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AESTRACT

Multigroup discrete ordinates methods avoid many of the
approximations’ that ™ have been used 1in previous neutral
transport analyses. Of particular interest are the neutral
profiles génerated as an integral part of larger plasma system
simulation codes. To determine the appropriateness of
utilizing a particular multigroup code, ANISN, for this
purpose, results are compared with the neutral transport module
of the Duchs code. For a typical TFTR plasma, predicted
neutral densities differ by a maximum factor of three on axis
and outfiuxes at the plasma boundary by 40%. This is found to
be significant for a neutral transport module. Possible
sources of the observed discrepancies. are indicated from an
analysis of the approximations wused in the Duchs model.
Recommendations' are made concerning the future application of

the multigroup method.




| 1. INTRODUCTION

Neutral particles ‘play an important role in - the
evolution of tokamak plasmasf The recycling of neutrals at
the plasma-wall interface regulates the steady state plasma
density profile, wall-evolved impuritiés resulting from
neutral sputtering can seriously effect plasma resistivity,
confinement times and radiation 1loss rates, escaping charge
exchange neutrals can substanfially cool the peripheral plasma
regions, and the coupling of high energy neutral beams into
the plasma is greatly redgced by the presence of the
background neutral population.

The accurate predictiq@ of neutral atdm profiles is
essential, but many previously used techniques are restricted
in their range of applicability. We will demonstrate that
multigroup discrete ordinates methods allow a more rigorous

analysis than has customarily been employed 1in neutral

computational procedures. Fewer approximations and
simplifications are requiréd in treating- the transport
problemn.

of primary importaﬁce are neutral distributions

generated repeatedly for wutilization in 1larger plasma
simulation codes. To dete}mine the practicality of  using
multigroup metﬁods for this pﬁrpose We compare our results to
those of the neutral transpgrt module of the Diichs code [1].
Given the increased rigor of.the multigroup method, it can be

used as a check on the accuracy of the Diichs treatment. The
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discrepancies are examined to determine their significance in
the .computational modeling of tokamak systems. The results of
the comparison study 1lead us to recommend. areas where-
multigroup discrete ordinates methods will be of significant
value.

Section 2 constitutes a review of previous neutral
calculational techniques with  an emphasis on the
approximations and simplifications that have gone into each,
We treat the Dichs model in special detail since it will later
serve as the combarison case. Multigroup discrete ordinates
methods are -also briefly described along with their
application to neutral trénsport up to this time. The
neutral—piasma interaction model we use is given in Section 3.
Thé results of. the comparison study are presented in Section
4, ‘ |

2. REVIEW OF NEUTRAL CALCULATIONAL PROCEDURES.

2.1. Previous Methods

We begin our discussion with the integro-differential
(Eq. 1) and integral (Eq. 2) forms of the linear Boltzmann

transport equation [2].

1

Q - V<I>’+ ca(g.ﬁ)¢(§,&,E) = q(z,2,E) + Q(x,Q,E) (1)
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. where ¢(r,Q,E) is the angular neutral flux, oa(z,E) is the

total absorption cross section, a(r,Q,E) is the effective
scattering source due to charge exchange and Q(r,n,E) is the
stationary neutral source. In neutral transport problems the

absorption cross section and scattering source are given by,
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In equation (3), Vv is the neutral particle velocity (v ='V%E
n

where m, is the neutral maés), Ni(Ne) is the ion (electron)

density and hi(he) is the ion (electron) distribution

. 1
function. The target velocity v' is calculated as v' =1/iE
: . . i,e
where the mass, m; o> refers to either ions or electrons. The
F] . v
. . . - . ~an- .
microscopic cross sections 044> Tei- and O ex represent ion

L2



impact ionization, electron impact ionization and charge
\
exchange reactions respectively. We have assumed that hi and

h, are isotropic and are normalized so that

' (5)
_/;ﬁ,éE)dE =1 .

(‘ . (o)

[ £<3

Equations (1) and (2) are equivalent descriptions of
the transport pfocess and both have been used as starting
points for the calculation of neutral afom distributions in
tokamak plasmas. To arrive at mathematically tractable
solutions, however, a number of simplifying aséumptions have
been employed. The early work of Zubarev and Klimov [3]
considers a one-dimensional model and assumes that the neutral
energy distribution is a Maxwellian at the ion temperature.
Dnestrovskii, Kostomarov.and Pavlova [4] retain the slab model
but do not make a priori assumptions about the neutral flux
distribution. This approach leads to an integral equation (in
the angular flux %(r,£,E)) of the form of equation (2). The

> ion distribution function is chosen so that a charge exchange
- neutral has an energy equal to the local ion temperature and
is scattered into one of two directions, forward or back.

That is,:

h, = 6(V+vi) + G(V-vi) (6)



where vi is the local ion thermal velocity. An
approximation: for the charge exchange cross section is also

introduced so! that,

v=v'| o v-v']) = c (7)

where C is a constant (cm3 sec‘l) determined by the 1local
ion temperature. When equation (7) dis substituted into
equation (4), the angular dependence (on Q):is removed from
the expression for q. This also allows Q to be integrated
out of equation (2), with the the resulting integral
equation a function of thé scalar flux ¢(r,E). In reality
the product on the left hand side of'equation (7) increases
as a function of the relative energy (shown in Fig. 1) but
not‘so much as to invalidate .the approximation in the regime
of interest (< 10 keV). Rehker and Wobig [5] use a similar
analysis with an approximation for the charge exchange cross
section also given by equation (7). Howevef, the plasma
- ions are assigned a more realistic Maxwellian distribution
function. Only homogeneous plasmas are considered. Hogan
and Clarke [6] treat realistic plasma temperature and
density profiles in slabigedméfry. An approximation for the
charge exchange cross section similar to equation (7) is
also employed. Later, Clarkeé and Sigmar [7] investigate the
effect of reflected outfluxed neutrals at the plasma

boundary but restrict themselves to a homogeneous plasma in
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planar geometry. The jon  distribution function is
approximated by a finite temperature '"Maxwellian" and has

the form

h, = §(v-o;) (1 + 3qui/a?) (1/4m1v2) . (8

a; = Ion thermal velocity

u; = Toroidal flow velocity

The charge exchange cross section is assumed to behave as in
reference [6].

