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Dynamic models that arise in health physics applications are
often expressed in terms of systems of ordinary d i f f e ren t ia l equa-
t ions. In many cases, such as box models that describe material
exchange among reservoirs, the d i f fe rent ia l equations are l inear
with constant coef f ic ients, and the analysis can be reduced to the
examination of solutions of in i t ia l -va lue problems for such sys-
tems. This paper describes a conversational code, DIFSOL, that
permits the user to specify the coef f ic ient matrix and an i n i t i a l
vector of the system; DIFSOL prints out closed-form solutions
[ i . e . , expressed as l inear combinations of terms of the form e~ ,

e~ cos bt , and e" sin bt ] and tables of the so lu t ion , i t s deriva-
t i ve , and i t s integral for" any specified l inear combination of
state variables. The program logic permits menu-driven cont ro l .
We have operated a FORTRAN IV version of the code on a DEC PDP-10
for several years. A translat ion into BASIC has proved pract ical
on Radio Shack TRS-80 Model I and I I I personal computers for
smaller systems of d i f fe ren t ia l equations (<12 state var iables).
The paper includes i l lus t ra t ions of the use of DIFSOL in studying
metabolic models.

INTRODUCTION

Many of the dynamic/kinetic
models used in health physics

research are formulated as systems of
l inear ordinary d i f fe ren t ia l equa-
tions with constant coef f i c ien ts .
Examples are box models of material
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transfer among well-mixed compart-
ments with constant transfer-rate
coefficients (e.g. , metabolic models
of radionuclide uptake and removal
from the body). Calibration and
testing of such models frequently
requires a computer program to permit
ef f ic ient integration of the d i f fer-
ential equations, and in many
instances closed-form expressions for
the solutions are needed.

The purpose of this paper is to
describe such a program, DIFSOL,
which has been in use for several
years at Oak Ridge National Labora-
tory. DIFSOL exists in a conversa-
tional implementation for the Digital
PDP-1O system, written in FORTRAN IV,
and in a BASIC version for the Radio
Shack TRS-80 Model I/111 microcom-
puters. The program solves an
ini t ia l -value problem of the fora

{H - AZ, Z(0) - Z° (1)

where Z is a vector of N functions,
Zn(t), ..., Z..(t); A is a constant
•"• 0

N x N coefficient matrix; and Z is a
constant vector of initial values
for Z. The program uses matrix eigen-
system analysis techniques to express
the solution vector Z(t) in terms of
functions of the form ea , ea cos bt,
and e sin bt. Responding to prompt-
ing from the program, the user inputs
the matrix A and the initial vector

In this paper, we outline the
method of solution used by DIFSOL and
discuss three sample problems that
illustrate its use. Finally, we
indicate some practical limitations
of the two versions of DIFSOL.

METHOD OF SOLUTION

In this section, we outline the
matrix methods used to solve the sys-
tem of differential equations given
by Eq. 1.

We denote the N eigenvalues of A
by W., j = 1, .... N. For each j ,

J

there is a corresponding eigenvector

R- s [Ri ...... RN J
T . such that

the pair W., R- satisfies

flRj • (2)

Non-real eigenvalues of a real mat-
rix A occur in complex conjugate
pairs. Thus if the complex eigenvalue
U. = \. + iu. is such that u. f 0,
J J J J

then W., = X. - iw. is also an eigen-
j J j

value of A. We will assume that the
eigenvalues have been indexed so that
such complex conjugate pairs occur
with successive indices: W-, =
W ^i' wnere the bar represents
the operation of taking the complex
conjugate. The eigenvectors belonging
to a complex conjugate pair of eigen-
values can be normalized so that they
too are complex conjugates: R., =

R,+1 = R"-. We shall assume in all

that follows that this normalization
has been accomplished.

A major assumption that we make
is that the eigenvectors R^ ..., R

form a linearly independent set.
There are circumstances in which this
assumption can be violated in practi-
cal problems, and when it is vio-
lated, DIFSOL will fail; but in such
cases it is often possible to intro-
duce small perturbations in the



parameters such that the perturbed
system has linearly independent
eigenvectors and its solution con-
tains only second-order errors. Given
the assumption, we see that Eq. 2
implies the existence of a diagonal
matrix D, whose diagonal entries are
just W

r
AR = RD,

W.., such that

(3)

where R = [R^ ..., R^]; this nota-
tion means that the columns of the
matrix R are the N linearly independ-
ent eigenvectors of A. We conclude
that R has an inverse, and hence the
diagonal matrix D can be expressed as

(4)

We transform the system of Eq. 1
by introducing a new state vecter

T

X = [X,, ..., X 1 as follows:

RX = Z , (5)

so that the transformed system is
found to be

{J^X = DX , X(0) = X°, (6)

following paragraphs. We distinguish
two cases.

