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ABSTRACT

The penetration process is approximated by the one-dimensional
expansion of a cylindrical cavity in an infinite solid. We use linear
and guadratic forms to describe, piecewise, the volumetric response of
the target during loading at the shock front, and assume that the density

locks at the shocked state.
to be a piecewise linear function of pressure.

The shear strength of the target is taken
However, it is assumed

that the target material is weak in shear and, thus, that the effect of
shear strength can be trcated as a perturbation on the hydrodynamic
solution. 'For conical-nosed penetrators an analytic expressioun for the
normal stress results from the analysis, while for ogival-nosed penetrators

the solution must be obtained numerically.

A computer program, PENAP, was

written to treat both the ogive and cone geometry, and PENAP solutions were
found to agree well with both experimental data and TOODY, two-dimensional

finite-difference wavecode results.
calculations typically required several orders of magnitude less computer

time than did the TOODY calculations.,

It should also be noted that the PENAP

*I'nis work is supported by the U. S. Energy Research and Development

Administration.
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I. INTRODUCTION

This report presents an approximate method for palculating the dis-
tribution of normal stress on conical- and ogival-nosed ga;th penetga-
tors. The principai assumptions made in developing this technique were
that (1) the penetration is at all times an axisymmetric event, (2) the
penetrator can be treated as a rigid body, (3) motion of the target
material is strictly one-dimensional (and radial) and (L) elastic strains
in the target are negligibly small compared with total strains.

Justification for these assumptions, élong with a discussion of the
restrictions whigh they place on the applicability of the approximate
technique, is prgsented in Section II., In Section III, it is shOWn"that_
with these assumptions the equations of mass and momentum balance yield
an integral expression for the time-dependent radial component of surface
traction on the penetrator. 'In order to evaluate this expression, it i;
necessary to make constitutive assumptions for thé hydrostatic resvnonse
and shear strength of (or failure surface for) the target. Specific
forms for the hydrostat and failure surface are assumed in Section IV, and
assumption (4) is invoked permitting the effects of the target's shear
strength to be treated as a perturbation on the hydrodynamic solution.

The special case of a conical-nosed penetrator is treated in
Section V, where iL is shown that, for this case, the successive equations
of Section TV ean be integrated in closed form, yielding an analytic
expression for the boundary traction. In general, however, the integra-
tions must be done numerically, and a computer program, PENAP (1], was
written to perform those calculations for both ogival- and conical-nosed

penetrators.



In Section VI; surface traction distributions calculated with PENAP
v.(and with the equations of Section V, for conical-nosed pehetrators) are
compared witﬁ those obtained from two-dimensional, Lagrangian, finite-
differencé calcuiations made with fhe wavecode TOODY [2,3]. In the TOODY
calculations, the elastic—plastic soil-cap model {4,5] was used to dé-
scribe the constitutive response of the target. From the calculated sur-
face troctions, the total axial force on the penetrétor, hence its
deceleratiog, can be computed, and presented in Section VI 18 a comparison
of calculated and measured deceleration data for one of the Walching Hill
pengtration tests.

It should be noted that computation time for the PENAP calculations
was typically several order of magnitude less than that required for the
TOODY calculstions. Furthermore, the interactive nature of the PENAP
code and the simplicity of the material model used in the approximate
techniques made the problem setup for PENAP calculations much mgré conven-

lent than thul for WOUDY,



IT. PRINCIPAL ASSUMPTIONS

As mentioned in.the introduction, the four principal assumptions
(apart from specific constitutive equations) made in developing this
approximatg teghnique were: (1) the penetration is at all times an
axisymmetric event, (2) the penetrator can be treated as a rigid bvody,

(3) motion of the target material is strictly one-dimensional (and
radiai) and (4) elastic strains in the target are negligibly smell com-
pared with total strains.