For high 4neutra1-p1asma collisional regimes some
computational techniques (the Duchs treatment in particular)
have proved to have poor convergence properties (discusséd
later in this section). In an attempt to circumvent the
problem Molvig [8] uses a Fourier transformation method to
arrive at neutral density profiles. The
integro-differential transport equation with the convenient

approximation for the charge exchange cross section

‘(equation 7) is used. The solutions are obtained in

infinite cylindrical (onc-dimcnaional) gcometry which
presumably will model the actual toroidal configuration more

closely than the slab approximation. Molvig's analysis also

. assumes the plasma to be radially uniform in temperature,

but a density profile'iS'allowed:

To examine the interaction of a neufral gas blanket
with a plasma, Lehnert uses a set 6f macroscopic fluid
equations [9]. The assumption here is that A << L where_)\n

is the neutral attenuation length and L is a characteristic



dimension of the system. Eor a homogeneous plasma in slab
geometry a neutral attenuation length can be derived that is
a function of the plasma properties and‘the ﬁeutral—plasma
reaction rates. |

The Diichs [l]itfeatment is based upon the integral
form of the -transport equation. An iterative solution
téchnique for the neufral density yleads to the
identification of the resulting series as representing
"generations'" of charge exchange neutrals. (We therefore
refer to the Diichs neutral treafment as the generation
method.) We see this by . substituting equation (4) into
equation (2) with the following series generated for the

flux:

o = 3 Lt 0% 4 0 (9)

where L is the integral tranéport operator and ¢° is the
uncollided neutral flux. The sum of the terms in
equation (9) represent the solution, provided the series
converges. The presence of ionization (absorption) of
neutrals guarantees this [5,8j since the effective expansion

parameter of the series, B, is given as

< >
ov ox

= (10)
B <ov> + <ov>ei <1 .
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where - <ov>cx and <ov>ei are average reaction rates for
charge exchange and electron impact ionization. What is not
known though, is the number of terms required for an
accurate solution, since B does not solely gauge the
relative size of the terms in the series [8]. If the
optical depth of the plasma is defined as

a

N.<ov> N <ov> _. .
p = dr' 1 cX , _¢& el . (11)
Vn Vn ?

o

where a is the minor radius and v, 1is a characteristic
neutral velocity, then for plasﬁas with p >> 1, many more
terms are required in the series solution to account for the
high collisionality. Ten generations of charge exchange
neutrals are used in present codes but it has been pointed
out that this 'may not be adequate for higher density
plasmas [1,8].

Since not all of the assumptions used 1in the
generation method are stated explicitly in Reference [1] we
give a . derivation of the approximate integral transport
equation 1in the Appendix. Specific reference to theée
assumptions (which are summarized below) is made in
Section 4 where the discrepancies between the two methods in
the comparison study are traced.

As seen in the Appendix the generation method assumes
the charge exchange source to be a function of the density
n(r,E') rather than the angular density nf (r,Q',E'). The @

dependence of the source term is thus removed which greatly
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simplifies the computational : solution. The effect of this
isotropic approximation is explored by the multigroup méthod
and discussed in Section 4. ﬁegarding the energy variable,
the ion distribution function is assumed to be G(E—kTi), and
thus' monoenergetic at thé local kTi. The energy
distribution of the current  neutral generation (ng(E)) is
also assumed monoenergetic at a kTS, The '"temperature",
kTg, is obtained as an average over the temperatures of thé
neulrals that reach the space point in quegtion. The modal
treatment of the energy variable is convenient but implies
that the character of all aspects of energy transfer can be
approximated with averaged Maxwellian parameters. Finaily,
the exponential function is used as an approximation to the
function Ki'*

1
function is arrived by integrating out the angular

as the integral attenuation term. The latter

coordinate corresponding to the 2z axis in infinite
cylindrical géometry. This approximation (transport in a
disk) is seen to be valid. for only a small range of the

attenuation parameter p (seen in Fig. A.2).
2.2. Multigroup Discrete Ordinates Methods

The feasibility | of using multigroup discrete
ordinates methods for 'neutgal trénsport wés first pointed
out by Greenspan [|11]. Thé first applications involved an
approximation which simplified the.energy treatment [11] and
a pure attenuation problem [12]. Since then several authors

have explored neutral transport in ORMAK [13] and EPR type

*The first repeated integral o6f the Bessel Function.
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devices [14] with an emphasis én the practical application
of the method. Marable and Oblow [13] additionally examined
the effect of the boundary condition for outfluxed neutrals.

The multigroup discrete ordinates method [2,15,16] of
sblving.the Boltzmann transport equation (Qifferential form)
is based on the discretization of all the independent
variables; space r, direction 2, and energ& E.
Diffefentials are approximated by finite differences and
integrals by weighted sums to yield a set of coupled (in
’energy and anglé) algebraic equations suitable for an
iterative solution on the computer. This widely wused and
highly successful class of transport equation solvers was
designed to yield  accurate results for deep neutroh
penetration broblems even where pronounced anisotropic
scattering and energy dependent cross sections were
encountered. In principle the only limit on accuracy is the
size and gspecd of the computer wﬁich restricts the fineness
of the space, angle and energy meshes.

A feéture of many multigroup discrete ordinates
methods is the ability to treat the anisotropic nature of
the scattering kernel. The usﬁal procedure is to expand the
scattering kernel in a series of Legendre polynomials (Pl)
of +the « relative scatfering angle (uo = Q-0'). The
truncation of the series after only a few L terms (the PL
scattering approximation) has proved to be adequate even for

highly anisotropic scatteringi[le]'rhe charge exchange kernel
N.h,

( i7i
Vl

[ v - X'Iocx(lz - v'|)) 1is anisotropic in the sense
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that the product |v - v'|lo,, (|¥ - v'|) depends upon the
relative orientation of the initial and final neutral
velocity vectors v and v'. For example, when v ~ v',
collisions which are head on occur at a greater frequency
than thdse for which v and v' are in the same direction.
The situation is reversed fof relative energies greater than
about 10 keV because the charge exchange cross section drops
off much quicker than 1/|v - v'|,

The multigroup treatment of the energy variable
involves the integration of the Boltzmann equation
(equation (1) with the PL scattering'approximatiénj over the

defining the group 'g". Multigroup

range Eg+1 fE < Eg,
cross sections are defined which are of the form,
E
g .
()-g (_I_'_rsl)| = [ o‘a-(E,E) o) \(Er&nE)dE (Dg(.,ﬁ,.-ﬂ_-) (12)
| Eg+l )
Eh ' T E
and , g ) |
4"L(£’&'E') dﬁ"/ l1yl(£_l.E'+E) dE
' 024g(r,9) _ hel Eata
En
. | / ¢, (z,8,E') QE! |
‘ " 13
Ep+1 (13)

where}b2 and o, are Legendre expansion coefficients for the
angular flux ¢ and the scattering kernel respectively. .In
principle the general multigroup formulation is an exact
treatment of the energy variable provided the weighting
functions ¢2 and ¢ are known ;xactly. This is of course not

possible, but a good solution can still be obtained if a
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sufficient number of groups, appropriately structured, are
used to make up for the uncertainty that a poor weighting
function - might introduce. Better values for the
weighting functions (with the possibility of requiring fewer
groups) can be obtained in an iterative manner.

The essential  basis of discrete ordinates methods is
that the angular distribution of the particle flux is
evaluated in"a number of discrete directions. By
considering enough directions an - arbitrarily accurate
evaluation of the angular flux can be thained. Care is
taken to include rays in all directions for a particular
geometry (e.g. down the axis in infinite cylindrical
geometry).