Case 1

Eigenvalue W. and eigenvector R.

are real. Then W. = A., and the j-th
J J

differential equation in the system
defined by Eq. 6 is

dX.

with solution

(3)

X,(t) =
Xu e'j\ X. f 0

(9)
v u - - n
J J

Case 2

Eigenvalues W. and U.+, are com-
plex conjugate. The differential
equations are

(10)

where

X° = R"1!0
(7)

The system of Eq. 6 is uncoupled and
can be solved in closed form by ele-
mentary methods. The relations of
Eq. 5 and Eq. 7 can then be used to
transform the solution vector X of
the uncoupled system to the solution
vector Z of the original coupled sys-
tem. We indicate these steps in the

dt

(11)

with solutions that can be written as
follows:

X (t) - xj e
W,t

(12)



(13)

where |W.|2 =.|U.|2 = W.W.
j J J J

' 2
= A" + w. > and

J J
w.t ^ t
e J = e J (cos w.t + i sin w.

J J
.t),
J

W.t A,t W-t
e J = e (cos w.t - i sin w.t) = e ;

J J

also, Y°.+l = x9 . Hence X j + 1 = J. .

In transforming back to Z = [Z,
T '•

ZN] , using Eq. 5, we have

Zs =
(14)

I f indices j and j+1 correspond to a
complex conjugate pair, their sum is
a real quantity:

Rs,jXj

= Rs,jX j + Rs,jX j

X t
e J cos w . t

J

J
x. t

e J sinin w.t} (15)

where $.{ ) and 3( ) denote the real
and imaginary part, respectively, of
the parenthesized argument. Thus,
in Eq. 14, pairs of complex conju-
gate terms, Rs#JXj and R S i J + 1X j + 1 >

can be replaced with corresponding
pairs of real terms. Formally, we
rewrite Eq. 14 as follows:

N
Zs =

j=l

where p = Rc X?

(16)

W. t
. Rc .X? and ?,(t) = e

 j

if VJ. is a real eigenvalue of A; if

j and j+1 are the indices of complex
conjugate eigenvalues, then

a, J
X.t

= e J cos w.t ,
J

X t
= e J sin

The following summary indicates
the steps that DIFSOL is programmed
to follow in solving the i n i t i a l -
value problem posed by Eq. 1.

1. Use eigenvalue/eigenvector
routines to compute W., R., j = l ,

. . . , N, for the real matrix A. Print
and label the eigenvalues. I f the
eigenvectors R. form a l inearly
dependent set, Jsignal an error and
stop.

2. Solve the linear algebraic

system RX° = Z° for the vector X°. In
general, this system must be assumed
to have complex coefficients and
requires a linear equation solving
routine that works in complex arith-
metic.



3. For s
and print the
Eq. 16.

= 1,
coefficients p

N, evaluate

s.j of

At the user's option, DIFSOL
tabulates any specified linear com-
bination of the solution functions
Z (t) at discrete times indicated by

the user. The derivative and inte-
gral of the linear combination are
also included in the tabulation.

The eigenvalue/eigenvector rou-
tines mentioned in Step 1 are from
EISPACK (Smith et al., 1974); in the
case of the microcomputer version of
DIFSOL, these routines were trans-
lated from FORTRAN IV into BASIC.
The routine for solving linear alge-
braic systems with complex coeffi-
cients is based on the real-arith-
metic routines DECOMP and SOLVE
(Forsythe et al., 1977) and consists
of their application to a real system
of size 2N derived from the original
complex system of size N. Again, in
the case of the microcomputer ver-
sion, DECOMP and SOLVE were trans-
lated from their native FORTRAN IV
into BASIC.

The matrix diagonalization that
we have described above is a special
case of a similarity transformation
to a canonical form of the coeffi-
cient matrix (the Jordan canonical
form is the one that is usually dis-
cussed in this connection). When the
canonical matrix is diagonal, the
diagonal entries are the eigenvalues
of the coefficient matrix, and the
eigenvectors are a linearly independ-
ent sec; in these circumstances, we
have the special case that we have
described. When the set of eigenvec-
tors of the matrix A is linearly
dependent, the canonical matrix is
not diagonal, and our method (and
hence DIFSOL) fails. For discussion
of the general case, we refer the
reader to the literature. In parti-

cular, Gantmacher (1959) describes
methods for the explicit computation
of the transformation matrix. The
application of the transformation to
systems of ordinary differential
equations with constant coefficients
is treated by many authors; we cite
Coddington and Levinson (1955),
Petrovskii (1966), and Wilkinson
(1965).

EXAMPLES

We give three examples to illus-
trate the form in which DIFSOL
expects input and to show the inter-
pretation of its output. We have
rounded results to three and four
figures to save space and make the
examples easier to read.