Clearly, assumption (1) restricts the applicabilitv of the present
analysis to the case of normal impact, i;e., when both the impact angle and
angle of attack.of4the penetrator are zero. Since axisymmetric forms of
the governing equations are chosen at the outset, it is not possible that
the results’of phis analysis could be used, directly, for other than
axisymmetric penetration problems.

Assumptign (2) implies that deformations of the penetrator and £he
target can be uncoupled durigg the penetration event. That this assump-
tion does not introduce significant error in boundary load calculations
has been shown in [6] from TOODY calculations for a particular soil target

and steel penetrator.

Assumption (3) is equivalent to assuming that displacement of target
particles in the direction of penetrator motion (i.e., their axial
displacement) is small compared with their displacement normal to the
penetrator's axis (i.e., their radial displacement). Thus, the present
technique would be expected to yield better approximations to the actual
bdundary traction for slender penetrators. It has been found, however,
from TOODY soil penetration calculations in which penetrator-target inter-

facial friction was included, that the higher axial velocities induced



in the target by frictional forces did not significantly alter the normal
stress distribution on the penetrator. This can be.explained by the fact
that, in general, soils are weak in shear and, thus, during a penetration
event when motion of target particles is primarily in the radial direc-
tion, even rélatively loﬁ particle velocities in the axial direction
cause the material to yield plastically. Increasing the shear strain
through an increase in axial particle velocity will, then, have little
effect on the state of stress in the gnil. The implicatien of this fur
the approximate technique is that better results might be obtained for
more blunt penetrators than would be expected withAassumption (3).

It 1s assumed that at the shock front, which propagates radially
from the surface of the penetrator, the material is yielding plastically
but can reach any state consistent with ifs hydrostat and failure surface.
Furthermére, the density is assumed to remain constant after the shock
passes, and, in particular, during unloading there is nb recovery of
elastic strains, consistent with &§s@ption (L). 'T‘hislmodel (ealled the
"plastic gas" model by Rakhmatulin and Stepanova, see [7]) is similar to
earlier locking solid models (see, e.g.,,[8],'[9], or (10]); however, in
fhe present case, the material is notirestricted to lock at any particu-
lar density as in the earlier models.

This 1s felt to provide a better descripti&n of thé target response
during penetration, and clearly provides a less restrictive constitutive
model for the material response. However, these constitutive assump-
tions will only be reasonable for highly hysteretic, non-dilatant materials
with relatively low shear strength. Experimental evidence (see, e.g., [11])
suggests that most loose soils are of this sort, while more dense or cohe-

sive geologic media (and, in particular, most competent rock) are not.



III. BASIC EQUATIONS

We will approximate the penetration process by the one-dimensional
expansion of a cylindrical cavity in an infinite solid. The radius of .
the cavity is assumed to be a prescribed function of time, R(t), corre-
sponding to the radial displacement which the target material adjacent to
the penetrator must have to stay on the surface of the penetrator. We
will then interpret the internal pressure,; p(t), necessary to expand the
cavity according to R(t), as the radial component of normel traction on
the penetrator.

For one-dimensional, cvlindrically svmmetrical motion of a continuum,
the local equations of momentum and mass conservation in cylindrical
Lagrangian coordinates (r, 8, z) reduce to:

2 A0

. g u _ r 3 '
Pt 2= i) - lop o) g rrw) (3.1)

and

o

2 (r + u)2 =2 FE (3.2)

ar

where po is the refe;ence density, p is the current density, u is the
radial displacement, and 0. and 0g are the radial and circumferential
components of Cauchy stress, respectively, both taken to be positive in
compression. All field gquantities are asesumed to be functions of the
radial coordinate, r, and time, t, unless otherwise indicated.

