$$
L i-U[--32-2541
$$

DE02 022015

TITLE: THE EXPERIMENTAL DETERMINATION OF THE EFFECTIVE NUCLEON-NUCLEON INTERACTION FOR P-NUCLEUS REACTIONS AT INTERMEDIATE ENERGIES

AUTHOR(S): J. B. McClelland, B. Ass, A. Azizi, E. Bleszynski, M. Bleszynski, M. Cassaly, J. Gaga, N. Hintz, G. Ego, K. Jones, J. M. Moss, S. Nanda, A. Rahbar, J. Wagner, G. Weston, and C. Whiten, Jr.

submitted to: International Conference on Nuclear Structure (9th EPS

 Nuclear Physics Divisional Conference), Amsterdam, The Netherlands, August 30 - September 3, 1982.

THE EXPERIMENTAL DETERMINATION OF THE EFFECTIVE NUCLEON-NUCLEON INTERACTION FOR P-NUCLEUS REACTIONS AT INTERMEDIATE ENERGIES

 M. Gazzaly, J. Geaga, ${ }^{+\dagger}$ N. Hintz, ${ }^{\star \star}$ G. Igo, ${ }^{\dagger \dagger}$ K. Jones, ${ }^{*}$ J. M. Moss, ${ }^{\dagger}$ S. Nanda, ${ }^{\prime}$ A. Rahbar, $f \dagger$ J. Wagner, $\dagger \dagger$ G. Weston, $\dagger+$ and C. Whitten, Jr. $\dagger+$
†Los Alamos National Laboritory, Los Alamos, New Mexico 87545
††phyics Dept., University of California, Los Angeles, California 90024 ${ }^{*}$ Physics Dept., Rutgers University, New Brunswick, New Jersey 08903 **Physics Dept., University of Minnesota, Minneapolis, Minnesota 55455

Abstract: A'complete measurement of the polailzation transfer observables has been made for the first time in the (p, P^{\prime}) reaction at intermediate energies. Measurements are reported for the ${ }^{1}{ }^{2} C\left(p, p^{\prime}\right)^{12} C$ reaction to tne l^{+}, $T-O(12.71 \mathrm{MeV})$ and l^{+}, $T=1(15.11 \mathrm{MeV})$ staces at 500 MeV at laboratory scattering angles of $3.5^{\circ}, 5.5^{\circ}, 7.5^{\circ}$, and 12.0°. Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers ($<1 \mathrm{fm}^{-1}$).

1. Introduction

A great deal of effort is currently underway to assess the importance of medium-modified nucleon-nucleon (NN) amplitudes in interpreting proton-nucleus elastic and inelastic scattering data at intermediate energiegl, ${ }^{2}$). The succeas achieved to date has been encouraging but the results of ten depend on theoretical interpretation or pure phenomenology. This is understandable since previous data incluied only cruss sections and analyzing powers. There is a gross lafk of sensitivity to the individual components of the NN interaction, especially the spindependent parts, in these types of measurements. In the case of elastic acattering or natural parity transitions the central part of the interaction dominates.

Yolarization transfer measurements for unnatural parity states, howevel, offer selectivity and sensitivity to the individual rieces of the NN apin dependent interaction ${ }^{3}$). These measurements require high energies where the impulse approximation is expected to be valid, a high resolution opectrometer capabie of resolving inelastic rransitions, and means of analyzing the polarization of the scattered protons. The first two requirements have been met for some time now but only recently have we been able to realize the third ${ }^{4} 5$).

We would like to report on the first such complete measurement of $D_{\text {LI }}, D_{S S}{ }^{\prime}$.
 (12.71 MeV) and $17, \mathrm{~T}=1(15.11 \mathrm{MeV}$) states at 500 MeV for momentum tranufers of $q \leqslant 1.2 \mathrm{fm}^{-1}$, and show that it is possible to construct four functions which are innear combinations of the polarization transfer observables which, in the limit of the single collision approximation, are each proportional to the strength of a single apin-dependent amplitude of the nucleon-nucleon interaction. In this fashion it if possible to comare the effective nucleon-nucleon spin-dependent amplitudes obtained from the proton-nucleus measurements with the free values.

Beams of 500 MeV protons with initial polarization longitudinal (L), normal to the reaction plane (N), and sideways (S - NxL) were provided by the Clinton P. Anderson Meson Physics Facility (LAMPF). Protons inelastically scattered from natural carbon targets were momentum analyzed in the High Resolution Spectrometer (HRS). For these measurements the Focal Plane Polarimeter (FPP) was employed to analyze the outgoing proton polarization. This apparatus has been used for elastic scattering measurements reported recently ${ }^{6}$); and it is equally well suited to the present high resolution inelastic measurements.

