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ABSTRACT

Fatigue-crack propagation behavior in powder-metallurgy (P/M) aluminum-lithium

alloys, namely, mechanically-alloyed (MA) AI-4.0Mg- 1.5Li- 1.1C-0.802 (Into 905-XL) and

rapid-solidification-processed (RSP) AI-2.6Li-I.0Cu-0.5Mg-0.5Zr (Allied 644-B) extrusions,

has been studied, and results compared with dataon an equivalent ingot-metallurgy(I/M) AI-Li

alloy, 2090-T81 plate. Fatigue-crack growth resistance of the RSP AI-Li alloy is found to be

comparable to the I/M AI-Li alloy; in contrast, crack velocities in MA 905-XL extrusions are

nearly three orders of magnitude faster. Growth-rate response in both P/M AI-Li alloys,

however, is highly anisotropic. Results are interpreted in terms of the microstructural influence

of strengthening mechanism, slip mode, grain morphology and texture on the development of

crack-tip shielding from crack-path deflection and crack closure.

INTRODUCTION

Considerable research work over the past few years (1-7), has focussed on the

development of ultra-low density aluminum-lithium alloys using powder-metallurgy (P/M)

processing methods. The principal objective of these efforts has been to improve the ductility

and fracture properties of AI-Li alloys, particularly when fabricatedas extrusions and forgings,

because complex thermomechanical treatmentsoften employed on ingot-metallurgy (I/M) plate

and sheet products are not feasible. Two techniques of P/M processing, namely, rapid-

solidification processing (RSP) and mechanical alloying (MA), have attractedthe most attention

, and have been commercially successful in the development of AI-Li alloy extrusions (2-5).

With RSP, the powders are prepared by pulverizing melt-spun ribbons, that are solidified at

cooling rates exceeding 106 *C/see (2). Mechanical alloying, on the other hand, involves dry,
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high-energy milling to produce composite powders by continuously fracturing and rewelding

various metallic and non-metallic elemental powders (4-6). The powders are then consolidated

by vacuum hot pressing and finally extruded or forged to the required product form.

The objective of the present study is to examine the fatigue-crack growth behavior in
g

two of the more prominent P/M AI-Li alloys, mechanically-alloyed IncoMAP AL 905-XL,

containing Mg, C and 02 additions, and rapidly-solidified Allied-Signal 644-B, containing Cu,
lt

Mg and Zr additions (2,6), and to compare results with an I/M AI-Li alloy 2090-T81 plate (8).

This is deemed to be important as many wrought I/M AI-Li alloys are known to exhibit

superior fatigue-crack propagation resistance to most traditional high-strength aluminum alloys,

due to enhanced crack-tip shielding from crack deflection and crack closure promoted by crys-

tallographic crack advance in coarse, unrecrystallized and textured planar-slip microstructures

(8,9). However, it is uncertain whether such effects will be seen in the more isotropic, fine-

grained P/M microstructures.

EXPERIMENTAL PROCEDURES

P/M mechanically-alloyed IncoMAP-AL 905-XL (AI-Li-Mg-C-O) and RSP Allied-

Signal 644-B (AI-Li-Cu-Mg-Zr) alloys were received as rectangular extrusions with cross-

sections 50 x 12 and 100 x 25 mm 2, respectively. Chemical compositions and grain-size

dimensions are compared to I/M AI-Li-Cu-Zr alloy 2090-T81 in Table 1.

