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ABSTRACT 

The penetration process is approximated by the one-dimensional 
expansion of a cylindrical cavity in an infinite solid. We use linear 
and quadratic forms to describe, piecewise, the volumetric response of 
the target during loading at the shock front, and assume that the density 
locks at the shocked state. The shear strength of .the target is taken 
to be a piecewise linear function of pressure. However, it is assumed 
that the target material is weak in shear and, thus, that the effect of 
shear strength can be trco. ted as :;:~. perturbation on the hydrodynamic 
solution. For conical-nosed penetrators an analytic expressiuu for the 
normal stress results from the analysis, while for ogival-nosed penetrators 
the solution must be obtained numerically. A computer program, PENAP, was 
written to treat both the ogive and cone geometry, and PENAP solutions were 
found to agree well with both experimental data. and TOODY, two-dimensional 
finite-difference wavecode results. It should also be noted that the PENAP 
calculations typically re~uired several orders of magnitude less computer 
time than did the TOODY calculations. 

*'l'his work is supported by the U. S. Energy Research and Develonment 
A<Jministration. 
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I. INTRODUCTION 

This report presents an approximate method for calculating the dis-

tribution or normal stress on conical- and ogival-nosed earth penetra-

tors. The principal assumptions made in developing this technique were 

that (1) the penetration is at all times an axisymmetric event, (2) the 

penetrator can be treated as a rigid body, (3) motion of the_ target 

material is strictly one-dimensional (and radial) and (4) elastic strains 

in the target are negligibly small compared with total strains. 

Justification for these assumptions, along with a discussion of the 

restrictions which they place on the applicability of the approximate 
'· 

·, 

technique, is presented in Section II. In Section III, it is shown that '. 

with these assumptions the equations ::Jf mass and momentum balance yield 

an integral expre.ssion for the time-dependent radial component of surface 

traction on the penetrator. In order to evaluate this expression, it is 

necessary to make constitutive assumptions for the hydrostatic response 

and shear strength of (or failure surface for) the target. Specific 

forms for the hydrostat and failure surface are assumed in Section IV, and 

assumption (4) is invoked permitting the effects of the target's shear 

strength to be treated as a perturbation on the ~ydrodynamic solution. 

The special case of a conical-nosed penetrator is treated in 

Section V, where iL is shown th~.t., for this case, the successive equations 

of Section IV can be integratP.d in closed form, yielding an analytic 

expression for the boundary traction. In general, however, the integra-

tions must be done numerically, and a computer program, PENAP [1], was 

written to perform those calculations for both ogival- and conical-nosed 

penetrators. 
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In Section VI, surface traction distributions calculated with PENAP 

(and with the equations of Section V, for conical~nosed penetrators) are 

compared with those obtained from_two~dimensional, ~agrangian, finite­

d~fference calculations made with the wavecode TOODY [2,3]. In the TOODY 

calculations, the elastic-plastic soil-cap model [4,5] was used 'to de­

scribe the constitutive response of the target. From the calculated sur­

face trP,ctions, the total axial force on the penE;!trator, })~nee itR 

deceleration, can be computed, and presented in Section VI is a comparison 

of ~alcu1ated a.nn measured ~eeeler~:~.tion dat.a for one of the Watching .Hill 

penetration tests. 

It should be noted that computation time for the PENAP calculations 

was typically several order of magnitude less than that required for the 

TOODY calculations. Furthermore, the interactive nature of the PENAP 

code and 1:;he simplicity of the mater:j.a.l model used in the approximate 

techniques made tne problem setup for PENAP caJ.culations much more cnnven­

ient than th~~ for 'l'UUDY, 



II. PRINCIPAL ASSl~TIONS 

As mentioned in the introduction, the four principal assumptions 

(apart from specific constitutive equations) made in developing this 

approximate technique were: (1) the penetration is at all times an 

axisymmetric event, (2) the penetrator can be treated as a rigid body, 

(3) motion of the target material is strictly one-dimensional (and 

radial)and (4) elastic strains in the target are negligibly small com­

pared with total strains. 

