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Abstract

Proportional reduction is a common cartel practice, in which cartel members reduce
their output by the same percentage. We develop a simple method to quantify this
reduction relative to a benchmark market equilibrium scenario. Our measure is
continuous, has a simple interpretation as the “degree of collusion” and nests the
earlier models in the existing literature. More importantly, by exploiting firms ex
post heterogeneity and optimality conditions, Corts (1999) critique can be addressed
by estimating time-varying degree of industry monopolization from a short panel of
firm-level observations. We illustrate the method in Monte-Carlo simulations and in
application to the data from the Joint Executive Committee railroad cartel.
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1 Introduction

Measuring market power and assessing industry conduct remain among the major chal-

lenges in empirical Industrial Organization. These questions have important implications

for welfare analysis and antitrust regulation. A wide variety of empirical models have

been developed to measure the degree of competition in markets where reliable cost

data are not available. The problem frequently boils down to estimating a “conduct

parameter,” which summarizes the level of competition in an industry. Typically, an

econometrician specifies a supply relation where the conduct parameter takes on distinct

values nesting Cournot, perfect competition (Bertrand), and perfect cartel (Monopoly)

models. Estimated parameter values are then interpreted as the degree of collusiveness. In

reality, however, the estimated parameter values are often significantly different from the

values describing either of the conduct regimes, making it harder to interpret.1 A problem

that is perhaps more serious than the internal inconsistency between a theoretical model

and its empirical implications is raised by Corts (1999), who shows that the estimated

parameter values may fail to measure market power due to dynamic considerations of the

firms. When firms are efficiently colluding, changes in the economic environment may

affect the degree of collusion (for example, cartel sustainability as described in Rotemberg

and Saloner, 1986), suggesting that the conduct parameter would change over time and

would be an endogenous variable. Thus, across-time variation in the demand and supply

conditions may fail to identify the industry conduct.

In this study, we propose an alternative way to evaluate the industry conduct, which

overcomes the aforementioned problems in the literature. The key to our method is an

assumption on the way collusion is implemented. Instead of assuming that the objective

function of a cartel is known, e.g., joint profit maximization, we assume that firms employ

Proportional Reduction (PR) collusive technology (as discussed in Schmalensee, 1987).

Under the Proportional Reduction assumption, cartel members reduce their outputs

proportionately relative to a benchmark market equilibrium output. We argue that

Proportional Reduction is both theoretically and empirically plausible. For example, it

1In such cases, the industry competitiveness is evaluated in terms of the number of firms playing a
particular equilibrium. This interpretation of the conjectural variation parameter is sometimes referenced
as the“as-if” interpretation. For example, an industry with N firms is as competitive as if it were Cournot
equilibrium with K players.
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is hard to see why symmetric players who maximize joint industry profit would reduce

their output non-proportionally.2 From an empirical point of view, although it is difficult

to show hard evidence that Cartel members are proportionately reducing their outputs,

Proportional Reduction is indirectly supported. This is because Proportional Reduction

can be seen as one particular type of market share allocation, which is frequently observed

in practice and recognized by judicial systems (courts), as documented in Marshall and

Marx (2008).3

Our method is simple and has several advantages over the traditional conduct pa-

rameter approach. First, our parameter takes values on a continuous interval, having a

simple interpretation as the percentage reduction in the output relative to a well-defined

benchmark competitive equilibrium outcome. Second, we show that firms’ heterogeneity

provides useful variation, which can be used to estimate time-varying degree of industry

monopolization from a relatively short panel of firm level observations. This source of

identification is present even when firms are symmetric ex ante, i.e., before realizations of

iid innovations to their costs. The ability to estimate a time-varying degree of collusion is

important to address Corts’ critique regarding endogenously chosen levels of monopoliza-

tion. Finally, while illustration of the method in this paper is provided using a very simple

static framework, the method is extendable to more complex settings with dynamically

optimizing agents and more flexible forms of the demand and cost functions. Therefore

while strong in itself, our assumption about collusive technology can help to accommodate

a wide variety of complex strategic interactions and can be used when a researcher prefers

to stay agnostic about the objective function of a cartel.

Our work is closely related to studies by Bresnahan (1982), Lau (1982), and Porter

(1983). Ellison (1994) provides a comprehensive empirical comparison of competing

theories of collusion by Green and Porter (1984) versus Rotemberg and Saloner (1986). In

these (and many other) articles, in order to derive an empirical specification for estimation

a researcher has to assume that the objective function of a cartel is known, e.g., joint profit

maximization. In reality, the objective function of a cartel is rarely known. It may be quite

2Symmetry and joint profit maximization are standard assumptions in the literature, in which case
existing methods of identifying the parameter of interest (e.g., Bresnahan, 1982, Lau, 1982) are directly
applicable within our framework.

3Keeping their market shares constant, cartel members must reduce their output proportionately from
a benchmark equilibrium outcome.
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complex and depend not only on the current and future states of the demand and supply

conditions, but also on the probability of disclosure (which, in turn, may be a function of

the level of collusion itself) and expected punishment by the antitrust authorities. Given

feasible (potentially implementable in the real world) equilibrium supporting strategies

not all levels of collusion can be sustained, as described by Rotemberg and Saloner

(1986). Analysis of more complex settings, when the collusion occurs only along one of

the dimensions, e.g., price fixing with competition in quality or capacity, is provided in

Fershtman and Gandal (1994). Availability of reliable cost data facilitates estimation

of industry conduct considerably. For example, Genesove and Mullin (1998) conduct a

comprehensive comparison of various ways to estimate industry conduct and marginal

costs in the sugar industry. Wolfram (1999) also considers a model with time-varying

conduct parameters when direct measures of marginal costs are available. However, her

identification still relies on the time-series variation in the data because in a duopolistic

market the variation across firms is limited. A more structural way to address the Corts’

critique can be found in Puller (2009).

The rest of the paper is organized as follows. Section 2 describes a general framework

and provides a simple example with a linear demand function and constant marginal cost

functions. We discuss extensions to the method using alternative demand and marginal

cost specifications and describe how the method can be used in estimation of dynamic

games. In Section 3 we discuss identification of our conduct parameter and evaluate its

finite-sample properties using Monte Carlo simulations. We illustrate an application of

our method using the well-known data of the Joint Executive Committee railroad cartel

in 1880-1886 in Section 4. Section 5 concludes.

2 Model

In this section, we outline our framework by presenting a simple model with linear demand

and constant marginal cost functions. Potential extensions of the model are discussed in

Section 2.3. We begin by describing alternative ways of implementing collusion.
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Schmalensee (1987) defines four distinct collusive technologies. The most profitable

one is full collusion with side payments, where only the most efficient firms produce. This

type of collusion is, perhaps, the least realistic for obvious reasons. The remaining three

ways of colluding do not require side payments.4 Market Sharing collusive technology

involve assigning production quotas. For example, the quotas may be chosen to equate the

critical discount factor among the cartel members, which would maximize sustainability

of the cartel. Such arrangements generally would require solving a non-trivial bargaining

problem, particularly when the firms are imperfectly informed about their rivals’ costs.

Collusion implemented through Market Division occurs when each firm is assigned to a

part of the market and charges its optimal monopoly price in this segment. The possibility

of arbitrage makes such a technology difficult to implement in practice. Finally, the last

type of reward distribution is Proportional Reduction, when firms fix their market shares

at some non-collusive (e.g. Cournot) values and each firm reduces the output by the same

proportion. Even though PR technology may generate lower profits than some (or even

all) of the alternatives, simplicity of its implementation may play a role. Another benefit

of the proportional reduction is that frequently used concentration measures (e.g. HHI

or Cn) would be observationally equivalent to a competitive outcome as the distribution

of market shares does not change between competitive and collusive regimes. The latter

is an important observation as it shows that PR technology is potentially empirically

testable. For example, when the degree of collusion changes, the distribution of market

shares stays the same, while aggregate output changes substantially.5

2.1 Basic setup

Consider a homogeneous product market with N firms competing in quantity over time,

t = 1, 2, . . . ,∞. Suppose each firm is characterized by a cost function denoted by Ci(qit, zit),

where qit is output and zit is a vector of cost shifters. Let the inverse demand function be

given by Pt = P (Qt, Yt), where Qt =
∑N

i=1 qit denotes total industry output and Yt is a

4Without side payments, collusion would imply positive production levels even for the least efficient
firms, making joint industry profit maximization infeasible.

5That being said, to construct an empirical test one would need to know exactly when the degree of
collusion has changed.
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vector of demand shifters. The per-period reward function is given by

πit = P (Qt, Yt)qit − Ci(qit, zit). (1)

The firms in the industry interact repeatedly and can be engaged in tacit collusion

agreements. Instead of making an assumption on the objective function of the cartel

which is typically unknown to econometricians, we make the following assumption on the

way the collusion is implemented.

Assumption 1: In any collusive period firms reduce their individual output proportionally

to the baseline Cournot quantities, i.e.,

qCit = θtq
PR
it , ∀i, t

where qCit and qPRit denote one period Cournot and collusive output levels under PR

respectively, and θt ≥ 1 is the inverse of the percentage reduction in output.

