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ANALYSIS OF THE POINT-DIFFRACTION INTERFEROMETER AND

APPLICATION TO TESTING OF PRESSURE-LOADED WINDOWS

Merle E. Riley and Edward L. Patterson
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ABSTRACT

A diffraction-theory analysis is given of the point-diffraction
interferometer. The leading error present in the reference beam is
expressed as a function of the pinhole diameter. A second part of
the work presents a ray-tracing analysis of pressure-loaded windows;
the leading-order distortion for incident plane waves is a weak lensing.
The point-diffraction interferometer is used to confirm the analysis
for an astigmatic aherration produced by cylindrical deformation of a
plastic window.
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If Introduction

The point-diffraction irxt:erferometerl’2 (PDI) is a new type of instrument
which bossesses certain advantages for analyzing optical-beam phase fronts.
First of all, it is a common path instrument and very insensitive to
vib?ation. Second, 1t 1s very compact and may be inserted into an optical
chain with very 1ittle disruption. Third, it is a standard interferometer
as opposed to a shearing interferometer because the test beam is compared
to a high—quality beam; consequenfly, the interferograms are subject to
standard interpreéation.

The primary purpose of this work is to analyze the interferometer itself
to determine the limitations imposed by diffraction theory on the quality of
the reference beam. With this accomplished, one can be confident that the
dlagnosis of the test beam is reliable. A second purpose is to use the
instrument to verify a theoretical prediction about the optical properties
of windows deformed by pressure loading.

Section IT glves the diffraction theory of PDI operation and illustrates
ghe performance of the laboratory instrument in hand. Section III gives a
theoretical analysis of loaded windows and shows how the PDI may be
used to detect the phase front error. |

IT. Theory uf PDI Operation and Testing

A standard interferometer works by combining (interfering) a light beanm
of unknowan quality with a beam of reference duality. We note that the
"analysis” of a beam 1is synomynous with analysis of an optical element
present in the beam. The PDI is unique among lulecferometers in that
it uses as a reference beam a "point”™ source of light generated by the
beam being tested. The point source 1s really a small aperture, a pinhole
of micron size, and questions immediately arise as to the quality of a

reference beam generated by a pinhole whose diameter is of the magnitude



of the diffraction spot size of the light beam and focusing system.
Section LL.A. gives a theoretical analysis ot the rfeterence beam's quality
and Section I1.B. presents some experimental {llustrations as well as
verifications of the theoretical analysis by reference to some new data
available in the literature.

IT.A. Theoretical Analysis of the PDI

Figure 1 gives a schematic picture of a typical PDI configuration.
A beam of light enters from the left and is focused down by the first
lens onto a transparent substrate covered with a partially-traunsmitting
thin-film filter containing a pinhole. The pinhole generates a diffracted
beam which interferes with the portion of the input heam transmitted
through the filter.

Let Ofﬂ O”, 0’, and 0 denote origins of Cartesian-coordinate syétems
erected along the optlec z-axls at .the first lens, the pinhole plane, the
second lens, and the image plane. The second lens serves.as a relay for
the beam from some upstream plane to the final image on the observation plane.
The example of Fig. 1 relays the first-lens plane to the image plane
with unit magnification and inversion. This example is used in the rest
of the theoretical analysis; the only requirement in general is that
the image plane be conjugate to the particular plane being examined.

Tf the beam aberrations which result from the testable defects have a

'Rayleigh range3

long enough to be visible away from the test plane,

it 1is not necessary to relay the test plane at all: the second lens

may be omitted and the same interferogram may be obtained anywhere
downstream of the near-field region of the pinhole but within the Rayleigh

range of the aberrations.

Let the coordinates of the pinhole center be éx’ éy’ 62 relative to
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Fig. 1. Scheznatic drawing of the PDI arrangement used
in the theoretical analysis of Section II.A.
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the paraxial focus of the first lens. The transverse components of the

. - A A
coordinate systems are denoted by a two-component vector, r = xe, + yey-
U4 .
The 0, 0”, 0’ and © coordinates are related by simple translations

{
along the optic z~axis:

T

s =y =y —/ —
- = =r =r
u "

2 =2z +f+6
z
" ’
=2 +f-26
r4

2! =z + 2f .

