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Abstract

We propose a Cochran-Armitage-type and a score-free global test that can be used to
assess the presence of an association between a set of ordinally scaled covariates and an
outcome variable within the range of generalized linear models. Both tests are developed
within the framework of the well-established ‘global test’ methodology and as such are
feasible in high-dimensional data situations under any correlation and enable adjustment
for covariates. The Cochran-Armitage-type test, for which an intimate connection with the
traditional score-based Cochran-Armitage test is shown, rests upon explicit assumptions
on the distances between the covariates’ ordered categories. In contrast, the score-free
test parametrizes these distances and thus keeps them flexible, rendering it ideally suited
for covariates measured on an ordinal scale. As confirmed by means of simulations,
the Cochran-Armitage-type test focuses its power on set-outcome relationships where
the distances between the covariates’ categories are equal or close to those assumed,
whereas the score-free test spreads its power over the full range of possible set-outcome
relationships, putting more emphasis on monotonic than on non-monotonic ones. Based
on the tests’ power properties, it is discussed when to favour one or the other, and the
practical merits of both of them are illustrated by an application in the field of rehabilitation
medicine. Our proposed tests are implemented in the R package globaltest.
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1. Introduction

Global hypothesis tests for possibly high-dimensional data have become an important

topic in statistical research. Primarily, this has been driven by the need for method-

ology that allows to test predefined sets of microarray-based gene expression data for

association with some clinical parameter (Draghici et al., 2003; Goeman et al., 2004;

Mansmann and Meister, 2005; Kong et al., 2006; Hummel et al., 2008). The main argu-

ment put forward by researchers has been that it may sometimes be more worthwhile

to draw inferential conclusions about the sets as a whole than about the individual

genes, both in view of interpretability of results and power. From the statistical view-

point, gene expression levels are metrically scaled (or, to be more precise, ratio scaled)

variables. Consequently, the plethora of tests proposed in this context (see Ackermann

and Strimmer (2009) for an overview) may likewise be applied to sets of metric vari-

ables stemming from other contexts. The potential benefit of global tests, however,

reaches beyond problems on the metric scale.

In medical applications where categorical variables are widespread, it is particu-

larly ordinal variables that can often be meaningfully structured into sets. Examples

include questions in psychomedical diagnostic tests (e.g. structured into sets by the

subdimension they describe), side effects in drug safety studies (e.g. structured into

sets by the body function they affect), items in questionnaire-based studies on func-

tional limitations and disabilities (e.g. structured into sets by means of the Interna-

tional Classification of Functioning, Disability and Health (ICF) (Ustün et al., 2003))

and single-nucleotide polymorphisms (SNPs) in next-generation sequencing studies

(e.g. structured into sets by genes). Typically, such prior knowledge is not exploited in-

ferentially, and one simply performs well-established univariate tests for each variable.

When the objective is to assess the presence of an association with some binary vari-

able, for example, the most widely used univariate test for ordinal variables is the two-

sided Cochran-Armitage (CA) test for trend (Cochran, 1954; Armitage, 1955) which, in

medical statistics, is usually better known in the one-sided formulation of Freidlin et al.

(2002). As with gene expression data, however, in the case of ordinal data it may like-

wise be preferable to shift the unit of analysis from individual variables to whole sets

of variables. It is therefore of practical interest to develop a methodology that allows to

address such problems.

The literature concerned with global tests for ordinal data is sparse. For the two-

sample case, Klingenberg et al. (2009) proposed a permutation test for stochastic or-

der between the ordinal variables’ marginal distributions. Recently, besides discussing

Hotelling-type tests along the lines of Agresti and Klingenberg (2005) which treat or-

dinal data as nominal, Jelizarow et al. (2014) generalized this test from one-sided to
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two-sided problems. Furthermore, they showed that, under working independence

between the variables in the set to be tested, the test statistic of Klingenberg et al. (2009)

is equivalent to the sum of variable-specific one-sided CA test statistics over the whole

set. Their own test statistic equals the sum of variable-specific two-sided CA test statis-

tics. The tests of Klingenberg et al. (2009) and Jelizarow et al. (2014) can thus be seen

as permutation-based generalizations of the CA test to higher dimensions. This fact

renders them an intuitive choice for set-based analyses of ordinal data, yet they have

their limitations. Firstly, they are confined to problems where the set of interest shall

be tested for association with some binary variable. This leaves many possible set re-

lationships with non-binary variables unexplored. Secondly, they do not allow for ad-

justment for potential confounders. In practice where observational studies are com-

mon, however, the possibility of making such adjustments is of utmost importance, in

order that false positive findings can be prevented.

The present paper develops two global tests for ordinal data which overcome the

above limitations. The tests are based on different assumptions regarding the distances

between the variables’ ordered categories, rendering them useful in different practical

situations. The first part of the paper introduces the statistical framework within which

both tests are being constructed. In particular, this is the framework of the ‘global test’

of Goeman et al. (2004, 2006) which was originally proposed for the analysis of sets of

genes. Within the broad context of generalized linear models (GLMs) (McCullagh and

Nelder, 1989), the global test exploits the duality between association and prediction:

if the set of interest is associated with some other variable, it will improve prediction

of that variable. Adopting the terminology of prediction models, the considered null

hypothesis is that none of the covariates in the set is associated with the outcome vari-

able, and the alternative hypothesis is that at least one of the covariates in the set shows

such an association. Adjustment for other covariates is feasible, provided that their

number is smaller than the sample size, which is the standard case in practice.

The second part of the paper elaborates and discusses the two tests proposed. The

first test is simply the original global test for metric data applied to scores that need

to be assigned a priori to the covariates’ categories, for example 1 to ‘low pain’, 2 to

‘moderate pain’ and 4 to ‘severe pain’ if one believes that the distance between ‘mod-

erate pain’ and ‘severe pain’ is twice the distance between ‘low pain’ and ‘moderate

pain’. We shall refer to this test as ‘CA-type’ test, since the CA test is also based on

prespecified scores. It turns out that, with data standardized to unit variance, this test

is a natural generalization of the traditional two-sided CA test to higher dimensions,

covariate-adjusted scenarios and all types of outcome variables that are within the

range of GLMs. Immediate connections with other methods are pointed out. While the

CA-type test expects the user to explicitly choose scores, and making a choice of scores

implies making assumptions on the distances between the covariates’ categories, the
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second test which we shall refer to as ‘score-free’ test is unpredjudiced regarding these

distances. As such, it is ideally suited for ordinal covariates because, by definition, the

distances between their categories are generally unknown. The unpredjudicedness is

achieved through an appropriate dummy-based coding scheme for the ordinal obser-

vations which uses only the ordering of the categories. An appealing property of this

test is that the test result does not depend on any reference category in the coding

scheme.