We assume that elastic strains in the material are negligible and

that during loading: (1) the material is yielding plastically, with



- = + =
o g T, * MOy o =0, (3.3)

where 0_ 1s the axial component of stress and o =-]3-' (or +0g +0,) is the
hydrostatic pressure, and (2) the pressure and volumetric strain are

related through an equation of the form

oc=f (l - %?') . : (3.4)

With (3.3), setting v = 3u/(3 + ) and multiplying both sides of (3.1) by

(r + w)'"L, (3.1) can be written as
) v v-l a2u v -1 3
E[(r +u) or] =-por(;‘+u) ;E-Io( L—)(r+u) Z)—r-(r+u) . (3.5)

We assume that at t = O, R(t) = O and the cavity begins expanding,

suddenly, sending a shock wave into the material. Letting h(t) be the
position of the shock front, then formally integreting (3.5) with respect

to r yields

‘ r g Y
(r+u)vor=-po/ (§+u)v‘1’/z\‘—a—gd'1\*
0 ot

- .“2 [(r+w)’ -R]+Rp,0<r<h , (3:6)



vhere p = p(t) = or(O, t) is the internal pressure on the cavitv wall.

For the special case in which w = 0, the integration yields

r ? 82u A
o= -p .f —=dr - t_[2n{r + u) - 2nR] +p ,
r o A 2 o

r +u o9t

O<r<h . (3.7)

As indicated, the relations (3.6) and (3.7) hold for all values of r
between the cavity wall, r = 0, and the shock front, r = h. Evaluating.
at r = h, and letting an asterisk denote the value of a function imme-
diately behind the shock front, we get from (3.6)

T

v h A v-1 92u A o v \V v *
Rp=pf(r+u) AW AL 0V Ry v, (3.8)
o) 2 u r . .
0 ot

and from (3.7)

h A 2
- r 3 u A h *
p—pof - 2dr+roln(R) to, . (3.9)
r +u ot

We make one further assumption, namely, that at any point in the
material, the density "lccks" immediately behind the shock front. Thus,
behind the shock the density will be a function of r, only. With that

asoumption, (3.”) can be formelly integrated with respect to r yielding

r

(r + u)2 = 2'/.- :Z) Paf + f(t) ,0<r<ch . (3.10)
0 o
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With the condition

we see from (3.10) that

Thus, setting

(3.10) becomes

u(0, t) = R(t)

£(t) = Ro(t)

b4

(r +u)? = 2¢(r) + R2(t) .

From (3.12) it follows that
3t 5 1/2 2
(2 + RY)
and.
g2 RPemR _ (RRZ
) 3t2 B 2 1/2 . 2 3/2
(2 + R7) (29 + R°)
Evaluating (3.12) at r = h
w2 = 2¢(n) + R® .

Furthermore, at the shock

and

must be satisfied.

front, the jump. conditions

*. *,
ph-pu
Bat

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



Differentiating (3.15) with respect to time, and recalling (3.11), we get

o}

hh = —3 hh + RR
P
or, letting
°
n=1- - (3.18)
we have
o* . N
hhn = RR . (3.19)
From (3.3) and (3.4)
_(_3_i._}.‘.)f()+f.9 (3
°r T 3 n 3 ! 3-20)

» '3 » '*
and eliminating u between (3.16) and (3.17), and using (3.20) it follows

that

T

-R * *
phn =g = (3 tu ) £(n ) +-§$ X (3.21)

Assuming that f(n) is such that (3.21) can be solved for n*, then we
can write
n =g(n) , (3.22)
and (3.19) becomes

hhg(h) = RR . (3.23)

Thus, for a prescribed displacement R(t) at the cavity, (3.23) yields
the position of the shock front in the material as a function of time,

*
from which n can be found through (3.22). Since the density at a

13
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material point changes only as the shock front ﬁasses, then if ; = h(f),

we can write

: n*(%'), t 2% :
n(T, t) = n(¥) = L . (3.24)
os t <t ’
and (3.11) becomes
v . . A . |
w(r) ﬂjc; [1 - n(#)] faf . (3.25)

Finally, with (3.25) we can evaluate (3.13) and (3.1k), and solve (3.8)
for the cavity pressure p. From (3.19) and (3.21) it is clear that, in
general, a coupled set of nonlinear, first-order differential equations

must be solved for the functions n¥ and h.