Baraxial propagation4 may be written in any of the coordinate systems:

ltﬂl

A - A - ~ikz
reE = Pxﬁz(r)p

— a —
vigz(r) - 2ik 57 4,(r) =0

o~ — _I o
Syt (¥ =fd2r'KL(r - r )¢, (r)
"
. I = -72
K - = =i
Lr -1 e T 2L .
The electrical amplitude is needed at four of the planes designated in Fig. 1;

8L2’ and @ The amplitude transmitted

these are £input’ lg;;inhole’ image”

through the filter and pinhole aperture may be approximated as the incident

amplitude, é;inhole’ times a transmission factor,2 t = t(r”):
t =W+ T(L - W)
= T4+ (L - T)W

T 4+ W .

Je —
T T =T is the background transmission of the filter and W = W(r”) is a



weighting function which gives the transmission profile of the pinhole

aperture. Let & = 6xéx + 6§ey be the transverse location of the pinhole
and let tp = r” - 6 with r, = |rp|; then a circular pinhole of soft

aperture might be represented by

2
-(rp/wp)

b

W o= W(rp) = e
but the more appropriate hard-apertured pinhole 1s best described by

W= w(rp) =1 - e(rp- wp) ,

where vy is the radius and 8 is the unit step function. Thé emerging
beam is a suﬁerposition of two beams: one is an unapertured beam simply
reduced by the constant T; the other is diffracted by the transverse limitation
imposed by W. The form of t(t”) makes this cleac.
The first step in the analysis requires evaluation of the field incident

on the pinhole plane:

£pinhole

— T
(;//) - /d2r//.'K (; “ ;w)el 2f 8 (;///) . (l)
f+6Z input

The exponential factor under the integral accounts for the focusing by
the first lens. The second step 1s to modify £pinhole by the transmission

factor and to propagate the beam to the second lens:

oy 2_u g o o 2
Srp(r) = fd t Kf-éz(r =T )8 e (T)

3ince t can be writtcn as the sum, 7 + W, 512 is calenlated as the

trans
nd 6L2 :

2 I — — —
T _/d - " "
* Kf-éza‘ r )(i‘pinhole(r )

ref
sum of two beams, §L2 a

]

trans ,—,
sz (r")

gt/

r’)

ref =y 2 — -
8 T - fd % r ”
o (r7) T ke 5T 0 T NG none

11
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The final step is to evaluate the image-plane fields by propagating both

these beams a-distance of 2f, after lensing by L2:

. i _IE. r 2
2 = _ 2_ ¢ e ; 2f — ’
lmage(r) = fd r K2f(r -r’)e e )
8 _ gref trans
image image image .

gLrans nay be evaluated directly by making use of the imaging property

1mage
of lans L2:
i X r'2
trans,— f2 ' - = 2f
£image(r) dr K2f(r -r')e T
k //'/2

ot I =it =t
fd r K-Zf( +r )(’Sinput(r )

i

a ///
m - f KU(r + )sinpu,t(r

or,

trans ,— =
£image(r) = 'T(sinput(_r)




The following properties of the propagator were used to demonstrate the

imaging:.

hodl/;

2.1 - -7 = —n -
“,'d r (r ~r)K (r" -1r") = (r -r")
1y 1, | e
K,(F -77) = 6°(F - T)
This completes the determination of the "transmitted” portion of the beam

which contains the information relevant to the phase distortion present in

the input beanm. The second part of this step in the analysis is to determine

‘the quality of the "reference” portion of the beam.
The reference beam at the image plane is easily expressed in terms of

the amplitude incident on the pinhole, é%inhole:

. : . ,2
ref o _fz e (7. pneikr /et
8imageT) = J AT Kpp(x - 77)

