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nation and the lack of bone marrow and vascularized tis-
sue for an active antibacterial defense. To protect ortho-
paedic implants, measures to prevent bacterial contami-
nation during the intervention were undertaken, 
including double gloves and solutions containing antibi-
otics for the lavage of the wound during the operation and 
before closing  [1] . Nevertheless, up to 3% of the implants 
are contaminated with bacteria, yielding acute or chronic 
osteomyelitis, the path of which was considered a hae-
matogenous infection  [2–5] . Consequently, experiments 
were started to protect the implants with antibiotic-load-
ed polymers  [2, 6–8] , and drug delivery for the local pro-
tection of implants was born.

  Objectives 
 Antibiotic-loaded polymethylmethacrylate (PMMA) 

bone cements used for drug delivery in orthopaedic sur-
gery present a non-resorbable polymer material, and its 
release is related to the overall surface area  [9] . Based on 
these findings, the question arose whether a biodegrad-
able material could replace the PMMA polymer releasing 
the antibiotic over a reasonable time span. Attempts to 
coat ceramic implants were performed with different 
polymers and waxes applying a plunging procedure  [10–
12] . Coating the otherwise active calcium phosphate sur-
face yielded a loss of osseointegration of the implants  [13] .

  Since the release of antibiotics follows a diffusion pro-
cess of water-soluble substances from polymers which in-
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 Abstract 

Purpose: The purpose of this preliminary and descriptive 
study was to evaluate a biodegradable drug delivery system 
in combination with an innovative ceramic implant. Meth-

ods: The delivery of gentamicin of standardized samples was 
measured in the laboratory using ultra-high-performance 
liquid chromatography. Biocompatibility and biodegrada-
tion of the materials was investigated in an animal experi-
ment in sheep up to 14 months. As carrier ε-caprolactone, 1:1 
mixed with gentamicin, intruded into micro-chambered 
β-tricalcium-phosphate beads (MCB®) was studied. Results 

and Discussion: Gentamicin was released in calculable con-
centrations during the first 30 days. The release from 
ε-caprolactone was higher than that from polymethylmeth-
acrylate and more predictable. The caprolactone carrier was 
reabsorbed by osteoclasts.     © 2013 S. Karger AG, Basel 

 Introduction 

 Background 
 Ceramic bone void fillers for bone augmentation and 

other implants present two problems: bacterial contami-
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corporate water in molecular form  [14] , all biodegradable 
polymers, i.e. polyesters, are principally suited to act as a 
drug delivery system for antibiotics.

  Micro-chambered ceramic beads (MCB) primarily 
form a lamellar cancellous bone scaffold. Due to their 
capillary forces, they provide the release of bone morpho-
genetic protein (BMP) bound to collagen type I  [15] . 
ε-Caprolactone has been proven to be biocompatible and 
biodegradable as a substance  [16]  and in combination 
with β-tricalcium phosphate (β-TCP)  [17] . The polymer 
has been used for many years in clinical and dental prac-
tice as a barrier membrane to promote bone regeneration 
 [18]  and as root-filling material  [19–21] .

  Purpose of the Study 
 The purpose of this study was to show that intrusion 

of a defined mass of a biodegradable carrier for gentami-
cin into pores of the micro-chambered β-TCP ceramic 
beads preserves osteoconduction and colonization by 
 osteoblasts of the calcium phosphate surfaces on the one 
hand and, on the other hand, provides local protection 
against bacterial contamination, effectively releasing 
 gentamicin sulphate over a certain period of time. The 
biocompatibility and biodegradability of ε-caprolactone 
should be followed histologically.

  Material and Methods 

 The study was performed in 2 steps: laboratory evaluation of 
gentamicin release kinetics in vitro, followed by an animal experi-
ment in sheep.

