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Abstract

The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high

• intensity (above 1018W/cm 2) laser waves, is investigated. The Compton harmonic resonances

are identified as the source of vaz-ious stochastic instabilities. Both Arnold diffusion and

resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of

the electron distribution function, is derived, and the associated collisionless damping coefficient

is calculated. The implications of these new processes are considered and discussed.
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1 Introduction

The basic physical processes involved in laser-plasma interaction, up to 1017 W/cm 2, are now well

understood, on the other hand, a large number of issues remain open in the study of the relativistic

interaction regime above 1018W/cm 2.

Most of the theoretical results pertaining to this relativistic regime have been obtained with one

dimensional waves, 1 but little is known about the plasma dynamics in electromagnetic fields which

have a two-dimensional structure. Recent advances in pulse compression 2 now make possible the

exploration of laser-plasma interactions, at fluxes above 1018W/cre 2, thus, there is a clear need to

identify, and analyze the issues relevant to this ultra-high intensity regime.

This paper addresses this issue of two-dimensional effects and presem a general, comprehensible,

study of the various stochastic instabilities which come into play when an ultra-high intensity, two-

dimensional, electromagnetic wave interacts with an electron population.
o

So far, the only two-dimensional effects _ hich have been predicated are collective processes,

such as self focusing. 3 In self focusing studies, one usualy assumes that the single particle response,

to the various waves, is adiabatic, and can be analyzed on the basis of the ponderomotive force

arising from the finite transverse size of the light beam. The orbital stochastic instabilities, presented

here, are complementary to this adiabatic case, here we identify and study the impact of transverse

resonances which break down the adiabaticity.

First, we will identify the Compton harmonic resonances which arise as a result of the

nonlinearity of the relativistic orbit. Despite ali the studies on spontaneous, and stimulated, Compton

scattering, 4 these resonances are identified here for the first time, because ali the previous works

were restricted to one dimensional co-propagating waves, or dealed with the the fundamental

resonance rather than with the harmonics, or do not consider the regime above 1018W/cm2



Then, we will investigate the stochasticity conditions, derive the quasilinear theory describing the

evolution of the electron distribution function, and calculate the associated collisionless damping

,, coefficient. We will carry out this program for linear and circular polarization. Both, the

identification of the Compton harmonic resonances (and instabilities), and the derivation of the

related kinetic theory, are me main new results of this paper.

Compton harmonic resonances appears, in the relativistic regime, despite the fact that the waves

are travelling at a vetocity far larger than the electron one (they must notbe confused with relativisic

Landau resonances arising as a result of the beating of several transverse waves), and can be viewed

as some kind of cyclotron harmonic resonances between the "figure 8" (in the linear polarization

case), or the circular orbit, (in the circular polari_ation case) nonlinear relativistic orbit, and the laser

waves. As in the simple cases of Landau, and cyclotron interactions, above a given threshold,

several of these resonances can overlap, and lead to a stochastic instability. 5

" But, for the Compton harmonic case, even in the simple configurations investigated here, the

associated dynamical system has _ degrees of freedom, thus the resonant tori are topologically

connected in phase space. As a consequence, Arnold diffusion takes piace, even for very small

perturbations. 6 Both, Arnold diffusion, and quasilinear diffusion, result in particles stochastic

acceleration.

The nonlinearity parameter of an intense electromagnetic wave, with vector potential A, is eA/mc,

-e, and m are the electron charge, and mass. In the following we will use e=m=c=l

When A reaches one, 101SW/cre 2 for visible light, the quiver velocity becomes relativistic,

nevertheless, the relativistic motion in a one dimensional wave is integrable. 7 The electron orbit is

the combination of an uniform translation with a nonlinear oscillation.

• The relativistic effect manifest itself through the anharmonicity of the oscillatory part of the

motion, the well known "figure 8" orbit for linear polarization, and the circular orbit for circular



polarization. In the average rest frame, where the unifom_ translation cancels, these orbits are
/

depicted on Figs. l(a), and 2(a), while Figs. l(b) and 2(b) corresponds to an arbitrary motion.
/'

/

But, usually, electromagnetic waves are superpositions of several plane waves, with different "

directions of propagation, thus, the field is intrinsicaliy two-dimensional. Such a generic situation

includes the cases of a set of focused beams, a Gaussian beam, or a pump wave with its Raman

sidescatters.

In order to understand laser-plasma interaction at intensities above 1018 W/cm 2, the very first

issue we have to address is the single particle behavior in the fields of these two-dimensional,

intense, laser waves.

We will demonstrate that, in two-dimensional, multiple waves, configurations, an irreversible

energy transfer, from the waves, to the electrons, can take piace as a result of two types of stochastic

instabilities: strong, local, instability resulting into quasilinear diffusion, above a given threshold,

and weak, widespread, instability, giving rise. to Arnold diffusion, regardless to any threshold

condition.

This paper is organized as follows. In Secs. 2 and 7 we review the results pertaining to the

relativistic orbit in infinite linearly and circularly polarized waves. We cast these results into an

Hamiltonian form suitable to a further identification of the Compton resonances. Then, in Sec. 3

(Sec. 8 for circular polarization) we investigate the impact of transverse perturbations propagating at

some angle with respect to the one dimensional driving wave considered in Secs. 2 and 7. The

Compton harmonic resonances are identified in these sections. In Sec. 4 we describe the various

instabilities arising as a result of these resonances. Both Arnold diffusion and resonance overlap are

considered. The quasilinear kinetic equation describing the evolution of the electron population in the

stochastic regime is then derived in Sec. 5 (Sec. 9), and the collisionless damping coefficient due to
t

- the transfer of energy from the waves to the electrons is calculated in Sec. 6. In Sec. 10 we briefly



consider the implications of these new instabilities outside the laser-plasma interaction context, i.e.,
'b

in astrophysics, then we summarize the results and conclude the paper.