Table 1 Chemical compositions and grain size of alloys tested

Alloy Composition (wt. %) Grain Size* _m)

Li Cu Mg Zr C O Al L T S

MA AL 905-XL 1.5 - 4.0 - 1.1 0.8 bal 1-2 0.4 0.3
RSP 644-B 2.6 1.0 0.5 0.5 - - bal 5-10 1-2 1-2
I/M 2090 2.1 2.9 - 0. l - - bal 2000 500 50

*L, T and S refer to longitudinal, long-transverseand short-transversedirections

Microstructures in MA P/M AL 905-XL extrusions, which were peak aged at 170°C for '

24 h, were relatively equiaxed with extremely fine grains (Fig. 1), stabilized by dispersions of

20-50 nm sized AI203 and AI4C particles formed during ball milling (4-6). Some grains and

dispersoids were elongated - 1-2/zm in the extrusion direction (E/D); dimensions normal to the

E/D are typically 0.3-0.5/zm. In other words, grain morphologies were rod-like and resembled

ultrafine aligned-fiber composites. Strengthening is achieved primarily by dispersion hardening



from oxides and carbides, anddislocation substructuresretained during powder processing; both

Li and Mg remain in solid solution, thereby suppressing the formation of metastable _' (AI3Li)

or equilibrium AIeLiMgprecipitates (4-6). Structures in the RSP 644-B extrusions, underaged at

135°C for 16 h, consisted primarily of composite-6' coating #' (AI3Zr) dispersoids and

" monolithic/_' spheres; S (AlzCuMg) laths, Tl (Ai2CuLi)plates and heterogenous grain-boundary

precipitation were completely absent (Fig. 2). CorrespondingRSP grain structureswere far finer

" than in I/M alloys (Fig. 1), but coarse compared to the MA material; grains were

unrecrystallized and stretched along the E/D (typically 5-10 #m in length and 1-2 #m in

diameter). Mechanical properties of these P/M extrusions are compared to wrought I/M 2090-

TSl plates in Table2.

Table 2 Room temperature mechanical properties of P/M andI/M AI-Li alloys tested t

Yield Tensile Percent Fracture Strain
Alloy Strength Strength Elongation Toughness Hardening

(ay (MPa) (MPa) (on 25 mm) Klc (MPaxfm) Exponent n

AL 905-XL 559 596 2.3 13 (L-T) --
13 (S-L)

644-B 422 539 7.7 24 (L-T) 0.19
10 (S-L)

2090-T81 552 589 11.0 36 (L-T) 0.06
17 (S-L)

tTensil¢ properties in the longitudinal(L) direction

Fatigue-crack growth tests were conducted on through-thickness long (> 5 mm) cracks,
using 10-mm-thick compact tension specimens (L-T, T-L orientations), in controlled room-

temperature air (22"C, 45% relative humidity) at load ratios (R = Kmi,/Km_) of 0.10 and 0.75

(50 Hz sinsuoidal frequency). Tests were performed under stress-intensity control on automated
w

servohydraulic testing machines, using d.c. electrical-potential and back-face strain elastic-

compliance methods to monitor crack length and crack closure, respectively (10). Growth-rate
Ib

(da/dN) results on P/M alloys are presented, both in terms of the nominal (AK = Km -K i°)

and effective (AKeff = Km -Kcb)stress-intensity ranges, and compared with those in I/M 2090-

TSl AI-Li alloy plate; the latter material shows the best fatiga_e-crackpropagation resistance of

commercial I/M AI-Li alloys (8,11).



RESULTS

Fatigue-crack propagation behavior in P/M AI-Li alloys, MA AL 905-XL and

RSP 644-B (L-T orientation), at R - 0.1, is compared in Fig. 3a with results on I/M alloy

2090-T81 (8,11); corresponding crack-closure data are plotted in Fig. 3b. The sub-micron "

grainedMA 905-XL extrusions are seen to exhibit the fastest crack-growthrates, roughly 2 to 3

orders of magnitude higher than coarse-grained I/M alloy 2090-T81 at equivalent AK levels, for •

ali growth-rates ranging between the fatigue threshold (AKm) and instability (Kx); the AI_m

value is also -36% lower compared to 2090. The coarser-grained RSP 644-B alloy shows far

superior crack-growth resistance; growth rates are comparable to 2090-T81, with a -10%

higher fatigue threshold.