Tc summarize: Multigroup discrete ordinates methods
aré able to treat the - energy, angular and spatial
dependences which have only been approximated by other
neutral analysis techniques. These approximations have been
demonstrated explicitly for the case of the 'generation"
method, We refer specifically to the. assumptions of
isotropic charge exchange source, the monoenergetic source
of charge exchange neﬁtrals (at kTi)’ the ensuing averaging
to obtain the neutral spectrum, and the restriction to

transport in a planar disk.
3. NEUTRAL-PLASMA MODEL

Of the many possible interactions which can occur

between neutral hydrogen atoms and a tokamak plasma only a’
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few have a substantial effect on the neutral transport.
These.are charge exchange, electron impact ionization and
ion impact ionization. Although the cross section for an
elastic collision between a proton and a hydrogen neutral is
of the same order of magﬁitude as that for charge exchange,
very little momentum is transferred in the former process.
Hence fhe trajectory of the neutral remains nearly
unchanged, and the collision may be ignored. Likewise the
temperature regime of interest (Te > 1 eV) permits
volumetric recombination of ions and electrons (to the
neutral state) to be néglected as a source of néutrals.
Convenient analytical fits for ionization and charge
exchange cross sections aré obtained from RiViere [17] for
use in the multigroup expressions (equations (12) and (13)).
The physical model we consider assumes hydrogen atoms
incident on :a proton and electron plasma-(Ne = Ni) in an
infinitely lpng cylinder. The calculations are performed in
cylindrical coordinates. The plasma temperature and density
are specified on a set of concentric-4 shells each
characterized by an isofropic Maxwellian distribution
function (Te = Ti); the plasma properties are homogencous in
each shell. Throughout the 'caléulation it is assumed that
the plasma profiles remain fixed as the neutrals relax to
the steady state.
| It has béen demonstrated that a critical part of the

neutral calculation depends upon the modeling of the source

neutrals and the boundary condition chosen for the
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outfluxed* neutrals [7]. For the purposes -of the
comparison study, desorbed hydrogen gas (Hz) from the outer
material wall is assumed to immediately undergo dissociative
ionization, forming Franck-Condon neutrals with energies of
about 3 eV. In reality the disassociation process takes
place over a <finite volume, frequently small in comparison
to the piasma dimensions; this "effect will be neglected
here. The resulting inward neutral current at the boundary
is assumed to originate from an'isotropic monoenergetic flux
distribution (at ‘an energy of 3 eV). The results of the
study are scaled to a neutral edge density equivalent to
this flux value.

Outfluxed neutrals can either be absorbed or
reflected (perhaps with some energy degradation) at the
boundary. Few data exist din this area, but Robinson's
calculations for hydrogen atoms bombarding polycrystalline
copper indicate that the reflection coefficient is about .2
at an incident energy of 3 keV [18]. The corresponding
energy rcflcction coefficient is .09, The effect of

reflected neutrals is to extend the overall penetration into

.the plasma with a corresponding increase in neutral density.

Here we assume that all outfluxed neutrals stick to the

outer material boundary (absorption coefficient of unity)

*The2 term_'outflux' actually refers to the outward current
(cm™ sec™") of neutrals (primarily due to charge exchange)
at the outer plasma boundary. ‘
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and we neglect the possibility that additional adsorbed
molecules will be dislodged Irbm the surface by the outflux.

As a Dbasis for compafison two test cases are chosen,
Sbown in Fig. 2(a) =~ and (b)~ are ''snapshot'" plasma profiles
of the ST [19] and TFTR [20]}tokamaks. The profiles are of

the form

with the constants (displayea_in Table I.) chosen to typify
experimental :and design ,d;%a for the ST and TFTR machines
respectively. | The choices:are made to determine if @ the
effects of plasma temperatﬁréﬂ densitv and size w111‘modify
the relative performancei 6f the twé‘ methods. A good
indication of the difference in quality of the plasma is
given by the parameter p {(tﬁe number of neutral collision
mean free paths in the plaSma; defined in Section 2). For
ST we calculate (using avefagé values) p ~ .8 while for TFTR

p ~ 3.
4., COMPARISON STUDY RESULTS

A code, GIMUXS [297, was written to generate

multigroup cross section 1ibﬁéries (using equations of the
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form (12) and (13)) suitable for use with the
one-dimensional, multigroup, diScrete ordinates, transport
code ANISN [21]. Up to P3 scattering order cross sections
can be calculated by GIMUXS; wvariable temperature,
Maxwellian target distribution functions,ZK and arbitrary
enefgy‘group structures can also be considered.

Several approximations aid in the evaluation of
equations (12) and (13). We have assumed that the cross
section weighting function (%(r,Q,E) and ¢2(£,Q,E)) can be
-written as a prodﬁct of functions (separation of variables)

of the form

o
a}
|0
=
n

- (x,R) £ (E)

(15)

r,Q %

<
o
—
R
o)
(&)
]

(£, £,(B)

The functions f(E) and fg(E) are further assumed to be
piecewise constant within each energy group. Using
equations (15), the integration in the denominator of

equations (12) and (13) can be ﬁerformed to yield

E
g
og(L,E) = E—_]T f o, (1, E)dE
. 9 9+1 ¢
g

+1]
(16)

E

E

h>g (. oy 1 h
02 (’_’E) - Eh _ E f f
h+1 E E
h+1 Eg+1

q .
oy (FPiE'>E)dEdE' @
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From an examination of eqﬁations (3) and (4) the expressions

for o, and 0, can be decomposed as

o (r,E) = <ov> Nén)

(17)

hi (E)

4 V' >

_—
-
-
m
¥
m
S
i

t<ov>, N(r)

where
<gv> = the total reaction rate (cm3 sec-l) of a

neutral particle nf energy E with a plasmo,-

and

1 :
<ov>, = 2m(28 + ])'[.IXJ; v'| ch(li - v']) Py (u,ddu,
-1

From experience in genéréting equation (17) it has ©been
noted that for plasmas where 20 eV < T < 20 keV then <ov> is
a slowly varying function sf ) and'<ov>2 is a slowly varying
,function of E and E' for :contributions fronm significént %
values. .It is maintained thﬁt a suitable 'grdup structure
can be chosen (discussed below) so that <ov> and <ov>, can
be considered constants within each group so that when

equations (17) are substituted into equation (16) then

t

. E
R g
Og(r_,E) = _N(r) <gv> (E.) f %—dE
d g ]
. Eg+]

E E
- - g- h.(E) h
hgen gy = M) ous (E L E) i g [ 1oaE
g \Lo E, - E g WEg® Fp [
h h+1 E: E
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E_ + E
where Eg = —g—g——gil. The remaining integrals can be

performed analyticall& to yield

o3 (LsEg) = N(r) <ov> (Eg) S(EQ) |
(19)
N (r) Hy(r) <ov>, (Eg. E\) S(EQ)

where
2
S(Eg) = gE  +NE )
9 B g * g+l
B = 1.39 x 105 cm sec™! ev /2
‘ g h,(E)
Hi(Eg) = e dE
g+l |

The original three—dimensionai iterated integrals

(equations (12) and (13)) have been reduced to a product ot
one-dimensional integrals with a corresponding decrease in_
computation time. The effects of the approximations will be
minimal énd mitigated by the choice of a finer energy group'
mesh.