Clearly, assumption (1) restricts the applicability of the present 

analysis to the case of normal impact, i.e., when both the impact angle ano 

angle of attack of the penetrator are zero. Since axisymmetric forms of 

the governing equations are chosen at the outset, it is not possible that 

the results of this analysis could be used, directly, for other than 

axisymmetric penetration problems. 

Assumption (2) implies that deformations of the penetrator and the 

target .can be uncoupled during the penetration event. That this assump­

tion does not introduce significant error in boundary load calculations 

has b~en shown in .[6] from TOODY calculations for a particular soil target 

and steel penetrator. 

Assumption (3) is equivalent to assuming that displacement of target 

particles in the direction of penetrator motion (i.e., their axial 

displacement) is small compared with their displacement normal to the 

penetrator's axis (i.e., their radial displacement). Thus, the present 

technique would be expected to yield better approximations to.the actual 

boundary traction for.slender penetrators. It has been found, however, 

from TOODY soil penetration calculations in which penetrator-target inter­

facial friction was included, that the higher axial velocities induced 
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in the target by frictional forces did not significantly alter the normal 

stress distribution on the penetrator. This can be explained by the fact 

that,' in general, soils are weak in shea~ and, thus, during a penetration 

event wh,en motion of target particles is primarily in the radial direc-

tion, even relatively low particle velocities in the axial direction 

cause the material to yield plastically. Increasing the shear strain 

through an increase in axial particle velocity will, then, have little 

effect on the ~;~tate of st.re!'l!'i in t.hP ~oil. The implication of this fur 

the approximate technique is that better results might be. obtained for 

more blunt penetrators than would be expected with assumption (~). 

It is assumed that at the shock front, which propagates radially 

from the surface of the penetrator, the material is yielding plastically 

but can reach any state consistent with its hydrostat and failure surface. 

Furthermore, the density is assumed to remain constant after the shock 

passes, and, in particular, during unloading there is no recovery of 

elastic strains, consistent with ass~~tion (4). Thi~ model (called the 

"plastic gas" model by Rakhmatulin and Stepanova, see [7]) iA si.milar to 

earlier locking solid models (see, e.g., [8],. [9], or 1(10]); however, in 

the present case, the material is not restricted to lock at any particu­

lar density as in the ear;tier models. 

This is felt to provide a better description of the target response 

during penetration, and cleR.rly provi,.des; ~ less reatrlctiv~ consti tutlvt! 

model for the material response. However, these constitutive assump-

tiona will only be reasonable for highly hysteretic, non-dilatant materials 

with relatively low shear strength. Experimental evidence (see, e.g., [11]) 

suggests that most loose soils are of this sort, while more dense or cohe­

sive geologic media (and, in particular, most competent rock) are not. 



III. BASIC EQUATIONS 

We will approxim~te the penetration process by the one-dimensional 

expansion of a cylindrical cavity in an infinite solid. The radius of . 

the cavity is assumed· to .be. a prescribed function of time, R ( t), corre-

spending to the radial displacement which the target materi"tl adJacent to 

the penetrator must have to stay on the surface of the penetrator. We 

will then interpret the internal ~ressure; p(t), necessary to expand the 

cavity according to R( t), as the radial component of normal traction on 

the penetrator. 

For one-dimensional, cylindrically symmetrical motion of a continuum, 

the local equations of momentum and mass conservation in cylindrical 

Lagrangian coordinates (r, 6, z) reduce to: 

(3.1) 

and 

(3.2) 

where p
0 

is the reference density, p is the current density, u is the 

radial displacement, and or and o6 are the radial and circumferential 

components of Cauchy stress, respectiv~ly, both taken to be positive in 

compression. All field quantities are aseumed tn be functions of the 

radial coordinate, r, and time, t, unless otbP.rwise indicated. 