IV. PERTURBATION ANALYSIS FOR LOW STRENGTH TARGETS

We assume that the volumetric response of soils can be described by

o= , (L.1)

T = 1 (4.2)

where T is the maximum principal stress difference, From (4.1) and (4.2)
we see that, at any particuler time, the response of the soil at a given

point is determined by the equations for one of the following cases:

Case 1 g = Kln s, T = To N
Case 2 g =K 2 =
S . = ¥;n , T = To ,
(4.3)
Case 3. o = Kln , T = uo
2

We distinguish soils from other geologic media (or other materials
for which (4.1) and (14.2) may apply) by the condition that they be weak

in shear, in the sense that

T« 1 . (L, k)

15
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Considering (L.4) we will treat the effect of shear strength as a pertur-

bation on the hydrodynamic case, for which t £ 0. Taking the perturbation

parameter, €, to be given by

€= == , ' (L.5)

we assume the expansions
- + i + s s
n no ll Y

h=ho+shl+--e . (4,6)

With the relations (h.3)l for Case 1, (3.21) becomes

e % s T v ' A
ooh?n = Kn +-€% s (L.7)

where for this case, u =.0, Substituting the expansions (4.6) in (4.7)
and (3.19), and collecting coefficients .of like powers in €, we find that

through first-order terms,

1/2
= (5’1) , (1.8)
(o]
3/2 _ ‘
SN U -
o - . . ‘
n = qu_f_ , | (4.10)
h h
nI = -( -}.:1—+ Ei)n: . (h.ll)
o (o]



For Case 2, in which (h.3)2 applies, the above procedure yields the

successive equations:

hoﬁg = -2®R . (4.12)
[o]
h K
. 1l o 1 2 1
Roeiop 21({2)L1 (4.13)
173n 173 (\ o ) 22
(o]
ny =2 Be (4.1b)
2 : :
% P .. 1
=2 2 - =
"y K, hohy L (4.15)
o}

From (3.21), (1+.3)3 and (h‘3)h’ we see that Cases 3 and L corre-
spond to Cases 1 and 2, respectively, with to Z 0 and the bulk moduli Ki
(i =1, 2) multiplied by the constant: (3 + u) /3; Notice that, since we
have T, = 0, a perturbation analysis for Cases 3 and 4 is unnecessary, and
in fact, we can write down equations for obtaining the exact solutions
(for n* and h) for these cases from the zeroth-order equations for Cases 1

and 2. Accordingly, from (4.8) and (4.10), we have for Case 3

Co\/2, . 12
b= <§—t¢> <—1-> , (4.16)
3 s
* o 3 RR
n = E; ( 3T+ )'?T s (4.17)

17
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while, from (4.12) and (4.14), we have for Case 4

nh3 = g_z_ (3-—*3——}‘-) RR (1.18)
o
*» P 3 . 2 |
n =§<3+u>h . ()4-19)

It can he seen from (4.,8)-(4.15) Lhat, while the nonlinear character

of the equétions to be solved has not changed, the perturbation analysis

" together with the constitutive assumptions has uncoupled the egquations

_ *
in terms of their dependence on the functions n and h. As will be seen
below, the uncoupling of the equations permits the use of fairly direct

methods for their solution.



V. SPECIAL CASE: CONICAL-NOSED PENETRATOR
We consider, here, the special case in which the penetrator nose shape

is conical. In this case, R(t) is given by
R=Vt -, (5.1)

where V is a constant, vproportional to the velocity of the penetrator.
In particular, if the nose is of length L and diameter D, and the
velocity of the penetrator is Vv , then V =jE'V .
. o’ 2L o

For the conical nose shape, we will solve (4.12)-(4.15) for Case 2,
and, using those results, obtain an approximate solution for the
boundary pressure from (3.9). For the sske of completeness, we will
also present the results for Cases 1, 3 and L; however, details of the
<

solutions'will be omitted.