O

2 Electron orbit in an intense one dimensional

linearly polarized wave

The motion of an electron in a one dimensional, infinite, linearly polarized, wave is integrable. 7 In

this section we will briefly review this important result, and cast it into an Hamiltonian form suitable

to a further analysis of the two-dimensional Compton resonances.

Consider a linearly polarized wave, with vector potential A, propagating along the x axis,

A(r,t) = A cos[f2(x-t)] ey. (1)

We consider a wave travelling at the velocity of light, in order to isolate pure Compton resonances,

not mixed with relativistic Landau processes. In the following calculation we will take x'-2= 1. The

_- relativistic, orbit of an electron interacting with this wave is the well known "figure 8" motion,

drifting in the polarization plane. This orbit is depicted on Fig. 1. As the z degree of freedom will

not be excited by the perturbations, the _nomentum along this z axis is taken to be zero, and will

remain unaffected by the resonances and stochastic instabilities investigated in this paper.

To characterize sucb a driven electron, let us average out the oscillatory part of the motion. The

remaining uniform translation is thus described by a parallel momentum, along the wave propagation

direction, x, PII= <Px>, a pelpendicular _rlomentum, P.t.=<py>.along the polarization direction, y, and

a relativistic energy, E =<y, (<> stands for the averaging over the oscillations). Note t_'_t the variables

PII,P-t-,E, are not independent and fulfil a dispersion relation, to be given later.
tl

-i



The interest of these variables, PII, PI, E, is twofold, first, they have a clear physical ¢.

interpretation, second, as we shall see, they provide a simple set of actions to perform the analysis of

the instabilities, and to derive the quasilinear kinetic theory. ,,

The motion of an electron in the intense wave Eq. (1) is an Hamiltonian time dependent problem,

thus, we have to extend the phase space, in order to get a conservative Hamiltonian system. The

time, t, will be the additional configuration variable, and minus the relativistic energy, 'Y,will be its

canonically conjugated momentum. The Hamiltonian is:8

Ho(r,t,P,- Y)= 1 + p2 . ¢ = 1 + [P + A(r,t)] 2 -¢. (2)

p is the the usualmomentum, i.e., the proper time derivative of the position, and P is the canonical

momentum, i.e., P=p-A. We can check, with the help of the implicit function theorem, that the

orbits on the surface, I-to=O, 7 >0, correspond to the real motion.
,j

- OHo/0Y- Or (3) -'
OHo/0P
_Ho/_)7 - _-i_ •

Instead of the configuration, (r,t), momentum, (P,-y), variables, we will use a set of actions (P±,

PII, E), angles (0, cp,¢). To perform this canonical change of variables we use the generating

function S:9

P_LA A2

S(P_L,PII,E,x,y,t)= Pllx + Pj.y-. Et- PI_ sin(x-t)- 8P11_8E sin(2x-2t). (4)

The momentum, p, can be expressed as, p = P + A= _S/_r + A, so that we recover the usual

drifting "figure 8" solution.



Note that some textbooks give the nonlinear oscillation solution in the average rest frame, without the
li

complementary drift motion, described by PIIand P.L, which is of crucial importance to understand

,. stochastic instabilities, and quasilinear heating, due to Compton harmonic resonances.

With, Px = as/ax = PII- [P±A'/PII'E] cos(x-t) - [A2/4PII-4E] cos(2x-2t), py = as/ay + A cos(x-t)

--- P.L+ A cos(x-t), -y = as/at----E + [Pj.A/PII-E] cos(x-t)+[A2/4Pii-4E] cos(2x-2t), it is

straightforward to check that, PII- <Px>- <Px>' P-L=<PY>=<PY>' E =<y_, as stated previously. Then,

after some algebra, the unperturbed Hamiltonian Eq. (2) can be expressed in terms of these actions

variables describing the drift of the "figure 8".

2 2 .E 2
H°(P±'PII'E) = M2+ PII + PJ- (5)

We have introduced the effective mass, M, of the electron in the field of the A wave. This effective

mass is an important concept of both classical and quantum electrodynamics in strong field. Among

" other processes, M, is responsible of a nonlinear frequency shift in strong field Compton scattering,

and of the enhanced penetration of intense waves in dense plasmas.

A2
M2 = 1+ T (6)

The PI, PII' E variables describe tori in the phase space (r,t,P,-7), or (Pa., PII'E, 0, q0,qb),and those

tori on the upper sheet, E > 0, of the hyperboloid, Ho= 0, correspond to the real motion. Thus the

energy momentum dispersion relation, of an electron in the wave A, writes:

/

E(PII,P±) = _ M 2+ P_ +
p2.1.' (7)
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Having reviewed this reitult, pertainingto an ideal infinite one dimensional wave, and cast it into an
i

Hamiltonian problem with the drift variables, we now have to adress the issues of real laser waves

which are not one dimensional. "

3 Compton harmonic resonances in an intense linearly

polarized wave

To address these issues' let us consider a generic transverse perturbation, a second wave, a, in the

same polarization plane, propagating at some angle, ct, with respect to A.