We assume that elastic strains in the material are negligible and 

that during loading: (1). the material is yielding plastically, with 

,• 

'{. 
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],.0 

=T +lH1, 
0 

(3.3) 

' 
1 where a z is the axial component of stress and a = 3 (ar ~ a 9 + a z) is the 

hydrostatic pressure, a.P,d (2) the pressure and volumetM.c strain are 

related through an equation of the form 

(3.4) 

With(~.)), s~tting u = 3~/(J +~)and muJt.iplying both sides or (3.1) by 

(r + u) 0
-
1 , (3.1) can be written as 

a [ u J )u-1 a
2

u ( u u 1 a a r ( r + U ) C1 r = -p Or ( r + U at 2 - .TO ~ )( r + U) - ar ( r + U ) 

We assume that at t = 0, R(t) = 0 and the cavity be~ins expA.n,.ding, 

suddenly, sending a shock wave into the material. Letting h(t) be the 

.(3.5) 

position of the shoe~ front, thAn forma.l],.y integrat.,i.ng (3.5) with respect 

to r yields 

' 2 
("r . )v-l 1\ o u d-A 

+ u r 2 r 
at 

T V V . 
~ ((r+u) -RJ+Rv:p,_O~r~b. (3;6) 



where p = p(t) = a (0, t) is the internal pressure on the cavit~ wall. r . 

For the special case in which ~ = 0, the integration yields 

" 
" r ar = -Po fr 

0 
r + u 

0 < r < h 

2 
~ d~ - T [in(r + u) - inR] + p 
at2 o . 

( 3. 7) 

As indicated, the relations (3.6) and (3.7) hold for all values of r 

between the cavity wall, r = 0, and the shock front, r = h. Evaluating 

at r = h, and letting an asterisk denote the value of a function imme-

diately behind the shock front, we get from (3.6) 

and from (3.7) 

1\ 
r 

1\ r + u 

2 a u ·d" -- r + T 
at2 o 

* + a 
r 

(3.8) 

( 3. 9) 

We make one further assumption, namely, that at any point in the 

material, the density "leeks" immediately behind the shock front. Thus, 

behind the shock the density will be a fUnction of r, only. With that 

assumption, (3.?) can be formally integrated with respect to r yielding 

2 (r + u) f r Po ".I\ = 2 · -- rar + f(t) , 0 < r ~ h 
0 p(~) 

(3.10) 
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With the condition 

u(O, t) = R(t) 
' 

we see from (3.10) ~hat 

Thus, setting 

f r Po A A 
~(r) = ---- rdr 

0 p(~) .. 

(3.1.0) becomes 

From ( 3.12) it follovrs that 

and. 

2 • 2 •• 
u=.L.!!.- R +RR - 2 - . . 1/2 

Clt ( 2~ + R2) 

Evaluating (3.12) ~t r = h 

Furthermore, at the shock front, the jump conditions 

and 

must be satisfieq. 

* .. ~ 
a = p h u r o 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 



Differentiating (3.15) with respect to time, and recalling (3.11), we get 

or, letting 

we have 

From (3.3) and (3.4) 

p • 
hh = _.£ hh + RR 

* p 

Tl = 1 

. * . 
hhn = RR 

T 

f(n) + ~ 

(3 . .18) 

(3.19) 

(3.20) 

* and eliminating u between (3.16) and (3.17), and using (3.20) it follows 

that 

T 
+_.£ 

3 
(3.21) 

* Assuming that f{n) is such that (3.21) can be solved for n , then we 

can write 

* Tl = g(J:i) (3.22) 

and (3.19) becomes 

hflg(n) = RR (3.23) 

Thus, for a prescribed displacement R(t) at the cavity, (3.23) yields 

the position of the shock front in the material as a function of time, 

* from which n· can be found through (3.22). Since the density at a 

13 



material point changes only as the ~hock front pasees, then if;= h(t), 

we can write 

11 cr-, t) = 11 < ?') 
{ 

*·,.., 
= 11 (t)~ ~ 

0, t < t 
(3.24) 

and (3.11) becomes 

(3.25) 

FinaLLy, with (3.25) we can evaluate (3.13) and (3.14), and so;Lve (3.8) 

for the cavity pressure p. From (3.19) and (3.21) it is clear that, in 

general, a coupled set of nonlinear, first-order differential equations 

must be solved for the fUnctions n* and h. 