Qualitatively, such behavior is consistent with measured variations in crack closure

(Fig. 3b); values for Kel in the RSP P/M alloy are comparable to those in I/M 2090-T81 and

approach80% of Kmax,close to AK.m. Conversely, in the mechanically-alloyed P/M material,

closure levels remain low and only approach40% of Km,,' at AK.rH.These differences in closure

can in turn be traced to the morphological variations in fatigue-crack paths and resulting

fracture surfaces (Fig. 4). For example, the faster crack velocities and low closure levels seen

in MA 905-XL microstructures are associated with markedly linear crack paths (Fig. 4c) and

relatively smooth, transgranular fatigue surfaces (Fig. 4f), showing little evidence for

crystallographic cracking. Fractographic features in the RSP 644-B alloy (Figs. 4b,e), on the

other hand, resemble those seen in I/M AI-Li alloys, which deform by planar slip; crack paths

are highly deflected and fracturesurfaces display evidence of local slip-band cracking similarto

2090 (Figs. 4a,d). In addition, differences in crack-path tortuousity, as observed across the

specimen thickness perpendicular to the crack plane, are also apparent(Fig. 5). In MA 905-XL

extrusions, the crack front is planar due to the lack of deformation texture in the material; by

contrast, the RSP 644-B alloy shows a more faceted and crystallographicprofile. This is to be

compared with the highly-textured I/M 2090-T81 alloy, where the crack front exhibits

unusually sharp facets with an included angle of -60 °, resulting from crack advance along

intersecting (111) planes (12). Such faceted fracture morphologies, coupled with small crack-tip

shear displacements, can promote premature wedging of fracture-surface asperities during

fatigue, both along the crack front and in the direction of crack growth, thus promoting three- °

dimensional roughness-induced crack closure.

Similar to behavior in I/M AI-Li plates (8), crack-growth rates in both P/M alloys are

dependent upon specimen orientation; crack velocities are over two orders of magnitude faster

in the T-L orientation than in the L-T, especially at near-threshold AK levels (Fig. 6). As crack

advance in the T-L orientation is parallel to the extrusion direction E/D (along the aligned rod-



like grains) with a linear crack profile, closure levels are lower and growth rates are faster

comparedto L-T, where cracking proceeds perpendicular to the E/D.

Growth rates in both P/M AI-Li alloys are also sensitive to load ratio (Fig. 7), typical

of most metallic materials (13); with increasing R, crack-growth rates are increased and AI(rH

values correspondingly reduced as the effect of closure from crack-wedging gradually

diminishes. The influence of R is particularly marked in the RSP 644-B alloy owing to the high
I

levels of closure developed at R = 0.1, but is less pronounced in the 905-XL alloy since overall
crack-closure levels are much lower.

DISCUSSION

The present results illustrate the marked differe,aces in (long) fatigue-crackpropagation

behavior of P/M AI-Li alloys processed by various techniques. At low (positive) load ratios,

rapidly-solidified 644-B extrusions display consistently slower growth rates for ali AK levels

compared to the mechanically-alloyed material; behavior is in fact quite similar to I/M 2090-

T81 plate. Such trends are consistent with the degree to which crack-tip shielding is promoted

microstructurally in these alloys. Growth rates are the fastest in MA 905-XL microstructures,

which exhibit extremely linear crack paths and consequently the lowest (roughness-induced)

closure levels; conversely, RSP 644-B and I/M 2090-T81 alloys develop far greater closure

levels, by virtue of their highly deflected crack morphologies, and correspondingly show much

slower crack-propagationrates.