Assumption 1 implies that knowing θt allows us to compute the counterfactual Cournot

quantity by “inflating” observed output qPRit by a factor of θt. For example, suppose

that in the collusive period each firm reduces its output by 10% relative to the Cournot

quantity. Then, θt = 1
/

(1− 0.1) = 1.11. Under Assumption 1, the degree of collusion can

be summarized by the parameter θt. Hence, our ultimate objective is to estimate θt from

the observed data.

Before proceeding with how to recover θt, it is worth noting that we intentionally

abstain from developing a particular structural model of collusion, i.e., our model avoids

specifying the objective function of the cartel or the bargaining process, which we cannot

learn from the data. However, one can think of simple collusion supported by grim trigger

strategies with Cournot-Nash as the punishment phase. Lemma 1 in Appendix B shows

that proportional reduction technology is profitable for all firms in the neighborhood of the

Cournot equilibrium quantity. Therefore, it is straightforward to prove that there exists a

common discount factor β = min {β1, . . . , βN} , βi ∈ (0, 1) ∀i, such that the collusion is

sustainable. Section 2.3 addresses some of the potential caveats of Assumption 1 and our

framework.
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2.2 Simple model

Assume a linear inverse demand function Pt = α0 + α1Qt + α2Yt + νdt and suppose in the

data we observe (qPRit , zit, P
PR
t , Yt), i = 1, . . . , N ; t = 1, . . . , T . Under Assumption 1, the

following relationship must hold:

P (QC
t , Yt) = P (QC

t , Yt)− P (QPR
t , Yt) + P (QPR

t , Yt)

= α1 (θt − 1)QPR
t + P PR

t ,

where QPR and P PR are collusive total output and equilibrium price, and P (QC , Y ) is an

unobserved (counterfactual) Cournot equilibrium price.

On the supply side, we assume a constant marginal cost function, i.e., ∂Ci(qit, zit)
/
∂qit =

β0i + zitβ + νsit, where zit is a vector of observed cost shifters in the data and νsit is un-

observed cost component. In a Cournot NE, first-order conditions for firm i are given

by

α1q
C
it + PC

t − β0i − zitβ − νsit = 0. (2)

Note that equation (2) would not hold with equality when evaluated at
(
qPRi , QPR

)
, as

there would be incentives to deviate from the collusive quantity by expanding the output.

However, we know the relationship between the collusive and competitive regimes and,

therefore, can “restore” individual first-order conditions in terms of collusive values and

the parameter θt as follows

α1θtq
PR
it + α1 (θt − 1)QPR

t + P PR
t − β0i − zitβ − νsit = 0. (3)

Even though one may attempt to identify both θt and α1 using just the supply relation (3),

we focus on identification of the conduct and cost function parameters and assume,

throughout the rest of the paper, that α1 can be consistently estimated using conventional

instrumental variable techniques.6

From equation (3) one can already see that variation in qPRit across firms, holding

QPR
t and P PR

t fixed within a cross-section, provides additional identification power. More

6It is rather the degree of collusion that may change in response to changing economic environment.
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formally, identification of our parameter of interest relies on the availability of firm-level

exogenous cost shifters, which is summarized in the following Assumption 2.

Assumption 2: Data contains information on exogenous demand and firm-level cost

shifters, (Yt and z1t, . . . , zNt respectively), such that demand-side and cost-side innovations

satisfy

E [νsit|zit, z−it, Yt] = E
[
νdt |Zt, Yt

]
= 0,

where Zt =
∑

i zit and z−it are cost shifters for firms other than the firm i.

For example, if β0i = β0,∀i and we observe just one cost shifter satisfying Assumption 2

in the data, we can identify all parameters in the model given that T > 1.7 To see this,

rewrite equation (3) as

νsit = P PR
t − β0 − zitβ − α1Q

PR
t + θtα1(qPRit +QPR

t ),

and define X = (1NT , z,q, IT ⊗ xt) and Z = (1NT , z, IT ⊗ z−it) where

• 1NT and 1T are vectors of ones of sizes N × T and T respectively;

• z = (z11, · · · , zN1, · · · , z1,T , · · · , zNT )′;

• q =
(
α1Q

PR
1 , · · · , α1Q

PR
1 , · · · , α1Q

PR
T , · · · , α1Q

PR
T

)′
;

• IT is identity matrix of size T ;

• xt =
(
α1

(
qPR1t +QPR

t

)
, · · · , α1

(
qPRNt +QPR

t

) )′
;

• z−it =
(∑

j 6=1 zjt, · · · ,
∑

j 6=N zjt

)′
;

• ⊗ denote Kronecker product.

The standard identification conditions for IV methods requires Z ′X to have a full column

rank. With just one period of data, it is clear that X does not have a full column rank,

due to the first and third columns. Hence, separate identification of the constant term

in the marginal cost specification and the time-varying parameter θt requires data for at

least two time periods.8

More generally, there are two sources of variation that help to identify the degree of

output reduction. The first one is variation across asymmetric firms. The second one

7The system would be over-identified if in addition we observe demand shifters.
8Of course, to estimate demand parameter α1 one would need longer time-series.
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is variation over time in the demand and supply conditions. Under the proportional

reduction, asymptotics is in terms of N × T ∗, where T ∗ is the number of time periods

with constant conduct parameter θt. Of course, to fully utilize this property a researcher

should specify observable cost shifters at the firm-level.

At this stage, it might be useful to compare our measure of market power to the

conduct parameter from the earlier literature (e.g., Bresnahan, 1982). Typically, the

existing literature identifies market power as a conduct parameter, λ, nesting three types

of first order conditions within one equation,

Pt + qit
∂P

∂Q
λ−mci = 0,

where λ can take 3 distinct values, depending on the underlying scenario of industry

conduct. Table 1 compares values of our parameter θ for each theoretically admissible

value of λ as a function of the number of firms, N .

[ *** Table 1 appears about here *** ]

The key difference is that our measure of market power, θ, is defined on a continuous

interval, while the game theoretic approach dictates only discrete values for λ, outside of

which interpretation of the parameter becomes vague. Of course, the number of firms puts

bounds on the values of θ that can be rationalized by a static model of profit maximization.9

Under ex ante symmetric firms such restrictions can be imposed to increase accuracy of the

estimates. However, with asymmetric firms and/or dynamically optimizing agents it may

be hard to make such sharp predictions. For example, in case of strong learning-by-doing

effects, in the early periods firms may rationally price below marginal costs. That being

said, dynamic optimization would require optimality conditions that are different from

equation (3), e.g., include proper derivatives of the continuation value. Such extensions

are beyond the scope of this paper.

9For example, with 9 symmetric competitors θ must be within [0.9, 1.8].
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2.3 Extensions

As we discussed in the previous section, in order to “restore” the individual first order

conditions in terms of (supposedly collusive) values of the observed variables one needs to

assume some functional form for the demand and cost functions.

Consider firm i’s maximization problem in a competitive regime where the per-period

profit function is given by equation (1). Assuming away any dynamic effects of the quantity

choice, e.g., there is neither the motive of “learning-by-doing” nor of investment into the

customer base in the case of state dependent demand schedules, first-order conditions for

quantity choice are given by

FOC[qit] :
∂P (Qt, Yt)

∂Qt

qit + Pt −
∂Ci(qit, zit)

∂qit
= 0. (4)

When firms are in a collusive regime, under Assumption 1, equation (4) can be written in

terms of observables (P PR
t , QPR

t , qPRit ) and the parameter θt as follows

P PR
t +

[
P (θtQ

PR
t , Yt)− P (QPR

t , Yt)
]

+
∂P (θtQt, Yt)

∂Qt

θtqit −
∂Ci(θtqit, zit)

∂qit
= 0, (5)

where
[
P (θtQ

PR
t , Yt) − P (QPR

t , Yt)
]

represents a “collusive markup” over the Cournot

price level, i.e., the difference between the observed outcomes and hypothetical competitive

outcomes. This term measures price differences in the case of movement along the demand

curve from the observed output levels to competitive output levels.

First, consider a particular case when the marginal cost function contains a linear-in-qit

term, i.e., when
∂Ci(qit, zit)

∂qit
= β0i + βqqit + zitβ + νdit.

This case substantially complicates estimation of the conduct parameter in the earlier

literature (the problem description and potential solutions are discussed in Bresnahan,

1982, Lau, 1982). One of the frequently employed solutions would be to find exogenous

variables affecting elasticity of the demand, i.e., in addition to the demand shifters one

would need to find some demand “rotators”. Interestingly, when assumption 1 holds, we

can estimate parameters of the model without the demand rotators. To see this consider

10



equation (3), which now becomes

(α1 − βq)θtqPRit + α1 (θt − 1)QPR
t + P PR

t − β0i − zitβ − εit = 0. (6)

As before, we assume that the slope of the demand function α1 is estimated using the

demand relationship (or that appropriate moment conditions are included into the GMM

criterion function). Therefore, we can identify θt from the coefficient on QPR
t , while βq

is identified by the coefficient on qPRit . Since identification of θt now relies on variation

in the aggregate output, it cannot be different for all t, i.e., one would need to assume

that the conduct parameter is constant for several time periods in the data.10 On the

other hand, presence of non-linear in qit terms in the cost function or non-linearity of the

demand function facilitates identification of the conduct parameter. These results are not

new and have been known since the early empirical literature on collusion. Therefore, we

don’t discuss them here.