With (5.1) and the condition that

h(0) =0 , ' (5.2).

(k.12) can be integrated yielding

h = |= vi/2¢ . (5.3)

Using (5.2) and (5.3), (4.13) has the solution

k. \2/4
2 -3/2 .
by =g o v - (5.4)
"o /

Thus, with (5.3) and (5.4), (4.14) and (4.15) become

19
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2
o (5.5)
o=\ % : 5.5
-1/2
2
* 1 Pov
n=-3 "3@;- . (5.6)

hy

2 -1/2

where the perturbation parameter € is defined by (k4.5).

Recall that for the constitutive model we are using, n changes only
at the shock front, i.e., (3.24) holds. Thus, we see from (5.7) that
the density of thé material between the cavity and the shock front must

be a constant, determined by (5.7) through

pO ' S .
i l-n=1-n . "= (5.8)

Using (5,8) 1n (3.25), we get

,"’(r)-"%"r2 . ' (5.9)
where

bel-n . | (5.10)



It follows from (3.12), (3.14) and (5.9) that (3.9) becomes

h

. h el
p=p f e dr - o / _r(rR)® dr
~ Yo 2 2 “ %o 2
0 0
; br- + R (br2 + R2)

With (5.10), (3.19) becomes

hh(l - b) = RR ,

or

.12
;2 - _(BR)

1;_2(1 - v)°

(5.11)

(5.12)

(5.13)

Evaluating (5.9) at r = h, and uéing that result in (3.15) we find that

Substituting (5911‘) in (5.13), gives the result

(5.1}4)

(5.15)

and using (5.15), together with (5.10), in the first equality of (3.21),

21



ve get
o =0 8% . (5.16)
r
with (5.1), (5.14) and (5.16), (5.12) reduces to

2 .
p V & l
p = [1 EPLICER) } A5 Ty Am (L-b) . (5.17)

For Case 1, the successive equations (4.8)-(4.11) epply. and an

analysis similar to that presented above has the resulﬁs

- ol SR A 32 -2 ,
h=h + eh. = = Jt +=e|]— vt o, - (5.18)
o 1 ) 2 p
(o) (¢]
* * ¢ Py o
n =n_ +en =2V ~¢ , (5.19)
o] 1l 1 : A

Again, it is seen from (5.19) that the dencity jump at Lhie shock front is

a constant. Thus, (5.8) - (5.17) hold for this case, also, with
b=1l-n =1-=V"+¢ . (5.70)

Comparing (4,16) end (4.17) for Case 3 with (4.8) and (4.10) for
Case 1, we see that these equations are of the same form. In fact, the
‘.solution for the set (L4.16) and (4.17) differs from that for (4.8) and
(4,10) only in that the bulk modulus, K;» in the Case 1 solutions must

be multiplied by the constant (3.+ u)/3 for the Case 3 solutions.

22



Thus, considering (5.18) and (5.19), we have for Case 3:

=
I

* 3 o )
n =<-3-—-+——u->—}€-|.9"v . (5.22)

Finally, coﬁpaiing (4.18) and (h.l9)‘f§r éase'h with (h.lZ) ﬁn& |
(L.1k) féf Case 2, we séé;.agaiﬁ, that‘tﬁe two'éets 6f:equ§tionédaré
identical excéﬁﬂ for the coﬁstant:(3 +.u5/3 mﬁitiplying %hehbﬁik'
modulus, X, .Thué, we cdﬁ'ﬁéiﬁé doﬁn‘iﬁmédiately, fr&m (5.3)

and (5.5), the solutions for Case bL:

L ' A

» 1/4 /K 1/

_ 3+ __g 1/2

<——?;—-> <‘%)> A t' R (5.23)
1/2

2
1/2 /o V
* 3 o ‘
<3 +11> <'E;'> . (5.24)