a(r,t) = a [cos(a) ey- sin(ct) ex] sin[kllx+ k.l.y- cot]. (8)

In the case of intense laser waves packet the frequency of this perturbation will be of the order of

the the pump frequency, co=f,_, and the angle ct determined by the propagation direction,

ot=arctg(kl_/k.l_). However, in order to make the study quite general, we will not specify the

frequency and dispersion properties of this perturbing wave. The Hamiltonian of an electron

interacting with both the A and a waves is:

H(r,t,P,-'y)=l+ [P + A(r,t) + a(r,t) ]2. T2= Ho + 2[P + A(r,t)].a(r,t). (9)

As we are performing a perturbative analysis with respect to a, tile a2 term is neglected on the right

hand side of the second identity. With the help of Eq. (4), we can express this Hamiltonian in terms

of the actions (P±, PII,E), angles (0, % d_)variables. To carry out this program, we express the old

configurations variables as follows: x= q_-[P±A/(Pli-E)Z]sin(q_+_)-[A2/8(Pli-E)Z]sin(2q_+2_) , y = 0+

[A/PII-E] sin(q_+00),t =-¢ -[P±A/(Pii-E)2]sin(q_+¢) - [A2/8(PII-E)2 ] sin(2q0+2qb).After some algebra,



. the final result can be expressed as a ,mm of harmonic interactions weighed by a combination of

Bessel functions.

H(P.t.,PII,E,e,qo,_) = Ho(P.t,PII,E)+ a VN(PI.,PII,E) CoS[klIq_+ k.Le + ¢o_+ N (Cp+ _)] (10)
N

The N sum is to be taken over all the integer. Note that, for a copropagating wave, o_= kj. = 0, and

kll- _, we recover integrability up to a new canonical transform. The amplitude of the Nth resonant

term is given by:

VN = 2,g_+m+2nUhJm [ AP-I-(to'kll ) k.LA
hmn (I'll"E)---_ + _'11"_]Jn[ 8(PIi.E)2m2(m'kll)]J,' (11)

where the m, n sums over the Bessel functions, J, are to be taken over ali the integers, and the h sum

is to be 'estricted to 0, _+1,+_.2.8_are the Kroneker symbols. Despite its apparent complexity Vn can

" be easily written in terms of the generalized Bessel function, CN, which has been widely used, and

investigated, in the context of strong field quantum electrodynamics, l0

_ y, [-AP.L(CO-kll)klA A2(m-kll)]VN - _UhCN'ht' _ + pl-_.E, .-_lr_)2 J, (12)
Ihl =0 1 2

A review of the basic properties of C N, as well as a small argument expansion, relevant to the A-1

regime, are given in the appendix. On the other hand, Ihe Uh coupling coefficients involve the wave

polarization in a simple way,

P.l.sin(ct)
U, = 2 _[Pt.cos(o0-PiIsin(c0] + A 81LI [cos(c0+ ] + A2 _hl sin(cOPirE 4(Pli.E) (13)



10

We can try to solve the Hamilton equations associated with Eq. (10) with the standard perturbation

technics, i.e., we plug the unperturbed motion in the argument of the perturbating cosines, on the

right hand side of Eq. (10).

0 = 2Pis
cp = 2Piis (14)
¢ = -2Es

Where s, the time associated with the extended phase space, is, in fact, two times the proper time of

the electron. Such a perturbation scheme fails to converge, because of the occurence of small

resonant denominators, when the cosine of the phase remains stationary.

On the basis of Eqs. (10) and (14), this stationary condition gives the Compton harmonic

resonances:

kllPII + k± P.L- o)E - N f2 (E- PII) = 0. (15)

,.a

This simple equation is indeed a new result. Before pursuing further the analysis, we must

identify which part of the phase space is to be investigated in order to address the issues of high .

intensity laser plasma interaction in the range 1018-1020W/cm 2. In an experiment, the wave is not

infinite, and we are dealing with an initial value problem: a pulse with a front passes an electron at

rest, or with a velocity smaller than c. This electron enter the wave, and because of the relativistic

ponteromotive forces, it picks up an average parallel momentum Pll- O[A2]' While in the pulse, the

electron behaves as in an infinite wave with an average momentum PII= O[A2], Pl_ 0. Thus, we

will concentrate mainly on the region PII'-"PJ-= O[1]. Note that, if m, NI'2, no resonances can take

piace for one dimensional co-propagating waves in vacuum, as the condition kll PII+ N f2 PII '- mE

= + N f2 E can not be fulfilled with the electron dispersion relation Eq. (7), and the wave dispersion

relation kll = co.On the other hand if co= Nra, this condition is degenerate, as it does not involve the

electron action.
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4 Stochastic instabilities in an intense linearly polarized wave

In the 6 dimensional phase space (x, y, t, Px,Py, -Y), the triplets (PI, PII' E) label a set of tori. The

unperturbed Hamiltonian is non degenerate, thus the Kolmogoroff, Arnold, Moser (KAM) theorem

ensures that most of these tori are topologically stable with respect to small perturbations, and are

only slightly deformed. 5 Although a subset, resonant tori def'med by Eq. (15), are destroyed by the

perturbations. When a (PII, Pi, E) torus fulfil the Eq. (15), the perturbing a wave modify the

topology of the trajectories, and induces a trapped domain, between separatrix. The extent of this

trapped region is given by the island half-width, in the associated Poincare section.