).4 



IV. PERTURBATION ANALYSIS FOR LOW STR]i:NGTH TARGETS 

We assume that the vblumetric response of soils can be described by 

K1n 0 ~ 11 ~ I'll ~ 1 

C1 = (4.1) 

K2n 
2 

~ nl 11 ~ 112 ~ 1 

while the yield condition can be approximated by 

'! = ( 4. 2) 

where T is the maximum principal stress difference. From (4.1) and (4.2) 

we see that, at any particular time, the response of the soil at a giv~n 

point is determined· by the equations for one of the following cases: 

·.• 

Case l. a = K1n '! = '! 
0 

Case 2. K2n 
2 

C1 = '! = '! 
0 

(4.3) 
Case 3. a = K1n T = 1.10 

Case 4. K2n 
2 

a = '! = ~a 

We distinguish soils from other geologic media (or other materials 

fo~ which (4.1) and (4.2) may apply) by the condition that ttey be weak 

in shear, in the sense that 

'! 

K. 
l. 

« 1 (4.4) 
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Considering (4.4) we will treat the effect of shear strength as a pertur-

bation qn the hydroQ.ynamic case, for which T :: 0. Taking the perturbation 

parameter, e:, to be given by 

we assume the expansions 

T 

& = -2.. 
3K. 

l. 

. . . 

With the relations (4.3)1 for Case 1, (3.21) becomes 

•2* *To 
p

0
h. n = K1n + 3 , 

(4.5) 

( 4. 6) 

( 4. 7) 

where for this case, ~ =.0. Substituting the expansions (4.6) in (4.7) 

and (3.19), and collecting coefficient~.of like powers in e, we find that 

through first-order terms, 

. (~f2 h = 0 
(4.8) 

. 
!_ ( ~ r2 ~ hl = 2 Po RR . 

(4.9) 

* Po RR 
l'l = --

0 IS. t (4.10) 

* 
-( ~: + 

hl) • 
n1 = ho no 

(4.ll) 



For Case 2, in which ( 4. 3) 2 applj:es, the above procedure yields the 

successive equations: 

h 11 3 K2 • 
= -RR 

0 0 Po 
(4.12) 

. 1 ho 1 (::) 1 
hl + 3hhl = 3 t,_2 0 

0 

(4.13) 

(4.14) 

(4.15) 

From (3.21), (4.3)3 and (4.3) 4, we see that Cases 3 and 4 corre­

spond to Cases 1 and 2, respectively, with r : 0 and the bulk moduli K. 
0 1 

(i = 1, 2) multiplied by the constant: (3 + ~) /3. Notice that, since we 

have T : 0, a ~erturbation analysis for Cases 3 and 4 is unnecessary, and 
0 

in fact, we can ~rite dovn equations for obtaining the exact solutions 

* (for n and h) for these ·cases from the zeroth-order equations for Caseo 1 

and 2. Accordingly, from (4.8) and (4.10), we have for Case 3 

h = ( 3 ; .. r2 ( :~ r (4.16) 

(4.17) 

17 



while, from (4.12) and (4.14), we have for Case 4 

(4.18) 

* n = (4.19) 

It r.,_n hf" s~~n fttom (11.,8) ... (4.],)) Lh1:1.t, whUe t:.he nonlineo.r character 

of the equatioqs to be solved h~s not changed, the perturbation analysis 

together with the constitutive assumptions has uncoupled ~he equations 

* in terms of their dependence on the functions n and h. A~ will be seen 

.below, the uncoupling of the equat~ons permits the ~se of fairly direct 

methods fo~ their solution. 



V. SPECIAL CASE: CONICAL-NOSED PENETRATOR 

We consider, here, the special case in which the penetrator nose shane 

is conical. In this case, R(t) is given by 

R = Vt · , (5.1) 

where Vis a constant~ nroportional to thevelocity of the penetrator. 