Several considerations are taken into account for the

selection of an energy group structure. These are:

resolution of the expected energy spectra, consistency with
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the cross section approxiéa%ions introduced, and efficiency
of the transport equatioﬁ éolver. It is known that aftef
several charge exchange events the neutral population will
take on the,characteristiés of the target ions (below
E ~ 20 keV). These will‘bé Maxwellian energy distribdtions
ranging from low temperatufés (T ~ 20 eV) at the plasma edge
to high temperatures at the plasma core (T ~ 10 keV). The
tendency for Maxwellian dis%ributions .to be more skewed for
low temperatures and the nged to covér a wide range in
energy suggests that the eﬁergy,groups be narrower in the
low ehergy regime and,;wider as energy is increased. For
this purpose equal incremehéé in log E are sufficient,

2
with encrgy was -noted to be mild. The behavior is smooth

It is recalled that the ‘variation of  <gv> and <dv>

enough to suggest that '5 group structure with equal
logarithmic increments will'élso be adequate to satisfy the
approximation: criteria: namely that <av> and .<0v>k are
constant within each group.‘-

For the multigroup codés it is advantagéous to arrange
the energy group structure ~so that the particle flux is
distributed evenly betweeﬁiéroups. Since the neutral flux
will be approximately Maxﬁeliian in thelvolume of the plasma
an eétimate can be made of the amount of flux as a function
of an energy interval. Thé total fraction of particles in a
Maxwellian flux distributidnfvp to an energy € 1is given by

A, where
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>
1]

X
BEORTIGRICY
] .

1 - e X (x +1)

where X =

A is plotted as a function x in Fig. 3. The abscissa has a
logarithmic scale and it is seen that for fhe range
.6 <x <5, A is approximately linear in log x (compare to the
dashed 1line). | The particles in this range represent about
80% of'those in the entire 'distribution. In the lineﬁr
region then, energy groups formed by equal increments in
log 4% will contain approximately equal fractions of the
particle flux.

For the reasons considered abové an energy structure
which is. based on a uniform mesh in log E is chosen. The
intervals span the range 0-55 keV,which will contain most of
the particles in Maxwellian distributions with temperatures
less than 10 keV, Shown in Table II are the results of
increasing the number of groups for a particular problem..
The 31 group structure was felt to be adequate and ié used
for the remainder of the study.

An interesting feature we present is the use
of reverse labelling for the group structure, as
opposed to the conventional (neutron énalysis)
designation that gives the highest energy the 1label

"1". In neutron transport the predominant energy transition
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is downscatter, and the mulfigroup codes make4 use of this
fact in sweeping from higﬁ fo low energy groups to maximize
the efficiency. The transpért of edge source neutral atoms
into a plasma on the other hand is dominated by upscattering
(i.e. charge exchange with more energetic plasma ions), and
therefore the advantage ié 1ost. If the group labeling is
reversed, however, scattering is once more from low to high
group number, and a savingé in iteration time of as much aé
50% can be realized.[zg]

A summary of the Qpérating parameters of both the
multigroup method (ANISN) and the neutral transport
procedure of the Diichs code is given in Tables III ~and IV.
We use the isofropic (Po) ?écattering approximation for the
charge exchange source teim/énd an 88 angular quadrature in
making the ANISN runs. The choice of a Po expansion 1is
based on the results of'.a comparison with P1 and P3
transport in:a plasma ,si@ilar to that of the TFTR machine.
The total relative attenuation of the neutral density and
the average energy of the,nehtral outflux are' displayed - in
Table V. Little effect ié noticed as a higher order
scattering approximation is used. The primary reason for
this is thought to be that ?ery_few charge exchange pairs in
a Maxwellian plasma have .éomparable. velocities (v ~ v')
which would - maximize anisotropy. We -conclude that the
restriction to isotropic scattering is not serious. Our

findings are also consistenf.With the results of El1 Derini

and Gelbard [14].
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Throughout this study we have observed that neutral
transport is highly sensitive to plasma conditions near the
neutral source (the plasma edge in this case), since the
first charge exchange neutrals originate in this region. To
eliminate the possibility of discrepancies arising from this
effect, the plasma zone (temperature and density) structure
used for.the ANISN cases was chosen to be the same as that
determined by the standard Diichs code. The model weiuse for
incident'éource neutrals and the boundary conditions for
outfluxed neutréls was explained iﬁ Section II. We
emphasize here that entirely equivalent conditions are
utilized by the generation method [1]. The main ingredieh%
in both instances is the specification of the normalizing
cold neutral density at the boundary.

Néutral densities as a function of plasma radius are
displayed in Fig. 4 for the ST and TFTR machines. The
multigroﬁp results arc seen to be consistently lower than
the generation method, reaching a maximum discrepancy of
about a factor of three on the TFTR axis. The ST densities

differ by no more than 50%. We have chosen as the

normalization a neutral atom edge density of 1 x 1010 em™3
(equivalent to a neutral‘ gas (Hz) pressure of
~ 1,5 x 10_7 Torr at T = ,025 eV) which is fairly typical of
present _day discharges. The density in the plasma drops

almost 1immediately to about one half that value, since only
~ 50% of the isotropic distribution has a velocity component
directed into the plasma. Both neutral density profiles are

predominantly concave upward. This results from an increase
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in ionization. mean free patﬁ as the averége velocity of the
neutrals rises (from charge' exdhange collisions with more
energetic ions) faster than the plasma density increases.
Below 100 eV, however, fhe electron impact ionization rate
increases with temperature, 'réducing the>previous trend and
explaining the roll over kcénéave downward) of the neutral
density near the ST edge. No such inflection is seen for
the TFTR case where the plas@a edge is above 200 eV..

| The lack of agreeménﬁ between the two methods can be
partially accounted for ;iﬁ at least two ways. The
generation method converges poorly for the TFTR case; A
significant number of neutréls (~ 1/2 the total on axis)
are found to build up in - . the tenth and final
charge exchange generatibn, The code implementatioﬁ does
not pernmit these neutralé‘go charge exchange = further [1].
The effect may be to enhance; the actual neutral density by
shortening the lifetime é .neutral may have to undergo
ionization in .the plasma. For the ST case the plasma was
optically thin enough so thaﬁ only a few charge exchange
generations were required toifeach a converged solution. It
will be recalled (Section. 2) that Molvig [8] has pointed
out that there may be difficﬁlty in arriving at sufficien?ly
converged solutions for p }>71. The solutions we have seen
for TFTR (p ~3) and ST (p ~ .8) seem to bear this out. The
multigroup method exhibits ggood convergence for all cases

considered.