To calculate the extent of this trapped domain let us consider a resonant toms, (Pile ' Pie, Ec),

which fulfill the resonance condition Eq. (15). To study the dynamics, in the vicinity of' (Pile, P±c,

Ec), we isolate the Nth resonant interaction, and perform an expansion of the Hamilton equations

. near (Pile, P-t.e, Ec). To do so we introduce the reduced action, J, and angle, w.

I P II" Pile P.t." P.l.c E- E c
" J - kil+N"-_ - k_'-'- _+N'_ (16)

= kll(p + k_t.0 + 0_ + N (q_+_)

The perturbed action dynamics takes place *alongthe direction of this reduced action. J, and, we end

up with a one dimensional nonlinear oscillator.

dJ

I_s = s_n[_g]
ag N(P±c,PIIc,Ec)

(17)

_s = [2(ktl+Nf_)2+2k2..t,-2(_+Nn)2l J

The trapped domain of this nonlinear oscillator, i.e., the island half-width, AJ, is given by the

" square, root of the product of the inertia by _henonlinear stiffness. 5

t_ 'l"Pll ........ _IllPm"'llll_l " +'_' 'alr ,lr,, ,l,rp,il!_l,l_ll,,le,,..,, ,,_+_, rlql,,I,, _,., ,
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_/ 2alVNIz2kJ= [k2_t.+(kll_¢.o)(kll+0_.+.2N)I (18) "

From this relation, we immediately obtain the island half-width in action space, as, APII

=(kll+Nf2)AJ, and APa. =k±AJ. On the basis of the previous results, if we consider a spectrum of

perturbing waves, two kinds of instabilities are to be investigated.

If a <<1, the Eq. (15) defines a set of 3 dimensional tori, restricted to the 5 dimensional surface of

constant energy, Eq. (7), embedded in the 6 dimensional phase space. These resonant tori are

associated with separatrix, near which, a thin stochastic layer develops. Even if the width of this

stochastic layer is exponentially small, typically exp(-B/qZaV) with B of the order of unity, a finite

set of waves induces a weak stochastic instability, as a connected web will form on the energy

surface, Ho(P ±, PII' E) - 0, depicted on Fig. 3. Arnold diffusion takes piace along this web,

resulting in the production of a suprathermal population regardless to any threshold condition. 6

If a < 1, provided the extent of the trapped regions, near these resonant tori, is large enough to

allow overlaping, (if the sum of the island half-width becomes of the order of the distance between

two nonlinear resonances) a strong, local, stochastic instability appears, resulting in electrons

quasilinear diffusion.

The resonance condition, Eq. (15), restricted to the energy surface Eq. (7), can either be

considered as a function Pil(c0,kll,k±, N, P,k), or Pa.(c0,kll,k_l., N, Pll). Two resonances, (N) and (N'),
! !

associated with two waves, (co,kll, k±) and (co', kll, k±), overlap if the Chirikov threshold criterion:
I t

AP,k-_-AP',k> Pa.(cJ0,kll, k±, N, PII) - P,k(co', kll, k±, N, PII), or APII + AP'II> PII(c0, kll, k±, N, P.k) "
i I

Pil(c0', kll, k±,N, Pa.), is fulfilled.

A two-dimensional wave packet, propagating along x, and diffracting along y, can be

decomposed as the sum of waves propagating in the (x, y) plane. One can consider the main

component of the spectra as a driving wave A, and the other components, propagating at some

angle, as a set of perturbing waves a. For example, as a model configuration, we take a driving
I
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wave, A, and two symmetric a waves, at the same frequency, propagating at some angle ct, such

that kll= f2 cos(a), k L= ± f2 sin(a), and to = f2.

. Figure 4 displays the Compton resonances in the case, _ = _:/4, A = 1. Note that, if a<< 1, we

can identify a resonance with the stochastic layer around the separatrix, and Fig. 4 is, in fact, the

Arnold stochastic web. The resonances pattern changes dramatically if we take the case ct = 3x/4,

depicted on Fig. 5, for example as a result of stimulated, backward, Raman sidescattering. As

opposed to the previous situation, an accumulation of higher order resonances appears. Thus. an

electron starting from PII= 1 --1, PI= 0 can easily reach the high energy part of the phase space.

On Fig. 4, considering resonance overlap, the most dangerous resonances is clearly N = -1.

Taking the small argument limit of the generalized Bessel function, l0 to the lowest order in A and

ct, we obtain the following rough estirnate of the Chirikov criterion: laAct] > 1. This condition is to

be complemented by the one which validates the perturbadve calculation A > a. Thus the final

- condition writes A>a>I/A, and we conclude that, if A<I, it can not be fulfilled, i.e., a two-

dimensional wave packet, can not induce resonance overlap, below 10t8 W/cm2, but, above, if the

angular divergence is large enough, the N=-I resonances of the various components can induce

stochastic acceleration.

For the case of Fig. 5, the high energy resonance overlap, seems to be more easy to achieved,

but, irl the A = 1 regime, it is to be noted that it is limited by the fact that the distance between tile

N and N+I resonances, for large N, decrease like N-1;2,although the VN coupling scale as AN/N!.

The single particle orbit stability of various two-dimensional wave configurations can be assessed

on the basis of Eqs. (15) and (18), but, rather than carrying out such a program, let us address the

important issue of the electron pop|,lation dynamics in the stochastic regime.
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5 Quasilinear theory in an intense linearly polarized wave

A kinetic theory describing fast electrons production in the Arnold diffusion case is difficult to set

up. On the other hand, in the resonance overlap regime, the quasilinear theory provides a

description of the evolution of the electrons distribution function F(Pii,P.t.,t).