  Laboratory Experiment 
 Gentamicin (Fujian Fukang, Fuzhou, China) was used as a sul-

phate, an antibiotic on the basis of aminoglycosides. ε-Caprolactone 
(BASF, Ludwigshafen, Germany) comprising a molecular weight of 
50,000 was chosen as carrier. The composite material was processed 
with the help of a ball mill resulting in a 1:   1 mixture of gentamicin 
sulphate and ε-caprolactone. The mixture was kneaded in an indus-
trial compounder and extruded into a cylindrical tool, resulting in 
cylinders measuring 5 mm in diameter which are pelletized by a 
machine to a length of 5–6 mm. The weight of the samples ranged 
from 96.33 to 148.06 mg, with a mean value of 115.18 mg (n = 20). 
Six samples were taken for the experiment and stored in phosphate-
buffered solution (pH 7.0). Five samples were measured daily with 
ultra-high-performance liquid chromatography (UPLC; Waters, 
Milford, Mass., USA) over a period of 3 days, and 4 samples were 
measured again after 10 days. Two samples were measured daily 
over a time span of 10 days, whereas 4 samples were continuously 
held in the experiment and were measured after 10, 20 and 30 days, 
respectively. The assay was   performed with UPLC (Waters) equipped 
with a column of 2.1 × 100 mm (ACQUITY UPLC ®  HSS C18, 1.8 
μm). The eluent was acetonitrile/water 70:   30 (v/v) and the detector 
used was Waters FLR Fluoroscence detector, equipped with an Hg-

Xe lamp (excitation 260 nm, emission 315 nm). For calibration, 5 
standard solutions were prepared: 0.1, 0.25, 0.5, 1.0 and 2.0 μg/ml. 
For the control of the 5 standard solutions, a control solution of 0.5 
μg/ml from stock solution ‘A’ was prepared. Stock solution ‘A’ com-
prised a concentration of 0.4 μg/ml and was prepared with 20 mg 
gentamicin sulphate, dissolved in 50 ml buffer solution at pH 7.0 
(Merck Certipur ® ; Merck KGaA, Darmstadt, Germany).

  To make gentamicin detectable for the fluorescence detector, 
the standard samples and the samples to be analyzed were deriva-
tized with 3.0 equivalents of 9-fluorenylmethyl chloroformate 
(Merck) in Certipur buffer solution (Merck). The calibration curve 
was designed accordingly. The ε-caprolactone/gentamicin sul-
phate pellets were rinsed in 50 ml buffer solution at pH 7.0 (Certi-
pur). A solution of 2.0 μl was derivatized with 3.0 equivalents of 
9-fluorenylmethyl chloroformate (Merck) in buffer solution (Cer-
tipur) at pH 8.90 and measured with UPLC. Quantification was 
carried out with Empower ®  software (Waters). Data of the release 
were graphically displayed and superposed.

  Gentamicin molecules are built with the following 3 hexos-
amines: gerosamine, 2-deoxy-streptamine and purpurosamine, 
forming the gentamicin molecules of the ‘type C’ group  [22, 23] .

  Animal Experiment 
 Ten female sheep were operated on with a standardized and very 

precise cylindrical defect measuring 9.4 × 20 mm in diameter and 
depth, respectively. The patellar groove model using the wet-grind-
ing diamond technology was applied: the defect was placed in the 
centre of the patellar groove using a drill guide  [24] . A combination 
of 12.5 mg ε-caprolactone with 12.5 mg gentamicin sulphate was 
intruded into the 6-mm beads. The defects were filled with 6- and 
4-mm micro-chambered β-TCP beads ( fig. 1 a–e). Outward diffu-
sion was prevented using a 1-mm-thick press-fit-inserted solid ce-
ramic β-TCP lid ( fig. 1 f). Investigations were performed at 6 weeks 
(3 animals) and 2 and 3 months (3 animals). One animal was kept 
in reserve and sacrificed after 14 months. Histology of non-demin-
eralized sections was evaluated after perfusion fixation via the fem-
oral artery with Karnovsky solution and drainage via the femoral 
vein, followed by a casting of the whole vasculature using an acrylate 
resin. The distal femurs were dissected and trimmed for CT scan as 
well as scanned parallel to the patellar groove at slices of 15 μm (μCT 
40; Scanco Medical, Brüttisellen, Switzerland). Subsequent to the 
μCT, the cylinder was dehydrated, stained with basic fuchsine and 
embedded in MMA. The hardened bloc was cut into serial sections 
of 500 μm parallel to the patellar sliding groove ( fig. 2 ). The cross-
sections were ground with corundum paper to 110 μm, micro-ra-
diographed in the Kristalloflex 710 (Siemens), further thinned to 50 
μm and covered on glasses. Documentation was performed with a 
Leitz Orthoplan microscope using transmitted light on Kodak Ekta-
chrome Professional ‘T’ films for light sources with 3,500 K.