3
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Another factor which-may‘céntribute to the observed
discrepancies is the exponential approximation to.the Ki1
function employed in the generation method (see Section 2).
For p > .7 the éxponential apprbximation increasingly
underestimates the attenuation. This would eventually lead
to an 'overestimate of the neutral density which is
consistent with the findings we present here.

»A summary of neutral results appear in Table VI where
G refers to the generation method and M to multigroup. We
see that the outfluxes (currents) of charge exchange
neutrals at the boundary differ by ‘as much as 40% while the
average.  energies of the ' corresponding spectra are in
reasonable agreement. That thié is so can be seen from
plots of the actual spectra in Figs. 5 and 6. We
superimpose a Maxwellian flux distribution peaking at about
‘the same‘energy as that ofv the spectra to gauge relative
shape. The outfluxes are obviously not Maxwellian,
exhibiting a 1lower energy Qomponent characteristic of the
plasma‘édge temperature (close to the actual Maxwellians
drawn) and a higher energy tail indicative of the ion
distribution in the plasma interior. The high energy tail
neutrals have been observed experimentally and constitute a
means of measuring plasma ion temperatures [22]. The same
general : spectral shapes have been noted by other
authors [6],[23].

The CPU times on an IBM 360/91 for the test cases are

displayed in Table VII,. The - advantage of the generation
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method in calculational speeq is apparent (by a factor of
20-30). This aspect of. geutral module performance is
relatively important. For e%ample, for a plasma simulation
run by the Dichs code, about 80% of the total run time is
devoted. to calculating thé evolving neutral density. It
should be pointed out, howéver, that the multigroup runs for
the comparison study stfessed accuracy and consistent
modelling and hence ”consérvative” operating parameters
(number of energy groups, space and zone intervals, angular
quadratures, etc.) were usédf

A parameter survey';éﬁealed that a less restrictive.
opérating space drastically feduced computation times while
maintaining the advantage of -calculational accuracy [£9,30].
For ‘example, instead of "99 - uniformly spaced plasma
temperature zones, 10 zones-ébnstructed from the criteria
that the approximate neutral interaction mean free path not
change by more than -a cdhstant between adjacent zones
yielded good Fresults. This is shown in the second line of
Table VIII. In a like manﬁer, guided by the parameter
survey, it was found that S4f?angu1ar quadrature, 28 spatial
intervals (with a finer mesh‘élose to the neutral source), a
less stringent convergence and 11 energy groups combined to
give the results of line 3 of Table VIII. The reduction in
the iteration time is seen to be dramatic (by a factor of
75) to a level below that .of*the standard generation method
(line 5). In addition the errors introdpced by the relaxed
operating parameters are léss than ~ 20% but more

importantly are less than those of the generation method.
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éeveral supplementary techniques allow further
significant time reduction[29,30]. By starting the ANISN
iteration'procedure with a good initial flux guess fewer
iterative cycles are required to reach convergence. In an
evolving plasma application, the .solution from a previous
time step will be available. For restarts from cases where
plasma \edgé temperatures differ by 50% a decrease in
execution time by nearly a factor of 2 is possible.f Another
method "that has proved successful is that of 1l1limiting the
number of ANISN inner iterations. Normally iteration on the
self-scatter term requires at most 2-3 passes. The
contribution of self-scatter to the total scatter process is
minimal 'however and an iteration limit of one has been found
to be sufficient. A combination of a restart from a case
where plgsma teﬁperatures differ by 20% and the inner
iteration 1limit of one are applied to the relaxed operating
parameter case to generate the results of 1line 4 of
Table VIII. Virtually no change 1is seen in the results
except :for the execution +time which has been reduced
significantly by a factor of two.

An added consideration for the multigroup execution
time is the time necessary to generate the multigroup cross
sections. Using the code GIMUXS for the 11 group, 10 zone
'case this is less than 5 seconds;(IBM 360/91). The majority
of this' time is wused for calculating the 4ion impact
ionizatidn rate (neglected by the generation method) and the

electron impact ionization rate (apbroximated by an
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analytical fit in the generation method). Thus even when
approximations for the cross sections are not included the
total multigroup run time is comparable to that of the

generation treatment.
5. IMPLICATIONS

The primary purpose of the generation treatment is to
caiculate sfeady stafe néuﬁ}al atom profiles as an integral
part of a larger plasma simulation code. The neutral
calculation is done ever&. few time steps as the plasma
distribution evolves. We therefore discuss the significance
of the results we have seen with this purpose in mind.

The duration of azéresent day tokamak discharge is
typically several times - that of ’the average particlc
confinemént |timé. For>veﬁamp1e, for ‘the ST experiment,
particle:confinement'timés réaching a maximum of 13-14 msec
were reported for dischérges lasting atileast 50 mséc [19].
Since the plasma density remains roughly constant for a
large portion of the dischérge, the implication is that the
plasma outflux is recycled gf the boundary, presumably as
"cold" neutral hydrogen. Thé same recycling behavior is
expected to be seen in.future machines. 1In the computer
modeling of this process, the rule is usually chosen that
the cold neutral influx sﬁould match the total particle
outflow at the plasma edge. " Due to problems in implementing

the balance, however, the total number of plasma particles



is not held constant to better than about 10% in a computer
run, whiéh is considered adequate [1]. For a typical ST
discharge the total particle outflux 1is divided about
equally. between chafged particles and neutrals [23]. The
30% greater neutral outflux .level (see Table VI) predicted
by the generation method will therefore overestimate the
total particle outflux, by a factér of 15%.

The total outfluxed power carried by neﬁtrals, (shown
in Table IX), shows a similar trend. Charge exchahge losses
in ST are comparable to those of radiation (each about 25%
of the total 1losses) [22]. Therefore the additional 40%
neutral.power loss given by the generation method represents
an increase in total power outflux_ by about 10%.
Experimentally determined typical charge exchange power
losses for the ST tokamak are estimated by Hinnov [23]. 1If
both the generation and multigroup results are scaled
separately to neutral source densities which yield his
reported outflux level (2.4 x 1016 cm'z sec"l) then Table X
is derived. Both methods are seen to agree well with
experimental observation.