In order to derive this Fokker-Planck quasilinear equation describing the dynamics of the electron

population, F(Pii,Pa.,t), interacting with a wave spectra, a(kll,k.t.), we start from the Hamilton

equations.

1
(19)

Then, for one wave, and one resonance, we express the increments 8PII, andSP±, taking place

during a small time, St, as a function of the initial phase of the perturbation _o' Within the

framework of the quasilinear approximation, these increments are associated with the slow resonant

evolution of F, so that we can take y=E and t=2Es, and chsregard fast, non resonant, oscillations.

8I - 5PII - SP± aVN(PLPll) COS[_l/°] " COS[_'° + (klIPII+kLP'L'mE'Nf_(E'PII))St/E] (21)
kll+Nf 2 k.L - 2E kllPil+k±P±-r.oE.Nf2(E.PII)/E

In the stochastic regime this phase, Vo, is to be treated as a random variable as a result of the

existence of a positive Liapounov exponent. Thus we can apnly the "random phase

approximation" (RPA) to evaluate the diffusion coefficients on the basis _fEq. (21).

After some algebra, and the use of the identity 2sin2(u/2e)/u2=r_8(u)/e, if e -=0+, (which is

equivalent to the Landau causal prescription around the Compton pole, if we use the Laplace

transform of the Vlasov equation rather than the Hamilton equations) we obtain:

<818I> a2V2(p.LPII)
D'_I - 8t - _: 4E 8[kllPll+klP±-mE-Nf2(E-Pll)], (22)
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The bracket <> stands for the phase average and 5[kIIPII+k.I.P±-¢oE-Ntq(E.PII)]is the expected Diracb

function of the Compton resonance. Then, it is straightforward to write down the Fokker-Planck

. equation associated with this resonant diffusion process: _F/_t = I/2[_/_P].Dpp.[_/_P].F.

Where DPiiPii- (kll+N_)2Di I, DPiiP_t.=(kll+Nf2)k-l-DII, and Dpip±=k.l.k±D I I' Finally, we end up

with the following quasilinear equation ,

c?F(P"'P±'t) = Z [(k,l+Nfa)_i + k±_p-_] DN(PII,P±)[(kll+Nfl)_Pll + k±0p_] F(PII,P±,t). (23)bt N

Note that the very same equation can be obtained from a Vlasov representation of the dynamics

of F(Pll2±,e,¢p,t) averaged over (e,cp). As in the Landau and cyclotron cases, the singular character

of the diffusion tensor, i.e., the fact that it is a sum of Dirac function of the Compton resonances,

is removed through an integration of DNover the a(kll,k±) spectr,_

" _ - V2(PII,P±)
DN(PII'P-t-)= 8"a2(ktl'k±)..... E 5[KIIPII+K-a-P±'E°_'N_(E'PII)] (24)

Thus, in the stochastic regime, the pertubing waves induce a quasilinear stochastic heating of the

electron population, F(Pii,P.t_),and, on Eq. (23), we see that this heating takes piace along the

, diffusion paths:
dP± k±

_ dPI----/- kll + N f2 (25)

Equations. (23), (24), and (25) are one of the main results of this paper, they allow to describe

the electrons dynamics in the stochastic regirne. In fact, in a collisional plasma, a decorrelation

mechanism is provided by the collisions, so that the RPA, which validates this kinetic description,

is applicable even below the stochasticity threshold.

w,
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The kinetic evolution of F can be summarized as follows, as a result of the interaction of the

nonlinear resonances, near these resonances, Eq. (15), the distribution function is flattened along

the diffusion paths, Eq. (25), This quasilinear flattening of a momentum gradient, of magnitude P,

takes piace on a time scale DN/P2, so that, in the regime A= 1, a < 1, IN I= 1, o._fL the relaxation of

a momentum gradient of the order of mc occurs on a very short time scale of the order of few f2-1.

As power is exchanged between the waves and the electrons, we have to address the issue of the

wave damping resulting from this irreversible quasilinear transfer of energy.

6 Collisionless damping in an intense linearly polarized wave

The collisionless damping process that results from the quasilinear stochastic heating of the

electrons, is, in some sense, similar to collisionless cyclotron damping, as the wave phase velocity

is always larger than the electron velocity. However, here, we are dealing with a drifting "figure 8"

orbit, rather than with a Larmor circular one. Note that the driving wave, A, is not affected, but
lh'

electrons heating takes piace at the expense of the perturbing lateral waves, a. To study this

process, let us introduce the density of energy of these waves:

U(kll,k±,t) = _oc02a2(kll,kl.,t). (26)

eo is the vacuum permitivity, and, for the sake of simplicity, we have considered the vacuum

dispersion relation. The energy consevation theorem writes:

_U(kll'k±'t) _d _F(PII'P±'t)0t - + PIIdP± E(PII,P±) -_: -0. (27)

All the factor in the second term of Eq. (27) have been calculated previously. Thus, we use Eq.

(23), and, Mter integrating by part the momentum sum, Eq. (27) becomes:
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at-,,..U(.._k.t.,t)= _ _N(kll'k± ) U(kll'k±'t)" (28)
N

The sign of o_is determined by the derivative of F ,along the diffusion paths Eq. (25). Needless

to say, the sign of this damping coefficient can be either positive or negative, depending on the free

energy content of F. For a thermal distribution, we always get damping, but some inverted

distribution give rise to kinetic instabilities and wave growth. Such kinetic instabilities are, in fact,

nothing but, relativistic, harmonic, stimulated, Compton scattering.