Figure 1 shows the construction of the FPP residing at the exit of the HRS. It consists of eight planes of malti-wire drift chambers (MWDC) plus associated trigger scintillators which constitute the standard focal-plane detector system. This system is followed by a four-inch carbon analyzer and eight more planes of larger MWDC's to detect the rescattered protons.

The front end of the bystem maincains the energy resolution of the HRS ($\sim 100 \mathrm{keV}$), while the rear reconstructs trajectories of the rescattered protons for all states on the focal plane, finally yielding the polarization of the ocattered proton. A fast microprocessor is used to reject small angle rescatterings and buffered CAMAC electronics are used to maintain high data rates at low-duty cycles. The overall efficiency of the polarimeter is 10-15\%. It is the marriage of a high resolution spectrometer and a high efficiency polarimeter which allows the types of measurements which we report.

Analysis of both polarization comonents perpendicular to the momentum at the focal plane allows for measurement of all posaible polarization transfer observables at this energy due to the precession of the spin in the dipoles. The outgoing sideways component (S^{\prime}, perpendicular to k^{\prime} and in the reaction plane) is transported unprecessed to the focal plane and is detemined by the vertical asymmetry. The longitudinal (L^{\prime}) and norma: (N^{\prime}) components precess by $360^{\circ}+52^{\circ}$ and are inferred fron the horizontal asymmetry.

Several syatematic checks of the data are possible when analyzing all states present at the focal plane. For most of the measurements, aimitaneous analyais of the $0^{+}(7.65 \mathrm{MeV})$ etate in ${ }^{12} \mathrm{C}$ allowed for chanking of several symmetry relations appropriate to $\mathrm{O}^{+}+\mathrm{O}^{+}$transitions. In most instances, the statistical accuracy of the checks was comprable to or better than that of the 1^{+}states of interest. High precision checks for elastic scattering ${ }^{6}$), as well as systematic checke of the FPP in general ${ }^{5}$), lead to the estimation that false asymetries are less than 0.01.

Fig. S. Schnmatic of the HRS Ibcal Plane Polarimeter.

A new class of problems is encountered for inelistic scattering to discrete states involving background subtraction. For cases of poor peak to background, determination of the background polarization becomes quite important. The FPP is well suited to this task as it provides a measurement of the peak plus background polarization as well as the background polarization on either side of the peak. Figure 2 shows spectra of wissing mass for three of the angles measured. The peak to background for the 15.11 MeV state decreases from $1 \mathrm{U}: 1$ to $1: 1$ to $1: 10$ at 3.5°. 7.5° and $12{ }^{\circ}$, respectively. The uncertainties introduced in the polarization transfer observables by the background correction were 20% of the statistical uncertainty of the peak at the suallest angle and $\mathbf{~ 5 0 \%}$ at the largeat angle.

F1g. 2. M1saing Mass Spectia at (a) 3.5°. (b) 7.5°, (c) 12°.
3. Results

Our preliminary data for the $1^{+}, T=0(12.71 \mathrm{MeV})$ and $\mathrm{l}^{+}, T=1(15.11 \mathrm{MeV})$ states in $1^{2} \mathrm{C}$ are shown in Figs. 3a and 3b. In these figuras we also show the functions $D_{i j}$ deflned as

$$
\begin{equation*}
D_{1 j^{\prime}}=\operatorname{Tr}\left(F \hat{o}_{1} F^{+} \hat{o}_{j}\right) / \operatorname{Tr}\left(F F^{+}\right) \tag{1}
\end{equation*}
$$

where \bar{F} is the collision matrix for the reaction, $\dot{\sigma}_{0}=\hat{\sigma}_{0}=1, \dot{\sigma}_{1}, 1=S, N, L$ and $\hat{a}_{j^{\prime}}, j^{\prime}-S^{\prime}, N^{\prime}, L^{\prime}$ are the cartesian components of the Pauli matrices of the incident and acattered proton. $L\left(L^{\prime}\right)$ is parallel to the incident (acartered) momentum direction, $N=N^{\prime}$ is normal to the reaction plane and $S\left(S^{\prime}\right)$ form a right-handed coordinate syatem with N and $L\left(N^{\prime}\right.$ and L^{\prime}). Tr denotes the trace with respect to the proton and nuclear apin projections.