The third part of the paper examines the behaviour of the two tests by means of

simulations, illustrates their application with data from rehabilitation medicine, and

provides practical recommendations on when to favour one or the other. Our pro-

posed tests are implemented in the Rpackage globaltestwhich can be obtained from

www.bioconductor.org.

2. The ‘global test’ framework

For a sample of n independent subjects, suppose that we have an n×1 outcome vector

y , an n×q design matrix Z which contains realizations of the covariates we would like

to adjust for (e.g. typical potential confounders such as age and sex), and an n × p

design matrix X which contains realizations of the covariates we would like to make

inferences about. Suppose further that q is smaller than n, whereas p may exceed

n. The data situation may thus be high-dimensional. Under the assumption that the

covariates and the outcome variable relate to each other via the GLM, we have

g (E(y)) = 1γ0 +Zγ+Xβ, (1)

where g (·) is the canonical link function for the exponential family distribution of the

components of y , for example the identity function when the outcome variable is con-

tinuous (e.g. some blood parameter) or the logit function when the outcome variable

is binary (e.g. some disease subtype). 1 is an n ×1 vector of ones, γ0 denotes an inter-

cept term, γ is an unknown q ×1 vector of regression coefficients for the covariates in

Z , and β is an unknown p ×1 vector of regression coefficients for the covariates in X .

Based on the observed data, we are interested whether the set of covariates in X as a

whole is associated with the outcome y , after adjustment for the effect of the covariates

in Z . This problem can be expressed through the hypotheses

H0 :β= 0 against HA :β 6= 0. (2)

Problem (2) is that for which Goeman et al. (2004, 2006) developed the ‘global test’,

based on ideas of le Cessie and van Houwelingen (1995). In particular, they derived a

score test statistic that can be employed whatever the dimensionality of the alternative
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hypothesis is, provided that the respective null hypothesis is low-dimensional. This is

in contrast to the classical score, Wald or likelihood ratio test statistic: they all break

down when the number of model parameters under the alternative of interest exceeds

the number of subjects in the sample. In explicit terms, the test statistic of Goeman

et al. (2004, 2006) has the form

S = (y −µ)>X X >(y −µ),

where µ is the expectation of y under the null hypothesis. Because µ is unknown, its

maximum likelihood estimate µ̂= g−1(1γ̂0+Z γ̂) is plugged in, with γ̂0 and γ̂ being the

null model coefficients estimated via an iteratively reweighted least squares algorithm.

The resultant test statistic

Ŝ = (y − µ̂)>X X >(y − µ̂) (3)

is thus a quadratic form in the residuals of the null model. For this quadratic form,

Goeman et al. (2011) analytically derived an approximate null distribution which is

conditional on X and thus remains valid for any correlation between the covariates in

the set considered. By means of simulations, this null distribution was shown to per-

form well with respect to type I error rate control even when the sample size is mod-

erate to small. Alternatively, the test statistic’s exact null distribution may be obtained

via permutation, yet this procedure is computationally more demanding and, more

importantly, it is only valid for problem (2) if the null covariates and the covariates in

the set to be tested are independent of each other. For significance assessment, the

test statistic’s permutation null distribution should therefore only come into question

if such an independence assumption seems plausible or, trivially, if no covariates are

present under the null hypothesis. In this paper we shall use the approximate null dis-

tribution of Goeman et al. (2011) throughout.

The global test exhibits several properties (P1–P6) making it amenable to broad and

efficient use in practice. As previously mentioned, it is applicable both in the case of

low-dimensional and high-dimensional alternatives (P1), it allows for covariate adjust-

ment without further assumptions (P2), it is valid even under correlation (P3), and it

can be performed at low computational costs, since an analytical approximation of the

test statistic’s null distribution is at hand (P4). Besides that, it possesses an optimal-

ity property, which follows from the fact that it has been constructed as a score test.

In particular, it has optimal average power to detect alternatives uniformly distributed

on the p-dimensional ball
∥∥β

∥∥ ≤ ε, for ε ↓ 0. In less technical terms, among all possi-

ble tests, the global test maximizes the average power against alternatives that are in a

neighbourhood of the null hypothesis (P5). On average, it is thus the best test to use

if it is expected that all or most covariates in the set are only weakly associated with

the outcome variable. It is important to note, however, that this optimality property is
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meant in terms of the chosen parametrization of the covariates under the alternative;

changing the parametrization means changing the shape of the neighbourhood of the

null hypothesis where the test is optimal. Finally, the test statistic (3) can be written

as Ŝ = ∑p
k=1

[
x>

k (y − µ̂)
]2

, that is, the sum of covariate-specific test statistics over the

whole set, where xk is the kth column of X (P6). We shall see later on in Sections 3 and

5 that this property proves to be useful in various respects. Noting that, at convergence

of the null model, it holds (y − µ̂) = (I −H)(y − µ̂), where I denotes the n-dimensional

identity matrix, H = Z̃
(

Z̃ >W Z̃
)−1

Z̃ >W with Z̃ = (1|Z ) is the asymmetric hat matrix of

the null model, and W = diag(φv(µ̂)) is the covariance matrix of y under the null hy-

pothesis, with φ being the dispersion parameter and v(·) the variance function of the

distribution of the components of y , the kth covariate-specific test statistic can in turn

be written as Ŝk = [
x>

k (I −H)(y − µ̂)
]2

. From this representation we can immediately

see that the contribution of each covariate to the overall test statistic is determined by

its residual variance, adjusted for the null covariates. Whether this implicit weighting is

appropriate or not depends on the application, such that some standardization might

become necessary. We come back to this issue in Section 3.4. For further interpreta-

tions of the test statistic (3) we refer to Goeman et al. (2004, 2006), and to Goeman et al.