One of the benefits of our method is that one does not have to assume that all firms

are colluding. The framework is easily applicable to an industry with a few dominant

players and a competitive fringe. As long as the researcher is willing to make assumptions

regarding the identities of colluding and free-riding firms, the method can be directly

applied (e.g., cheating firms would choose their output levels with θit = 1 if the baseline

NE is Cournot).

So far we have considered homogeneous product markets. Potentially, the method

can be applied to differentiated product markets with the assumption that output levels

(prices) are reduced (increased) by the same proportion. We do not consider this case

here. However, the topic is very interesting and is left for further research.

Another potential extension would be to use a more structural approach and to model

firms’ maximization problem as a dynamic game. For example, assumption 1 can be

used within the framework of Fershtman and Pakes (2000). However, this would require

explicit assumptions on the objective function of the colluding firms as well as specifying

punishment strategies, which is exactly what we want to avoid in this study. As long as

the baseline scenario (relative to which firms reduce their outputs) is given by a static

10Simulation results for a model with linear-in-qit cost function are available upon request.
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NE, it remains a NE of a dynamic game. Hence, our parameter estimates can still be

interpreted relative to a well-defined alternative conduct regime. An example of a more

structural approach, addressing the critique by Corts (1999) when the firms are engaged

in efficient collusion, is given in Puller (2009).

Finally, we briefly discuss testable implications of proportional reduction collusive

technology. If firms are colluding with θt = θ fixed within all periods in the observed

data, the distribution of market shares would be identical to the one under the baseline

scenario (Cournot in our case). However, if the regime of collusion changes at some point

in time (e.g., as a result of price war) one can search for such evidence by inspecting

variation in the aggregate or individual outputs and the distribution of market shares.

One possible example would be to check if a concentration measure (say, HHI or CN) is

statistically different in periods before and after the time of the potential change in the

conduct regime with a similar test (e.g., difference in means) used for the aggregate or

individual levels of output. If the test rejects that the distribution of market shares are

different while the difference in the output levels is significant, that would be consistent

with a change in the degree of collusion.

It is possible to show that exogenous changes in the demand and cost conditions in

case of asymmetric firms must take very specific forms to generate proportional reduction

in the individual output levels. In other words, it is very unlikely that in a Cournot

NE firms would respond to the exogenous variation in a proportional way. For example,

consider a change in the demand conditions Yt. Proportional change in output of each

firm implies that
∂qit
/
∂Yt

qit
=
∂qjt

/
∂Yt

qjt
⇒

∂qit
/
∂Yt

∂qjt
/
∂Yt

=
qit
qjt
, ∀i, j.

By the implicit function theorem and Cournot first order conditions it is easy to show

that to replicate proportional reduction as a result of aggregate demand shocks one must

impose very strong restrictions on the underlying demand and cost functions. In particular,

it is not possible in the case of linear demand and constant marginal costs (unless the

firms are identical), while if the marginal costs are linear in quantity, the following would

be required,

2α1 − β(j)
q

2α1 − β(i)
q

=
qit
qjt
,∀i, j

12



where β(i) and β(j) are cost parameters for firms i and j. Similar conclusions can be made

regarding the cost shocks. While it might be possible to reverse-engineer a model (and/or

competitive equilibrium concept) where firms do respond to some exogenous variation

by replicating the proportional reduction collusive technology, we believe that for a very

wide class of parametric empirical specifications used for estimation this is not true.

3 Monte Carlo Simulations

In order to demonstrate performance of our method and evaluate the properties of our

estimator, Monte Carlo simulations are conducted. The details of the simulation design

are as follows. Inverse demand and marginal cost functions are given by

Pt = α0 + α1Qt + α2Yt + νdt ,

mci(qit, zit) = β0 + β1zit + νsit.

To make our simulations realistic, the following parameter values are chosen: demand

side parameters are given by α0 = 500, α1 = −1.0, and α2 = 1.0, and supply side

parameters are given by β0i = 10.0 ∀i and β1 = 1.0. The observable demand shifter, Yt,

the unobservable demand innovation, νdt , the observed cost shifter, zit, and the unobserved

cost shock νsit are randomly drawn from normal distributions, Yt
iid∼ N(0, 100), νdt

iid∼ N(0, 1),

zit
iid∼ N(1, 4) and νsit

iid∼ N(0, 0.04), respectively. In every period, firms operated in one of

three randomly chosen regimes with θt ∈ {1.0, 1.2, 1.4}, where θ = 1.0 implies Cournot

NE. To see the effects of the number of firms, N , and time periods, T , a set of pairs of

(N, T ) is chosen from {10, 20, 30} × {10, 20, 30}.

We simulate a data set 10,000 times and each time estimate parameters of the model

using 2-step optimal GMM. The GMM criterion function is constructed using two sets

of moment restrictions implied by Assumption 2. In particular, demand-side moment

conditions are constructed by interacting νdt with a constant, demand shifters and a sum

of firm-level cost shifters. Supply-side moment conditions are obtained using products

of νsit with (zit, z−it, Yt) and dummy variables for each regime. The weighting matrix is

assumed to have a block-diagonal structure.

13



[ *** Table 2 appears about here *** ]

As our interest lies only in the estimates of the conduct parameter, Table 2 conveniently

summarizes average estimates of θt, denoted by θ̄, standard deviation and average values

of the estimated standard errors, denoted by Std. Dev. and ASE, respectively, for

(10, 30)× (10, 30) sample sizes. The full set of estimation results can be found in Appendix

C. In all cases, parameter estimates are precise and the standard deviations of the

estimated coefficients are consistent with the mean values of the standard errors. As

expected, the estimates become more accurate as the number of firms and/or the number

of time-series observations increases. Monte Carlo simulations suggest that a longer panel

(larger T ) improves precision of the parameter estimates slightly better than a wider

panel (larger N). We believe that this is because an increased number of time periods

contributes to both the demand- and supply-side moment conditions, whereas an increased

number of firms affects only the supply-side set of moment conditions.

4 Application: the Joint Executive Committee

In order to illustrate how our method works with real data, we apply our methodology to

the Joint Executive Committee (JEC) railroad cartel data from Porter (1983) and Ellison

(1994). The JEC was a legal cartel that controlled freight shipments from Chicago to

the Atlantic seaboard in the 1880’s. The cartel was created in 1879 – that is prior to the

Sherman Act of 1880. The data contains firm-level information on prices, shipment volumes

for grain and flour, and information about the availability of alternative transportation

routes through the Great Lakes. A detailed description of the data can be found in Porter

(1983) and Ellison (1994). It is worth noting that we provide this application primarily

for illustrative purposes and the estimation results could be improved, if more detailed

information were available, in particular on the individual firms’ cost shifters.
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4.1 Empirical Specification and Estimation

Let θ, α and β denote vectors of PR parameters, demand and cost function parameters

respectively, and assume that the members of the JEC use proportional reduction collusive

technology with parameter θt. Assume that the per-period profits of the firms within the

JEC are given by

π(qit, zit, ν
d
t , ν

s
it; θ, α, β) = P (θtQt, Yt, ν

d
t ;α)θtqit − Ci(θtqit, zit, νsit; β),

where Qt =
∑Nt

i=1 qit, Nt is the number of firms in period t, Yt is a vector of observed

demand shifters, zit is a vector of individual cost shifters, and (νdt , ν
s
it) is a pair of demand

and supply-side shocks, respectively. We assume the following functional forms

P (Qt, Yt, ν
d
t ;α) = α0 + α1Qt + α2Yt + νdt ,

Ci(qit, zit, ν
s
it; β) = Fi + (β0i + β1zit + νsit) qit.

When reporting estimation results the case where β0i 6= β0j is referenced as “fixed effect”

(FE), and the restriction of β0i = β0, ∀i is denoted as “levels” (LE). In the data, we observe

shipment volumes for both grain and flour. Because of the potential (dis-)economies

of scope we define flour shipments to be an observable cost shifter zit when evaluating

collusion in the market for grain.11

Under our assumption of PR collusive technology, static Cournot first order conditions

are given by (3). In order to estimate parameters of the model we estimate the demand

and supply relations jointly. In particular, for any given vector of parameters, we isolate

demand and supply shocks using the following system of equations,

 νdt = Pt − α0 − α1Qt − α2Yt,

νsit = β0i + β1zit − (α1θtq
PR
it + α1 (θt − 1)QPR

t + P PR
t ).

Our estimation is based on the orthogonality restrictions following from the conditional

11We admit potential caveats related to the assumption of exogenous flour shipment volumes, however,
available data do not provide us with better instrumental variables.
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independence assumptions,

E[νdt |Yt, Zt] = E[νsit|Yt, zit, z−it] = 0,

where Zt =
∑Nt

i=1 zit, z−it =
∑

j 6=i zjt. In practice, we interact z−it with a set of dummy

variables, one for each of the collusive regimes. We construct sample analogs of the

population moment conditions, GN
d (Yt, Zt;α) and GN

s (Yt, zit, z−it;α, β, θ)

GN(Yt, Zt, zit, z−it;α, β, θ) =

 GN
d (Yt, Zt;α)

GN
s (Yt, zit, z−it;α, β, θ)

 ,
and estimate parameters using the following GMM criterion function

(α∗, β∗, θ∗) = arg min
(α,β,θ)

{
GN (Yt, Zt, zit, z−it;α, β, θ)

′ ·W ·GN (Yt, Zt, zit, z−it;α, β, θ)
}
,

with a block-diagonal weighting matrix W .12

4.2 Estimation Results

4.2.1 Overall Results

As our main focus is again on the degree of collusion, Table 3 lists the inverse of the

estimated degree of collusion (1/θ̂) in the FE specification. The full set of estimation

results are documented in Appendix A. Parameter estimates obtained from the LE

specification are similar and can be also found in Tables 6, 8, 10, and 12 in Appendix A.

