0 0.064 1 0.065

rbcl rpoc waxy its 9 5 7.205 333 38.471

ndhf phyB rbcl
rpoc its

14 - - - -

ndhf phyB rbcl
rpoc waxy

4 0 0.066 1 0.084

ndhf phyB rbcl
waxy its

6 3 4.232 135 22.506

ndhf phyB rpoc
waxy its

5 0 0.059 1 0.083

ndhf rbcl rpoc
waxy its

9 5 35.899 235 587.54

phyB rbcl rpoc
waxy its

4 0 0.066 1 0.076

ndhf phyB rbcl
rpoc waxy its

4 0 0.062 1 0.083

et al. [9]. As a consequence, the output usually consists of
a huge number of different hybridization networks, which
is demonstrated by Tables 1 and 2 presenting the results
of our software Hybroscale applied to a well known grass
(Poaceae) dataset3 consisting of three nuclear loci and
three chloroplast genes. This dataset, which is also used
in the work of van Iersel et al. [20], was originally pub-
lished by the Grass Phylogeny Working Group (2001) and
reanalyzed in Schmidt (2003).
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Again, we ran Hybroscale on a grid computer providing
16 cores and 40 GB RAM for each tree set within the grass
dataset and summarized the respective results in Table 2.
This table shows that Hybroscale is able to calculate the
hybridization number for 50 out of 57 tree sets. This
means, in particular, that for seven tree sets Hybroscale
cannot produce a result within a time limit of 20 minutes.
Moreover, even though for 5 tree sets the hybridiza-
tion number could be calculated, the respective entire
set of representative networks could not be calculated as
in this case a time limit of 20 minute is not sufficient
to explore the whole solution space. Consequently, this
biological example demonstrates that, although our algo-
rithm seems to be faster than all so far existing methods,
calculating minimum hybridization networks remains a
computationally hard problem, which is still not solved
sufficiently.
In Fig. 7, one out of 324 possible hybridization networks

reconciling four different binary phylogenetic trees corre-
sponding to the sequences ndhf, rpoC, waxy, and ITS is
given. The embedding of the trees is demonstrated by the
four colors blue, red, green, and orange. This means, for
example, that we can simply determine the embedding of
the tree corresponding to rpoC, which is denoted as Tree 1
in this case, by taking the red colored edges into account.
Moreover, the support values assigned to each hybridiza-
tion node reveal that a hybridization event involving the
two species oryza and lygeum occurs in 97% of all 324 net-
works, which could be a strong signal that this event is
also part of the true underlying evolutionary history. How-
ever, the reader should be aware of the fact that there still
exist other mechanisms explaining such inconsistencies,
as for example incomplete lineage sorting. Hence, such
networks just help to build hypothesis that still have to be
tested by applying further experiments.

Conclusion
As already discussed in the work of Albrecht et al. [9], it
makes sense to consider hybridization if there is a signif-
icant difference between certain gene trees and if other
effects, as for example incomplete lineage sorting, could
be excluded. The number of genes affected by hybridiza-
tion, however, is of course not limited to a fixed value, e.g.,
two, and, thus, a method computing hybridization net-
works for an arbitrary number of input trees is of high
interest.
While some approaches only focus on reconciling two

binary phylogenetic X -trees [9, 21], in this article, we
present the algorithm ALLHNETWORKS that is able to
cope with multiple input trees. Moreover, instead of
reporting just the hybridization number or only a small
number of hybridization networks, our approach is based
on the first algorithm that is able to output all represen-
tative networks, which is an important feature enabling

the computation of meaningful support values indicat-
ing which of the computed hybridization events might
have played an important role during evolution. Addi-
tionally, in combination with our software Hybroscale, we
improve the interpretation of the reported hybridization
networks by assigning support values to each hybridiza-
tion node and by highlighting the embedding of all input
trees.
Additionally, our reported simulation study indicates

that our algorithm is much faster than the only so far
existing software PIRNv2.0 [7, 8] for computing the exact
hybridization number for more than two binary phyloge-
netic trees on the same set of taxa. As shown in Fig. 12,
the better performance is not only due to paralleliza-
tion but apparently also due to algorithmic issues and,
presumably, due to the application of certain reduction
rules.
Finally, we would like to mention that in the mean-

time we have extended the algorithm ALLHNETWORKS
such that it can be applied to multiple rooted multifur-
cating phylogenetic trees sharing an overlapping set of
taxa. Moreover, to make Hybroscale applicable to larger
input sizes, we have added an option allowing to gener-
ate certain constraints for either limiting the search space
of all representative networks before running our algo-
rithm or to filter the set of reported networks after its
computation. This mechanism was motivated by the pre-
vious work of Kelk et. al [22] suggesting to come up with a
general method for generating these constraints, which is
absolutely meaningful in our point of view.

Availability and requirements
• Project name: Hybroscale
• Project home page: www.bio.ifi.lmu.de/

softwareservices/hybroscale
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 7 or higher
• Any restrictions to use by non-academics: none

Endnotes
1www.bio.ifi.lmu.de/softwareservices/hybroscale
2www.bio.ifi.lmu.de/softwareservices/hybroscale
3www.sites.google.com/site/cassalgorithm/data-sets
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