(2004) and Solari et al. (2012) for connections with penalized likelihood and random

effects methods.

Essentially, the framework of the global test is defined by (1)–(3), and all tests con-

structed within it enjoy the properties P1–P6. For sets of metrically scaled covariates,

several such tests have already been implemented, each of which is suited for a dif-

ferent outcome type: a global test for the linear model (for continuous outcomes)

(Goeman et al., 2004), the logit model (for binary outcomes) (Goeman et al., 2004),

the multinomial logit model (for multi-class outcomes), the Poisson model (for count

outcomes), and an extended global test for the Cox proportional hazards model (for

survival outcomes) (Goeman et al., 2005). In Section 3 we discuss how, within the

above framework, this versatile methodology can be made applicable to sets of ordi-

nally scaled covariates.

3. Handling ordinal covariates under the alternative

3.1. Preliminaries

In what follows, suppose that the covariates in the set of interest are ordinal, and let

ck denote the number of categories of the kth covariate. For convenience of notation,

let the ordered categories of unknown distance be labelled with numbers 1 to ck . (In

the data set considered in Section 5, for example, most of the covariates describe func-
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tional limitations and disabilities, and the numbers 1 to 3 stand for the categories ‘no

impairment’, ‘mild to moderate impairment’ and ‘severe to complete impairment’.) For

xi k , the i th realization of the kth covariate, we thus have: xi k ∈ {1, . . . ,ck }.

Technically, the ordinal covariates’ special character manifests itself in the fact that

their realizations typically need to be recoded in order to enable proper specification

of the model under the alternative. Direct use of the labels would imply the assump-

tion that the covariates’ categories are equally-spaced. Given that the numbers 1 to

ck are arbitrary and merely meant to indicate which of the categories have been ob-

served, this may not always be desirable. Hence, if we want to render the global test

methodology sensitive towards the covariates’ ordinal nature, we need to recode the

xi k s appropriately. Two approaches to do so are presented in Sections 3.2 and 3.3, re-

sulting in two different tests for sets of ordinal data which both enjoy the properties

P1–P6 described in the previous section.

3.2. CA-type approach with prespecified scores

The first approach codes observations on an ordinal scale in the same fashion as does

the CA test for trend, hence the name CA-type approach. Essentially, this means that

the numbers 1 to ck are transformed into scores that need to be assigned a priori to the

ordinal covariates’ categories, and the observed scores are then treated as if they were

metric observations. Our motivation to consider such a score-dependent approach

within the global test framework stems from the wide popularity of the CA test in sta-

tistical practice and particularly in medical applications. Formally, the transformation

rule that characterizes the CA-type approach can be expressed by

x̃i k = sk (v) if xi k = v, (4)

where v = 1, . . . ,ck indexes the ordered categories and sk (v) denotes the score assigned

to the vth category of the kth covariate. It is easy to see that direct use of the numbers

1 to ck is a special case of (4). The CA-type test statistic then is

ŜCA = (y − µ̂)>X̃ X̃ >(y − µ̂), (5)

where X̃ is the score-transform of the design matrix X in terms of (4). Thus, the test

statistic (5) is the original test statistic (3) applied to prespecified scores.

A special variant of the test statistic (5) arises when the outcome variable is binary,

the null model contains only an intercept, and the columns x̃1, . . . , x̃p of X̃ are stan-

dardized to have unit variance. In particular, under these conditions, the test statistic

(5) is equivalent to the sum of covariate-specific two-sided CA test statistics. The proof
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is a straightforward calculation and is given in Appendix A.1. We can immediately con-

clude from this relationship that, with x̃1, . . . , x̃p standardized to unit variance, the re-

sultant CA-type test is a proper generalization of the traditional two-sided CA test in

three important directions: to higher dimensions, to covariate-adjusted scenarios and

to all types of outcome variables that are within the range of GLMs. As such, it can like-

wise be seen as a generalization of the earlier mentioned test of Jelizarow et al. (2014).

The standardization of the columns of X̃ , and its implications, will be further discussed

in Section 3.4.

For the validity of the CA-type test, the concrete choice of scores is not relevant, pro-

vided that this choice has been made without inspection of the data observed. When

it comes to the test’s power, however, the choice of scores is crucial. The crux is that

the scores reflect the suspected relationship between the covariates in the set to be

tested and the outcome variable. For example, choosing equally-spaced scores for all

covariates in the set reflects the suspicion that the relationship is linear, that is, that the

outcome changes linearly between two adjacent categories of at least one covariate in

the set. If the suspicion is correct, the CA-type test will be powerful. If it is not correct,

that is, if the choice of scores is poor, it may happen that the test has no power at all.

We shall illustrate this point by means of simulations in Section 4.

In connection with the choice of scores, two issues deserve particular emphasis.

Firstly, the CA-type test has the desirable property that two sets of scores {(sk (1), . . . ,

sk (ck ))}p
k=1 and {(s′k (1), . . . , s′k (ck ))}p

k=1 lead to the same test result if constants t ,u ∈ R
exist such that s′k (v) = t · sk (v)+u for all v and k. The outcome of the test is thus the

same for scores that are linear transforms of each other, such as (1, 2, 4) and (3, 5, 9) or

(10, 20, 40). Practically speaking, this means that the test result solely depends on the

kind of the suspected relationship and not on the — to some extent subjective — nu-

merical scale that has been chosen to reflect it. This property may come as a surprise

because, obviously, the test statistic (5) is not invariant to every linear transformation

of the scores used. The reason why the outcome of the test nevertheless is so lies in

the way in which the test statistic needs to be rescaled before its approximate null dis-

tribution can be derived (Goeman et al., 2011). For details on the rescaling we refer

to Goeman et al. (2011), and here limit ourselves to just mentioning its welcome con-

sequences. Secondly, because the CA-type test is a two-sided test and as such does

not depend on the sign of the true regression coefficients for the covariates in the set

of interest, it will not be sensitive towards the direction of the suspected relationship

of each covariate with the outcome variable. For illustration, for some set that only

contains ordinal covariates with three categories, any of the 2p possible mixtures of

the strictly monotonically increasing scores (1, 2, 4) and the strictly monotonically de-

creasing scores (-1, -2, -4) will lead to the same test result. This should be kept in mind

in order to prevent false inferential conclusions.
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The CA-type test is useful whenever the research interest focuses on the detection

of relatively specific alternatives. In such situations, the fact that the test requires spec-

ification of scores for all covariates in the set to be tested, and that making a choice

of scores means making assumptions on the distances between the covariates’ cate-

gories, will seldom pose considerable problems. Rather, it can be taken advantage of in

order to direct the power of the test towards the desired alternative. When the research

interest is broader in the sense that many different alternatives are considered equally

important, however, ‘[. . . ] scientists may feel that the assignment of scores is slightly

unscrupulous, or at least they are uncomfortable about it. [. . . ]’ (Cochran, 1954). A test

that is useful in such situations is discussed in the next section.