2

._ m+N_ 2
(IN(kll'k'l') = 4" (02 f dPIIdPl E VN(PII'P'I') 8[klIPII+k'I'P'k'Ec°'N_(E'PII)]

[(kll+Na)_-_ll+k.l__l@l].F(Pl,.P±) (29)

COpis the plasma frequency, and we have used the normalization IdPIIdP±F = 1. This last equation is
d

_- important result, and provides the optical depth due to the Compton harmonic resonances in ultra-

, high intensity laser-plasma interaction problems.

7 Electron orbit in an intense one dimensional

circularly polarized wave

So far, we have restricted our studies to linear polarization, in fact, all the previous results, on

stochastic instabilities and kinetic theory, can be derived for an arbitrary polarization. However, the

resulting formulae do not bring out any new physics and look rather cumbersome.

From the experimental point of view, as the previous optical depth is rather small, the observation

of the effectiveness of Compton harmonic stochastic heating in the ultra-high intensity regime rely ota
=

the observation of the production of fast electrons. Thus we have to answer the following question'
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what is the most efficient wave configuration to observe the Compton harmonic stochastic

instabilities and the electron quasilinear stochastic heating with ultra-high intensity laser waves? This

question can be an._wered on the basis of a general study, but, it turns out that the result can be

easily found with simple symmetry arguments.

The very reason why a irremovable nonlinear resonance appears in a perturbed integrable system,

is a conflict of symmetry between the perturbing Hamiltonian and the unperturbed one. Ncether's

theorem ensures integrability as a result of a high degree of symmetry, so that, if a perturbation is

invariant under a subgroup of the unperturbed symmetry group, integrability still holds. Broken

symmetry results in the appearance of destroyed tori.

If we consider two waves, with two very different polarizations, and directions of propagation,

we can expect that a large number of tori will be destroyed. One of the simplest ways to achieve such

a configuration, is to consider a circularly polarized driving wave, and a linearly polarized perturbing

wave, propagating at right angles. We will prove that this configuration is a very efficient heating

scheme, and that the stochasticity threshold, up to N=-10, can easily be reached in the regime A---1. ,,

One can understand this as follows: in the plane of polarization, the pump wave drives a circular

orbit, although in the very same plane the perturbation want to drive a "figure 8". Obviously, the

foldi_lg and welding of an "O" into an "8" imply a change of topology which cannot be achieved

perturbatively.

The study of a circularly polarized pump is also very interesting because an intense circul,'u'ly

polarized wave appears in the radiation zone of a puls_u', as a result of the rotation of the dipolar

magnetic field of the neutron star. Values in the range A =1011 for electrons, and A --108 for

protons, have been predicted. We will briefly point out the relevance of the present stochastic

acceleration mechanism to pulsar physics, in the last section of this paper.
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The motion of an electron in the field of an infinite one dimensional circularly polarized

electromagnetic wave is integrable. Consider such a wave with vector potential:

A(r,t) = A cos[z-t] ex+A sin[z-t] ey. (30)

The orbit of an electron is the combination of a uniform translation and a nonlinear circular

oscillation, and is depicted on Fig. 2. The relativistic effect manifest itself through the anharmonicity

ot the circular pan of the motion. In the average rest frame, where the uniform translation cancels,

the trajectory is a circle in the polarization plane depicted on Fig. 2(a), while Fig. 2(b) corresponds to

an arbitrary orbit.

As in the previous case, to find a convenient set of variables, we average out the circular part of

the motion. The remaining uniform translation is characterized by a parallel momentum, along the

wave propagation direction, PII= <Pz>' two perpendicular average momentum,<Px> and <py:,,in the

polarization plane, arid an average relativistic energy E =<3,>.In fact the momentum along the y ax: s

can be taken equal to zero and remains unaffected by the resonances and stochastic instabilities

investigated in the following sections, thus, we define P-t=<px>.

In order to use a set of actions, (P-t, PII' E), angles, (0, q_,¢), variables, we have to perform a

canonical transformation. This is achieved with the help of the generating function S:9

P.tA

S(P±,PII,E,x,z,t) = P-tx + PIIz - Et - Pii.E sin(z-t). (31)

To check that this generating function corresponds to the physical definition of the average

momentum, we simply use the identities' Px = OS/_x + Acos(z-t) = P± + Acos(z-t), Pz = _S/_z =PII"

[P-tA/Pll-E]cos(z-t),-y=OS/_t = ,.E + [P±A/PtI-E] cos(z-t). After some algebra, rbe unperturbed
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Hamiltonian can be expressed in terms of the action variables describing the x, z drift of the circular
,#

orbit.

2 2 .E 2
Ho(P±,PII,E) =1 + [P + A(r,t)] 2 - y2.= M2+ Plt + P± (32) .