Since by (5.22) and (5.2L4) we see that n is constant for both Cases

=3
|

e}
"

3 and 4, the results (5.8) - (5.10) and (5.13) - (5.15) are valid for
these cases, also. Using those results in (3.8), and recalling that
To = 0 for Cases 3 and h, it can be shown that (3.8) reduces to

2

p vV |
p = SST%—:"ET [(by = 2)(1 - 5)™"/2 4 2] + p°V2(l - b)‘“/e , (5.25)

where v = 2u/(3 + u),

| \1/2 1/2 S
(e )(5)" s

23
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As mentioned in Section 3, we interpret the cavity pressure, p, given for
the cone by either (5.17) or (5.25), as the radial component of the normal
‘stress on the penetrator. Thus, if 6 is the half-angle of the conical nose

(i.e., 8= Tan-l [%%]), then

oy = p/cés 6 . - (5.26)

Finally, it should be noted that, in general, it is not obvious
which of the cases specified in (M.B) should be used for a particulaf
penetration problem. It becomes necessaiy, then, to calculate n* for
each case and check the result sgainst the limits in (k.1) and (4.2),

(This checking is done sutomatically in the PENAP [1] code.)



VI. COMPARISON WITH TOODY RESULTS AND EXPERTMENTAL DATA

The equations of the approximate analysis presented in Sections 3 and
ﬁ were ihcofpbfated in an interactive NOS computer code, PENAP [1], which
calculates normsl stress distributions and deceleration histories for both
conical- and ogival;nosed penetrators. In this secti?n, ﬁe will compare
PENAP solutions with TOODY [2,3] two-dimensional, finite-difference results
and with data from the Watching Hill series of penétratioﬁ experiments.
For the TOODY calculations the soil-cap model [3,4] was used to describe
target material response. |

For three soils, cap model parameters have been detefmined which
provide a reasonably close fit to quasi-static data (see,“[12]). These
parameters were used in [12] to:model the first three soil layers at the
Watching Hill site. ‘Tﬂe hydrostat and failure envelope generated by the
cap model for these layers are shown in Figs. 1-3. Included iﬁ the figures
are the curves which were used for the approximate.calculations. thiée
that, as assumed in (4.1) and (4.2), the approximate curves use a linear-
quadratic fit to the hydrostat and a linearfgonstant fit Fo the failure

envelope, or yield condition.

a. Normal Stress Distributions
For the purpose of comparing TOODY calculations of normsl stress
distribution with those of the approximate method, Layers 1 and 3 were
chosen as targets. The TOODY calculations were run with. initially square
zones of 15 mm, while for the PENAP calculations, the tiﬁe required for one
nose length of.penetration (at the impact velocity) was bartitioned into

200 equal increments, and this partition was used for the numerical

.25
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integrations. In calculating the normal stress at a point on the pene-
trator, TOODY interpolates stresses in the calculational grid to the
normal line at that point and then extrapblates the normal component of
stress té th;léénetratof boﬁﬂdan'(see, [12]); In the PENAP calculations, .
the cavity pressuré found from (3.8) or (3.9) is ipterpreted as the radial

component of the normal stress on the penetrator.

An initial test calculation was mede for a conical-nosed (L/D = 3.0)
penetrator impacting Layer 1 at 500 m/s. Since, as was seen in Section 5,
" the.  present approximate method yields an apalytic expression for the
(spatially constant) normal stress on a conical nose, this case provides
a convenient check on the PENAP numerical scheme, The PENAP results,
along with the normal stress calculated using the équations of Section 5.
(viz., (5.17), together with (5.20) end 5.26)) are shown in Fig. L.