[ *** Table 3 appears about here *** ]

Model (i) assumes that θ is constant for the entire sample period, regardless of the

number of firms or other observables (see the results in the first column in Table 3). The

detailed estimation results for this specification are documented in Table 7. According to

12In the first stage, the weighting matrix is obtained as inner product of the instrumental variables
matrices, which would be optimal for linear model. In the second (and consecutive) stage(s), we compute
optimal weighting matrix using empirical variance of the moment conditions.
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the results, on average firms produced 31% more output than they would produce under

the Cournot scenario.13 Similarly, Model (ii) (in the second and third columns) assumes

that the cartel is maintained at the same level of θ1 during all collusive periods and that

the firms produce (1/θ0-1)% more in competitive periods than they would do in Cournot.

The estimates imply that, in the collusive period, the output was reduced to about 71%

of hypothetical Cournot quantity. During price wars, on the other hand, firms produced

51% more than they would do in Cournot.

Estimation results become more plausible when the conduct regimes are defined as

unique combinations of the number of firms and the indicator of collusion, because it is

possible that these firms would target a different level of reductions, depending on the

number of member firms. The results from Model (iii) under the fourth and fifth columns

in Table 7 indicate that whenever the cartel indicator is equal to one, these firms produced

40 to 81% of the Cournot quantity. In the meantime, when the cartel broke down and

the firms were involved in price wars, firms produce more than they would do in the

Cournot equilibrium, except for the case of 7 firms. Interestingly, the estimated degree of

monopolization monotonically declines in the number of firms, which is consistent with

the presumption that larger cartels are less sustainable.

It is natural to believe that the firms collude on different levels depending on the

existence of a competitor to the cartel, the Great Lakes, and thus we further use finer

categorization in Model (iv). This specification assumes that the degree of monopolization

depends on the number of firms, collusive indicator and the state of demand, i.e., whether

the Great Lakes were open for navigation. The estimation results for this case are

summarized in the last four columns of Table 3. Our estimates suggest that the degree

of monopolization declines in the number of firms and is generally lower at lower states

of demand. The latter speaks against the counter-cyclical cartel pricing patterns as in

the model by Rotemberg and Saloner (1986). According to their predictions, a cartel

would reduce the degree of monopolization at high states of demand to reduce incentives

for cheating. Instead, we find that when facing competition from the Great Lakes

transportation routes JEC members reduce their level of collusion.14

13Interestingly, this result is consistent with the findings in Porter (1983) where for constant θ the
firms’ behavior in collusive periods was roughly consistent with Cournot equilibrium (pp. 309-310).

14Again, this finding is similar to the one in Ellison (1994), where no evidence of the countercyclical
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Since estimated parameter values imply a relatively high degree of collusion compared

to a hypothetical Cournot equilibrium, we conducted the following experiment. Given our

estimates of the cost function parameters, we calculated optimal monopoly and perfectly

competitive quantity levels for each firm. The smallest optimal monopoly output among

the colluding firms defines a lower bound on the total quantity of the cartel, while the

largest (Bertrand) competitive quantity among the participating firms would impose an

upper bound consistent with rational behavior. Figure 1 summarizes the results for the

firm fixed-effect specification. Figure 3 in Appendix A presents same statistics for the

specification in levels. As is apparent from the top panel of the figure, in most cases

observed quantities stay in-between the upper and lower bounds. In particular, for the

FE specification in 202 out of 328 weeks (62%) JEC produces more than the standalone

monopoly quantity for the least efficient firm in a given week, and for the specification in

levels this occurs 205 out of 328 times. The same observation can be made when output

levels are averaged for each of the potential collusive regimes (bottom panel).

[ *** Figure 1 appears about here *** ]

To further confirm our estimation results, own price elasticity of the demand is

calculated and presented in Table 4. As expected, the degree of monopolization is

positively related to the absolute value of price elasticity, i.e., the higher the degree of

monopolization the larger price elasticity of demand with correlation coefficient of 0.77.

On average, during collusive regimes price elasticity of demand is -5.11, which is almost

twice as big as the elasticity during non-collusive regimes of -2.75.

[ *** Table 4 appears about here *** ]

Lastly, we conducted several robustness checks of our specifications. First, we excluded

observations with 6 and 8 firms when the cartel indicator is zero and the Great Lakes

are open for navigation (see the note in Table 3). Estimation results do not change

qualitatively as can be seen from Tables 14 and 15 in Appendix A. Second, we estimated

the model using two alternative specifications for the cost function. Namely, in Table 16

pricing was found.
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we report estimation results where the marginal cost function is given by either

mci(qit, zit; β) = β0i + β1zit + β2qit + νsit,

or

mci(qit, zit; β) = β0i + β1zit + (β2 + 1)qβ2it + νsit.

Columns 2 and 4 of Table 16 summarize the results. It turns out that including a linear

or non-linear term in quantity does not effect our estimates of the conduct parameter

substantially. Besides, the coefficients on the own quantity variable in the cost functions

are statistically not different from zero at any reasonable significance level. Unfortunately,

we do not have other instrumental variables to explore much richer specifications.

4.2.2 Absence of the Cartel Indicator

So far we use the cartel indicator, reported in the data, to tabulate regimes with a constant

level of collusion. In practice, however, econometricians or competition authorities do not

know whether or not firms collude. Thus, we must be able to define regimes relying only

on observed variation in the output levels and market shares, not the cartel indicator.

Therefore, without using the cartel indicator, we conduct two final empirical exercises: (i)

we create our own index describing potential regimes of JEC operations and estimate the

model with the new index, and (ii) we estimate the model at the monthly-level assuming

that θt is constant within a month.

Our New Indicator In order to create our own index of collusion, we inspect the data

for candidate collusive periods. Our criteria require a stable distribution of market shares

and reduction in output relative to the adjacent time intervals. To test the stability of

market shares, we use a t-test for difference in means, which accounts for serial correlation.

In particular, the test compares sub-intervals within a given interval.15 We find 9 such

intervals with 662 observations in total. Table 5 reports parameter estimates for each of

15We assumed AR(1) process for serial correlation and computed equivalent sample size using approxi-
mation n̂e = n 1−ρ̂1

1+ρ̂1
. Then statistic for H0 : E[HHI1] = E[HHI2] was computed using t = µ1−µ2

(σ2
1/n

e
1+σ

2
2/n

e
2)

2

with significance level 0.05.

19



the collusive regimes with full estimation results listed in Table 17 in Appendix A.

[ *** Table 5 appears about here *** ]

For all regimes our estimates suggests at least some degree of collusion with the output

levels below static Cournot NE (in 8-firms period weeks 191-196 the output level was

very close to Cournot), as the percent reduction is almost always below one for both LE

and FE specifications. To check the validity of our method, we create a Cartel Index,

the average value of the reported cartel indicator during each period, expecting that the

percent reduction and the Cartel Index are negatively correlated. If the Cartel Index is

zero, for example, we must expect that the firms compete severely, yielding close to the

Cournot output. The correlation coefficient between the percent reduction and the Cartel

Index for the FE specification is -0.56, which indicates that the estimates are likely to be

able to detect the existence of the cartel.

Monthly-Level As a last step, we estimate monthly-level θt to examine whether our

methodology can detect the cartel for each month.16 Figure 2 plots the estimated monthly-

level θt. The black solid line shows the estimated value, whereas the gray solid lines

indicate the confidence interval. To examine the performance of our methodology, the

gray dashed line records the Cartel Index, which is an average value of the cartel indicator

within a month. Whenever our estimated θ’s go below one, the firms indeed failed to

collude, indicated by the Cartel Index falling below one. Therefore, this observation

validates our methodology.

[ *** Figure 2 appears about here *** ]

16Although our methodology allows us to estimate θt for weekly-level in principle, the JEC had a
small number of firms, between 5 and 8 firms depending on the time period. Estimating one parameter
(weekly-level θt), relying on only five to eight observations, might not yield statistically significant results.
Therefore, we estimate the model with monthly-level θt for stacking at least 20 observations for estimating
θt for each period.
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5 Conclusions

In this paper we develop a method to estimate the time-varying degree of industry

monopolization. The methodology does not impose any restrictions on the objective

function of colluding firms. Instead, we impose an assumption on how collusion is

implemented. We believe that our method has several advantages over the traditional

empirical literature on collusion. First of all, proportional reduction would be a natural way

to implement collusion with symmetric firms. Therefore, most of the earlier literature on

estimating conduct parameters can be viewed as a special case of our model. Asymmetricity

in the firms’ cost functions provides useful variation that can be utilized to identify the

degree of industry monopolization conditional on observing firm-level cost shifters. Second,

the parameter measuring the degree of industry monopolization is a continuous measure

relating observed levels of output to the hypothetical stage game Nash equilibrium. As

a result, it has a simple interpretation as the percentage of output reduction relative to

a well defined competitive equilibrium. Third, the fact that we do not require explicit

assumptions about the objective function of the cartel allows us to accommodate a

wide range of fairly complex models of collusion as long as the proportional reduction

assumption is satisfied. The latter fact can be empirically tested. Fourth, we show that

the variation in output levels across asymmetric firms allows time-varying estimates of

the degree of monopolization. This way one can address the critique by Corts (1999)

of the conjectural variation literature when the industry conduct is endogenous to the

changing demand and supply conditions. Finally, we believe that simplicity of the method

is appealing to industry practitioners because estimation can be done using standard

statistical software. Perhaps, the best application of our framework would be at the stage

of pre-screening procedures conducted by an antitrust authority when deciding about

taking the case for a thorough investigation or dismissing it.