  Results 

 Laboratory Results 
 The pharmaceutically applied component of gentamicin 

sulphate measured in our series contained gentamicin type 
C (C 1 , C 1a , C 2 , and C 2a ). The 4 components showed a char-
acteristic chromatogram in our calibration series ( fig. 3 a).
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a

b

c

d

e

f

  Fig. 1.   a  Fully interconnected MCB of 
β-TCP measuring 6 mm in diameter and 
providing 85% porosity and 99% purity. 
Three-dimensional reconstruction of μCT 
slices (μCT 40; Scanco Medical).  b  Frontal 
section through the beads in 03  a  (μCT 40; 
Scanco Medical).  c  β-TCP beads revealing 
intruded ε-caprolactone; most of the ce-
ramic surface remains accessible for cova-
lent links of type I collagen fibres.  d  Oper-
ating site of the patellar groove of the sheep 
presenting the defect filled with MCBs. 
 e  Diamond instrument: the cylindrical cut-
ting tool is coated with diamonds.  f  Operat-
ing site: the defect containing the MCBs 
combined with ε-caprolactone and genta-
micin covered by a ceramic lid. 

  Fig. 2.  Lateral view of an X-ray of the sheep 
knee joint indicating the cross-sections 
processed for histology. Arrow indicates 
 the direction of the series of cuts . 
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  The release of the samples showed the typical curve of 
gentamicin progression after 24, 48 and 72 h and after 10 
days; the complete daily release is presented in  figure 3 b 
and in  table 1 . Two samples remained in the experiment 
and were measured after 20 and 30 days. The daily release 
in both samples was 0.5 mg/day, and the total amount 
over 30 days was 34.7 and 38.3 mg, respectively ( table 1 ). 
The curves showed graphically identical characteristics.

  Results from the Animal Experiment 
 No infection occurred. The intrusion of ε-caprolactone 

resulted in an equal filling of the centre of the ceramic 
beads, leaving the calcium phosphate surface accessible 

for colonization by osteoblasts and yielding a bactericide 
delivery of gentamicin during the first 10–30 days, calcu-
lated based on in vitro release.

  Six weeks after implantation, β-TCP had been sub-
stantially reabsorbed, whereas ε-caprolactone was nearly 
unattached and clearly marked like a grape inside the 
pores of the MCB. The radiolucent polymer could be vi-
sualized in all μCT slices ( fig. 4 a). Three months after im-
plantation, only residues of the polymer material were 
detected in the cross-sections, stained with alkaline fuch-
sine ( fig. 4 b–d). ε-Caprolactone particles revealed How-
ship-like lacunae over its entire surface and multinuclear 
giant cells attached to it. The material was embedded 
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  Fig. 3.   a  Chromatogram of gentamicin with the 4 characteristic peaks of the gentamicin sulphate components, 
taken from this study (UPLC; Waters): C 1 : 9.01; C 1a : 9.33; C 2 : 9.41 and C 2a : 9.  b  Release of gentamicin in 6 samples 
during the first 10 days, measured with UPLC (Waters).     
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within inactive fat marrow, and direct contact with bone 
was in part pronounced ( fig. 4 b); there were no signs of a 
granulomatous reaction. Compared with Howship’s la-
cunae on bone, the cavities on the ε-caprolactone surface 
were flat and large ( fig. 4 b, c). At the same time, a nearly 
complete reabsorption of β-TCP could be observed. After 
3 months, the last minor residues of β-TCP could be seen 

within the marrow. The reticulum cells showed phagocy-
tized β-TCP particles everywhere within the cells, where-
as residues of ε-caprolactone were rarely found at that 
stage ( fig. 4 d).