3.3. Score-free approach

The second approach to handling ordinality dispenses with scores altogether, hence

the name score-free approach. It codes ordinal observations by using the dummy-

based coding scheme of Walter et al. (1987), sometimes called split coding (Gertheiss

et al., 2011). This means that the numbers 1 to ck are transformed such that the or-

dinal covariates are no more represented one-dimensionally but multi-dimensionally

by groups of dummies, with each group corresponding to one ordinal covariate. As

opposed to classical dummies, the dummies used here contain information on the

ordering of the covariates’ categories. In explicit terms, the transformation rule that

characterizes the score-free approach is

di kṽ =




1 if xi k > ṽ

0 otherwise,
(6)

where di kṽ is the i th component of dkṽ , which is the ṽth dummy vector for the kth

covariate, and ṽ = 1, . . . , c̃k with c̃k := ck −1. The score-free test statistic then is

ŜSF = (y − µ̂)>DD>(y − µ̂), (7)

where D = (
D1| . . . |Dp

)
is the dummy-transform of the design matrix X in terms of

(6), with Dk = (
dk1| . . . |dkc̃k

)
denoting the kth group of dummy vectors. Because the

Dk s are n × c̃k matrices, we have c̃k (rather than one) model parameters for the kth

covariate, so that the dimension of the alternative in (2) increases from 1+q +p to 1+
q+∑p

k=1 c̃k . We may thus encounter an alternative that is high-dimensional even when

the data situation in itself is low-dimensional. As pointed out in Section 2, however,

test statistics constructed within the global test framework can be used whatever the

dimensionality of the alternative hypothesis is, and therefore no problems occur from

that.
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The Dk s obtained through (6) are easy to interpret: the first dummy vector tells us

whether the sample has been classified higher than into the first category, the second

dummy vector tells us whether the sample has been classified higher than into the

second category, and so on. The respective model parameters are similarly easy to in-

terpret: βkṽ , the ṽth regression coefficient for the kth covariate, describes the distance

between category ṽ and ṽ + 1, that is, the difference between the effects of category

ṽ and ṽ +1. Effectively, this means that the first category is taken to be the reference

category, and that the effects of the first and the second category are assumed to be

more similar than the effects of the first and the third category, which in turn are as-

sumed to be more similar than the effects of the first and the fourth category, and so

on. Stated differently, it is expected that the outcome changes rather smoothly than

jaggedly across the categories, which is intuitively plausible for covariates measured

on an ordinal scale. It is important to emphasize, however, that no assumptions are

made on the particular size of the βkṽ s. The resultant score-free test is therefore ideally

tailored to ordinal data: it incorporates the ordering of the covariates’ categories, but

at the same time it is unprejudiced regarding the distances between them. This is well

reflected in the power properties of the test, as simulations in Section 4 will confirm:

the range of alternatives it can detect varies from linear to umbrella-like relationships

between the covariates in the set of interest and the outcome variable, with monotonic

relationships being more likely to be detected than non-monotonic relationships.

It has just been said that the transformation rule (6) effectively takes the first cate-

gory to be the reference category, and that it defines dummies under the assumption

of ‘smoothness’. Analogous transformation rules or coding schemes may be written up

with any other of the categories as reference category. A general formulation is

d (r )
i kṽ =





−1 if xi k ≤ ṽ ∧ ṽ < r

1 if xi k > ṽ ∧ ṽ ≥ r

0 otherwise,

(8)

where r ∈ {1, . . . ,ck } is the chosen reference category. It is easy to see that (8) reduces

to (6) when r = 1. The interpretation of the respective D (r )
k s is slightly more intricate

than above. For example, for ck = 3 and r = 2, the first dummy vector tells us whether

the sample has been classified lower than into the second category, and the second

dummy vector tells us whether the sample has been classified higher than into the

second category. At first sight, this may suggest that different choices of the reference

category lead to different test statistics and hence to potentially different inferential

conclusions. This, however, is not the case, which is convenient because the choice

of the reference category is often arbitrary. In particular, it is readily verified that the

different nature of the D (r )
k s does not affect the interpretation of the ṽth regression

coefficient as the distance between category ṽ and ṽ +1. We thus have β(r )
kṽ = βkṽ for
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all r , meaning that the parametrization of the model under the alternative does not

depend on the choice of the reference category. Intuitively, it is therefore clear that any

score-free test statistic Ŝ(r )
SF which is derived based on (8) must be equivalent to the test

statistic (7), provided that the null model includes at least an intercept. For a formal

proof of this valuable invariance property see Appendix A.2. The score-free test may

thus be regarded as a test that randomly picks one category on the ordinal scale and,

starting from there, parametrizes the distances between adjacent categories, thereby

keeping them flexible.

3.4. Ordinal covariates on different scales

In practice, the most frequently encountered situation is that where all covariates in

the set to be tested are measured on the same ordinal scale, that is, where ck = c for all

k. This section briefly discusses practical solutions to potential issues that may arise in

situations where the covariates are measured on different ordinal scales.

An important property of the test statistics (5) and (7) is that they can be decom-

posed into covariate-specific contributions. For the former, the contribution of each

covariate to the overall test statistic is determined by its residual variance, adjusted

for the null covariates. For the latter, the covariate-specific contribution is determined

by the summed residual variances of the respective dummies, likewise adjusted for the

null covariates. This becomes apparent from the fact that the test statistics can be writ-

ten as ŜCA = ∑p
k=1

[
x̃>

k (I −H)(y − µ̂)
]2

and ŜSF =
∑p

k=1

∑c̃k
ṽ

[
d>

kṽ (I −H)(y − µ̂)
]2

, respec-

tively, where H is the hat matrix of the null model (see the penultimate paragraph of

Section 2). In general, this implicit weighting of the covariates is desirable: covariates

with high residual variance usually carry more potentially important information than

those with low residual variance, so they should have more influence on the test result.