In Fige. $4 a$ and $4 b$ we show the functions D_{k} for the $T=0$ and $T=1$ atates related to the apin transfer observables $D_{i j}$, by

$$
\begin{align*}
& D_{0}=\frac{1}{4}\left[1+\left(D_{S S^{\prime}}+D_{L L^{\prime}}\right) \cos \theta_{L}+D_{N N^{\prime}} \cdot\left(D_{L S^{\prime}}-D_{S L^{\prime}}\right) \sin \theta_{L}\right] \\
& D_{x}=\frac{1}{4}\left[1+D_{S S^{\prime}}-D_{L L^{\prime}}-D_{N N^{\prime}}\right] \tag{2}\\
& D_{y}=\frac{1}{4}\left[1-\left(D_{S S^{\prime}}+D_{L L^{\prime}}\right) \cos \theta_{L}+4 \operatorname{li}_{N N^{\prime}}+\left(D_{L S^{\prime}}-D_{S L^{\prime}}\right) \sin \theta_{L}\right] \\
& D_{E}=\frac{1}{4}\left[1-D_{S S^{\prime}}+D_{L L^{\prime}}-D_{N N^{\prime}}\right]
\end{align*}
$$

where θ_{L} is the laboratory scattering angle. These functions will be shown to be aimply related to the NN amplitude in Sec. 4. The error bars reflect both statistical and systematic effects due to background subtraction.

4. Discussion

Shown on Figs. 3 and 4 are Glauber (solid curve) calculations of the polarization transfer observables using Cohen-Kurath wave furctions and free $N-N$ amplitudes from Arndt's SP82 solution.

(a)

(b)

Fig. 3. Polarization tranefar observables for (a) $1^{+} T=0(12.71 \mathrm{MeV}$), and (b) $1^{+}, T=1(15.11 \mathrm{MeV}){ }^{12} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{12} \mathrm{C}$ Raction at 500 MeV .

Fig. $4^{f} D_{k}$ observables defined in Eq. (3) for (a) $1^{+}, T=0(12.71 \mathrm{MeV}$), and (b) $1^{+}, T=1(15.11 \mathrm{MeV})$ atates. The solid curve is a full Glauber calculation; the dashed curve is the single collision approximation of Eqn. (10).

Saveral features of the data are noteworthy. As has been shown at $150 \mathrm{MeV}^{7}$) and $400 \mathrm{MeV}^{8}$), D_{NN} is close to zero at small momentum transfer indicative of a spireflip transition. This is true for the 12.71 and 15.11 MeV states. $P \approx A y$ in the case of the 15.11 but there is some evidence for P - A_{y} for the 12.71 to be as large as $-0,4$ but with substantial error bars. This is similar to the differences eeen at $150 \mathrm{MeV}^{9}$) but opposite in sign. Glauber theory predicts this to be zero. There is afso evidence for $D_{L S^{\prime}}={ }^{-D_{S L}}$, as predicted in the adiabatic approximation ${ }^{10}$).
lt is difficult to assass the implicationa of any agreement or diagreement without a sluple model in which a direct correspondence is made between the observables and the ingredients of the theory. Although complete calculations can be done within the Glauber theory or DWIA frameworka, some insight is offered by the oimple expressiona for the observables developed in the single colliaion Glauber approximation or equivalently plane wave impulae approximation (PWIA).

The matrix elements of both of these approximations are given by

$$
\begin{equation*}
\bar{M}(q)=\left\langle\left\{\mid \bar{F}_{N N}(q) e^{\left.-i \bar{q} \cdot \bar{r}_{\mid 1}\right\rangle}\right.\right. \tag{3}
\end{equation*}
$$

where $|i\rangle$ and $|f\rangle$ are the initial and final states of the system characterized by the target spin, parity, isospin, and the projectile spin projections. $F_{N N}(q)$ is the NN collision matrix which we parameterize as

$$
\begin{align*}
\bar{F}_{N N}(q)= & \bar{A}(q)+\bar{B}(q)\left(\hat{\sigma}_{1} \cdot \hat{n}\right)\left(\hat{\sigma}_{2} \cdot \hat{n}\right)+\bar{C}(q)\left(\hat{\sigma}_{1} \cdot \hat{n}+\hat{\sigma}_{2} \cdot \hat{n}\right) \\
& +\bar{E}(q)\left(\hat{\sigma}_{1} \cdot \hat{q}\right)\left(\hat{\sigma}_{2} \cdot \hat{q}\right)+\bar{F}(q)\left(\hat{\sigma}_{1} \cdot \hat{p}^{\prime}\right)\left(\hat{\sigma}_{2} \cdot \hat{p}\right) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{q}=\bar{k}^{\prime}-\bar{k}, \bar{n}=\bar{k} \times \overline{k^{\prime}}, \bar{q}=\bar{q} /|\bar{q}|, \bar{n}=\bar{n} /|\bar{n}|, \bar{p}=\hat{q} \times \dot{n} \tag{5}
\end{equation*}
$$