  The caprolactone carrier was reabsorbed by osteo-
clastic reabsorption revealing lacunae known from 
bone remodelling. Minor residues could be found after 

Table 1.  Gentamicin release over 30 days

Sample Gentamicin,
mg

Release after 
10 days, 
mg

Release after 
10 days, 
%

Release after 
30 days, 
mg

Release after 
30 days, 
%

B3 58.21 23.95 41.14 34.80 59.78
B4 58.46 27.79 47.54 38.31 65.53
C3 51.43 14.80 28.77 23.73 46.15
C4 48.17 27.73 57.57 34.73 72.09
D3 56.42 17.54 31.09 – –
D4 54.73 24.19 44.20 – –

a b

c d

  Fig. 4.   a  Nearly re-absorbed MCB (circle) with intruded 
ε-caprolactone (cl), mixed 1:   1 with gentamicin sulphate. μCT slice 
through the ε-caprolactone carrier and the centre of the MCB (cir-
cle) (μCT40; Scanco Medical).          b  Residue of ε-caprolactone (cl) re-
vealing Howship-like lacunae (arrows) and multinuclear giant cells. 
Biocompatible reaction with the fat marrow environment. 10.0 Leitz 
Orthoplan Apochromat; oil immersion; alkaline fuchsine staining; 
3-month stage.  c  Thin cross-section showing minor residues of 

ε-caprolactone, 3 months postoperatively. The lacunae (arrows) 
present the remains of macro-phagocytic degradation of 
ε-caprolactone (cl). 10.0 Leitz Orthoplan Apochromat oil immer-
sion; alkaline-fuchsine staining.  d  Three months after the operation, 
only small amounts of ε-caprolactone (cl) are found; the thin slice 
reveals a multinuclear giant cell (circle). The β-TCP ceramic is reab-
sorbed and partly phagocytized by reticulum cells (arrow). 10.0 Leitz 
Orthoplan Apochromat oil immersion; alkaline fuchsine staining.     
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3 months. However, after 1 year, ε-caprolactone was no 
longer detected. A restitutio ad integrum was found 
 after that time.

  Discussion 

 The question whether a biodegradable material could 
replace the PMMA polymer as a carrier for antibiotics has 
to be discussed comparing the results of this study with 
the measured release of gentamicin-loaded bone cements 
in the literature.

  Limitation of the Study 
 The number of samples used was not very high. There 

was no direct comparison with samples of antibiotic-
loaded bone cements. These are ongoing studies. Valida-
tion of the mixing and kneading procedure has not yet 
been fully completed, and there might still be some con-
glomerates of gentamicin within the sample which are 
thus responsible for single peaks in the release curve. 
Standardization of the samples itself has not yet been per-
fected. However, the main principles of the release and 
the biocompatibility of the carrier and its resorption 
could already be presented.

  Comparison with Bone Cements Loaded with 
Antibiotics 
 In most studies involving antibiotic-loaded bone ce-

ments, the assay comprises microbiological analyses mea-
suring the area of inhibited growth in bacterial cultures 
 [9, 25] . At the beginning of these investigations, concentra-
tions of gentamicin were estimated by the agar-diffusion 
test  [14] . Those assays showed low preciseness and were 
time consuming. The modern assays use liquid chroma-
tography as the standard method. However, different 
methods can be applied. The UPLC of our study (Waters) 
is based on a fluorescence detector, and therefore, the sam-
ples have to be derivatized with 9-fluorenylmethyl chloro-
formate (Merck). The derivatization step is not necessary 
with the evaporative light scattering detector system  [23] .