However, when the covariates are measured on different ordinal scales, this weighting

will in some way be distorted by the fact that covariates with many categories are more

likely to lead to high residual variance than covariates with few categories. Given that

the metric level of measurement is more informative than the ordinal one, and that

the finer the ordinal scale the closer it is to the metric scale, one may argue that it is

only intuitive to give more weight to covariates with many categories than to covari-

ates with few categories. In some instances, however, one might want to correct for the

imbalance between the ordinal scales used. This can be accomplished by standardiz-

ing each of the covariates to unit variance before the CA-type or the score-free test is

being performed. For the CA-type test statistic ŜCA, this means that we need to replace

x̃k by x̃ ′
k = x̃k /

[
n−1x̃>

k

(
I −H ′) x̃k

]1/2
, where H ′ = n−111>. Note that this leads directly

to the generalized CA test discussed in the second paragraph of Section 3.2; the gener-

alized CA test is thus ‘scale-corrected’ by construction. For the score-free test statistic
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ŜSF, standardization of each covariate to unit variance means that we need to replace

dkṽ by d ′
kṽ = dkṽ /

[
n−1trace

(
D>

k

(
I −H ′)Dk

)]1/2
.

4. Simulations

4.1. Simulation set-up

In Section 3 we have stated that the CA-type test would be useful in situations where

the research interest focuses on the detection of relatively specific alternatives, and

that the score-free test in turn would be useful in situations where many different

alternatives are considered equally important, that is, where the research interest is

rather broad. In this section we present a small simulation study which we conducted

with the objective of illustrating and further clarifying these statements. In particular,

we examined the performance of the CA-type and the score-free test for different set-

outcome relationships. The CA-type test was based on the equally-spaced scores 1 to

ck throughout, and both tests were used in their ordinary form with unstandardized

covariates.

Throughout the study, the outcome variable was binary and 0/1-coded, the set to

be tested comprised p = 100 independent ordinally scaled covariates with the same

number c = 3 of categories, and there were no covariates to be adjusted for. The sam-

ple sizes considered were n = 20,40,60,80,100. Our major interest thus lay in high-

dimensional data scenarios. Within this general set-up, we studied five different set-

outcome relationships: linear, non-strictly monotonic, asymmetric umbrella, umbrella

and mixed. For completeness, we further studied the null case of no relationship, even

though, in principle, good type I error rate control can be expected due to the fact that

our tests have been constructed within the global test framework. To obtain data sets

for which the different relationships can be found, we used that, in the set-up con-

sidered, the set-outcome relationship is determined by the trend in the binomial pro-

portions of sample units with outcome 1 (and 0, respectively) across the categories of

each of the 100 covariates. With (b1
k1,b1

k2,b1
k3) =: b1

k (and (b0
k1,b0

k2,b0
k3) =: b0

k , respec-

tively) denoting the kth covariate’s binomial proportions, where b1
kv ,b0

kv ∈ (0,1) and

b1
kv + b0

kv = 1 for v = 1,2,3, the particular patterns of binomial proportions that we

examined in our study were

(a) S0 (null case): b1
1 = ·· · = b1

100 = (0.5, 0.5, 0.5),

(b) S1 (linear): b1
1 = ·· · = b1

24 = (0.4, 0.5, 0.6);

b1
25 = ·· · = b1

100 = (0.5, 0.5, 0.5),

(c) S2 (non-strictly monotonic): b1
1 = ·· · = b1

24 = (0.35, 0.55, 0.55);
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b1
25 = ·· · = b1

100 = (0.5, 0.5, 0.5),

(d) S3 (asymmetric umbrella): b1
1 = ·· · = b1

24 = (0.4, 0.6, 0.5);

b1
25 = ·· · = b1

100 = (0.5, 0.5, 0.5),

(e) S4 (umbrella): b1
1 = ·· · = b1

24 = (0.45, 0.65, 0.45);

b1
25 = ·· · = b1

100 = (0.5, 0.5, 0.5) and

(f) S5 (mixed): b1
1 = ·· · = b1

6 = (0.4, 0.5, 0.6);

b1
7 = ·· · = b1

12 = (0.35, 0.55, 0.55);

b1
13 = ·· · = b1

18 = (0.4, 0.6, 0.5);

b1
19 = ·· · = b1

24 = (0.45, 0.65, 0.45);

b1
25 = ·· · = b1

100 = (0.5, 0.5, 0.5).

For S1–S5, the number of informative covariates in the set was thus chosen as 24. For

each desired pattern, random data sets were generated as follows. Firstly, the binary

outcome was drawn from a Bernoulli distribution with probability of success equal to

0.5. Secondly, conditionally on the outcome, realizations of each of the 100 ordinal

covariates were drawn from covariate-specific independent multinomial distributions

such that the desired pattern of binomial proportions resulted; multinomial distribu-

tions that satisfy this condition were determined based on Bayes’ theorem. The power

(type I error rate) was then estimated from 10000 random data sets as the average rejec-

tion rate of false (true) null hypotheses, and the desired significance level was α= 0.05.

The simulation margin of error thus amounted to approximately ± 0.44 %. The results

from our simulation experiments are reported in Section 4.2.