In particular, if the nose is of length L and diameter D, and the 

D 
velocity of the penetrator is V

0
, then V =2L V

0
• 

For the conical nose shape, we will solve (4.12)-(4.15) for Case 2, 

and, using those results, obtain an approximate solution for the 

boundary pressure from (3.9). For the sake of completeness, we will 

also present the results for Cases 1, 3 and 4; however, details of the 

solutions will be omitted. 

With (5.1) and the condition that 

h(O) = 0 
' 

( 5.2) 

(4.12) can be integrated yielding 

ho = (~) l/4 vlf2t ().3) 

Using (5.2) and (5.3), (4.13) has the solution 

1 (K2) 5./4 -3/'d. 
h =r. - v t 

l '+ P· 
,0 

(5.4) 

Thus, with (5.3) and (5.4), (4.14) and (4.15) become 

19 
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* ';ro first order in e:, then, we see from ( 4. 6) that n iR. A, cr.mlitant gi vcn 

by 

* * n = n 
0 

* + e:n = 
1 ( 

2 )1/~ -v--
""o 
K . 

2 . 

where the pert~bation parameter e: is defined by (4.5). 

Recall that for the constitutive model we ~r~ us~pg, n change~ only 

at the shock front, i.e. , ( 3. 24) holds. Thus, we see from ( 5. 7) tnat 

the d~ns~ty of the material between the cavity and the.shock front must 

'be, a constant, determined by (5.7) through 

Po * -=1-n=l ... n. 
p (5.8) 

Usin~ (5T8) in (3.25), we get 

().9) 

where 

(5.10) 



It follows from (3.12), (3.14) and (5.9) that (3.9) becomes 

·2 rR dr ·- p {h 
o)o 

r(RR) 2 
-~..;..;;...;..'----::-2 dr 

(br2 + R
2

) 

Integrating (5.11), and simplifying the result, we get 

With (5.10), (3.19) becomes 

hh(1 - b) • = RR 

or 

(5.11) 

(5.12) 

(5.13) 

Eva1ua~ing (5.9) at r = h, and using that result in (3.15) we find that 

2 
h = (5.14) 

Substituting (5,14) in (5.-13), gives the result 

(5.15) 

and using ( 5 .1.5), together with ( 5.10), in the first equality of ( 3. 21) , 

21 
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we f:et 

* ·2 a = p R r o· 

With (5.1), (5.14) and (5.16), (5.12) reduces to 

gn(l-b)J 
h . 

(5.16) 

(5.17) 

For: Case 1, the successive equA.tions (4.8).-{'-1.1~) a;p-p,ly. and au 

analysis similar to that ~rese~ted abqve has the res~ts 

~ * * ~0 2 n = n
0 

+ £n = -.-v - £ 
·1 Kl 

' 

a constant. Thus, (?.8) - (5.17) _qold for this s:ase, ~:~-l~?o, wj,th 

b = 1 

.. ( 5.18) 

(5.19) 

(~.?0) 

Compari:p.~ (!1,16) a.nd (4.17) for Caoe 3 with (4.8) a,nq (4.10) f'or 
' 

Case 1, we see that these equations are of t~e same form. In fact, the 

solution for the set (4.16) and (4.17) differs from that for (4.8) and 

(4.10) only in that the b~k modulus, Kl' in th~ Case 1 solutions must 

be multiplied by the constant (3.+ IJ)/3 for the Case 3 solutions • 



Thus, considering (5.1.8) and (5.1.9), we have for Case 3: 

(5.21) 

(5.22) 

.. 
Finally, comparing (4.18) and (4.19) for Case 4 with (4.12) and 

(4.14) for Case 2, we se~, again, that the two ~ets of equations. are 

identical except. for the constant (3 + ~)/3 mU:ltiplying the bulk 
' . . 

modulus, K2· Thus, we can write down immediately, from (5.3) 

and (5.5), the solution~ for. Cas~-4: 

(5.23) 

(5.24) 

* Since by (5.22) and (5.24) VIe see that n is constant. for both Cases 

3 and l1, the results (5.8)- (5.10) and (5.13)- (5.15) are valid for 

these cases, also. Using those results in (3.8), and recalling that 

T = 0 for Cases 3 and 4, it can be shown that (3.8) reduces to 
0 

v2 
Po [(bv- 2)(1- b)-v/2 + 2] + p v2(1- b)-v/2 

P = bv( v - 2) o 

where v - 3JJ/(3 + ll). 