Monte Carlo simulations illustrate finite-sample properties of the parameter estimates

and show that our method performs well even with medium sample sizes consisting of

100 to 300 data points. Thus, the parameter of interest can be estimated from relatively

short panels of firm-level observations. To further investigate the practicality of our

method, we use the Joint Executive Committee railroad cartel from the 19th century.

Our analysis using the available cartel indicator demonstrates that it strongly correlates
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with the estimated degree of collusion. Finally, we estimate the time-varying degree of

monopolization at a monthly level. Estimation results imply substantial variability in

the degree of collusion over time, with the output levels during price wars sometimes

exceeding quantities predicted by the Cournot equilibrium.
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Table 1: Traditional measure of industry conduct vs θ.

scenario existing literature, λ our measure, θ

Bertrand 0 N/(N+1)
Cournot 1 1
Monopoly N 2N/(N+1)

Table 2: Monte Carlo Simulation for N = 10, 30 and T = 10, 30

Regime 1: True parameter value = 1.000

T=10 T=30

θ̄ Std. Dev. ASE θ̄ Std. Dev. ASE

N = 10 1.000 0.005 0.004 1.000 0.002 0.002

N = 30 1.000 0.002 0.002 1.000 0.001 0.001

Regime 2: True parameter value = 1.200

T=10 T=30

θ̄ Std. Dev. ASE θ̄ Std. Dev. ASE

N = 10 1.200 0.012 0.010 1.200 0.006 0.006

N = 30 1.200 0.008 0.007 1.200 0.005 0.004

Regime 3: True parameter value = 1.400

T=10 T=30

θ̄ Std. Dev. ASE θ̄ Std. Dev. ASE

N = 10 1.400 0.019 0.016 1.400 0.010 0.010

N = 30 1.400 0.015 0.012 1.400 0.008 0.008

Note: θ̄ =
∑ns

s=1 θ̂s and “Std. Dev.” is defined as
√

1
ns−1

∑ns
s=1(θ̂s − θ̄). ASE is the average of

standard errors for each simulation.

Table 3: Summary of the monopolization parameter estimates using FE specifications

Model (i) Model (ii) Model (iii) Model (iv)
Table 8 Table 10 Table 12 Table 14

C = 0 C = 1 C=0 C=1 C=0 C=0 C=1 C=1
N L=0 L=1 L=0 L=1
5

1.31 1.51 0.71

− 0.40 − − 0.44 0.54
6 1.46 0.55 0.91 − 0.65 0.66
7 0.68 0.64 − 0.93 0.75 0.82
8 1.36 0.81 1.42 − 0.92 1.17

Note: N, C, and L denote the number of firms, the cartel indicator, and the Great Lake operation dummy, respec-
tively. Parameter estimates for the cases (N=6,C=0,L=1) and (N=8,C=0,L=1) are not statistically significant at
any reasonable significance levels and therefore are not reported.
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Table 4: Estimated parameters versus price elasticity across regimes

regime θ % of Cournot p−elasticity

N=5, C=1, L=0 2.29 0.44 -6.00
N=5, C=1, L=1 1.85 0.54 -6.34
N=6, C=0, L=0 1.10 0.91 -3.17
N=6, C=1, L=0 1.54 0.65 -4.31
N=6, C=1, L=1 1.51 0.66 -6.75
N=7, C=0, L=1 1.07 0.93 -4.52
N=7, C=1, L=0 1.33 0.75 -4.98
N=7, C=1, L=1 1.21 0.82 -5.23
N=8, C=0, L=0 0.70 1.42 -2.72
N=8, C=1, L=0 1.09 0.92 -3.28
N=8, C=1, L=1 0.85 1.17 -3.88
avg. 1.32 0.84 -4.65

Table 5: Estimation results for 9 selected periods satisfying PR assumption, 662 obs.

Regimes.
LE Specification FE Specification

Cartel
1st 2nd % Redu- 1st 2nd % Redu-

Index
Est. Est. ction Est. Est. ction

θ1 (N=6, 68-75) 1.548 1.531 0.65 1.534 1.522 0.66 0.71
(0.150) (0.144) (0.148) (0.145)

θ2 (N=6, 116-131) 1.447 1.418 0.71 1.423 1.394 0.72 1.00
(0.138) (0.131) (0.138) (0.132)

θ3 (N=6, 131-166) 1.650 1.616 0.62 1.630 1.600 0.63 0.97
(0.165) (0.156) (0.167) (0.160)

θ4 (N=7, 171-181, 324) 1.583 1.545 0.65 1.572 1.536 0.65 0.83
(0.168) (0.159) (0.171) (0.163)

θ5 (N=8, 184-189) 1.694 1.651 0.61 1.672 1.632 0.61 1.00
(0.185) (0.174) (0.187) (0.178)

θ6 (N=8, 191-196) 1.025 1.013 0.99 1.016 1.004 1.00 0.67
(0.058) (0.056) (0.058) (0.056)

θ7 (N=8, 254-259) 1.200 1.184 0.84 1.186 1.170 0.85 0.83
(0.070) (0.067) (0.072) (0.069)

θ8 (N=8, 258-263) 1.109 1.074 0.93 1.091 1.051 0.95 0.83
(0.063) (0.058) (0.065) (0.061)

θ9 (N=8, 313-318) 1.212 1.231 0.81 1.192 1.220 0.82 0.67
(0.127) (0.128) (0.128) (0.130)

Note: 1st and 2nd Est. report 1st and 2nd stage GMM esimates. % Reduction demonstrates the how much
firms reduce their output compared to Cournot outcomes. Cartel Index is calculated the average value of the cartel
indicator during the sample periods.
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Figure 1: Upper and low bounds on the total output by week (top panel) and by regime
(bottom panel) for estimates with firm FE’s (Table 13)
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Figure 2: Monthly Level θ
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Appendix A Estimation results

Table 6: Constant conduct parameter, mci = β0 + β1zit + νit (levels)
param. 1st stage %Cournot 2nd stage. %Cournot cont.-update %Cournot

α0 35847.846 36107.822 36100.903
(1846.092) (1851.162) (1851.018)

α1 -0.294 -0.302 -0.302
(0.052) (0.052) (0.052)

α2 -6510.624 -6604.251 -6601.853
(893.286) (895.631) (895.564)

θ 0.677 1.48 0.763 1.31 0.761 1.31
(0.078) (0.069) (0.069)

β0 25472.798 24388.318 24333.122
(452.696) (461.001) (461.278)

β1 0.381 0.371 0.367
(0.160) (0.162) (0.162)

f − val 2794.6981 277.2121 268.8319

Table 7: Constant conduct parameter, mci = β0i + β1zit + νit (FE)
param. 1st stage %Cournot 2nd stage. %Cournot cont.-update %Cournot

α0 35856.839 36429.472 36413.757
(1846.005) (1857.807) (1857.448)

α1 -0.294 -0.311 -0.311
(0.052) (.052) (0.052)

α2 -6512.883 -6719.050 -6713.762
(893.302) (898.722) (898.556)

θ 0.666 1.50 0.749 1.34 0.722 1.39
(0.083) (0.074) (0.077)

β1 0.496 0.587 0.815
(0.216) (0.224) (0.238)

f − val 2735.5657 281.4734 271.1445
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Table 8: Regimes defined by the cartel indicator only, mci = β0 + β1zit + νit (levels)
param. 1st stage %Cournot 2nd stage. %Cournot cont.-update %Cournot

α0 35852.778 36396.104 36374.390
(1845.908) (1857.047) (1856.558)

α1 -0.294 -0.310 -0.310
(0.052) (0.052) (0.052)

α2 -6511.863 -6707.138 -6699.672
(893.259) (898.378) (898.154)

θ0 (C=0) 0.637 1.57 0.663 1.51 0.659 1.52
(0.076) (0.070) (0.071)

θ1 (C=1) 1.398 0.72 1.409 0.71 1.424 0.70
(0.099) (0.096) (0.098)

β0 22669.676 21900.779 21762.925
(413.988) (420.671) (423.670)

β1 0.051 -0.016 -0.054
(0.146) (0.147) (0.147)

f − val 1870.773 238.657 227.135

Table 9: Regimes defined by the cartel indicator only, mci = β0i + β1zit + νit (FE)
param. 1st stage %Cournot 2nd stage. %Cournot cont.-update %Cournot

α0 35855.274 36602.543 36597.780
(1845.726) (1861.554) (1861.425)

α1 -0.294 -0.316 -0.316
(0.052) (0.052) (0.052)

α2 -6512.490 -6780.817 -6779.655
(893.222) (900.470) (900.409)

θ0 (C=0) 0.625 1.60 0.670 1.49 0.659 1.52
(0.078) (0.069) (0.070)