Calculations were made with TOODY and PENAP for a 9.25 caliber ogival-
nﬁséd pehetrator tékihg LaYefs'l énd 3 as téfgét§ (iniﬁialJdénsitiesf
Layer 1, 1.490 Mg/m3; Layer 3, 1.859 Mg/m3). Two impact velocities were
considered for each layer, nameiy, 75 m/s and 150 m/s for Layer 3 and 150
m/s and 500 m/s for Layer 1. The‘nprmgl,stress"distribufioné calculated
with TOODY and PENAP are comparéd in Figs. 5-8. |

éoﬁéiéeriné £helgiﬁbliéi£y éf %hé appr;ximééé theory;ﬁébmpéréa with
the two-dimensional kinematics and soil-cap model used for the TOODY
solutions, the comparison between TOODY and PENAP.resu;ts is‘quite good.
Furthermore, the fact that both thé kinematics and the constitutive model
used in the approximate.method are differeht from that used in TOODY

makes it difficult to identify the source of relatively small discrepancies

between the two soluticns.

29
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However, it should be. noted that in the high velocity results shown
for Layer 1 (i.e., Fig. 8), the volumetric strain calculated at the nose
tip using the approximate methgd was about 0.45. At this strain level,
pressures obtained from the ap;roximate fit to the hydrostat willllie
below those calculated from the cap model. This probably leads to the
difference between the stresses calculated at the nosetip.

It should. also be poted that the failure surface used for the PENAP
calculations is such that the strength of the soil goes to zero with
. the confining pressure. However, with the cap model the soil has a
small but finite strength at zero pressure. This difference between
the two models could explain the somewhat higher stresses seen in the
TOODY calculations near the back of the nose.

Furthermore, the fact that, for all but very low confining.pressures,
the linear portion of the curve used to approximate the failure surface
lies above the cap-model surface could cause the approximate method to
overpredict.the stress in the region. This is felt to be the case, for

instance, near the nosetip for the calculations compared in Fig. 5.

\

b. Deceleration Profile for the Watching Hill Experiment

Deceleration dats from one test in the Watching Hill serles will be
used for comparison with calculations. The penetrator for that test was
a 0.165 m diameter, 9.25 caliber ogival-nosed projectile, with a mass of
101.4k kg and an impact velocity of 152.4 m/s.

For earlier comparison with TOODY predictions [12] the soil profile
at the Watching Hill site was modelled as four distinct, laterally uniform

layers. Each of the first three layers was taken to be 2.4 m thick, while
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the fourth was assumed to be sufficiently thick to exceed the final depth
of penetration for all tests. However, comparison of the calculated and
observed deceleration histories strongly suggested that the available
quasi-static data for the fourth layer did not accurately represent.the
target material at that depth. Thus, only results for the first three
layers will be used for comparison here.

Figure 9 compares the deceleration data and TOODY predictions taken t'rom
[12] with PENAP results for this test. For the approximate solution, the
decelerations were assumed to be constant through a given layer, with a
magnitﬁde determined by the veloclty of the penetrator as it entered the

layer.
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VII. CONCLUSION

The one-dimensional approximate technique which was developed here
provides a relatively quick method for calculating the normal stress
distribution on, and deceleration of, earth penetrators. Particularly
attractive gbout the present method is the use of fairly simple linear
and/or quadratic forms for modeling the constitutive response of the
target material.

For conical-nosed penetrators an analytic expression was derived
for calculating the (spatially constant) normal stress, >However, for
ogival-nosed penetrators, the equations of the theory must be solved
numerically, and an interactive computer program, PENAP, was written for
that purpose. Normal stress distributions calculated with PENAP were
seen to provide an acceptable approximation to TOODY results for two
distinet soil targets and over a fairly wide range of impact velocities.
Furthermore, the PENAP calculations required several orders of magnitude
less computer time than did the TOODY calculations. It should also be
noted that the interactive nature of the PENAP code and the simplicity
of the constitution model used in the approximate analysis meke problem
setup for PENAP considerably easier than for TOODY.

Finally, the deceleration history for one test in the Watching Hill

series was calculated using the approximate method. The results showed

good agreement with TOODY calculations and were in qualitative agreement

with the experimental record for that test.
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