(5.25) 
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As mentioneq i~ Sect~on 3, we interpret tne cavity press~re, p, given for 

:the cone by either (5.17) or (5.25), as the radial component of the normal 

;stress on the penetrator. Thu$, if 9 is the half-angle of the conical nose 

(i.e., e = Tan-~ f 2~ ]), then 

ON = p/cos 9 (5.26) 

Finally, it shou~d be noted that, in general, it is not obvious 

which of the case$ specif.~ed in (4.3) should be used for a partieular 

penetration prob~e~. It becomes nece$s~.ry, then, to calculate n* for 

each case and ch~ck the res~t against the limits in (4.1) and (4.2). 

(This checking is done ~utomatically in the PENAP [1] code.) 



VI. COMPARISON WITH TOODY RESULTS AND EXPERIMENTAL DATA 

The equations of the approximate analysis presented in Sections 3 and 

4 were incocyor.ated in·an-interactive NOS computer code, PENAP [1], which 

calculates normal stress distributions and deceleration. histories for both 

conical- and ogival-nosed penetrators. In this section, we will compare 
,. 

PENAP solutions with TOODY [2,3] two-dimensional, finite-difference results 

and with data from the Watching Hill series of penetratiori experiments. 

For the TOODY calculations the soil-cap model [3,4] was used to describe 

target material response. 

For three soils, cap model parameters have been determined which 

provide a reasonably close fit to quasi-static data (see, [12]). These 

parameters were used in [12] to model the first three soil layers at the 

Watching Hill site. The hydrostat and failure envelope generated by ·t~e 

cap model for these layers are shown in Figs. 1-3. Included in the figures 

are the curves which were used for the approximate calculations. Notice 

that, as assumed in (4.1) ~d (4.2), the approximate curves use a linear-

quadratic fit to the hydrostat and a linear-constant fit to the failure 

envelope, or yield. condition. 

a. Normal Stress Distributions 

For the purpose of comparing TOODY calculations of normal stress 

distribution with those of the approximate method, Layers 1 and 3 were 

chosen as targets. The TOODY calculations were run with. initially square 

zones of 15 mm, while for the PENAP calculations, the time required for one 

nose length of penetration (at the impact velocity) was partitioned into 

200 equal incr:ments, and this partition was used forth~ numerical 
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integrations. In calculating the normal stress at a point on the pene-

trator, TOODY interpolates stresses in the calculational grid to the 

normal line at that point and then extrapolates the normal component of 

stress to the penetrator boundary (see, (i.2J) ~ I~ the. PEiJ.AP calculations, 

the cavity pressure found from (3.8) or (3.9) is interpreted as the radial 

component of the normal stress on the penetrator. 

An initial test calculation was made for a conical-nosed (L/D = 3.0) 

penetrator impacting Layer 1 at 500 m/s. Since, as was seen in Section 5, 

·the. present .approximate method yields an analyt~c expression for the . .. . .. . .. 

(spatially constant) normal stress on a conical nose, this case provides 

a convenient check on the PENAP numerical scheme. The PENAP results, 

along with the normal stress calculated using the equations of Section 5 

(Viz., (5.17), together with (5.20) and 5.26)) are shown in Fig. ~· 

Calculations were made with TOODY and PENAP for a 9.25 caliber ogival­

nosed penetrator taking Layers 1 and 3 as targ~t~ .(initial densities: 

Layer 1, 1.490 Mgjm3; Layer 3, 1.859 Mg/m3). Two impact velocities were 

considered for each l9.yer, namely, 75 m/ s and 150 m/ s for Layer ) and 150 

m/s and 500 m/s for Layer 1. The norm~· stress·· distributions calculated 

with TOOJ)Y .and PENAP ·are. compared in Figs. 5-8. 