4.2. Simulation results

Table 2 summarizes the average rejection rates obtained with our two tests for the sim-

ulation scenarios S0–S5. Under the null hypothesis of no association between the set

and the outcome variable (scenario S0), both tests offer good type I error rate control:

nearly all deviations of the actual type I error rate from the nominal one lie within the

simulation margin of error, which confirms the general usability of the approximate

null distribution of Goeman et al. (2011). Under the different alternative hypotheses

of interest (scenarios S1–S5), we find for the CA-type test that its power increases the

better the prespecified scores reflect the true set-outcome relationship. This is intu-

itively plausible and typical for score-dependent methods for ordinal data, such as for

the traditional univariate CA test. The dependence of the CA-type test’s power proper-

ties on the choice of scores becomes particularly evident when we contrast the results

for S1 and S4 with each other. To recap, we have chosen the scores (1, 2, 3) throughout

the set, which reflects linearity of the suspected relationship between the covariates
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in the set and the outcome variable. This is exactly the kind of set-outcome relation-

ship that is true for S1. As Table 2 shows, this accurate match between the prespecified

scores and the true set-outcome relationship renders the CA-type test powerful, even

slightly more powerful than the score-free test. For S4, in contrast, the CA-type test

has basically no power at all. Apparently, this is owing to the fact that here the de-

gree of misspecification of scores is fairly large, since S4 represents an umbrella-like

set-outcome relationship. (A side remark: to have power to detect umbrella-like set-

outcome relationships, we would have had to choose umbrella-shaped scores such as,

for example, (1, 2, 1).) As can be further seen from Table 2, an entirely different picture

than for the CA-type test is obtained for the score-free test. In particular, our results

indicate that the latter has power irrespective of what kind of relationship the covari-

ates in the set exhibit with the outcome variable, and that the power to detect mono-

tonic set-outcome relationships (scenarios S1 and S2) exceeds the power to detect non-

monotonic ones (scenarios S3 and S4). This specific behaviour of the score-free test

has been confirmed by various further simulation experiments that we conducted on

this issue (not shown here).

The simplistic character of the scenarios S1–S4 has helped to illustrate the power

properties of the CA-type and the score-free test. Scenarios of this kind are, however,

unlikely to be encountered in practice. A more realistic scenario is represented by S5

where some of the covariates in the set are monotonically related to the outcome vari-

able, whereas others show a non-monotonic relationship. As could have been expected

from the results for S1–S4, here the score-free test has more power than the CA-type

test. Nevertheless, the score-free test will not per se be the better choice. In particular,

the fact that the CA-type test requires correctly specified scores to be powerful makes

it useful in applications where only a specific type of set-outcome relationship is con-

sidered important.

Table 2: Average rejection rates for the simulation scenarios S0–S5 (see Section
4.1 for detailed descriptions).

CA-type test∗ Score-free test

Sample size n 20 40 60 80 100 20 40 60 80 100

S0 0.053 0.051 0.056 0.054 0.049 0.055 0.054 0.056 0.052 0.052

S1 0.194 0.435 0.689 0.861 0.948 0.185 0.415 0.662 0.838 0.937

S2 0.180 0.388 0.632 0.812 0.916 0.185 0.402 0.651 0.828 0.925

S3 0.087 0.147 0.224 0.311 0.393 0.136 0.280 0.476 0.648 0.792

S4 0.056 0.060 0.064 0.073 0.075 0.093 0.143 0.217 0.303 0.408

S5 0.119 0.230 0.380 0.520 0.663 0.147 0.302 0.506 0.683 0.827
∗ based on the equally-spaced scores (1, 2, 3) throughout the set
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5. Application to data on functional limitations and disabilities
in multiple sclerosis

5.1. Data set and question of interest

To illustrate the application of the tests presented in Section 3, we analyzed data from

the multi-centre cross-sectional study on functional limitations and disabilities in mul-

tiple sclerosis (MS) of Holper et al. (2010). The study was conducted in overall four re-

habilitation centres in Germany and Switzerland from 2007 to 2008, and it was based

on the International Classification of Functioning, Disability and Health (ICF) (Ustün

et al., 2003). In brief, the ICF is an extensive classification framework which allows

for the description of individual, social and environmental aspects of functioning and

disability both across health conditions and for specific health conditions such as MS.

The description is realized by means of relevant selections from an overall pool of more

than 1400 health-related ordinally scaled items called ICF categories, henceforth re-

ferred to as ICF covariates. The latter can be structured into four non-overlapping sets,

the so-called ICF components: ‘body functions’ (b), ‘body structures’ (s), ‘activities and

participation’ (d) and ‘environmental factors’ (e).

The considered data set includes n = 93 individuals of which 33 were diagnosed

with the MS form primary progressive MS (PP MS) and 60 with the MS form secondary

progressive MS (SP MS). Aside from disease-related and socio-demographic details on

the individuals, the data set provides information on each individual’s functioning and

disability status captured by means of p = 129 ICF covariates that are considered par-

ticularly relevant for MS patients. Of this total, 34 ICF covariates belong to the ICF

component b (e.g. ‘orientation functions’ (b114), ‘sensation of pain’ (b280) and ‘sex-

ual functions’ (b640)), 13 to the ICF component s (e.g. ‘spinal cord and related struc-

tures’ (s120), ‘structure of reproductive system’ (s630) and ‘structure of lower extremity’

(s750)), 51 to the ICF component d (e.g. ‘writing’ (d170), ‘washing oneself’ (d510) and

‘doing housework’ (d640)) and 31 to the ICF component e (e.g. ‘climate’ (e225), ‘im-

mediate family’ (e310) and ‘transportation services, systems and policies’ (e540)). For

the complete list of the ICF covariates involved see Holper et al. (2010). As has been

recommended by Bostan et al. (2012) for the five-level ordinal scale originally used in

the ICF components b, s and d, we coarsened both the five-level and the nine-level

scale originally used in the ICF component e to three levels: for the ICF covariates in b,

s and d, the numbers 1, 2 and 3 label the categories ‘no impairment’, ‘mild to moderate

impairment’ and ‘severe to complete impairment’, whereas for the ICF covariates in e

they label the categories ‘facilitator’, ‘neither barrier nor facilitator’ and ‘barrier’.

Based on the above data, we tested for association between each of the ICF compo-
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nents and the MS form (coded with 0 for PP MS and 1 for SP MS). Statistical analyses

of ICF-based data that exploit the prior knowledge on the structure of the data have

previously been advocated by Jelizarow et al. (2014). Merely for the purpose of illustra-

tion of differences between the CA-type and the score-free test, we applied them both,

noting that in practice one should decide for one or the other, which is sensibly done

based upon power considerations. We used the CA-type test with the equally-spaced

scores (1, 2, 3) throughout, and we adjusted our analysis for age, sex and sum score

from the Beck Depression Inventory (BDI) II (Beck et al., 1996). Because we were in-

terested in testing the four ICF components simultaneously, it was necessary to adjust

the respective p-values for multiplicity. We did so by means of the Bonferroni-Holm

procedure (Holm, 1979). Alternatively, one could think of multiplicity adjustment pro-

cedures that respect the fact that the ICF components are of different size, yet here we

prefer to treat the ICF components on the same footing for the sake of simplicity. The

results obtained are discussed below in Section 5.2.