It will be recalled that the greatest déviations
between” the generation and multigroup methods occurred for
the caleulation of the neutral density. The discrepancy
will have a pronounced effect for a beam driven system such
as TFTR. The probability of charge exchange of a hot beam
ion is directly proportional to the background neutral

density. The ensuing hot neutral, if it escapes from the
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system, takes with it nearl; all the energy of the original
beam neutral. In the cése of the ATC tokamak [24].
calculations show that thé sﬁrface‘ energy loss due to this
mechanism is an order of maénitude greater than that due to
escaping background -neutrais [25]. More importantly this
rep?esents ~ 50% of the original beam injected _bpower and
over 30% of the totai input  power. ATC plasma
characteristics are not'uﬁlgke those of the ST tokamak (e.g.
a ~ 17 cm, Timax = 420 eV. for the ©beam injection phase).
For a computer simulatioq_ of ATC" therefore, a 30%
overestimation of the beaﬁ gharge exchange outflux due to an
increased neutral populétion throughout the plasma (as
implied from the results of_Fig. 4(a)) would be significant.

Perhaps the most dqlé;erious effects neutrals have on
tokamak éperation are the first wall sputtering damage
caused by the fast charge exéhange neufrél outflux and the
introduction of the sputfered impurities into the ﬁlasma.
The fitted energy—dependent sputtering yield curve of
Meade[26] is multiplied by the calculated neutral outflux to
obtain the sputtering rateéz presented in Table XI. The
neutrals are incident on a stainless steel vacuum wall
located at the outer bouﬂdaéy. In general the multigroup
sputtering rates are lower, with most of the difference
accounted for by lower outflux levels.,

An interesting trend ié seen when the entries labeled

Normal Incidence are compared with those 1labeled Angular

Incidence, The former assume the sputtering yield is
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independent of angle, and are calculated using Mead€s normal
incidence curve for - all angles. However, the theory of
Sigmund [27] predicts the sputtering yield should be
approximately propqrtional to 1/cosé where 6 is the angle
from the ‘surface normal. (This theory is supported by
measurements by Summer [28] of  sputtering by 12 keV D+ on
niobium:.) When this angular dependence is included in the
calculation, there are pronounced effects on sputtering
rates. 'If the calculated angular distributions of neutrals
at the wall weré identical, a wuniform increase would be
expected. As it is, multigroup results increase by ~70% and
~ 115% for the ST and TFTR cases, respectively, while there
arc ~ 18% and ~61% increases given by the generation
method., The effect is greater fér the multigroup method
because the l/éose term increases the weights of neutrals
with angles closer to a grazing incidence; these are present
in greater proportion in the multigroup solution. This is
beéause many neutrals originate from directions down the
length of the cylinder and from volumes close to the surface
(from - first generation charge. exchange) that are not
considered explicitly in the 2-D disk geometry of the Diichs
code. -The angular sputtering effect is larger for the TFTR
plasma than for the ST because the inéreased density and
tempergture leads to enhanced formation rates of charge
exchange neutrals closer to the wall surface. Of final note
is the increase in the sputtering rates, with or without the

angular term, from the ST to TFTR machines. Although the
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neutral outfluxes are comparable, the harder TFTR spectrum
is distributed closer to the sputtering yield peak
(~ 4 keV), which accounts fof the order of magnitude

difference.
6. CONCLUDING REMARKS

The multigroup method has been fdund to be an
effectiveuway of treating neutral atom transport in tokamak
plasmas. The primary advantage of the multigroup method
(over other neutral treatmenfs) lies in the greater accuracy
of the solutions that are:'obtained. We refer here to a
fewer numbeerf approximati§ns apd simplifications used 1in
all. aspects of the probieﬁ (e.g. cross section behavior,
angular variations, problem. convergence, geometry, etc.).
In particular!we demonstrate: this to be true in the case of
the widely used generation.méthod.

To determine the practicality -of wutilizing the
multigroup method as a'neutrél tranébort moduie (in a larger
plasma code) we compared oﬁr results with those of the
generation method. Test éages with significantly different
plasma characteristics were éhosen. Given the greater rigor
of the multigroup method it isa possible to check the
accuracy of the generation treatment, . In this regard we
conclude that the generation method is sufficient to within
a factor of three for the prédiction of neutral densities.,
Paramefers relating to the neﬁtral outflux agree to within

about 40% for the types of plasmas we have studied. We find



7]

- 33 -

that these discrepancies may .be of significance when a
neutral transport module 1is used in conjunction with a
plasma simulation code. We additionally observe that_the
multigroup results are more favorable for tokamak operation
since the calculated neutral densities are lower, as are the
charge exchange neutral outfluxes.

Fronm the results of the comparison study, the
disadvantage of the multigroup method appears to be in
execution time. However, it was shown that a relaxation in
operating parameters, with the inclusion of several
supplementary time reduction techniques, could 1lower the
multigroup run times by over two orders of magnitude to a
level comparable to that of the generation method. For this
case the multigroup results were additionally observed to be
in better agreement with the neutral benchmark run. The
multigroup method is therefore an attractive alternative for
a transport module application. It 1is recalled that the
generation method in its present form (a reiatively quick
procedure) requires more than 80% of the total Dichs code
run time. To better this existing level with mulfigroup
discrete ordinates methods for the general transport problem
would be difficult. We have seen though that the
reliability of the generation solution may be questionable
for plasma configurations of future interest and so it may
be advantageous to adopt a multigroup analysis or modify the
present treatment. The replacement of the exponential
attenuation factor by the Ki_, function should benefit the

1
generation method if the latter course is chosen, If'this
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is the case, multigroup discrete ordinates methods can
continue to serve as a benchmark for the normalization of

any such revised procedure,
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APPENDIX

To follow the approximations introduced by the Dichs
generation method in treating the exact neutral transport
problem we substitute equations (3) and (4) into equatio.n
(2) and solve iteratively for the angular neutral density of
the next charge exchange "generat@on" (ng+1) in dE abput E

and d§8 about & as

o s!
a9t " ' N. (r-s"Q)<ov> __(r-s"Q,E)
\ I'lg 1(£l§£IE)dEdQ =f ds'! exp ["/dS" < 1l — —_ CTeox ‘= Sy
- - V .

o o

(A1)
+

N, (r-s"Q) <OV> oy (£-S"Q,E)>J
v

N. (x-s'Q)

4dmv

X h; (r-s'Q,E) f n?(r-s'Q,0' ,E") |v-v’ |OCX(|!-Z' | YAE'dQ'dEAQ

EI.}&I

wherec we have noglected ion impact ionization, (a good

approximation for E < 10 keV), and have identified

)= ' ' ' deE'aq’
<ov>cx(£,E) = fhi(_{,E ) |v-v'{ ccx(|\l—! [ 4Tr_ (A2)
E',Q'
o @m = [ b @yl oy (vev]) QA (g

E',Q"
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The third 1line of equation &Al) represents the source of
charge exchange neutrals for the g¥1 generation., The sourée
is a function of the angle Q becausé of the coupling between
2 and ' in the relative veiocity 'X - Xil and the general
angular dependence of ng(g')'(the angular density of the
current generation). A great deal of simplification can be
realized, however, by effectively eliminating the
dependence. There are several physical situations which may
juétify this assumption (not mentioned in Ref. [1]).  The
first has been noted before, namely, that the charge
exchange cross - section écén be approximated as 1in
equation (7). Alternatively,:it can be assumed that the
energies of the neutrals aré~éither. much greater than or
much less fhan those of the target ions (which will occur in
certain regions of the plasma).' This permits the following:
(lv-v'|) . v'a__ (v') for

V=¥ [0y

or ' ' . (A4)

(|lv-v'|) & vo_ (V) for v >> v' .