$\hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ are the projectile- and target-nucleon Pauli matrices respectively, and $k\left(k^{\prime}\right)$ is the incoming (outgoing) momentum vector. The components $\bar{A}(q), \ldots F(q)$ in Eq. (5) can be further decomposed into fsoscalar and isovector parts by

$$
\begin{equation*}
A(q)=A_{0}(q)+A_{1}(q)\left(\hat{\tau}_{1} \cdot \hat{r}_{2}\right) \text { etc. } \tag{6}
\end{equation*}
$$

where $\hat{\tau}_{1}$ and $\hat{\tau}_{2}$ are the projectile and target-nucleon isospin operators respectively.

The single collision approximation allows us to reduce the expressions for che spin transfer observables, $D_{i j}$, into simple expressions for transitions to unnatural parity states given by ${ }^{11 \text {): }}$

$$
\begin{align*}
& I_{\xi} D_{f A}=\left[X_{\xi}^{T}\right]^{2}\left[\left|C_{\xi}\right|^{2}+\left|B_{\xi}\right|^{2}-\left|F_{\xi}\right|^{2}\right]-\left[X_{\xi}^{L}\right]^{2}\left|E_{\xi}\right|^{2} \\
& I_{\xi} D_{\hat{p} p}=\left[X_{\xi}^{T}\right]^{2}\left[\left|C_{\xi}\right|^{2}-\left|B_{\xi}\right|^{2}+\left|F_{\xi}\right|^{2}\right]-\left[X_{\xi}^{2}\right]^{2}\left|E_{\xi}\right|^{2} \tag{7}\\
& I_{\xi} D_{\S q}=\left[X_{\xi}^{T}\right]^{2}\left[\left|C_{\xi}\right|^{2}-\left|B_{\xi}\right|^{2}-\left|F_{\xi}\right|\right]+\left[X_{\xi}^{L}\right]^{2}\left|E_{\xi}\right|^{2} \\
& I_{\xi}{ }^{D_{q \beta}}=-I_{\xi} D_{\hat{p} q}-2\left[X_{\xi}^{T}\right]^{2} \operatorname{Im}\left(B_{\xi} C_{\xi}^{*}\right)
\end{align*}
$$

where

$$
\begin{equation*}
I_{\xi}=\left[X_{\xi}^{T}\right]^{2}\left[\left|C_{\xi}\right|^{2}+\left|B_{\xi}\right|^{2}+\left|F_{\xi}\right|^{2}\right]+\left[X_{\xi}^{L}\right]^{2}\left|E_{\xi}\right|^{2} \tag{8}
\end{equation*}
$$

is the unpolarized cross section, and X_{ξ}^{T} and X_{ξ}^{L} are the transverse arid longitudinal form factora defined as the reduced watrix elements of the axial transerse electr': and axial longitudinal mitipole operatorsi2;:

$$
\begin{align*}
& \mathrm{x}_{\xi}^{\mathrm{T}}=\left\langle 1^{+} \xi\right| \hat{\mathrm{T}}^{5 \mathrm{e} \ell}\left|10^{+} \xi=0\right\rangle \tag{9}\\
& \mathrm{X}_{\xi}^{\mathrm{L}}=\left\langle 1^{+} \xi \| \mathrm{i}^{5 \mathrm{mag}} 110^{+} \xi=0\right\rangle
\end{align*}
$$

$\xi=0,1$ is the isospin of the final nuclear state. A simple rotation transforms the ($\hat{q}, \hat{n}, \hat{p}$) system into ($\hat{S}, \hat{N}, \hat{L}$).