θ1 (C=1) 1.371 0.73 1.372 0.73 1.363 0.73
(0.108) (0.101) (0.100)

β1 0.156 0.196 0.281
(0.193) (0.197) (0.202)

f − val 1844.615 270.430 264.910
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Table 10: Regimes defined by N and cartel indicator, mci = β0 + β1zit + νit (levels)
param. 1st stage %Cournot 2nd stage. %Cournot cont.-update %Cournot

α0 35834.452 35546.398 35545.746
(1845.755) (1840.689) (1840.681)

α1 -0.294 -0.285 -0.285
(0.052) (0.052) (0.052)

α2 -6507.259 -6403.890 -6403.764
(893.140) (890.764) (890.759)

θ1 (N=5, C=1) 2.550 0.39 2.346 0.43 2.304 0.43
(0.322) (0.291) (0.283)

θ2 (N=6, C=0) 0.907 1.10 0.629 1.59 0.401 2.49
(0.086) (0.106) (0.135)

θ3 (N=6, C=1) 2.023 0.49 1.840 0.54 1.817 0.55
(0.208) (0.183) (0.180)

θ4 (N=7, C=0) 1.648 0.61 1.565 0.64 1.516 0.66
(0.148) (0.138) (0.131)

θ5 (N=7, C=1) 1.686 0.59 1.651 0.61 1.619 0.62
(0.145 (0.142) (0.137)

θ6 (N=8, C=0) 0.876 1.14 0.772 1.30 0.743 1.35
(0.048) (0.057) (0.061)

θ7 (N=8, C=1) 1.364 0.73 1.297 0.77 1.262 0.79
(0.092) (0.085) (0.080)

β0 20294.021 20954.043 21236.366
(412.154) (405.708) (411.161)

β1 -0.321 -0.297 -0.263
(0.152) (0.149) (0.151)

f − val 1014.420 163.301 164.366

Table 11: Regimes defined by N and cartel indicator, mci = β0i + β1zit + νit (FE)
param. 1st stage %Cournot 2nd stage. %Cournot cont.-update %Cournot

α0 35837.177 35657.267 35645.881
(1845.907) (1842.674) (1842.474)

α1 -0.294 -0.288 -0.288
(0.052) (0.052) (0.052)

α2 -6507.943 -6443.455 -6439.437
(893.192) (891.680) (891.586)

θ1 (N=5, C=1) 2.471 0.40 2.488 0.40 2.511 0.40
(0.311) (0.319) (0.324)

θ2 (N=6, C=0) 0.817 1.22 0.687 1.46 0.589 1.70
(0.088) (0.096) (0.105)

θ3 (N=6, C=1) 1.904 0.53 1.802 0.55 1.778 0.56
(0.201) (0.187) (0.184)

θ4 (N=7, C=0) 1.546 0.65 1.467 0.68 1.431 0.70
(0.144) (0.134) (0.130)

θ5 (N=7, C=1) 1.595 0.63 1.572 0.64 1.551 0.64
(0.139) (0.138) (0.134)

θ6 (N=8, C=0) 0.799 1.25 0.738 1.36 0.723 1.38
(0.057) (0.062) (0.063)

θ7 (N=8, C=1) 1.274 0.78 1.240 0.81 1.221 0.82
(0.089) (0.086) (0.084)

β1 0.011 -0.003 0.006
(0.189) (0.186) (0.186)

f − val 1003.630 203.199 216.512
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Table 12: Regimes defined by N , cartel indicator and state of demand, mci = β0 + β1zit + νit
(levels)

param. 1st stage % 2nd stage. % cont.-update %

α0 35839.113 35739.791 35741.825
(1845.186) (1843.389) (1843.426)

α1 -0.294 -0.291 -0.291
(0.052) (0.052) (0.052)

α2 -6508.430 -6472.906 -6473.643
(893.011) (892.168) (892.186)

θ1 (N=5, C=1, L=0) 2.257 0.44 2.348 0.43 2.354 0.42
(0.279) (0.298) (0.299)

θ2 (N=5, C=1, L=1) 1.859 0.54 1.923 0.52 1.924 0.52
(0.185) (0.198) (0.198)

θ3 (N=6, C=0, L=0) 1.114 0.90 1.155 0.87 1.155 0.87
(0.114) (0.117) (0.117)

θ4 (N=6, C=0, L=1) 0.137 7.30 0.165 6.06 0.166 6.02
(0.152) (0.149) (0.149)

θ5 (N=6, C=1, L=0) 1.574 0.64 1.616 0.62 1.617 0.62
(0.132) (0.140) (0.140)

θ6 (N=6, C=1, L=1) 1.535 0.65 1.604 0.62 1.606 0.62
(0.136) (0.147) (0.147)

θ7 (N=7, C=0, L=1) 1.091 0.92 1.143 0.87 1.145 0.87
(0.077) (0.082) (0.082)

θ8 (N=7, C=1, L=0) 1.356 0.74 1.393 0.72 1.394 0.72
(0.088) (0.094) (0.094)

θ9 (N=7, C=1, L=1) 1.231 0.81 1.284 0.78 1.286 0.78
(0.100) (0.106) (0.106)

θ10 (N=8, C=0, L=0) 0.736 1.36 0.752 1.33 0.752 1.33
(0.057) (0.056) (0.056)

θ11 (N=8, C=0, L=1) 0.211 4.74 0.240 4.17 0.242 4.13
(0.141) (0.138) (0.137)

θ12 (N=8, C=1, L=0) 1.125 0.89 1.154 0.87 1.155 0.87
(0.062) (0.065) (0.065)

θ13 (N=8, C=1, L=1) 0.869 1.15 0.904 1.11 0.905 1.10
(0.057) (0.056) (0.056)

β0 23810.582 23529.588 23519.281
(409.084) (410.955) (411.084)

β1 -0.294 -0.338 -0.339
(0.130) (0.132) (0.132)

f − val 8.251 3.376 3.311
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Table 13: Regimes defined by N , cartel indicator and state of demand, mci = βi0 + β1zit + νit
(FE)

param. 1st stage % 2nd stage. % cont.-update %

α0 35839.791 35831.157 35831.293
(1845.995) (1845.835) (1845.838)

α1 -0.294 -0.294 -0.294
(0.052) (0.052) (0.052)

α2 -6508.600 -6505.512 -6505.561
(893.227) (893.152) (893.153)

θ1 (N=5, C=1, L=0) 2.212 0.45 2.287 0.44 2.294 0.44
(0.274) (0.288) (0.290)

θ2 (N=5, C=1, L=1) 1.800 0.56 1.847 0.54 1.849 0.54
(0.184) (0.192) (0.193)

θ3 (N=6, C=0, L=0) 1.056 0.95 1.095 0.91 1.094 0.91
(0.112) (0.114) (0.114)

θ4 (N=6, C=0, L=1) 0.089 11.24 0.118 8.47 0.119 8.40
(0.155) (0.151) (0.150)

θ5 (N=6, C=1, L=0) 1.508 0.66 1.540 0.65 1.541 0.65
(0.135) (0.140) (0.140)

θ6 (N=6, C=1, L=1) 1.456 0.69 1.509 0.66 1.511 0.66
(0.140) (0.147) (0.147)

θ7 (N=7, C=0, L=1) 1.033 0.97 1.074 0.93 1.075 0.93
(0.082) (0.085) (0.085)

θ8 (N=7, C=1, L=0) 1.306 0.77 1.332 0.75 1.333 0.75
(0.090) (0.094) (0.094)

θ9 (N=7, C=1, L=1) 1.173 0.85 1.213 0.82 1.215 0.82
(0.103) (0.107) (0.107)

θ10 (N=8, C=0, L=0) 0.690 1.45 0.704 1.42 0.705 1.42
(0.062) (0.061) (0.061)

θ11 (N=8, C=0, L=1) 0.166 6.02 0.195 5.13 0.197 5.08
(0.143) (0.139) (0.139)

θ12 (N=8, C=1, L=0) 1.068 0.94 1.090 0.92 1.091 0.92
(0.067) (0.069) (0.069)

θ13 (N=8, C=1, L=1) 0.823 1.22 0.852 1.17 0.853 1.17
(0.060) (0.060) (0.060)

c1 -0.106 -0.143 -0.143
(0.163) (0.164) (0.164)

f − val 6.659 2.842 2.798
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Table 14: Reduced sample, mci = β0 + β1zit + νit
param. 1st stage % 2nd stage. % cont.-update %

α0 33652.344 33480.469 33485.943
(2085.344) (2084.071) (2084.114)

α1 -0.220 -0.215 -0.215
(0.061) (0.061) (0.061)

α2 -3198.509 -3125.633 -3128.026
(1050.390) (1048.918) (1048.963)

θ1 (N=5, C=1, L=0) 2.678 0.37 2.846 0.35 2.853 0.35
(0.525) (0.585) (0.586)

θ2 (N=5, C=1, L=1) 2.122 0.47 2.265 0.44 2.265 0.44
(0.349) (0.398) (0.397)

θ3 (N=6, C=0, L=0) 1.139 0.88 1.221 0.82 1.221 0.82
(0.160) (0.174) (0.174)

θ4 (N=6, C=1, L=0) 1.747 0.57 1.842 0.54 1.843 0.54
(0.243) (0.274) (0.274)

θ5 (N=6, C=1, L=1) 1.661 0.60 1.801 0.56 1.803 0.55
(0.235) (0.274) (0.274)