The effect of deflected crack paths is to retard crack advance by increasing the path

length traversed by the crack, reducing the local "crack-driving force" by deviating the crack

off the plane of maximum tensile stress, and most importantly inducing high closure levels from

wedging of fracture-surfaceasperities (11). Microstructurally,such morphological variations in

fatigue-crack path result from differences in slip characteror hardening mechanism, grain size,

aging temper and deformationtexture (11,12). In RSP 644-B alloy, the deflected crack profiles

are due to inhomogenous planar-slip deformation, concentratedwithin narrow {l 11} slip bands,

resulting in crystallographically-faeeted crack extension (slip-band cracking) along intersecting

sets of { 111} planes (Figs. 4b,e). This results from the presence of coherent, ordered 6'

•_ precipitates that are readily sheared by moving dislocations, and by the/_' dispersoids, which

impartpreferred orientationsto grains by inhibitingrecrystallization (following warm working),

thereby restrictingdeformationto fewer, more favorably-orientedslip systems. As planar slip is

prevalent in the P/M 644-B alloy despite its fine grain size, crack-closure levels and

consequently crack-growth rates remain comparableto I/M Al-Li alloys, which similarly derive

high closure levels from coherent _'-induced and texture-induced deflected crack paths.



In contrast, such marked effects of slip planarity and texture on crack closure and

crack-growth rates are essentially non-existent in mechanically-alloyed 905-XL extrusions,

where deformation is more homogeneous due to strengthening primarily from oxide and carbide

dispersions. Consequently, crack propagation in this alloy shows no evidence for slip-band

cracking; fatigue-crack paths are thus highly linear (Figs. 4c,f), closure levels are far lower,

and crack velocities are correspondingly much faster (Fig. 3).

With the exception of MA material, fatigue-crack growth rates in most AI-Li alloys are

strongly dependent on the crack-pa_ morphology and resulting crack closure; behavior is thus

very sensitive to specimen orientation, specifically in terms of the crack-path direction in

relation to microstructure and grain orientation. In I/M rolled plate, where grains tend to be

laminated (Fig. 1c), poor crack-growth resistance is found where cracks run parallel to the

laminated grains, i.e., S-T and S-L orientations (8). The grain structures in P/M extrusions,

conversely, resemble aligned-fiber composites (Figs. la,b); the lowest resistance to crack

growth is now found where cracks are oriented parallel to the "fibers", i.e., T-L and S-L

orientations. However, since the sources of closure from planar slip, grain morphology and

texture are minimized in mechanically-alloyed P/M alloys, crack-growth resistance in MA 905-

XL is more isotropic (Fig. 6).

Additionally, the dependency of crack-growth rate behavior on the load ratio is a strong

function of crack closure. Similar to results in other high-strength P/M aluminum alloys (14),

this phenomenon is particularly marked in the RSP alloy. Kel values approach 75% of Km. x,

close to AKra; load ratios above 0.75 are thus required to suppress the effect of closure from

crack-wedging mechanisms. In the MA material, conversely, Km values remain below 40% of

Km_x;the sensitivity to load ratio is therefore maximized below R = 0.4 such that differences

between growth rates at R = 0.1 and 0.75 are far less apparent (Fig. 7). However, when

crack-growth data are compared at high load ratios (R = 0.75) as in Fig. 7, or plotted in terms

of the closure-corrected AKarparameter (11), behavior in the two P/M alloys is more or less

identical and similar to many I/M AI-Li alloys, implying that most differences in fatigue-crack

propagation resistance of AI-Li alloys with respect to microstructure, orientation and load ratio

stem principally from variations in crack closure.

CONCLUSIONS '

Based on a study of fatigue-crack propagation in P/M Al-Li alloys processed

through rapid solidification (Allied 644-B) and mechanical alloying (Inco 905-XL), the

following conclusions can be made:



1. Fatigue-crack propagation rates in mechanically-alloyed P/M Al-Li alloy

905-XL, at R = 0.1, are approximately three orders of magnitude faster than in I/M

Al-Li alloy 2090-T81 at equivalent AK levels. Conversely, crack velocities in rapidly-

solidified P/M 644-B alloy are comparable to 2090-T81.