"lzfz'lo cx

cx
A final possibility assumes that' the angular density of the
previous generafion of neutrals is isotropic (independent of
@").. This would be the. case in an infinite homogeneous
medium problem. Any of the a;sumptions allow the decoupling
of the angular integral in<the source function which leads

to an approximation for the new charge exchange source as



-41-"

N, (r-s'®) .g 4
v b (z-s'2,E) [ n¥(x-s'Q,R',E") [¥-v' |0, (lv-v'[)dE'AQ'dEAQ
El'&l .

Ni(—E—s'g) g ' ' ' ' dQ'dE’ dtdQ e
. - v - T - -— —_— <
-—m—hi(ESEIE)!n (x-s'Q,E") [ |v-v'[o_ (lv-v']) = 4

' Q! ) ’
where n%(g—s'g,E') = /~ng(£-s'g,g',E')dg'. The  Duchs

treatment additionally assumes that the just born neutrals
are monoenergetic with a kinetic energy related to the local
ion -temperature at the point of creation. This
speéification implies that the ion distribution function is

approximated as
h, (£-s'Q,E) = 8(E-KT, (z-s'Q)) (A6)
The energy distribution of the current generation (ng) is

also specified, assumed monoenergetic and represented by

n9(r-s'2,E') = n9(z-s'Q) s (E'—kTg(E—s'Q_)) . (A7)

The '"temperature'" at the radial position r is given by
averaging over the temperatures of the neutrals that reach

the point r. 1i.e.

L}

9+ (p) =fTi(£"S'9) dn? (r-s'Q) /nng'l(E). . (A8)



_42._.

Equations (A3), (A6) and (A7) are substituted into

equation (Al) and the integratibn over energy 1s performed

to give
< N. (r-s'Q)
2hz,man = fastan L= 09 Gmst) T, (o8 0)
‘ i
° (A9)
s' ,
N. (r-s"Q)<ov>_(T.) N (r-s"Q)<ov> . (T.)
x exp [—;/és"( it= ; cx_i° | e’ = —V ei'"i )]
o) i i
where
I e _ i g, ; ' aqa’
SOV g (£m8'R) -fG(E'-kT (z=s'Q)) |v;-v lo (Jv;-v') a&' 9&°  (aqq)
El’gl
and .

2KT, (£-s 'g)>.1/2

Vi(EfS'Q) = < m,
. i

. (A11)

Attention is now brought to the evaluation of the
angle integrals of equation = (A9). Since the calculation
will be carried‘ out 1in infinite cylindrical geometry (one

space dimension) the solid angle is given by

2w 1 , :
fdg=f_d-’e fdu (A12)
-1 .

(o)

where
Q . £ Q . Z

cos 8 = T E W= T = cosd . (A13)

The orientation of the anglés is shown in Fig. A.1. The
unit vector £ is assumed to lie® in the x-y plane. When * the
integration over Q is performed for equation (A9), s" and

s" refer to line integrals along thi€ direction {. The line
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integrals can be simplified to in-plane distances (s' and s"

in the x-y plane of Eig. A,1(a)) by noticing that

1)
ds' = d s -
1 -~ y”
as" = —ds— .
1 - u2

(A14)

Using eqhations (A14) and integrating over {, equation (A9)

becomes

o2 1
) =/ /ng+l(£,_sz_) duds
o -1

27 1 P(r,0)

(A15)

' N.(r—;'ﬁ) ; ~ ~ A
/ f f as 1= = n9(r-s'Q)<ove (r-s'Q)
Vi - - CcX - -
- P" (r)
Pn (E) .
¢ exp [_./' a s (Ni<£-5"9><°V>cx(Ti) | No(z-s") <ov> (1 ))]
V1 - w2 Vi Vi
P'(s")

A
where the line integrals are now over s' and

limits are given in Fig. A.1. Since ng(g) is independent of

ﬁ, the integral over the variable p may be brought out of

equation (A15) to yield an integral of the form:

1
I (s ) J/
-1

exp —[ Lo (s")
2

-u 1-u

S" and the

(A16)
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where we have identified the 6ptica1 depth as

p" (£)
—atO _AuA \.
o(ary = /d;.. A<Niy(£ ST <ovrox(Ty) |, Nelmms"<ov>, (Ty) )

[ ]
v, v,
i ~ ' i }

P'(s"')
(A17)
To perform the integral of equation (A16) we introduce the
convenient change of variables:
wo= tanh t (A18)
which allows equation (A16) to be written as
w N
- . exp [-p(s')cosh t] - X
I(s') = 2 j{ coeh © dt 2 K$l(p) (AT9)
, O
where Kil is identified as the first repeated integral of
the Bessel function [10].
With the results (A19), equation (A15) can be
simplified to the form '
moP(r,e)
. N-(r_s'Q) ~ ~ A ~ ~
g+l =| 48 1= " = 9irear0) <57 .
v _/ m | T N EmstR)<OV, (2ms) Kip(e(sT)ds' (ag)

o P"(r)
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where we have used the fact that the solution will be
symmetric about 6=m.

The compiicated dependence of Ki1 on p can be
approximated (to within 16%) by the exponential function in
the range .4<p<1; as seen from Fig. A.2, which corresponds
to the optical depth of many plasmas (e.g. for ST p ~ .8).
However, most plasmas of future interest (bLT, TFTR,
ALCATOR) have optical depths p > 3. For this range the
exponential approximation is no longer valid.
Notwithstanding this restriction, the exponential

approximation allows equation (A20) to be reduced to

m P(r,0)

N.-(-r—;'g’i) A A A A ~
+1 dae r-s'i — —o(s') "
ng (E) ,=] _TT_[_:LT__ ng(£’5'2)<0V>cx(£_-S'Q) e p(s )dsl .

0 P" (_I;)
(A21)

Equation (A21) is the approximation to the integral
Boltzmann equation that 1is solved for the neutral atom

distribution by the generation method.
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ST o TFTR
T (cm) " : 14 15 85
T, (eV) 490 9950
Ty (eVv) . 1o 50
o 2 2
‘“NO (Cm_s) .IZL%‘X 1013 . 4.0 x 1013
| Ng (cm—s) 3.0 x 1012. 1.0 x 1033
B 2 3

TABLE I. Parameters for the fits used to determine
plasma densities and temperatures in
- equation (14).