  With regard to antibiotic-loaded PMMA bone ce-
ments, it is known that antibiotics diffuse out of the poly-
mer in bactericide concentrations; this was found for oral 
drug delivery systems as well  [26] . The diffusion of water-
soluble antibiotics is based on the uptake of water in mo-
lecular form, namely up to 5% as time goes on  [27, 28] . 
The amount of the released drug is proportional to the 
surface area accessible for the body fluid  [25, 29] , the 
amount of antibiotics in the cement mass and the turn-

over of the fluid around the cement implant  [25, 30] . The 
delivery from antibiotic-loaded bone cements depends 
directly upon the homogeneity of the mixture and the 
free surface of the PMMA implant  [31, 32] . According to 
the surface-related release, the morphology and the di-
mensions of the samples are decisive  [33] . The release 
from carriers is extensively studied in different bone ce-
ments loaded with different antibiotics  [9, 14] .

  In most studies, quantitative measurements differ 
greatly; however, they confirm that during the first 24 h, 
and most pronouncedly during the first and second hour, 
a steep curve is reported, revealing release rates of 2.3–
11%  [25, 34, 35] .

  Delivery of gentamicin is more precise and predictable 
in the form of ε-caprolacton than in the bone cement 
form, which differs greatly from sample to sample and is 
also influenced by the mixing procedure  [36] . The deliv-
ery from ε-caprolacton shows a steep drop during the first 
2 days, comparable to that of bone cement and gentami-
cin PMMA beads  [14, 32, 37] . However, it continues 
steadily over the following 8 days and then during the first 
months, as shown in the release curve of the study. Since 
the polymer is decomposed in vivo, the entire amount of 
gentamicin is delivered during the first 3 months  [15] .

  Quantitative analysis is now standardized, i.e. the elu-
ate is analyzed and the amount of gentamicin is defined 
in μg/ml. The procedure for quantification has become 
more precise  [23] .

  During the first 10 days, the release from PMMA bone 
cement has been measured as 2.1 μg/g. The release from 
ε-caprolactone in our series has subsequently been mea-
sured as 4.4 μg/g.

  The explanation is given by the water uptake of 
ε-caprolactone, its degradability and its molecular weight, 
which is comprised of shorter polymer chains. The differ-
ence within the number of samples might be explained by 
the inhomogeneity of the mixture, which had not been 
fully validated at that time. There is thus a slightly higher 
release measured of the ‘D3’ sample at the fifth day. Com-
pared with the release curves of PMMA bone cements  [9, 
25, 37] , the values in this study are very constant. With 
the degradation of ε-caprolactone, all gentamicin is re-
leased after 3 months, whereas the antibiotic-loaded bone 
cements showed release even after 5 years  [9] . Even if sen-
sitization is denied  [36] , there are reports of cement sam-
ples from chronically infected cemented hip components 
infected by fungi  [38] .

  Due to the growing resistance against  Staphylococcus 
aureus  strains, new combinations of antibiotics are re-
quested  [39, 40] .
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  Biocompatibility and Resorption of ε-Caprolactone 
 The bioactivity of β-TCP ceramics is well known 

from different animal studies and clinical evaluations 
 [41, 42] , and the bone-forming element for a cancellous 
bone scaffold was considered to be the ceramic bead 
 [43] . In combination with BMP-7, it was found that 
bone formation, remodelling and resorption are en-
hanced tremendously  [15] . Biocompatibility was prov-
en in all studies  [44] .   ε-Caprolactone is used for vascular 
tissue engineering  [45] , tissue culturing with chondro-
blasts  [46] , in in vitro and in vivo bone regeneration 
 [47–49] , peripheral nerve regeneration  [50]  and skin 
tissue engineering  [51] , as barrier membrane in peri-
odontology  [52]  and, for many years, as root-filling ma-
terial in dentistry  [19, 20, 53, 54] . Biocompatibility has 
been proven in all experimental and clinical studies 
 [21] . The combination with antibiotics is not new  [10]  

as is its combination with hydroxyapatite  [55]  and 
β-TCP  [11] .

  However, the combination with MCBs for primary 
bone formation, even in combination with BMP-7, was a 
completely new approach for fast and physiological bone 
regeneration, requested for bone augmentation for which 
antibiotic protection is of utmost importance  [15] .

  In conclusion, intrusion of a biodegradable carrier 
into ceramics preserved the bioactivity of the ceramic and 
provided a predictable release of the antibiotic for at least 
1 month.
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