Example 1. A Branching Radioactive
Decay Chain

Figure 1 characterizes a portion
of the radioactive decay chain that
involves mass-number 131 isotopes of
tellurium, iodine and xenon (Kocher,
1931). As an illustration of the use
of DIFSOL, we assume that 1 3q of

Te is present initially, with
zero amounts of the other species,
and ask for the activity level of
each of the four radionucl ides as a
function of time in days.

For j = 1, ..., 4 (corresponding
1 131 131to 1 3 1 mTe, 1 3 1Te, , and 1 3 1 mXe,

respectively) we write A. = ln(2)/T^,

where T^ is the half-life of radio-

nuclide j; when the half-lives shown
in Fig. 1 are converted to days, we

calculate A? = 5.55 x 10"1,

3.99 x Iff1, 8.6? x 10"2, and

5.85 x 10"2 day"1, respectively. The
differential equations are



'""'TeCU) h)

IT 22.2ft I (8.040 d)

131Te(25.0 m)

Coefficient matrix A

-5.55 XIO" 1 0 0

8.86 -3.99 X 10' 0

• • 1 | m X e ( l l . 8 4 d )

IT

ulXe(stablc)

0

0

6.71 X l ( r : 8.62XI()-2 -K.62XK)- : ! 0

0 0 6.35 X l()-4-5.«S X 10"-

FIGURE 1. Radioactive decay chain
for mass - number 131 iso-
topes of tellurium, io-
dine, and xenon. The cor-
respondence with compart-
ment numbers in Example 1

is: 1 3 1 m T e - l ; 1 3 1 T e - 2 ;

- 3 ; and 1 3 1 mXe - 4.

dZl
w
dZ2

dt

^ 3

dt

&

X (

Z2) -

— i = A$(0.01036Z ) - >*Z,
dt H J ^ 4

with initial conditions lAO) = 1,
Z2(0) = Z3(0) = Z4(0) = 0. The mat-
rix A for this system is shown in
Fig. 1. Table 1 gives the eigenvalues

(all of which are real) and the coef-
ficients ps . of Eq. 16. On the basis

of this information, we may write the
solutions as follows:

Z (t) = e"°' 5 5 5 t,

- ° - 0 8 6 2 t
lz(t) - -0.2

Z3(t) - 0.134e

Z4(t) - 3.93 x l 0 - V

- 4.22 x 10-V°- 0 3 6 2 t

+ 2.4 x 10"V°-5 5 5 t .

Example 2. Metabolic Model for Iodine

As a second example, we examine
the metabolic model for iodine pro-
posed by Riggs (1952) as adapted by
the International Commission on
Radiological Protection (ICRP) in
ICRP Publication 30 Part 1 (ICRP,
1979) and Part 3, Addendum (ICRP,
1931). The latter reference defines
the model as follows:

"Of iodine entering the transfer
compartment a fraction fraction, 0.3,
is assumed to be translocated to the
thyroid while the remainder is
assumed to go directly to excretion.
Iodine in the thyroid is assumed to
be retained with a biological half-
life of 80 days and to be lost from
the gland in the form of organic
iodine. Organic iodine is assumed to
be uniformly distributed among all
organs and tissues of the body other
than the thyroid and to be retained
there with a biological half-life of
12 days. One-tenth of this organic



Table 1. Solution of Radioactive Decay Chain (Example 1):

Eigenvalues

Compartment

1

2

3

4

Eigenvalues

-5.35 xio" 2

0

0

0

3.98x 10"3

and

- 3 .

0

0

1.

-4.

Coefficients

62 i

34 >

22 >

*10"2

ao-i
:10"3

-3.99

0

-2.25
4.33

-7.77

xlO 1

* 1O"1

x lO" 4

x ID"9

-5.55 x

1.00

2.25 x

-1 .35x

2 . 3 5 *

io-i

10"1

io-i
l O " 4

iodine is assumed to go directly to
faecal excretion and the rest is
assumed to be returned to the trans-
fer compartment as inorganic iodine
so that the effective half-life of
iodine in the thyroid is 120 days."