Considering the simplicity of the approximate theory, ·compared with. 

the two-dimensional kinematics and soil-cap model used for the TOODY 

solutions, t.hP. ~omparison between TO.ODY and PENAP re.~u~ts is quite good. 

Furt.hArmore, the fact t.ha.t both the kinemat-ics and the constitutive model 

used in the approximate method are different from that used in TOODY 

makes it difficult to identify the source of relatively small discrepancies 

between the two soluticns. 
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However, it should be noted that in the high velocity results shown. 

for Layer l (i.e., Fig. 8), the volumetric strain calculated. at the nose 

tip using the apProximate meth~d was about 0.45. At this strain level, 
~ 

pressures obtained from the app,roximate fit to the hydrost.at will lie 

below those calculated froii). the cap model. This probably leads to the 

difference between the stresses calculat~d at the nosetip. 

It should. also be noted that the failure surface used for the PENAP 

calculations is such that the strength of the soil goes to zero with 

the confining pressure. However, with the cap model the soil has a 

small but ,finite strength at zero pressure. This. difference between 

the two models could explain the somewhat higher stresses seen in the. 

TOODY calculations near the back of the nose. 

Furthermore, the fact that, for all but very low confining pressures, 

the linear portion of the curve used to approximate the failure surface 

lies above the cap-model surface could cause the approximate method to 

overpredict the stress in the region. This is felt to be the case, for 

instance, near the nosetip for the calculations compared in Fig. 5. 

\ 

b. Deceleration Profile for the Watching Hill Experiment 

Deceleration data from one test in the watching Hill series will be 

used for comparison with calculations. The penetrator for that test was 

a 0.165 m diameter, 9.25 caliber ogival-nosed projectile, with a mass of 

101.44 kg ru1d an impact velocity of 152.4 m/s. 

For earlier comparison with TOODY predictions [12] the soil profile 

at the Watching Hill site was modelled as four distinct, laterally uniform 

layers. Each of the first three layers was taken to be 2.4 m thick, while 

35 



the fourth was assumed to be sufficiently thick to exceed the final depth 

of penetration for all tests. However, comparison of the calculated and 

observed deceleration histories strongly suggested that the available 

quasi-static data for the fourth layer did not accurately represent.the 

target material at that depth. Thus, only results for the first three 

layers will be used for comparison here. 

Figure 9 compares the deceleration data and TODDY predictions taken rrom 

[12] with PENAP results for this test. For the approximate solution, the 

decelerations were assumed to be constant through a given layer, with a 

magnitude determined by the velocity of the penetrator as it entered the 

layer. 
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VII. CONCLUSION 

The one-dimensional approximate technique which was developed here 

provides a relatively quick method for calculating the normal stress 

distribution on, and deceleration of, earth penetrators. Particularly 

attractive about the present method is the use of fairly simple linear 

and/or quadratic forms for modeling the constitutive response of the 

target material. 

For conical-nosed penetrators an analytic expression was derived 

for calcu)..ating the (spatially constant) normal stress. However, !'or 

ogival-nosed penetrators, the equations of the theory must be solved 

numerically, and an interactive computer program, PENAP, was written for 

that purpose. Normal stress distributions calculated with PENAP were 

~een to provide an acceptable approximation to TOODY results for two 

distinct soil targets and over a fairly Wide range of impact velocities. 

Furthermore, the PENAP calculations required several orders of magnitude 

less computer time than did the ToODY calculations. It should also be 

noted that the interactive nature of the PENAP code and the simplicity 

of the constitution model used in the approXimate analysis make problem 

setup for PENAP considerably easier than for TOODY. 

Finally, the deceleration history for one test in the Watching Hill 

series was calculated using the approximate method. The results showed 

good agreement with TOODY calcUlations and were in qualitative agreement 

with the experimental record for that test. 
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