5.2. Test results

Table 3 displays the Bonferroni-Holm adjusted p-values for the ICF components b, s,

d and e, obtained with the CA-type and the score-free test for the logit model. At the

standard level of significance α = 0.05, the CA-type and the score-free test lead to the

same inferential conclusions for b, s and d: while b and d are found to be significantly

associated with the MS form, no such association can be revealed for s. It can thus be

said that PP MS and SP MS patients differ in their overall pattern of restrictions of body

functions as well as activities and participation. When it comes to the ICF component

e, the CA-type test clearly maintains the null hypothesis of no association with the MS

form, whereas the score-free test rejects it. Recalling the simulation results on power

from Section 4.2, this may indicate that the ICF component e comprises ICF covariates

that exhibit a non-monotonic relationship with the MS form. Figure 1 helps to clarify

whether this is the case: it shows the ICF covariate-specific contributions to the test

statistics ŜCA (left panel) and ŜSF (right panel) for the entire set e. If now an ICF co-

variate is non-monotonically related to the MS form, its influence on ŜCA is likely to be

smaller compared to its influence on ŜSF. Among the 31 ICF covariates included in e, it

becomes readily visible from the figure that this is particularly true for the ICF covari-

ate ‘light’ (e240). A look into the data in fact suggests the presence of a non-monotonic

relationship: the binomial proportions across the categories of the ICF covariate e240

are 0.21, 0.54 and 0.24 for PP MS patients and, consequently, 0.79, 0.46 and 0.76 for SP

MS patients. The fact that this is fairly close to an umbrella-like relationship explains

why the influence of e240 on ŜCA is considerably less pronounced than on ŜSF. Noting

that non-monotonic relationships seem to be present for 17 further ICF covariates in e
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(see hatched bars in Figure 1), and that numerous of these ICF covariates belong to the

most influential ones in the set, it is of little surprise that here our two tests have lead

to different inferential conclusions.

Differences between PP MS and SP MS patients with respect to functional limita-

tions and disabilities in the course of the disease have previously been reported in

the medical literature (A. Thompson, 2004; Amato et al., 2006). On the basis of indi-

vidual ICF covariates, however, the presence of such differences could so far not be

confirmed; merely some descriptive observations in that direction were made (Holper

et al., 2010). In contrast to that, our results show that, on the basis of ICF components,

proper statistical evidence in favour of the phenomenology communicated in the med-

ical literature can be provided. This well exemplifies the potential practical benefit of

the tests developed in this paper.

As an additional but rather informal step, we performed the CA-type and the score-

free test separately for each ICF covariate, even though the classical univariate scenario

is not that by which the tests’ development has been motivated. For comparison, we

performed ICF covariate-specific likelihood ratio tests, based on both the CA-type and

the score-free approach to handling ordinality. As with the analysis of the ICF compo-

nents, we adjusted for age, sex and BDI score. After Bonferroni-Holm correction of the

covariate-specific p-values, we find that for none of the 129 ICF covariates a statisti-

cally significant effect can be detected, irrespective of which of the four tests is being

used. Our univariate results are thus in line with the earlier mentioned univariate re-

sults of Holper et al. (2010).

Table 3: Multiplicity-adjusted p-values via Bonferroni-Holm for the ICF compo-
nents b, s, d and e.

CA-type test Score-free test

Body functions (b) 0.030 0.021

Body structures (s) 0.345 0.328

Activities and participation (d) 0.049 0.023

Environmental factors (e) 0.145 0.039
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Figure 1: Covariate-specific contributions to the test statistics ŜCA and ŜSF for the
ICF component e. Hatched bars belong to those ICF covariates for
which the data suggest a non-monotonic relationship with the MS form.

6. Discussion and conclusion

Motivated by the wide occurence of structured ordinal data in medical applications,

we have developed two tests that enable researchers to assess the presence of an asso-

ciation between a set of ordinal covariates and an outcome variable within the range

of GLMs. Feasibility independent of the dimensionality of the alternative hypothesis,

validity under any correlation and the possibility of covariate-adjustment render the

tests widely useful in practice. Our first test, the score-based CA-type test, expects the

user to make assumptions on the distances between the covariates’ categories, and its

power is then directed towards the set-outcome relationship that is in line with these

assumptions. Under mild conditions, we have shown that this test is a proper gener-

alization of the traditional CA test to higher dimensions, covariate-adjusted scenarios

and GLM-specific outcomes. Our second test, the score-free test, respects the order-

ing of the covariates’ categories while dispensing with assumptions on the distances

between them, and its power is spread over the full range of set-outcome relation-

ships, with more emphasis put on monotonic than on non-monotonic ones. In prac-

tice, whether to employ the CA-type or the score-free test depends on whether some
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specific alternative or many different alternatives are considered important, such that

recommendations can only be made with reference to concrete applications.

One scenario where the score-free test promises to be more appropriate than the

CA-type test is when sets of SNPs in genetic association studies of complex diseases

are to be tested. To test individual SNPs in case-control situations, it is common prac-

tice to use the traditional CA test, where the scores are chosen such that they reflect

the underlying genetic model (Freidlin et al., 2002; Balding, 2006). To test sets of SNPs,

the SNP-specific CA test statistics are often combined into one test statistic for the en-

tire set, and critical values are obtained via some resampling procedure (Balding, 2006;

Hoh and Ott, 2003). This popularity of the CA test for the analysis of SNP data speaks for

the usefulness of the CA-type and, as a special variant, the generalized CA test in this

context. For complex diseases, however, the genetic model is typically unknown, and

the choice of scores hence unclear. To overcome this issue, one can perform separate

tests for each genetic model and then build some weighted average of the respective re-

sults. As pointed out by Balding (2006), it will mostly be sensible to choose the weights

such that greater plausibility of the additive model is reflected but that the resultant

test still has power to detect effects that are far from additive. The fact that this corre-

sponds to the power properties of the score-free test without that weights need to be

specified argues for future explorations of this test in the context of SNP set analyses.