2. Such marked differences in crack-growth behavior between the two P/M AI-Li

alloys are associated with microstructurally-induced variations in crack-tip shielding. In
I

RSP 644-B alloy, crack paths are highly deflected, which promote high (roughness-induced)

crack-closure levels, similar to I/M AI-Li alloys. In contrast, profiles in the MA 905-XL are

unusually linear; measured closure levels are therefore lower, resulting in a comparatively

higher AKMat the crack-tip andhence faster crack-growthrates.

3. Akin to I/M AI-Li plate alloys, the tortuosity of crack paths in RSP 644-B alloy is

associated with crystallographiccrack advance induced by planarity of slip due to coherent _'-

precipitation hardening and pronounced texture. Such beneficial effects of Li on fatigue

resistance are not evident in the more isotropic MA AI-Li-Mg extrusions, which conversely

derive their strength from oxide- andcarbide-dispersion hardening.

4. (3rowth-rate behavior in P/M 644-B extrusions is highly anisotropic. Due to the

aligned, needle-shaped and unrecrystallized grain structures in extruded sections, growth rates

in the T-L orientation are up to 2-3 orders of magnitude faster than in the L-T. Such

differences are less apparent in the more isotropic MA 905-XL material.

5. Due to the higher crack-closure levels, load-ratio effects are more pronounced in the

RSP alloy than in the MA material. However, when crack-growth data are compared at high R,

where closure effects are suppressed, differences in fatigue-crack growth resistance between the

two P/M AI-Li extrusions are less apparent; in fact behavior becomes comparable to I/M AI-Li

plate alloys.
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FIG. 1

• Optical micrographs of grain structures
in P/M AI-Li alloy extrusions processed
by (a) mechanical alloying (AL 905-XL)
and Co) rapid solidification (RSP 644-B),
compared to (c) I/M 2090-T81 AI-Li

200_,_m alloy plate. (XBB 864-3075E)

(c)



FIG. 2

Transmission electron micrograph illustrating the predominant microstructural features and
hardening precipitates in RSP 644-B P/M AI-Li alloy (aged 16 h at 135°C, showing ordered 6'
(AI3Li) spheres and composite 6' particles surrounding 8' (AI3Zr) dispersoids. Imaging done
under dark-field conditions using 6' (100) super-lattice reflections. (XBB 902-1131)
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FIG. 3

(a) Fatigue-crack growth and (b) crack-closure behavior in MA AL 905-XL and _3P 644-B
P/M AI-Li alloys, compared with peak-aged I/M 2090-T81 fR = 0.1, L-T orientation). Note
that growth rates in 905-XL extrusions are significantly faster, consistent with much lower
crack-closure levels. Data on 2090-T81 taken from Ref. 8. The closure stress intensity, Kct, is
defined at first contact of the fracture surfaces on unloading.
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FIG. 4

(a,b,c) Optical micrographs of fatigue-crack paths and (d,e,f) scanning electron micrographs of
corresponding fracture surfaces, in (a,d) I/M 2090-T81, (b,e) RSP 644-B and (c,f) MA 905-XL
AI-Li alloys. Micrographs obtained for AK levels between 4-6 MPaffm (L-T orientation,
R = 0.1); arrow indicates general direction of crack propagation. (XBB 899-8156)
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FIG. 5

Through-thickness crack-path tortuosity observed during fatigue-crack growth in (a) MA AL
905-XL, (b) RSP 644-B and (c) I/M 2090-T81 alloys. Micrographs obtained by sectioning
perpendicular to the crack-growth direction and crack-growth plane. (XBB 899-8151)
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FIG. 6

Influence of specimen orientation of fatigue-crack growth rates in P/M AL 905-XL mid 644-B
AI-Li extrusions, at R = 0.1. Note that behavior in the L-T orientation, which is loaded along
the extrusion direction (E/l), is superior comparedto T-L, where loading is normal to the EfD.
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FIG.7

influence of load ratio (R = Kmio/Km_) on fatigue-crack growth rates in P/M AL 905-XL and
644-B P/M AI-Li alloys. Note that behavior in MA 905-XL is less dependent on R, which
develops the lower closure levels.
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