θ6 (N=7, C=0, L=1) 1.080 0.93 1.191 0.84 1.193 0.84
(0.110) (0.127) (0.127)

θ7 (N=7, C=1, L=0) 1.463 0.68 1.542 0.65 1.543 0.65
(0.159) (0.184) (0.184)

θ8 (N=7, C=1, L=1) 1.265 0.79 1.378 0.73 1.379 0.73
(0.151) (0.176) (0.176)

θ9 (N=8, C=0, L=0) 0.639 1.56 0.676 1.48 0.677 1.48
(0.106) (0.100) (0.100)

θ10 (N=8, C=1, L=0) 1.145 0.87 1.212 0.83 1.213 0.82
(0.093) (0.108) (0.108)

θ11 (N=8, C=1, L=1) 0.804 1.24 0.874 1.14 0.875 1.14
(0.091) (0.087) (0.086)

β0 24175.641 23713.288 23705.834
(455.280) (461.587) (461.803)

β1 -0.249 -0.291 -0.291
(0.139) (0.142) (0.142)

f − val 9.710 3.550 3.439
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Table 15: Reduced sample, mci = βi0 + β1zit + νit
param. 1st stage % 2nd stage. % cont.-update %

α0 33653.329 33664.271 33663.994
(2087.356) (2087.450) (2087.447)

α1 -0.220 -0.220 -0.220
(0.061) (0.061) (0.061)

α2 -3198.860 -3203.499 -3203.382
(1051.114) (1051.213) (1051.210)

θ1 (N=5, C=1, L=0) 2.619 0.38 2.734 0.37 2.744 0.36
(0.517) (0.549) (0.551)

θ2 (N=5, C=1, L=1) 2.044 0.49 2.129 0.47 2.130 0.47
(0.345) (0.368) (0.368)

θ3 (N=6, C=0, L=0) 1.061 0.94 1.134 0.88 1.131 0.88
(0.155) (0.163) (0.163)

θ4 (N=6, C=1, L=0) 1.658 0.60 1.716 0.58 1.717 0.58
(0.241) (0.255) (0.256)

θ5 (N=6, C=1, L=1) 1.559 0.64 1.645 0.61 1.647 0.61
(0.236) (0.255) (0.256)

θ6 (N=7, C=0, L=1) 0.995 1.01 1.071 0.93 1.072 0.93
(0.119) (0.126) (0.127)

θ7 (N=7, C=1, L=0) 1.391 0.72 1.435 0.70 1.436 0.70
(0.158) (0.169) (0.169)

θ8 (N=7, C=1, L=1) 1.180 0.85 1.253 0.80 1.255 0.80
(0.155) (0.166) (0.167)

θ9 (N=8, C=0, L=0) 0.573 1.75 0.602 1.66 0.602 1.66
(0.117) (0.111) (0.111)

θ10 (N=8, C=1, L=0) 1.062 0.94 1.103 0.91 1.104 0.91
(0.099) (0.105) (0.105)

θ11 (N=8, C=1, L=1) 0.735 1.36 0.786 1.27 0.787 1.27
(0.100) (0.095) (0.095)

β1 -0.056 -0.074 -0.075
(0.175) (0.177) (0.177)

f − val 6.764 2.630 2.564
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Table 16: Alternative specifications for marginal cost function, GMM 2nd stage

param.
mcit = βi0 + β1zit + β2qit mcit = βi0 + β1zit + (β2 + 1)qβ2it
coef/s.e. % coef/s.e. %

α0 35805.207 35419.501
(1845.260) (1838.694)

α1 -0.293 -0.281
(0.052) (0.052)

α2 -6509.235 -6370.224
(892.857) (889.753)

θ1 (N=5, C=1, L=0) 2.609 0.38 2.117 0.47
(1.430) (1.118)

θ2 (N=5, C=1, L=1) 2.085 0.48 1.686 0.59
(1.063) (0.874)

θ3 (N=6, C=0, L=0) 1.193 0.84 0.981 1.02
(0.470) (0.427)

θ4 (N=6, C=0, L=1) 0.101 9.90 0.074 13.51
(0.175) (0.148)

θ5 (N=6, C=1, L=0) 1.689 0.59 1.411 0.71
(0.689) (0.620)

θ6 (N=6, C=1, L=1) 1.649 0.61 1.372 0.73
(0.642) (0.601)

θ7 (N=7, C=0, L=1) 1.152 0.87 0.975 1.03
(0.362) (0.366)

θ8 (N=7, C=1, L=0) 1.443 0.69 1.228 0.81
(0.501) (0.478)

θ9 (N=7, C=1, L=1) 1.307 0.77 1.107 0.90
(0.429) (0.427)

θ10 (N=8, C=0, L=0) 0.741 1.35 0.632 1.58
(0.194) (0.204)

θ11 (N=8, C=0, L=1) 0.187 5.35 0.148 6.76
(0.153) (0.138)

θ12 (N=8, C=1, L=0) 1.158 0.86 1.002 1.00
(0.322) (0.333)

θ13 (N=8, C=1, L=1) 0.906 1.10 0.772 1.30
(0.253) (0.263)

β1 -0.014 -0.115
(0.371) (0.343)

β2 -0.230 0.773
(0.880) (0.507)

f − val 3.735 2.339
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Figure 3: Upper and low bounds on the total output by week (top panel) and by regime
(bottom panel) for estimates in levels (Table 12)
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Table 17: Estimation results for 9 selected periods satisfying PR assumption, 662 obs.

param.
levels firm fixed-effects

1st 2nd % 1st 2nd %

α0 35329.948 35522.669 35326.973 35427.255

(2123.370) (2130.429) (2125.596) (2129.231)

α1 -0.281 -0.286 -0.281 -0.284

(0.058) (0.058) (0.058) (0.058)

α2 -6356.179 -6427.317 -6355.350 -6392.351

(1018.042) (1020.952) (1018.649) (1020.149)

θ1 (N=6, 68-75) 1.548 1.531 0.65 1.534 1.522 0.66

(0.150) (0.144) (0.148) (0.145)

θ2 (N=6, 116-131) 1.447 1.418 0.71 1.423 1.394 0.72

(0.138) (0.131) (0.138) (0.132)

θ3 (N=6, 131-166) 1.650 1.616 0.62 1.630 1.600 0.63

(0.165) (0.156) (0.167) (0.160)

θ4 (N=7, 171-181, 324) 1.583 1.545 0.65 1.572 1.536 0.65

(0.168) (0.159) (0.171) (0.163)

θ5 (N=8, 184-189) 1.694 1.651 0.61 1.672 1.632 0.61

(0.185) (0.174) (0.187) (0.178)

θ6 (N=8, 191-196) 1.025 1.013 0.99 1.016 1.004 1.00

(0.058) (0.056) (0.058) (0.056)

θ7 (N=8, 254-259) 1.200 1.184 0.84 1.186 1.170 0.85

(0.070) (0.067) (0.072) (0.069)

θ8 (N=8, 258-263) 1.109 1.074 0.93 1.091 1.051 0.95

(0.063) (0.058) (0.065) (0.061)

θ9 (N=8, 313-318) 1.212 1.231 0.81 1.192 1.220 0.82

(0.127) (0.128) (0.128) (0.130)

β0 22220.813 22305.381 -

(319.017) (317.656)

β1 -0.229 -0.214 -0.170 -0.150

(0.104) (0.104) (0.128) (0.127)

f − val 37.892 3.158 46.627 4.106
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Appendix B Profitability of PR collusive technology

Lemma 1 Proportional reduction collusive technology is profitable for all firms in the neigh-
borhood of Cournot equilibrium.

Proof A Cournot competitor first-order conditions are given by

P ′(Qt)qit + P (Qt)− C ′i(qit) = 0.

Consider a cartel, which sets overall industry output to Q̄t = QCournot
t and assigns market

shares such that Q̄tsit = qCournotit ,∀i = 1, . . . , n, where sit is market share of firm i in period
t. Then, profit of a cartel member is given by πm(sit, Q̄t) = P (Q̄t)Q̄tsit − Ci(Q̄tsit) and, by
construction, is identical to the non-cooperative Cournot outcome.

Consider a derivative of this profit function with respect to Q̄t,

∂πm(sit, Q̄t)

∂Q̄t

= P ′(Q̄t)Q̄tsit + P (Q̄t)sit − C ′i(Q̄tsit)sit

= C ′i(qit)− P (Q̄t) + P (Q̄t)sit − C ′i(Q̄tsit)sit

= (1− sit)
(
C ′i(qit)− P (Q̄t)

)
< 0,

where the second equality is obtained by replacing P ′(Q̄t)Q̄tsit with C ′i(qit)− P (Q̄t) and the
inequality follows from the fact that C ′i(qit)− P (Q̄t) = P ′(Qt)qit < 0.
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Appendix C MC simulations

The data generating process for our Monte-Carlo simulations is as follows. We assume the
following inverse demand and cost functions,

Pt = α0 + α1Qt + α2Yt + νdt ,

mci(qit, zit) = β0 + β1zit + νsit.

Table 18 summarizes parameter values and the distribution of the variables. We simulated
data 10,000 times for each of the following combinations of (N, T ): (10, 10), (10, 20), (10, 30),
(20, 10), (20, 20), (20, 30), (30, 10), (30, 20), and (30, 30). Each time parameters were estimated
using 2-step optimal GMM.