This time, the effective mass, M, of an electron in a circularly polarized wave is given by:

M 2 = 1+ A2. (33)

The P±, PII' E variables describe tori in phase space, and those on the upper sheet, E > 0, of the

hyperboloid, Ho= 0, correspond to the real motion. The energy momentum dispersion relation is:

2 p2
E2 = M2'+ Pll + ±'

8 Compton resonances and stochastic instabilities in an

intense circularly polarized wave

The analysis of the stability of this drifting circular motion is similar to the linear polarization case.
m

We consider a second wave, a, propagating along the × axis with a linear polarization.

a(r,t) = a cos[kx - ¢0t]ey (34)

The interaction Hamiltonian of an electron, in the field of both waves, is: 2[P + A(r,t)].a(r,t),

With the help of Eq. (31), we can express this Hamiltonian in term of the actions, (Pi, PII' E),

angles, (0, _p, qb), variables of the unperturbed motion: x=0+[A/Pii-E]sin(q0+_), z=q0-[AP±/(Pll-

E)2]sin(q)+¢), t=-qb-[AP t/(PII-E)2] sin(q)+0). The final result writes'

H(P±,PII,E,0,q_, _) = Ho(P±,PII,E) + a2 WN(P.I.,PII,E) sin[k0 +co¢ +N (qo+ _)]. (35)
N

................................................................................................................................................................................................................................ i...........ull...... ....................i......7"7...................ii......111..... _........_ ....
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The N sum is to be taken over all the integer, and the amplitude of the N th resonant perturbation can
Q

be expressed in terms of the derivative of the Bessel functions J'N'

" , kA oAPj. ]W N (PL,I'll,E)= 2A JN[i_.."2_"+ (36)
(PII-E)21"11-

Then, in order to find the re_onances, we take the tinperturbed phase motion, 0 = 2P±s, q_= 2PllS,

and ,_= -2Es, and plug it into the arguments of the perturbing sines in Eq. (35). As expected, such

a perturbation scheme fails to converge because of the occurrence of small resonant denominators

when the sine phase remain stationary.

k Pj.- o_E- N f_ (E- PII)= 0. (37)

These are the Compton resonances in a circularly polarized wave. To investigate the small

denominator problem, in the vicinity of a resonant point (Pile, Plc, Ec), which fulfill Eq, (37), we
t

introduce the reduced action, J, and angle, gr.

{ Pl' " Pile P J -kPZ"+-c E " Ee

• J- NY_ - -ro+Na (38)

, _ = kO + _o¢ + N (q)+d_)

The unperturbed Hamiltonian Eq. (32) is non degenerate, thus KAM theorem ensures that most

of the (P.L,PII,E)tori are stab!e with respect to small perturbation. Although resonant tori, Eq. (37),

" are destroyed even by small perturbations. The reduced variables, J, _, describe the the occurrence

of a trapped domain on these resonant tori.

dJ I:' "

-s = aWN(-Lc'PIIc'Ec) sln[ g] (39)A_I¢

. L_S = [2(Nf2)2+2k2"2(_'t"Nf2) 2] J
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To assess the potentiality of a strong stochastic instability we calculate the island half-width.

2alWNIAJ = ikZ_cog.2Nml (40) -

The interaction between two nonlinear resonances leads to a stochastic instability, provided they

overlap, i.e., the sum of the previous half-width is larger than the distance between these two

resonances. Let us consider A = 2, a = 0.6, k = co = ft, and calculate the resonance location, PIIN,

and island half-width, AliN,along the parallel momentum axis Pa= 0, for-12< N <-2. The Chirikov

stochasticity threshold, is fulfilled when AIIN+AIIN+1 becomes of the order of PIIN+I-PIIN,For the

f'Lrstresonances, the following table clearly shows that the stochastic regime is reached, although at

higher energy, despite the accumulation of large N resonances, stocl|asticity desapears as a result of

the smallness of the island size,

N .1 .2 -3 .4 -5 . 6 -7 .8 .9 -10 .11

_P[IN 0 1.29 2 2.53 2,98 3,37 3,72 4,04 4,34 4,67 4,88

AliN 0.93 1.09 1.07 0.92 0.72 0.52 0.36 0,24 0.15 0.09 0.05 "

Thus, Compton harmonic stochastic heating with two vacuum waves, in the intensity range,

1018-1019W/cm2, can be achieved with this configuration.

9 Quasilinear theory and collisionless damping in

an intense circularly polarized wave

Before concluding, for the sake of completeness, we will briefly derive the kinetic theory relevant to

this circular polarization case. The action increments,SPll, and SP±, taking place during a small

time, St, are obtained from the Hamilton equations associated with Eq. (35).
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SI = -_ _P.I. aWN(P.LPII) sin[ro] - sin[ro+ kP.L-toE-Nn(E-PI.t)St/E] (41)
' N_,'2- k - 2E kP.j.--tzE-N_2fE- PII)/E

If the stochasticity criterion is fulfilled, the phase gto is a random variable and the quasilinear

diffusion coefficient can be calculated with the RPA,

<SISI> a2_N(P.l.Pll)
- _ _ [kP.I..0_E-N_CE.PII)] (42)St 4E

Then, on the basis of this diffusion coefficient, we write the Fokker Planck equation, OF/Ot =

1/2[_/_P],Qpp,[_/_P],F (QpIIPII=N_E<8ISI>/St,QPiiP.l.--N_k<8ISI>/St, Qp.LP.L=kk<8ISI>J_St).