Within the context of the single collision approximation, the D_{k} functions defined in Eq. (2) reduce to the following simple expressions ${ }^{3}$):

$$
\begin{align*}
& D_{0}^{\xi}=\frac{\left[X_{\xi}^{T}\right]^{2}\left|C_{\xi}\right|^{2}}{I_{\xi}} \\
& D_{x}^{\xi}=\frac{\left[X_{\xi}^{L}\right]^{2}\left|E_{\xi}\right|}{I_{\xi}} \tag{10}\\
& D_{y}^{\xi}=\frac{\left[X_{\xi}^{T}\right]^{2}\left|B_{\xi}\right|}{I_{\xi}} \\
& D_{z}^{\xi}=\frac{\left[X_{\xi}^{T}\right]^{2}\left|F_{\xi}\right|}{I_{\xi}}
\end{align*}
$$

The single collision approximate forms of the D_{k} functions are shown in Fig. 4 (dashed curve). Out to $0.7 \mathrm{fm}^{-1}$ or better, the agreement between the full Glauber calculaiion (solid curve) and the approximate form is to within the accuracy of of the data. (Those functions where the two calculations are virtually the same are indicated with an asterisk). To this extent, it is possible to coupare the magnitude of the individual components of the NN amplitudes with the data, since from Eqn. (10) it is seen that each D_{k} is proportional to the strength of a single spin-dependent amplitude of the NN interaction, so that each curve of Fig. 4 is sensitive to ane and only one NN amplitude. In Fig. 4 the amplitude to which the particular D_{k} is proportionil is shown in parentheses.

In the local density approximation, a large density dependent effect is seen in the central spin-independent parf of the force. However, the central spin orbit is unchanged from its free values ${ }^{1}$). Phenomenologically it is found ${ }^{2}$) that a 50\% increase in the central spin orbit force around 0.2 to $0.6 \mathrm{fm}^{-1}$ is needed to fit elastic eross section and anslyzing, power data at 500 MeV . A similar realt holds for the Q elastic dats at $500 \mathrm{MeV}^{6}$). Our data for D_{0} is only suggestive of such an effect. More precise measuremencs are needed. We mast conclude, in fact, that our measurements are in very good agreament with calculations based on free NN amplitudes at the 10 to 15% level.

The data shown in Fig. 3 represent approximately 200 hours of data taking. It is therefore feasible to envision more presise measurements over several nuclear transitions to investigate the systematics of the effective NN interaction in proton nucleus scattering.

5. Conclusions

We belleve we have demonstrated a new approach at intermediate energies to determine the effective nucleon-nucleon interaction for proton-nucleus reactions directly fiom polarization transfer observables. This impacts directly on the question of the validity of the impulse -pproximation at intermediate energies. Due to the high-efficiency, high-resolution polarimeters now available, these measurements are feasible and may provide the insight into the known deficiencies of the theories. We have shown the first such complete set of measurements. Further measurements will hopefully allow for a very definitive mapping of these effective NN interactions in nuclei.

REFERENCES

1. J. Kelly et al., Phys. Rev. Lett. 45, 2012 (1980), and references therein.
2. G. W. Hoffmann, et al., Phys. Rev. Lett. 47 , 1436 (1981).
3. M. Bleszynski, E. Bleszynski and C. A. Whitten, "Symetiy relations between the polarization, asymmetry, and spin rotation functions in (p, p^{\prime}) reactions," accepted for publication in Phys. Pev. C.
4. J. B. McClelland, J. F. Amann, W. D. Cornelius, H. A. Thiessen, Bull. Am. Phys. Soc. 26, 1159 (1981).
5. J. B. McClelland, J. F. Amann, W. D. Cornelius, H. A. Thiessen, and B. Aas, to be submitted.
6. A. Rahbar, B. Ags, E. Bleszynski, M. Bleszynski, M. Haji-Saeid, G. J. Igo, F. Irom, G. Pauletta, A.T.M. Wang, J. B. McClelland, J. F. Amann, T. A. Carey, W. D. Cornellus, M. Barlett, G. W. Hoffann, C. Glashausser, S. Nenda, and M. M. Gazzaly, Fiays. Rev. Lett. 47, 1811 (1981).
7. T. A. Carey etal., in Abstracts of the Proceedings of the Ninth International Coníerence on High Energy Phybics and Nuclear Structure, Versailles, France, 1981 (unpublished).
8. S. J. Seestrom-Moris et al., accepted for publicataion in Phys. Rev. C.
9. T. A. Carey et al., Phys. Rev. Lett. 49, 266 (1982).
10. E. Bleszymaki, M. Bleszynski, and C. A. Whitten, Jr., "Nuclear Information from the proton spin observables in the (p, p^{\prime}) reactions at intermediate energies," accepted for publication in Phys. Rev. C.
11. J. M. Мовs, Phys. Rev. C (in press).
12. T. W. Donnelly and W. C. Haxton, Atomic Data and Nuclear Tables 23, 103 (1979).