2_u = gl o/ 7
x.[d e (71 = M oy () (2)
Z

. 2 -_ — -
-onikr /2ef der ’kif_é(r + " W (r /)(SpinhOle(r )
z

The effective pinhole radius w_ is always assumed to be smaller than the

p

diffraction spot size of the input beam or lens system; either

for. a Gaussian TEM00 beam of input waist wGB, or,

DR _ HA I
< Voot = 0.61Af/w (L)

13



for a uniform input beam that is hard apertured at radius ng with a dark

ring focal spot radius Yspot *

These restrictions on v, enable simplificafions

to be made in the general expression for 6f§ége in terms of 6pinhole'

Under the integral in Eq. (2) the exponentials may be simplified because of
the weighting of the range of integration to the pinhole region:
2
W

2 kw kw
kr” of
 —Rg Pt _ P

2f  2f  2f kw, ~ Wo «<1.

However,

< = 0(1)

Combined with the stipulation that éz/f << 1, all the exponentials may be
simplified without introducing any restrictions on the applicability of the

analysis to a typical interferometer. Thus, in terms of §

pinhole’
. ref =
.ref - ik leo (I‘) o 'S T - -
u'Jizma.ge(r) - dr et (7 - B)t
(5)
g ' o
x W(r’) pinhole(r ) >
where the ideal reference beam phase has been factored out,
ref = “ k E)z 2
9o (r) = 7 Czpr +ox+ éyY) . ’ (6)

6pinhole is now expressed in terms of 6input by Eq. (1) and analogous
simplifications of the exponentials are made because of the limits on the

cange of 7. 8 is written in phiase—amplitude form,

input

- - . |(—‘///)
I‘/” - (-‘.(I'”/)elv r ,

6input(

14




and W(r”) 1s taken to be a hard aperture of radius wy+ The final result

for the combined expression of 6image in terms of 61nput is

2 . £, -
ref () (k_wn) oo @)

1
. T )= m—
image T

2f
(7)

xfd2s€(§)eiwg) 2Jl(ka|s + r|/f)

ka|§+ r|/f

where we have used §’= ;”"to simplify the notation and have defined

L]
=3
—

0]
~

+

n
}-b

T(8)
(8)

1
e
—

n
~

]
6
C
~~
]
~—

The integrand containing the Bessel function in Eq. (7) acts as a filtering

function with the limiting property

X = kwplg +»F|/f .

ref

This shows aimage(;3 = - £input(_;3 if w_ is too large. 1In this

P

circumstance, no interference results because of an unimproved reference

beam.

we define the smallness parameter o

The properties of the function as wp becomes small are more relevant:

15
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1/ W 2
=§\—G%—) (9)
w
spot "
IR
N2 ( TR >, s
w
spot

which measures the ratio of pinhole size to diffraction-limited spot size
as defined in Eqs. (3) and (4). In terms of & and d = |; + ;|/wo we can

rewrite Bgq. (7) as

et . -
- ip T (r) - iT(a (10)
S e (T)= -5 * S e @ aa?) |
0

where the newly defined function F is given by

F(x) = Jl(2 (Ex)l'/g)/'(zx)l'/? =1 - x + % X 4

ref
[o) b

Phas2 errors in the reference heam, {.e., addittonsfto o arise from
phase, T, of the complex integral of Eq. (10). 1In order to examine mn we
can take appropriate advantage of the presumed smallness of q to expand
F in its power series. 1In addition, we will assume that the variation
of ;(E) over the input aperture is sufficiently small that we need to

retain only the first-order, linear term in {:

- o - -
n = tan l(./.d‘:s sin § F/.fdzs cos 4 F)

mdeSE:F/fdst.




It does not matter in which order we carry out the expansions in @ and T,
We have specialized to the case where the input amplitude is constant over
the input aperture. We also set @(0) = 0 without any loss of

~generality. For convenience, we introduce a bracket notation for

the normalized area integral over the input aperture,

{x) = (1TWi)-l jd.es x

7| 1s now expanded 1in powers of a:
n = (H) - a((@¥ - (@) + o?(% ((d"Fy - (@)
- @ - (@YD) + o6

"and various reductions are made,

& = (82 + 2sru + r2)/wi , U= cos(es -9

)

r
(s™ = 2/(n+ 2), (snu> =0 s
("B = -Jé'- (s™y .