A schematic of the model repre-
senting iodine metabolism in the
transfer compartment, the thyroid,
and all remaining organs and tissues
is shown in Fig. 2. In addition, we
have included compartments represent-
ing cumulative urinary and fecal
excretion which are of interest in
bioassay applications of the model.
The inset table in Fig. 2 shows the
nonzero entries of the coefficient
matrix A that the user would input to
DIFSOL. A non-zero initial condition
of 1 unit is set for compartment 1,

FIGURE 2. Compartment diagram for
the model of iodine meta-
bolism in the body pro-
posed by Riggs (1952),
with added compartments
for cumulative urinary
and fecal excretion (com-
partments 4 and 5). The
non - zero entries of the
matrix A are shown in the
inset table.
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(0.25 ri)
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OTHER
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0.1
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TION

©
URINARY

EXCRE-
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2
5

2

1
A

1
1
1
i

2
.1

.1
3

-In(2) (
(l..1ln(2)
O.7|n(2)
- ln(2) t
ln(2) K(l
- ln(2) i
O.yin(2)
O.I ln(2)

1.25 :
0.25
0.25
(0 =

= -2.77.1
= O.S.I 2
= 1 .'M 1
-X.M4 y 10 •'

= X . ( iMXI0 '
12 -
P =
12 =

-5.77ft XIO :

•5.1'W X 10 :

5.770X10 '



Table 2. Solution of Iodine Metabolic Model (Example 2) :
E i l d C f f i i

Eigenvalues

Compartment

1

2

3

4

5

>.. z ° - i .

Eigenvalues

0

o

0

0

4.11 xK
0

The time

0

0

0

0

f2 o
9.59

and Coefficients

xlO"1

constants and

-6.04 x

-9.37x

1.51 x
-4.89x

4.67 x

3.01 x

p .

10"2

10"4

ID"2

10"2

lO"3

10"2

-6

9

2

4

-4

-2

. 0 4 x

. 0 0 x

.86 x

. 7 9 x

. 5 7 x

. 39 x

r - —

ID"3

10"4

10"1

lO- 2

lO- 2

10" 1

= 0

-2.77

1.00

-3.01 x

9.60 x

-2:00 x

-7.00 x

0(0) =

l O " 1

-4

io-6

10"1

o ,
coefficients of
shown in Table 2.

In this example the zero eigen-
values correspond to constant terms

(i.e., coefficient x e ) in the
solutions. Such terms appear in the
solutions for compartments 4 and 5
(fecal and urinary excretion, respec-
tively) because of the cumulative
nature of these compartments. Thus,
for example, the solution for compart-
ment 5 is

de
dt 6=0 = 1 , (17)

Z5(t) = 0.9539 + 0.0301e-0.06043t

where 6 could be interpreted as the
angular displacement of a simple
pendulum which is constrained to
small oscillations about 9 = 0 . The
first derivative term, with K > 0
represents a drag (e.g., air). To use
DIFSOL, Eq. 17 must be represented as
a first-order linear system, as fol-
lows: by setting Z = e, Z, = d8/dt,
we have 1 c

0.2390e-0.0060t

-2.773t- 0.7000e

Example 3. Damped Harmonic Oscillator

To i l lus t ra te solutions with
non-real eigenvalues, we turn to an
example from classical mechanics and
solve the equation

dt

dz2

"Zl - K 22 '

We have taken u = 2 and K = 0.5 for
this example. DIFSOL computer eigen-
values



U1 = -0.25 + 1.984 i ,

W2 = -0.25 - 1.984 i

and "compartment" coefficients p.

0, p l f 2 - 0.504, P2>1 = 1,

-0.126. The solutions are

= 0.504e"°*25t sin 1.98t

Z2(t) = e " u "

( c o s 1 . 9 8 t - 0 , 1 2 5 s i n 1 . 9 8 t ) ,

and f i n a l l y , e( t ) = Z ^ t ) . This con-

cludes our presentation of examples.

DISCUSSION AND CONCLUDING REMARKS

The DIFSOL code was wr i t ten
several years ago at Oak Ridge
National Laboratory as a tool for
development and implementation of
compartment models. Routines from
EISPACK. a co l lect ion of state-of-
the-art software for eigensystem
analysis, form the core of the code.
For implementation of DIFSOL on the
authors' TRS-80 Model I and I I I micro-
computers, the EISPACK routines were
f a i t h f u l l y translated from FORTRAN IV
into BASIC. Double precision a r i t h -
metic on the microcomputers (equiva-
lent to about 16 decimal d ig i t s ) is
roughly comparable to that of the
Dig i ta l PDP-10 system. The microcom-
puter implementation is usually
practical for systems with fewer
than, say, 12 equations; running
times for the i l l u s t r a t i v e examples
presented in th is paper were less
than f ive minutes.

We also need to point out that
the method of solution employed in
DIFSOL can encounter loss-of-signifi-
cance difficulties, which, for some
sets of data, can lead to quite mean-
ingless results. This loss of sig-
nificant digits arises when some of
the terms in the sum of Eq. 15 are
large in magnitude in comparison with
the sum. When the disparity of mag-
nitudes equals or exceeds the preci-
sion of the computation, the results
are meaningless. Users of DIFSOL must
be alert to this potential problem,
which is inherent in the computa-
tional method and is not a quirk of
the particular implementation. Used
within its limitations, however,
DIFSOL has proved to be an extremely
valuable developmental tool.
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