-~
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# Total Relative Avg. Energy Iteration
Groups Attenuation of Outflux Time*
(eV) : (sec)
11 4.82 x 10° 2185 16.08
31 5.29 x 10° 1854 75.24
50 5.32 x 105 1836 113.88

*IBM 360/91

TABLE II. Comparison of Grbup Structure (fFITR Configuration
PO, 88).
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ST TFTR
Geometry Infinite Infinite
Cylinder Cylinder
Minor Radius (cm) 14 85
Spatial Intervals e1t] 09
Temperature Zones 99 99
Plasma Temp. On axis 4.99 x 102 9.99 x 103
2
Te = Ti (eV) LAt edge -2.08 x 101 2.49 x 10
. - . 13 13
Plasma Density [On axis 3.00 x 10 4.99 x 10
N, = N, (cm™>)| At cdge 3.56 x 1012 1.12 x 1013
Nominal Energy of 3 3
Source Neutrals (eV)
Order of Scattering 0 0

Expansion

Order of Angular

Quadrature

Energy Groups

(Isotropic)

31

(Isotropic)

31

TABLE III.

Summary of ﬁarameters for the discrete

ordinates transport code ANISN used for
the multigreoup solution.
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ST

TFTR

(eometry
Minor Radius (cm)
Spatial Tntervals

Temperature Zones

Plasma Temp. [ On
Te = Ti (eV) | At
Plasma Density [ On
Ne = Ni (cm_B) | At

Nominal Energy of

Source Neutrals

Charge Exchange

Generations

Reporting Energies

axis

edge

axis

edge

Planar Disk
14
99 .
99

4.99 x 102

5.08 x 10%

3.00 x 1033
12

3.56 x 10

10

10

Planar Disk
85
99
99

9.99 x 10°
5.49 x 10°

5.00 x 103

1.12 x 10%3

10

10

TABLE 1IV.

Summary of parameters for the neutral

transport module of the Duchs code
(Generation method).
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Scattering_  39;ative_ o _Ave;agé Epeygy Iterqtion*
Approximation "Neutral Density of Outflux 'Time.(sec)
' ‘Attenuatioh (eV)
P, 5.29 x 105 1854 75.24
P, 5.29 x 10° 1805 84.84
P, '5.26 x 10° 1805 143.58

TABLE V., Comparison of the Order of Scattering Approximation
31 Groups, *IBM 360/91).

.(TFTR Configuration, S

8’
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ST TFTR
b ﬁeutral Density )
at Edge (cm—s) 1 x 1010 1 x 1010
Neutral Density .. | G 1.57 x 108 . 5.59 x 106
on Axis (cm_3)'f “- M| 1.10 x 10° 1.93 x 10°
Outflux of Charge. | G| 4.10 x 10%° 4.53 x 107°
Exchange Neutrals = | M| 3.12 x 10%° " 3.25 x 10°°
2 -1 - :
(cm - sec )

Average Energy G| 321 :1879
of Outflux (eV) M| 302 1865

TABLE VI. Summary of neutral results for the comparison study..
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;

’ ST
.Ruh G:_ ~ 6 ~ 6
LTime~ *
tsec) M ~ 120 ~ 170

TABLE VII? Comparison of Code Execution Times

*Iteration Loop.

IBM 360/91.

on the

iy



Y -—

&
Relative Average Cutflux Sput. Rate Outflux Execution
) * *
Density Energy of Current Normal Inc. Fower TimeT,(sec)
: - - -9 -
Attenuation Outflux (eV) (cm 2 sec l) (cm 7 sec 1)
. - 3 - - 15 - ‘12
Benchmarx 5.17 x 10 1866 3.20 x 10 6.82 x 10 853 167.7
: 3 15 12
10 Plasma Zones 4.98 x 10 1906 3.21 x 10 6.87 x 10 875 97.9
Relaxed Operating 3 - 1Al 12
Parameters 4.78 x 10 2255 3.27 x 10 7.71 x 10 1054 2.28
Line 3 with Restart 3 - 15 12
end Limit = 1 4,71 x 10 2257 3.27 x 10 7.71 x 10 1053 1.14
. . 3 0 15 . )
Gereration 1.79 x 10 1879 4.51 x 10 10.3 x 10 1212 ~ 6

10 -3

* Normalized to a neutral edge density of 1 x 10 cm

t IBM 360/91

TABLE VIII.

Comparison of time reduction runs for the
TFTR Plasma.

_Eg_
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ST

TFTR
_Neutral.Density4 A
at Edge (cm ) { 1.0 x 1010 1.0 x 1010
Power of ' 11.89 . 1211 s
{Outfluxed Neutrals | 8.461 864.4
(kW) '
TABLE IX. The power of outfluxed charge change neutrals

10

normalized to a neutral edge density of 1 x 10

-7



.y
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(Experimental
Observation)

Hinnov Generation Multigroup

70 69.6 64.9

TABLE X.

Charge Exchange Power Loss for the ST
Tokamak (kW), with each method normalized
to an outflux level of 2.4 x 1016 cm-2 sec—1,
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ST TFTR
Neutral Density
at Edge (cm o) { | 1.0 x 101° 1.0 x 1010
o _ Ao 12 A 13
Total Sputtering G| 1.47 x 10 4 1.04 x 10
- =2 =1 ' - 12 13
Rate (cm - 'sec ) Mj 1.04 x 10 .69 x 10
Normal Incidence -
Total Sputtering Gl 1.73 x 1012 1.67 x 1013
-2 -1 12 I3
Rate (cm - sec 7)) M| 1.79 x 10 1.49 x 10
Angular Incidence
TABLE XI. The total sputtering rates for neutrals incident on a

stainless steel vacuum wall.
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Fig. 1. The charge exchange reaction rate (vocxcm3sec-l)

vs. hydrogen atom energy.
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Fig. 2. Plasma temperature (T = T, = Te) and density

(N = N; = Ne) profiles for the (a) ST and (b) -TFTR Tokamaks.
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Fig. 3. Semi-logarithmic plot of the fraction of total

particles in a Maxwellian flux distribution (A) up to the
normalized energy Xx.
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Calculated hydrogen atom densities for the (a)

ST and (b) TFTR tokamaks vs. distance from the cylindrical
axis. The results are normalized to a neutral edge densi-

ty of 1 x 10

10 cm_3.
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Fig. 5. The spectrum of outfluxed charge exchange neutrals

at the outer boundary (r = 14 cm) of the ST tokamak vs. hydro-
gen atom energy. The total outflux is normalized to unity.
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Fig. 6. The spectrum of outfluxed charge exchange neutrals

at the outer boundary (r = 85 cm) of the TFTR tokamak vs. hy-

drogen atom energy. The total outflux is ncrmalized to unity.
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Fig. A.l. Orientation of vectors for the integration of
equation (Al5) in infinite cylindrical geometry. The vectors
in (a) lie in the x-y plane. In (b) the x axis is into the

paper.
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Fig. A.2. The ratio of the First Repeated Irtegral of the
Bessel Function (Kil) to the Exponential Functicn (é—p) for

values of the argument.
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