The M expansion of Eq. (11) is regrouped into powers of the image plane

variable ;,

nz'rb+nl+ré+0((13)

17
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-
The first term is independent of v,

RGN DI T CA TR B I

and does not affect the reference beam phase quality. All of the s and r
variables contain an implicit 1/w, factor which is not written out in

the expressions for MNo» N> and Mg+ The second term is

2

r = “2ar{su’) + o r(s( % - 1)ud)

-

which contains only linear terms in r components that are indistinguishable
from tilt adjustments of the interferometer (compare to Eq. (6)) and,
consequently, are not to be treated as reference beam errors. Finally,

we have

- 2.2, 2, 2 1
ny = 2220 - D + B ARA L L

which contains three distinct phase corrections—defocus, astigmatism,
and coma. The first of these, like the whole of m;, 1s indistinguishable
from an interferometer adjustment and will not be confused with any error

of the input beam. The coma part of Ny (and of 7 through order az) is
n - .24 (r/w )3 l des(s/w Jeos (6 - Gr)f(s) . (12)
coma 3 ﬂw o) 2

o

The astigmatism of the reference beam is isolated after expanding the

Wl term:



2 - cos? _1,1
W = cos (es - er) =5+5 cos(2(eS - er)) R

(13)

2

Nuetig = 5% (/o) L f@a(sfug)Peon(es, - 0,1 -

o

We note that ¥ is §(s) - wref

o (~s) and that the @éef part cannot

contribute to Nastig becausé of orthogonality in the angular integration.

The tilt part of wgef does affect Neoma though, and one may deduce that,

for each wave of tilt, 6ne has 02/6 wave of coma at the maximum. It would
Abe‘very satisfying if a bound could be placed on the phase error in mn;

we have not found any satisfactory and rigorous solution to this problem,
however. One should begin the bound analysis with Eq. (10) and use the fact
tha;'one must bound the variation of T over the image plane and not the value
:of 7. For heuristic purposes, we estimate a bound on reference beam error by
‘ysing the lowest order source of error present in G. That has been mentioned

above: tilt in E produces coma in 7. Substitution of one wave of tile,

g = s o
y = 2n(s/w_) cos @ ,
into Eq. (12) and evaluation of the maximum gives

max _ 1 2-max oy
Tooma ~ A & "Hilt ° (1)

The variation in reference beam amplitude may be computed by analogous

meaans; we have found that

I6ref

2

and if we require the variation from the central maximum of the inteasity

to be less than 25%, Eq. (9) can be usgd to show



f
W < =,
P kv,

Equations (3) and (4) now specify that the pinhole radius should be less
han WS /2 or wR /4 in ord duc 1f £

than Yspot OF Wg oot n order to produce a very uniform reference

beam. This analysis quantifies previous statementsl’2 about the pinhole

size required for a good reference beam.

The form of the interferogram is found from 6image(;) which.is in the

form of a two-term complex Sum,.é'ref + 6tran§’ dropping the "image" label.

Let I = éﬁﬁ and decompose the terms into phase-amplitude form:

8 = |£ref|ei¢Fef + latranéleimtraﬁs

T = (‘arefl - I(stransl)z+ laref|l£trans|h cose(A/Q) ,

trans ref
A= - .

& determines the structure of the interferogram and is the quantity of

interest. The resulting interferograms may be interpreted by standard
techniques. The visibility of the interferogram depends on the proper
relation of 7 and wp for a given focusing system. Let & eiv;

ref
éimage is given by Eq. (5) as w

input ~ €o

p becomes small,

. ref —
ip " (r) _;
nw§|£ (Byle © e X

ref ‘ﬂ) k
pinhole

éima.ge(r ~onf

where X is an irrelevant constant. A may be calculated from Eq.‘(6) and

the inverted input phase:
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= = k 6z 2
Alr) = (=) + = (5? RIS 6yy + Y .