Although standard univariate problems are not those for which our tests have origi-

nally been intended for, it is important to emphasize that the latter may be valuable in

such situations as well. It should be kept in mind, however, that the tests proposed are

score tests and as such only have optimal average power when the deviation from the

null hypothesis is small, that is, when the effect of the covariate considered is weak.

Given that, in medical applications and beyond, sets of ordinal covariates are more

frequently encountered than sets of nominal covariates, we have focused on the for-

mer in this paper. Besides the CA-type and the score-free test, however, the R pack-

age globaltest (which can be obtained from www.bioconductor.org) likewise imple-

ments a global test that is tailored to covariates measured on a nominal scale. Applica-

tion of this test to sets of ordinal covariates can be sensible, yet only in instances where

monotonic and non-monotonic set-outcome relationships are considered equally im-

portant.

Finally, the tests proposed are not only useful by themselves but, in addition, can

be fruitfully combined with multiplicity adjustment procedures for, for example, hy-

potheses that can be structured in a tree by some expert knowledge (Meinshausen,

2008; Goeman and Solari, 2010; Goeman and Finos, 2012). As the inferential exploit-

ment of such and even more comprehensive prior information becomes more and

more popular, future research problems will call for extensions of the CA-type and the
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score-free test for more complex models, such as for the cumulative logit model for

ordinally scaled outcomes.
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A. Proofs for Sections 3.2 and 3.3

A.1. Relationship between the CA-type test statistic and the CA test
statistic

Consider the test statistic (5). Because the latter can be written as the sum of covariate-

specific test statistics over the whole set, we can examine the univariate case without

loss of generality. Let the outcome variable be binary and 0/1-coded. With x̃i k and yi

the i th component of x̃k and y , respectively, be
∑n

i=1δyi 1 =: n2 the number of subjects

with outcome 1 (‘cases’), n −n2 =: n1 the number of subjects with outcome 0 (‘con-

trols’),
∑n

i=1δx̃i k sk (v) yi =: n2kv the number of cases with x̃i k = sk (v) and
∑n

i=1δx̃i k sk (v) −
n2kv =: n1kv the number of controls with x̃i k = sk (v). For the logit model without

null covariates and with the columns of X̃ standardized to have unit variance, the test

statistic (5) can be written as the weighted sum Ŝ′ = ∑p
k=1 wk

[
x̃>

k (y −1 n2
n )

]2
, where

wk =
{

1
n

[
x̃>

k x̃k − 1
n

(
x̃>

k 1
)2

]}−1
. We can write the kth covariate-specific test statistic

Ŝ′
k = [

x̃>
k (y −1 n2

n )
]2

as

Ŝ′
k =

[
n∑

i=1
x̃i k

(
yi −

n2

n

)]2

=
[

n∑

i=1

ck∑
v=1

δx̃i k sk (v)sk (v)
(

yi −
n2

n

)]2

=
[

ck∑
v=1

sk (v)

(
n∑

i=1
δx̃i k sk (v) yi −

n∑

i=1
δx̃i k sk (v)

n2

n

)]2

=
[ ck∑

v=1
sk (v)

(
n2kv −

n2

n
n1kv −

n2

n
n2kv

)]2

=
[ ck∑

v=1
sk (v)

(n1n2kv

n
− n2n1kv

n

)]2

.
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Likewise, we can write the kth covariate-specific ‘weight’ wk as

wk =
{

1

n

[
n∑

i=1
x̃2

i k −
1

n

(
n∑

i=1
x̃i k

)2]}−1

=
{

1

n2

[
n

n∑

i=1

ck∑
v=1

δx̃i k sk (v)s2
k (v)−

(
n∑

i=1

ck∑
v=1

δx̃i k sk (v)sk (v)

)2]}−1

=
{

1

n2

[
n

ck∑
v=1

s2
k (v)(n1kv +n2kv )−

( ck∑
v=1

sk (v)(n1kv +n2kv )

)2]}−1

.

It is now easy to see that, up to a constant factor, wk Ŝ′
k is equivalent to the square of the

one-sided CA test statistic (see for example Freidlin et al. (2002) for this most frequently

used formulation of the latter), which in turn is the two-sided CA test statistic. Thus,

Ŝ′ is equivalent to the sum of traditional two-sided covariate-specific CA test statistics.

(The constant factor corresponds exactly to that by means of which Ŝ′ is rescaled in

order to be able to compute its approximate null distribution (Goeman et al., 2011).)

A.2. Invariance of the score-free test statistic to the choice of the reference
category

Consider the transformation rule (8), and let Ŝ(r )
SF = (y − µ̂)>D (r )D (r )>(y − µ̂) be the re-

spective score-free test statistic, for some reference category r ∈ {1, . . . ,ck }. To prove

that Ŝ(r )
SF is invariant to the choice of the reference category, we must first rewrite it.

Let I and H be defined as in the penultimate paragraph of Section 2, and let H̃ =
Z̃

(
Z̃ >Z̃

)−1
Z̃ > denote the projection matrix that H becomes in the case of the linear

model with normally distributed errors. Using that (y − µ̂) = (I − H)(y − µ̂), and not-

ing that H H̃ = H̃ and therefore (I −H) = (I −H)
(

I − H̃
)
, we can write Ŝ(r )

SF in the more

cumberstone form

Ŝ(r )
SF = (y − µ̂)>(I −H)(I − H̃)D (r )D (r )>(I − H̃)(I −H)>(y − µ̂).

Let d (r )
kṽ be the ṽth dummy vector for the kth covariate. We notice that all that hap-

pens when we go from d (r )
kṽ to d (r+1)

kṽ is that the entries of the r th dummy vector are

subtracted by 1. In equations, this means

d (r+1)
kṽ = d (r )

kṽ −1δr ṽ ,

where δr ṽ = 1 if r = ṽ and δr ṽ = 0 otherwise. Because the vector of ones is in the null

space of the projection defined by (I − H̃), it follows immediately that (I − H̃)D (r ) is

invariant to the choice of the reference category, provided that the null model is non-

empty. Consequently, any choice of the reference category will lead to the same test

statistic, which completes the proof.
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