Table 18: Summary of parameter values for data-generating process in MC-simulations

parameter / variable value / distribution

α0 500

α1 -1.0

α2 1.0

β0 10.0

β1 1.0

Yt N(0,100)

νdt N(0,1)

zit N(1,4)

νsit N(0,0.04)

θ {1.0, 1.2, 1.4}

We present summary statistic for a typical data set generated for N = 30, T = 30 in
Table 19.

Table 19: Summary statistics for simulated data, N=30, T=30.

variable mean p50 min max sd

qit 13.397 13.306 7.688 21.319 2.369

Qt 401.918 396.420 331.500 488.790 51.116

Pt 100.003 106.385 26.574 166.800 49.782

Y 1.944 1.789 -16.740 26.532 9.000

zit 1.102 1.107 -4.765 7.932 1.969

z−it 31.967 29.714 12.246 58.177 10.174

regime 1 0.267 0.000 0.000 1.000 0.442

regime 2 0.467 0.000 0.000 1.000 0.499

regime 3 0.267 0.000 0.000 1.000 0.442

Yt 1.944 1.789 -16.740 26.532 9.000
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Table 20: Summary statistic for MC simulations.

var N,T
coefficient standard error

mean p50 sd min max mean p50 sd min max

α0

10,10 500.049 499.810 13.858 358.310 668.440 11.501 9.266 11.525 0.453 507.380
20,10 499.957 500.010 12.857 381.650 599.580 11.000 9.175 7.517 0.611 85.738
30,10 500.167 500.080 12.979 356.070 591.330 10.973 9.143 7.527 0.654 73.862
10,20 499.926 499.950 9.286 454.870 556.630 8.809 8.766 3.748 1.123 83.080
20,20 500.108 499.965 9.426 453.780 551.090 8.778 8.850 3.563 1.163 39.685
30,20 500.098 500.050 9.148 453.710 553.730 8.714 8.806 3.528 1.150 26.701
10,30 499.959 499.930 7.864 453.770 606.620 7.677 7.780 6.317 1.373 591.800
20,30 499.968 499.950 7.716 458.510 537.970 7.536 7.702 2.344 1.395 16.097
30,30 500.026 499.960 7.621 464.530 536.820 7.441 7.644 2.307 1.533 17.287

α1

10,10 -1.000 -1.000 0.037 -1.407 -0.625 0.031 0.025 0.030 0.001 1.318
20,10 -1.000 -1.000 0.033 -1.253 -0.688 0.028 0.023 0.019 0.002 0.220
30,10 -1.000 -1.000 0.032 -1.212 -0.615 0.027 0.023 0.019 0.002 0.181
10,20 -1.000 -1.000 0.025 -1.155 -0.879 0.023 0.023 0.010 0.003 0.217
20,20 -1.000 -1.000 0.024 -1.125 -0.877 0.022 0.022 0.009 0.003 0.109
30,20 -1.000 -1.000 0.023 -1.132 -0.884 0.022 0.022 0.009 0.003 0.066
10,30 -1.000 -1.000 0.021 -1.272 -0.877 0.020 0.021 0.016 0.004 1.512
20,30 -1.000 -1.000 0.020 -1.097 -0.898 0.019 0.020 0.006 0.004 0.040
30,30 -1.000 -1.000 0.019 -1.094 -0.909 0.019 0.019 0.006 0.004 0.043

α2

10,10 1.001 1.001 0.087 -0.359 2.032 0.071 0.049 0.083 0.004 2.580
20,10 1.000 0.999 0.078 0.054 1.929 0.067 0.048 0.057 0.005 0.642
30,10 1.001 1.001 0.079 0.034 1.985 0.067 0.049 0.057 0.004 0.630
10,20 1.000 1.000 0.042 0.650 1.316 0.041 0.034 0.023 0.006 0.262
20,20 1.000 1.000 0.041 0.699 1.314 0.041 0.035 0.023 0.007 0.278
30,20 1.000 0.999 0.041 0.716 1.303 0.040 0.035 0.022 0.008 0.291
10,30 1.000 1.000 0.031 0.783 1.201 0.031 0.028 0.015 0.008 0.236
20,30 1.000 1.000 0.031 0.774 1.204 0.031 0.028 0.014 0.007 0.139
30,30 1.000 1.000 0.031 0.782 1.306 0.031 0.028 0.014 0.008 0.154

θ1

10,10 1.000 1.000 0.005 0.956 1.166 0.004 0.004 0.008 0.001 0.700
20,10 1.000 1.000 0.003 0.975 1.023 0.002 0.002 0.001 0.001 0.017
30,10 1.000 1.000 0.002 0.990 1.023 0.002 0.002 0.001 0.001 0.011
10,20 1.000 1.000 0.003 0.988 1.016 0.003 0.003 0.001 0.001 0.016
20,20 1.000 1.000 0.002 0.993 1.008 0.002 0.002 0.000 0.001 0.006
30,20 1.000 1.000 0.001 0.993 1.007 0.001 0.001 0.000 0.001 0.003
10,30 1.000 1.000 0.002 0.983 1.014 0.002 0.002 0.001 0.001 0.074
20,30 1.000 1.000 0.001 0.994 1.007 0.001 0.001 0.000 0.001 0.003
30,30 1.000 1.000 0.001 0.996 1.005 0.001 0.001 0.000 0.001 0.002

θ2

10,10 1.200 1.200 0.012 1.097 1.447 0.010 0.008 0.014 0.002 1.023
20,10 1.200 1.200 0.009 1.155 1.314 0.008 0.006 0.005 0.001 0.071
30,10 1.200 1.200 0.008 1.159 1.349 0.007 0.006 0.004 0.001 0.072
10,20 1.200 1.200 0.008 1.161 1.242 0.007 0.007 0.003 0.002 0.053
20,20 1.200 1.200 0.006 1.172 1.234 0.006 0.006 0.002 0.001 0.024
30,20 1.200 1.200 0.005 1.172 1.231 0.005 0.005 0.002 0.001 0.015
10,30 1.200 1.200 0.006 1.140 1.243 0.006 0.006 0.003 0.002 0.259
20,30 1.200 1.200 0.005 1.178 1.227 0.005 0.005 0.001 0.001 0.011
30,30 1.200 1.200 0.005 1.178 1.225 0.004 0.005 0.001 0.001 0.011

θ3

10,10 1.401 1.400 0.019 1.235 1.723 0.016 0.013 0.020 0.002 1.325
20,10 1.400 1.400 0.015 1.320 1.605 0.013 0.011 0.009 0.002 0.129
30,10 1.400 1.400 0.015 1.324 1.675 0.012 0.010 0.008 0.002 0.134
10,20 1.400 1.400 0.012 1.334 1.468 0.012 0.012 0.005 0.002 0.087
20,20 1.400 1.400 0.011 1.349 1.462 0.010 0.010 0.004 0.002 0.042
30,20 1.400 1.400 0.010 1.349 1.457 0.010 0.010 0.004 0.002 0.027
10,30 1.400 1.400 0.010 1.300 1.471 0.010 0.010 0.005 0.002 0.436
20,30 1.400 1.400 0.009 1.361 1.449 0.009 0.009 0.003 0.002 0.019
30,30 1.400 1.400 0.008 1.360 1.446 0.008 0.008 0.002 0.002 0.020

β0

10,10 9.941 9.990 2.006 -62.295 24.268 1.496 1.259 3.196 0.423 211.650
20,10 10.024 10.015 1.066 2.599 22.927 0.973 0.889 0.385 0.371 7.414
30,10 10.009 10.010 0.842 4.176 15.053 0.789 0.726 0.286 0.309 4.553
10,20 9.994 9.996 0.843 5.929 15.393 0.810 0.781 0.182 0.396 2.352
20,20 9.996 10.002 0.581 7.405 12.843 0.567 0.550 0.116 0.288 1.467
30,20 10.006 10.005 0.477 7.793 12.339 0.463 0.450 0.092 0.254 1.163
10,30 10.005 10.007 0.646 7.419 12.924 0.624 0.610 0.139 0.361 9.947
20,30 10.007 10.007 0.451 8.027 11.789 0.440 0.433 0.069 0.266 0.790
30,30 10.003 10.004 0.365 8.433 11.529 0.359 0.354 0.054 0.219 0.691

β1

10,10 1.000 1.000 0.029 0.685 1.472 0.025 0.020 0.023 0.008 0.970
20,10 1.000 1.000 0.027 0.766 1.194 0.024 0.019 0.014 0.006 0.184
30,10 1.000 1.000 0.027 0.704 1.176 0.023 0.019 0.015 0.005 0.152
10,20 1.000 1.000 0.019 0.912 1.111 0.018 0.018 0.007 0.006 0.168
20,20 1.000 1.000 0.019 0.902 1.095 0.018 0.018 0.007 0.005 0.081
30,20 1.000 1.000 0.019 0.903 1.107 0.018 0.018 0.007 0.005 0.054
10,30 1.000 1.000 0.016 0.908 1.216 0.016 0.016 0.013 0.006 1.215
20,30 1.000 1.000 0.016 0.915 1.079 0.015 0.016 0.004 0.005 0.033
30,30 1.000 1.000 0.016 0.928 1.080 0.015 0.015 0.004 0.005 0.035
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