W2(PII,P l.)OF(PII,P.L,t)

Z [ND,_+ _ 8[kPL-Eo_-Nff_(E-PII)]_t - 8 a2 k ±] E
N

k_--_z],F(PII,PL,t), (43)

. The singular behavior of Q is removed through an integration over the wave spectrum, Quasilinear

heating of the population F, takes piace along diffusion paths whose equation is:

dP.L k

dPII -'N _ ' (44)

Finally, the damping coefficient of the perturbing waves, which is also the growth rate for an

inverted population, is obtained on the basis of energy conservation,

2

½ fd 2 _ k pO].F(Pll,p±)OCN(kll'k-L)=--4 _ PtldP'L E WN(PII'PL) _[kPL'E°>Nfl(E'PII)] [(NE_) + .L

(4.5)

COpis the plasma frequency, and we have used the normalization fdPF =1. Needless to say, the

results of Eqs. (43), and (45) can be obtained from the relativistic Vlasov equation in an intense

circularly polarized wave. Clearly, under typical experimental condition, the optical depth associated

o
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with this collisionless damping is very small, this is mainly due to the fact that ultra high intensity

laser waves ( a < 1) axe required, thu;_,even if a cold electron population is significantly heated up,

the relative energy loss of the wave remains very small. On the other hand, the production of fast "

electrons, in the y direction of the proposed configuration, is a clear signature of the new resonant

diffusion process described here.

10 Discussion and conclusion

The previous circular polm,zafion configuration provides one of the simplest and most efficient

ways to demonstrate the effectiveness of Compton harmonic stochastic heating with the forthcoming

ultra-high intensity laser pulses, Ultra-high intensity waves with circular polarization are also

involved in the physics of pulsar environment, so let us briefly discuss stochastic acceleration in this

astrophysical situation. ',

The high energy environment of pulsars as long been recognized as one of the major candidates to

to explain the ultra-high energy tail of the cosmic radiation spectalm. The theories of charged

particles acceleration can be roughly classified between, non stochastic mechanisms (where the

panicle acquires energy at the expense of a coherent electromagnetic structure through a regular

interaction), and stochastic acceleration (which are diffusive in nature and result from the sum of a

set of incoherent exchanges of energy between the particle and the field).

As far as astrophysical acceleration mechanisms, with pulsar fields, are concerned, only coherent

mechanisms have been considered, 11 surprisingly, the most simple mechanism, a charge

interacting with intense electromagnetic waves in vacuum, above the stochasticity threshold, has

never been put forward. For typical pulsation, lO'gs, and magnetic field, 10_ T, values in excess of

A =10 8 for a protons are predicted in the wave region of the spinning magnetized neutron star.
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. Clearly the stochastic acceleration mechanism presented in this paper is relevant to the physics in the

radiation zone. But, with such a high field, radiation reaction is to be considered, thus a slowing

_I " down term is to be added to the quasilinear Fokker Planck equation Eq. (43).,, To summarize, we have identified the Compton harmonic resonances associated with the electron

t orbit in a two-dimensional laser waves at intensities above 1018W/cm2. Then we have demonstrated

and discussed the fact that they are the source of two kinds of stochastic instabilities. A weak,
i

widespread, instability, resulting from Arnold diffusion along the stochastic web, and a strong,

local, instability, as a result of resonance overlap. In this later situation, quasilinear diffusion along

the diffusion paths of Eqs. (25), and (44), takes place according to the kinetic equations (23), and

(43). As a consequence of this stochastic heating, the perturbing electromagnetic waves ,aredamped.

These processes have been analyzed for various wave polarizations and configurations; they are

inoperative below 101SW/cre2, but will become dominant, in laser-plasma interaction, in the intensity
,tr

range 1018-102°W/cm z.
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Appendix

Generalized Bessel function
.I

The generalized Bessel function is a special function which occurs in the study of quantum processes

in intense electromagnetic waves. For this reason it has been widely investigated. In this appendix

we will review its def'mition, and its Taylor expansion.

The Function CN is usually defined as:

j_--+oo 1I

1 fO iasing_'i_sin2g_'iNg_ dg_CN(0t'_) = E JN+2j(°t)JJ (_) - 2n
=-oo "71;

J are the ordinary bessel function and the denomination of C come from the obvious identity:

JN(Z) = CN(Z,0).

Two kinds of limits are relevant to the previous studies on stochastic instabilities in an intense wave.

(i) The Taylor expansion, 10 for small ct and [3, is relevant to the situation A *, 1. In order to ,.

evaluate Eq. (13) in this regime, for the resonance N=-I, we can use:

C0(a _)= 1 0_2 0_4 _2, -T+ T
0_ 12_ 0_ 3

Cl(a,lB) = _- + 4 16

a4
C2(°t'13) =_+ 8 " 9--6"- 2 '

, (ii) On the other hand, the asymptotic expansion for o_= 13= N = co, is to be used if one is

interested in a quantitative analysis of orbital stability arid stochastic acceleration near a pulsar,

A> 108. Both uniform and nonuniform asymptotic expansions can be found in Refs. [10].

,, ]lr" ',,_l]tllll P_' TI ...... III I _'117 I I rllllll'l' '_, '11!11' p, I lr'rl II!,IFIU I' .... I I .... Til I_111¢ ...... I1_ _11,'' [III I 'l_lll_ll _lll_'l I' li I l
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Figures Caption

• Figure 1: Orbit of an electron in a one dimensional linearly polarized wave.

Figure 2: Orbit of an electron in a one dimensional circularly polarized wave.

Figure 3: Dispersion surface, Compton resonances, and Arnold web, in momentum space.

Figure 4: Compton resonances in the (PII,P±)plane, A=I, ktI=_'4"2/2, k±=:!: f2"4-2/2, _=_.

,'lr

Figure 5. Compton resonances in the (Pll, P±) plane, A=I, kll =-f2",/2/2, k± = + f2",/'2/2, c0=O.
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