ref

transl
image

The maximum visibility of fringes occurs when |6 | R |5image ; using

—

('r) s

6trans(~

image r)='76input

we see that this implies

2

o

TleO| % Egg !(Sjpinhole(é)|

or, in terms of intensity and transmission,
b2

(32)
TIinput SA\2P Ii)inhole

B. Experimental Illustrations of PDI Operation and Verification of Theor:

A commercial PDI° was used for testing; it consists of the semitransparent
film with pinhole deposited on a mica substrate. Microscopical observation
revealed the diameter of the pinhole to be 7 + 1 ym. A 71 mm diameter,

30 cm focal length spherical lens (of minimized spherical aberration) was
used to focus an expanded and collimaled He—=Ne laser beam onto the
pinhole. The incident beam and lens system are subject to some minor
phase error. The dark-ring radius is given by Eq. (4)

DR HA
= 0.61 A\f/w_ =~ 3.3 um
W= @ 61 \E/w

HA
where w_ 1s the effective hard-aperture input radius of the beam. Our theory
indicates that the reference beam should possess no more than a fraction of
a wave of error per input wave based on Eq. (1l4). Figures 2, 3, and 4 illustrate

the interferograms obtained with defocus, null or centered, and tilt

21



22

Fig. 2. PDI interferogram showing defocus which corresponds to

Eq. (6) of the text having a nonzero o and s 6y = 0.

& r=Li0Wand

Fig. 3. PDI interferogram with 6X = ey = 3
relatively good input beam. %his Iis a null
position with all-bright uniform field.



Fig. 4. PDI interferogram with nonzero 8, or 6 and 6 = 0. This is
finite tilt with a reference beali phas¥ given“by Eq. (6).

Fig. 5.

PDI interferogram exhibiting almost pure astigmatism
in the input beam. This photo reveals an input

beam error and not an adjustment of the interferometer
as in Figs. 2, 3, and L.

23
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ad justments. These correspond to: a finite éz and 6x = 6y = 0 for

defocus, b, = éx = 6y = 0 for centered, and 62 = 0 and finite

6x or 6y for tilt. Figure 5 illustrates classic astigmatism, obtained
by introducing a tilted optical flat into the converging beam. ®
Spherical aberration is also introduced by the flat, but we could

not observe this distortion since the amount is less than 1/10 wave.
Reversing the 30 cm focal length lens gave a striking abundance of

fringes characteristic of spherical aberrations, on the order of

50 waves across the field. Since we were limited in stock of good

lenses of small F number, we could not set up a PDI system with a

focus smaller than 7 pum. We could assemble our own pinhole, however,

and found that pinholes considerably larger than 10 ym gave interferograms
of incorrect tilt (as well as other) behavior. Figure 6 shows this
pattern, which is more characteristic of a knife-edge pattern than an
interferometric tilt.

7

Data’ presented at the Los Alamos Conference on Optics supports

our theory for pinhole size limitations due to both amplitude and phase
effects. Studies were done involving both computer-generated calculations
and experiments for an input beam possessing one type of aberration

as a function of pinhole diameter. An exact comparison to the data

is difficult to make; however, it is apparent that the phase error

DR

spot? possibly

enters the reference beam phase as a high power of wp/w

DR

the fourth. Also, the wp/wSpot

= 1 point has a maximum phase error
on the order of 1/2 wave for input containing one wave of astigmatic

error. If we evaluate Eq. (13) with one wave of astigmatism, i.e.,

¥ = 2n(s/w )2 cos®g %
o



Fig. 6.

PDI interferogram with much too large of a
ratio. This exhibits a severe reference be

W_/w

afl

S
er

RSk
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the maximum astigmatic phase error in the reference beam is 4/9 of a
wave. Coma is not produced by astigmatism in ﬁ. This is probably as

close an agreement as we could expect.

IIT. Optical Properties of Pressurized Windows

Many gas laser systems operate with the pressure considerably above
or below the ambient. Speculation always occurs as to the aberrations
introduced into the beam by the strained windows, which were presumably
flat at zero pressure differential. A theoretical analysis is given in
this section of an incident plane beam (all rays collinear) on a
pressure-loaded window which is deformed such that the surfaces are
concentric spheres or cylinders. It is permissible to treat the surfaces
as concentric because of the smallness of Poisson's ratio and also because
the positive and negative strains balance at the inner and outer surfaces.
We do not treat the general case of a converging or diverging beam
incident on a deformed window since even a perfectly plane-parallel

6

optical flat produces spherical aberrations in this case. We also

do not consider any piezo-optic effect other than the gross deformation

of the refractive body. Data are available8

for analyzing the strain-optic
effect in many crystalline window materials. We do not consider this
because of its specific nature and complicated analysis.

We consider the ray-tracing through the curved cross section of a
loaded plate shown in Fig. 7. The surface boundaries are concentric
circles and a fully three dimensional figure is obtained either by
rotation about the optic axis (loaded disk) or by translation normal
to the plane of the figure (loaded thin rectangle of cylindrical
shape). Let n; = n,/n; and np = n,/nq denote the appropriate

refractive index ratios so that Snell's law for the first (left) and

second surfaces reads



R QR

L2

\ Z-AX1S
Re
ni N2 N3
t

Fig. 7. Ray-tracing diagram used in the theoretical
developmentin Section III for bent windows.
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sin o T Ty,
and

1
sin g7 Eg

All angles and distances are indicated on the figure. One may readily

observe
e aglisb
B'+ec=a-25
and
sin o = x/R
c
Rc + t Rc

sin o/ ~ sin B

The desired quantity is the exit angle, ¢:

=0 <ol i d B om Rl
Snell's law for the right surface is used to express B' as a function of B:
e=a=-a’+8- sin-l(nR sin B) .
The law of sines relation enables one to express B as a function of ¢ :

’

R R
= at et sl in o’ -sin"l o BAR "



and Snell's law for the left surface affords &' as a function of o or x/Rc:

. Caf1 . af1 B
€ =0 =-.-81n n—-’ sin Qo + s1nA — R ¥ t sSin
. L nL c .

or,

As a cﬁéék, one sees that ¢ is zero if t is zero and fp = ng; that ¢ is
zero 1f x‘is zero of if Rc is infinite; and that ¢ is zero for n;, =mnp =

In geﬁeréi Rc/x and Rc/t are much gfeater than one so that

Suppose € is positive as shown in Fig. 7, then all exit rays appear
to emanate from a point which is épproximately x/e to the left of the
window. 1In the special case of an incident plane wave, the deformed

window acté'as a negative lens of focal length f,

' ’ -1
-e/x = 1/f = S(ﬁ}— (1 e-_-nl/n?)) +%%—-—-) .
d Rc 2/ ™

1.
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We now calculate the distortion in a pressure-loaded disk and estimate
the maximum distortion that can be obtained without overstressihg the
material. This distortion will be used to obtain a bound on the number
of waves of phase error produced in an 1ncident plaﬁe wave. Consider the
circular plate of radius a to be supported at the perimeter and loaded

uniformly with a pressure differential P. The deflection as a function
9

where m is the reciprocal of Poisson's ratio, E is Young's modulus, and

of radius is given by

N

‘_3P(m2-l)a2 5Sm + 1 2 3m+1 2
m+ 1

y(x) = Q2B
: 8Em2t3 2(m + 1)

®ol =

t is the thickness. For many glasses, m is in the range of 4 to 6. We
pick m = 5 and note that ru/a2 can be neglected in comparison to the

other terms; this gives the simple form of y(r):

L

_ 3 Pa_ 1 - 2
Y(r) EEt3 ( (r/a) )
(20)
_ _ . _3 Pah
Ymax = y(0) = & = nTEtB

The maximum stress in the loaded disk occurs at the centers of the surfaces

and is given by

2

3a~F
S = (3m + 1
8mt2 + 1)
6 (21)
~ 2 P(a/t)% m P(a/t)? |
glassgeg
m=5

31



32

The loaded disk is essentially of the same concentric circular cross section

as used In the ray tracing analysis. The radius of curvature is found to be

from Zqs. (18) and (20)

1l a 2 Et
Ro=5F%~=3—7% - (22)
c 2 64 3 Pa2

This may now be used in Eqs. (15) and (16) to calculate the contfibutions
to 1/f and that to give the number of waves of error via Eq. (19). Instead
of evaluating this for a specific window system, we have found it possible
to make a general estimate of the maximum phase error expected.

It is observed that the yield tensile strengths of many materia138

[
10 are within a factor of two of being one thousandth

including glasses
of their elastic Young's moduli. We use this to set an approximate but

useful bound on the maximum deformation of circular windows in normal use:

yielg ® 10

Al / Al
8 <8 5014

implying from Eq. (21)
P(_a/t)2 <1073 g

This can be inserted into the deflection and curvature formulae (Egs. (20)

and (22)) to give

. =32
A<£llo3a/t

R > < 10°t
c 3



Thus, the focal lengths as defined in Eqs. (15) and (16) are bounded,

L
. |fﬁ.| g 3

. ™Mo u 6
|fWIN|>|nR_l|§10t
The presence of kilotorr pressure differentials on the window will tend

to make n; - np ﬁ!10_3 due to gas density effects alone giving the

result that fypy ~fuin: Typically, ny ~ np = 1.5 giving

6
|fWIN| > 10t
and combined with Eq. (19)
a8 a ,.=b
Nz

Thus, we have the important conclusion that for windowé of nominal diameter
to thickness ratio, say six, and micron wavelengths, N is less than 1l.5a
whére fhe radius a is in meters. It is emphasized that this distortion
occurs.at a stréss near the mechanical yield point of the window. Practical
restrictions should ensure that N is never more than one.

An appératus was set up to test the theory. Rather than using a pressure
cell with transmission optics, we attempted to deform glass plates mechanically.
Microscope slides énd cover glasses are of advantageous length-to-thickuess
ratio, but bréakage occurs frequently before appreciable wave distortion
is observed.

The whole problem was circumvented in an acceptable fashion.by using a

plastic sheet. Figure 8 shows an interferogram of the flat sheet, revealing
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a‘few waves of optical thickness variation across the approximately 3 cm
field. Figure 9 shows the interferogram of the sheet while it is bent into
a cylindrical section. The radius of curvature (cylindrical) R, 1s 38.1 mm,
the sheet thickness t is 0.14 mm, the index.of the plastic is 1.67, and

the He~Ne waveclength is 0.6328 um. Thus, up to a distance a = 2 cm from

the center of the curvature we should have observed (from Eqs. (15) and

(19)) .
2
a n-1t%
N= = -~ 1P
2\ Ri -

waves of phase distortion. Inspection of Fig. 9 shows that this is almost
exactly che case. 'hii§, by using plastic with a large eiastic limit to
Young's modulus ratio, we can easily generate many waves of optic distortion
and observe the phenomenon with the PDI. The agreement with our theory
confirms the optical part of the‘analysis.
IV: Conclusivus
In summary, we have found the PDI a convenient instrument to use. It
has been shown to be important that the focusing optics not be casually
chosen: the diffraction-limited focal spot should be at least as large as
the pinhole to obtain interferograms of near wave accuracy. One disadvantage
of the PDI is that the damage threshold of the substrate cén be exceeded
for short pulses which have sufficient energy to produce film exposure
in the interferograms.
A second_deveIOpment is the loaded-window analysis. This shows that
gas laser window distortions are negligible under most-circumstances
(barring birefringent effects in single crystals) because of the straiﬁ—stress
properties of materials. The PDI was used to confirm the ray-tracing analysis

of the phase distortion. .



Fig. 8. PDI interferogram of plastic sheet. The sheet is unbent
and contains a few waves of nonuniformity in thickness.

2 cm

Fig. 9. PDI interferogram of bent plastic sheet. The center of
curvature is off-center in the photo aperture. A
two-centimeter scale is indicated below the figure.
Discussion is present near the end of Section III.
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